
HAL Id: hal-02893783
https://hal.science/hal-02893783

Submitted on 22 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the scalability of the ABCD Solver with a
combination of new load balancing and communication

minimization techniques
Iain Duff, Philippe Leleux, Daniel Ruiz, F Sukru Torun

To cite this version:
Iain Duff, Philippe Leleux, Daniel Ruiz, F Sukru Torun. Improving the scalability of the ABCD
Solver with a combination of new load balancing and communication minimization techniques. Parco
2019: Parallel Computing Conference, Sep 2019, Prague, Czech Republic. �10.3233/APC200052�.
�hal-02893783�

https://hal.science/hal-02893783
https://hal.archives-ouvertes.fr

Improving the scalability of the ABCD Solver with a
combination of new load balancing and communication

minimization techniques

Iain Duff 1,2, Philippe Leleux 1, Daniel Ruiz 3, F. Sukru Torun 4

1 CERFACS, Toulouse, France
2 Scientific Computing Dpt., Rutherford Appleton Laboratory, Oxon, England
3 IRIT - Institut de recherche en informatique de Toulouse, Toulouse, France

4 Ankara Yildirim Beyazit University, Ankara, Turkey

Technical Report TR/PA/20/72

Extended version of the publication in the proceedings of ParCo19:

Advances in Parallel Computing, 36(2020):277-286

http://ebooks.iospress.nl/volume/parallel-computing-technology-trends

Publications of the Parallel Algorithms Team

http://www.cerfacs.fr/publication/

Abstract

The hybrid scheme block row-projection method implemented in the ABCD Solver is
designed for solving large sparse unsymmetric systems of equations on distributed memory
parallel computers. The method implements a block Cimmino iterative scheme, accelerated
with a stabilized block conjugate gradient algorithm. An augmented pseudo-direct variant
has also been developed to overcome convergence issues. Both methods are included in the
ABCD solver with a hybrid parallelization scheme. The parallel performance of the ABCD
Solver is improved in the first non-beta release, version 1.0, which we present in this paper.
Novel algorithms for the distribution of partitions to processes are introduced to minimize
communication as well as to balance the workload. Furthermore, the master-workers approach
on each subsystem is also improved in order to achieve higher scalability through run-time
placement of processes. We illustrate the improved parallel scalability of the ABCD Solver on
a distributed memory architecture by solving several problems from the SuiteSparse Matrix
Collection.

Keywords: Block Cimmino, hybrid solver, sparse matrix, distributed memory parallelism,
iterative solver

1 The iterative and augmented block-Cimmino method

The Augmented Block Cimmino Distributed Solver (ABCD Solver) is a distributed hybrid scheme
designed to solve large sparse unsymmetric linear systems of the form:

Ax = b, (1)

where A is a full row rank m × n matrix, m ≤ n, x is a vector of size n and b is a vector of size
m. The approach is based on the block Cimmino row projection method (BC) [7]. BC is applied
to the system which is partitioned in p row blocks such that

A =

A1

A2

...
Ap

 (2)

where p < m, and each block Ai is of size mi, i ∈ {1, . . . , p}. Starting from an arbitrary initial
estimate x(0), a BC iteration improves the estimated solution by summing the projections of the
current iterate on the subspaces spanned by the blocks of rows to converge to a solution. The
convergence rate of BC is known to be slow [3]. When looking at the fixed point of the iterations,
we obtain the following equivalent system [10]:

Hx = k, where

H =

p∑
i=1

PR(AT
i) =

p∑
i=1

A+
i Ai

k =
p∑

i=1

A+
i bi.

(3)

As the row blocks Ai are assumed to have full row rank, H is symmetric and positive definite. To
accelerate the convergence of the block Cimmino method, we solve instead this system using a block
conjugate gradient algorithm (BCG) improved with stabilization of both residuals and directions

1

[10]. The convergence of this method stays problem dependent and in some cases, convergence
profiles with long plateaux can be observed. The eigenvalues of the matrix H are directly linked to
the principal angles between subspaces spanned by the row partitions. If these angles are wider,
the convergence becomes faster.

As an alternative, that we call ABCD, our solver also offers the possibility of constructing a

larger system

[
A C
B S

] [
x
y

]
=

[
b
f

]
where the numerical orthogonality between partitions is enforced.

As a result, the block Cimmino method converges in exactly one iteration and x is the solution of
the original system. This results in a pseudo-direct method [6] where the solution is dependent on
the projections as in BC, and on the direct solution of a system involving the matrix S. However,
the efficiency of such an approach, compared to other sparse direct solvers, depends on the size
or the density of the condensed system S which are problem dependent. Implementation of both
ABCD and BC are available in the ABCD Solver1 package.

2 Hybrid parallelism

In this section, we present the parallelization scheme of the ABCD Solver using MPI and OpenMP,
and the need for an optimization of the load balancing and communication reduction. Both BC
and ABCD methods perform the same preprocessing steps. Firstly, after scaling the system, we
partition the matrix so that the principal angles between the subspaces given by the partitions are
not too small, and the sizes of the partitions are balanced. There are many ways to construct these
partitions. In the case of an iterative solution with BC, we will consider graph partitioners on the
normal equations as they tend to reduce the number of iterations, as illustrated in [11]. In the
case of the pseudo-direct solution with ABCD, we shall consider instead the multilevel hypergraph
partitioner PaToH [4], which essentially decreases the size of the augmentation scheme, see [12].
Secondly, the basic idea is to distribute each partition Ai to one process, called master, which builds
the augmented system [2]: [

In AT
i

Ai 0m

] [
ui
vi

]
=

[
0
r

]
(4)

Thirdly, these augmented systems are solved using the sparse direct solver MUMPS2 [1] to
compute the projection on the subspace spanned by the block of rows in the partition. This direct
solver uses the well-known multifrontal method and performs three steps: analysis (preprocessing,
estimation of workload and memory), LDLT factorization, and finally solve (forward elimination
and backward substitution). Analysis and factorization must only be performed once, while one
solve is needed to compute each projection at each iteration. These local projections are then
summed through non-blocking point-to-point communications between masters. The amount of
data communicated is equal to the number of shared columns, called interconnections. Note that
additionally in ABCD, the matrix S is built in an embarrassingly parallel way by computing each
column with a projection independently, then S is given in distributed form directly to MUMPS
for a parallel solve on the global communicator (see [6] and [12] for the details of the construction
and solution of S).

The ABCD Solver is a hybrid scheme, in the sense that the method is iterative but relies on
a direct solver for each subproblem defined by the partition. The solver also implements a hybrid

1http://abcd.enseeiht.fr/
2http://mumps-solver.org/

2

parallelism in the sense that several levels of parallelism are exploited at the same time:

1. the projections are independent and can be computed in parallel,

2. the MUMPS solver introduces two levels of parallelism: through the exploitation of its elimi-
nation tree and through the factorization of large frontal matrices using parallel linear algebra
dense kernels.

Figure 1 depicts the parallelization scheme, including the fundamental steps of the algorithm, for
the BC and ABCD algorithms.

Depending on the number of processes and the number of partitions, there are various possibili-
ties for scheduling the computations. In the following sections of the article, we propose and study
three different approaches. In the first approach, we consider an equal number of processes and
partitions, in which case each master has exactly one partition. We seek, in Section 3, the optimal
number of processes per node to reduce the execution time.

In the second approach, the number of MPI processes is assumed to be less than the number
of partitions. In such a case, the idea is to assign groups of partitions to the masters, which will
construct one single block diagonal system, from the various partitions. This block diagonal system
can be solved using MUMPS as before. When distributing the partitions, the goal is to balance the
workload over all masters . In Section 4, we propose a new algorithm that aims to group partitions
on each master so as to minimize the overhead of communication between masters, and at the same
time maintain the load balance across masters.

In the third approach, we assume more MPI processes than partitions, in which case processes
with no partitions can be associated with the masters, as worker processes, in order to contribute to
the parallel computations in MUMPS. The target is to create master-workers groups with balanced
workloads, by taking into account the anticipated number of flops given by the MUMPS analysis
of each partition. In Section 5, we first present a fast and optimal assignment of the workers that
balances the workload across subgroups of processes. Then we introduce a new method to assign the
processes, masters and workers, in the physical computing resources to decrease the communication
overhead both within and between master-workers groups depending on the method used, BC or
ABCD.

In the ABCD Solver, we distinguish three types of communications [12]: the intra-communication
within master-workers group which only occurs when computing a projection using MUMPS;
the inter-communication between masters which occurs when summing the projections; finally in
ABCD, global communication used when solving the system based on S with all available processes.

To illustrate the impact of our contributions, we run the ABCD Solver on three square un-
symmetric matrices from the SuiteSparse Matrix Collection [5]. Table 1 shows characteristics of
the matrices. We conduct our experiments on MareNostrum4, a peta-scale supercomputer at the
Barcelona Supercomputing Center3. It is a cluster with Intel Xeon Platinum processors. Each com-
pute node is a 2-socket system where the 24 cores of each processor constitute a separate NUMA
(non-uniform memory access) domain and nodes are interconnected with the Intel Omni-Path ar-
chitecture. MareNostrum4 offers 96 GB RAM memory per NUMA domain, which means around 4
GB per core.

3https://www.bsc.es/marenostrum/marenostrum

3

Figure 1: Hybrid parallelism scheme of ABCD Solver.

Table 1: Characteristics of the test matrices. n: the order of the matrix, nnz: the number of
nonzero values in the matrix.

Matrix n (×106) nnz (×106) nnz/n kind

Hamrle3 1.45 5.51 3.81 circuit simulation problem
cage15 5.15 99.20 19.24 directed weighted graph
memchip 2.70 13.00 4.93 circuit simulation problem

3 Optimal node configuration

When the number of partitions equals the number of processes, we determine the best distribution
of MPI processes with respect to the execution time. With a fixed number of 128 MPI processes
and an equal number of 128 partitions, we increase the number of processes per node from 2 to 64.
Table 2 shows the execution times and we see that 2 MPI processes per node yields the minimum
overall times. Although this results in more communication, because the linear algebra kernels used
throughout the code and in MUMPS are memory-bound, they benefit from distributing the memory.
Fewer processes per node implies less concurrent access to memory and faster computation. We
will allocate 2 processes per node as our optimal configuration in the rest of the paper.
Since only a subset of the cores in the nodes is used by MPI processes, when increasing the number
of nodes we have the possibility of activating OpenMP parallelism. Multithreading is out of the
scope of this study, we focus on workload balancing and communication reduction.

4 Load balancing: distribution of partitions

In the case where the number of partitions is higher than the number of processes, a master process
owns a group of partitions. In this section, the goal is to distribute the partitions to the masters

4

Table 2: Timings for the factorization of the augmented systems, for the BCG in BC, and for the
pseudo-direct solution in ABCD. All runs were performed with 128 MPI processes spread with ppn
processes per node and 128 partitions. Note that the memory required for ABCD was too large to
solve the system cage15 on MareNostrum4.

Matrix ppn nodes
BC ABCD

facto(s) BCG(s) it. facto(s) sol.(s)

Hamrle3

32 4 0.17 192 500 0.22 9.44
16 8 0.19 138 ” 0.21 9.48
4 32 0.18 79 ” 0.20 9.50
2 64 0.18 77 ” 0.22 10.10

cage15

32 4 1 550 65 17 - -
16 8 1 380 52 ” - -
4 32 1 230 40 ” - -
2 64 1 210 38 ” - -

memchip

32 4 0.44 361 500 0.42 29.60
16 8 0.31 269 ” 0.31 29.70
4 32 0.28 171 ” 0.29 28.80
2 64 0.27 168 ” 0.29 28.10

with the right trade-off between balancing the weight of the local groups of partitions over all
processes and minimizing the overhead in communication between masters.

4.1 Balancing the weight of the local partitions

We first consider only balancing the weight of the partitions. The weights should represent the
future workload to compute projections. In the absence of more precise data at this point of the
solver, we simply use the number of rows as a crude measure. Although this gives reasonable
results here, it could result in bad load imbalance on other cases. In the next section, we will use
accurately estimated workloads from a latter phase of the solver to distribute the worker processes.
To balance the weights, we use the greedy algorithm introduced in [12]. The algorithm, presented
in Algorithm 1, distributes partitions sorted in decreasing order of weights to masters. First, in
order, one partition is given to each master. Then at each step, the master with current lowest
accumulated weight receives the next partition. This process results in an optimal distribution of
the partitions over all masters in terms of balancing our criterion.

4.2 Minimize the overhead of communication

Globally, balancing the weights of local sets of partitions is not the only concern, one should also
consider the overhead from inter-communication between masters resulting from the distributed
sum of local projections. Point-to-point communication is then effectively performed on values
corresponding to interconnections between two masters, see [6] and Figure 2 for an illustration with
three masters. Also, in ABCD, from the parallel solution of the condensed system S. Therefore, the
best distribution of the partitions should find the right trade-off between this communication, i.e.

5

Algorithm 1 Algorithm for distribution of the partitions to the masters

Input: w: weight of the partitions (sorted in descending order)
Input: nb masters, nb parts
Output: g: indices of the partitions owned by each master
1: gk = {k}, k = 1..nb masters
2: for i = nb masters+ 1 . . . nb parts do
3: kmin = arg min

k

∑
j∈gk

wj

4: gkmin = gkmin ∪ {i}
5: end for

Figure 2: Distributed sum of projections between three master processes. Only a subset of the
complete projection vector needs to be considered locally on each master, and only interconnections
between two masters actually result in communication.

minimizing the number of interconnected columns between processors, and balancing the workload
over processes in order to achieve minimum parallel execution time.

We propose a new algorithm which is based on this principle, see Algorithm 2. The algorithm
first creates a graph G. The vertices of G are the partitions weighted by their respective size. There
is an edge between two vertices if the corresponding partitions are interconnected, i.e. they share
a nonzero column, and the cost of that edge equals the number of such columns. In the final step,
we partition G using the multilevel graph partitioning tool METIS [9] to minimize the number of
interconnections between the groups of partitions for each master, with a parameter µ that allows
a certain imbalance in the accumulated weight over the groups of partitions.

4.3 Experimental results

The experiments are conducted on the three matrices with the greedy algorithm (Greedy) and the
communication reducing algorithm where µ = 1% (Comm1) and µ = 10% (Comm10). Each matrix
is partitioned into 1 024 blocks and is solved using 128 MPI processes spread over 64 distributed
nodes with no multithreading. The numerically aware partitioning [11] is applied for BC, and the
PaToH hypergraph partitioner is used for ABCD. Results are reported in Table 3. The column
‘Com. col%’ of Table 3 reports the total communication volume, equal to the number of intercon-

6

Algorithm 2 Algorithm for the distribution of partitions minimizing communications while keeping
a balance over the weight of partitions.

Input: w: weight of the partitions
Input: colIndex: indices of the non-empty columns for each partition
Input: nb masters, nb parts, µ: imbalance threshold
1: AdjacencyMatrix = zeros(nb parts, n)
2: AdjacencyMatrix(p, colIndex(p)) = 1
3: for p1, p2 ∈ {1..nb parts} do
4: interactions(p1, p2) = size (colIndex(p1)

⋃
colIndex(p2))

5: end for
6: Create graph G = (V, E) using AdjacencyMatrix and interactions
7: METIS(G, nb masters, µ)

nected columns, normalized with respect to the greedy method. The table also reports execution
times for the factorization as well as the imbalance ratio between the slowest and average factor-
ization times over all masters. Finally, the table gives the BCG execution time and iterations for
BC, and the time to compute the pseudo-direct solution including the solution of the system S for
ABCD.

As seen in the table, for BC, the proposed methods Comm1 and Comm10 achieve around 55%
and 62% reduction in the total number of exchanged columns for the cases of Hamrle3 and memchip,
respectively. This improvement in turn leads to faster parallel execution of BCG for Hamrle3 and
memchip. Our experiments show that the larger ratio µ has a limited effect on the reduction of
the total size of communication. On the other hand, for cage15, although there is considerable
reduction in the communication values, the execution time increases because the overhead of load
imbalance absorbs the gain from the minimization of communication.

In the case of ABCD, there is only one iteration, thus each communication is only performed
once. Compared to the gain of having balanced workloads over the MUMPS instances, the final
communication overhead is low and thus the time is only increasing, even if slightly, with the
proposed algorithm.

5 Placement of masters and workers

In this section, we consider the case where there are more processes than partitions. We make
use of the extra processes to act as workers to help the master MPI processes to parallelize the
computation further. We balance the workload over all masters by assigning more workers to a
master with a relatively higher workload.

5.1 Assignment of the workers

We consider wk the accurate estimated workload of master k ∈ {1..nb masters} given by MUMPS,
i.e. the number of flops required for MUMPS factorization. We propose a new 2-step algorithm
for the distribution of the workers. Firstly, considering the number of workers corresponding to the
relative workload of each master k:

7

Table 3: Impact of the distribution of partitions on the execution times. All runs were performed
with 1024 partitions and 128 MPI processes on 64 nodes with no multithreading. (Com. col %:
Normalized column reduction values with respect to the Greedy algorithm. tot: Total time in
seconds. Fact. imb: ratio of maximum over average factorization times. BCG it: Number of
iterations required for convergence. Sol. time: Total solution time in seconds)

BC ABCD

Matrix Algo.
Com. Fact. BCG Com. Fact. Sol.

col% tot imb tot it. col% tot imb time

Hamrle3
Greedy 100 0.22 1.62 714.25 4249 100 0.24 1.21 8.17
Comm1 46 0.19 1.26 700.66 4249 42 0.25 1.35 9.12
Comm10 45 0.20 1.36 713.69 4249 41 0.20 1.36 8.79

cage15
Greedy 100 20.41 1.97 28.01 18 - - - -
Comm1 44 42.61 3.94 34.62 18 - - - -
Comm10 44 48.82 3.75 35.00 18 - - - -

memchip
Greedy 100 0.36 1.18 299.23 791 100 0.32 1.18 5.64
Comm1 38 0.33 1.22 298.89 791 32 0.34 1.27 5.74
Comm10 38 0.35 1.21 292.05 791 31 0.33 1.23 5.72

s
(theo)
k = (wk/

nb masters∑
i=1

wi)× nb workers,

a number of workers equal to the floor part of this amount is assigned to each master. Since most
of the workers are now associated with a master, the second step only has to allocate the remaining
workers. Secondly, we apply a greedy algorithm: at each step, one of the remaining workers is
assigned to the master-workers group with the currently highest average workload, until all workers
have been assigned. We obtain an optimal distribution of the workers in terms of average workload
and, thanks to the first step, the number of greedy searches performed is decreased, see Algorithm
3.

Algorithm 3 Distribution of workers to the masters

Input: w: the workload for each master
Input: nb masters, nb workers
1: sk = floor(wk∑nb masters

k=1 wk
× nb workers), k = 1..nb masters

2: nb remains = nb workers−
nb masters∑

k=1

sk

3: for i = 1..nb remains do
4: kmax = arg max

k

wk

sk+1

5: skmax
++

6: end for

8

5.2 Hierarchy of the computing architectures

The ABCD Solver is designed to solve large systems on distributed memory architectures where
the computing resources are hierarchically structured, as is the case here with the supercomputer
MareNostrum4.

When launching our distributed application, we specify a certain number of MPI processes per
node which are allocated by the batch system. As a result, when the program starts, processes are
already allocated and placed on the system architecture in a set way. Depending on the situation
at runtime, we need to decide which processes will be given the role of master or worker in order to
minimize the total overhead of the communication between masters (inter-communication) on the
one hand, and inside master-workers groups (intra-communication) on the other hand. This process
is composed of three steps: firstly the placement of the masters, secondly determining the number
of workers for each master using the estimation of the workload with MUMPS as in the last section,
and thirdly choosing the workers for each master depending on its position in the architecture.

Two opposite approaches emerge for the latter step. We can place masters close to each other to
accelerate inter-communication, we refer to this approach as Compact. Alternatively, we can place
the master-workers group together on a node, to simultaneously improve intra-communication and
decrease concurrent access to memory by masters. We refer to this latter approach as Scatter.

5.3 Explicit placement of masters and workers over nodes

The approach first implemented in the ABCD Solver, see [12], is Compact: the first ranks of MPI
make the masters and the rest of the processes are assigned in a sequence to them as workers
depending on the rank. Although this approach minimizes the inter-communication, both the
intra-communication as well as the sequential calls to dense kernels, known to be memory-bound,
are slowed down due to concurrent memory access among masters.

Based on the results obtained in Section 3, mainly for BC, we have seen that spreading processes
over the nodes is better because of more efficient memory access. Thus, we propose to implement
the Scatter approach to improve the execution time of the ABCD Solver. Note that we currently
use a “manual” implementation of this approach, but in the future this implementation could be
replaced by existing architecture aware mechanisms [8]. We define two algorithms for placement of
the masters and the workers.

The principle of these algorithms is simple:

• To place masters, see Algorithm 4, we first gather information to know which node each
process is on. We then assign one master per non-full node in a zig-zag fashion, starting from
the largest node to smallest then alternating.

• To place workers, see the Algortihm 5, we first sort the masters in descending number of
desired workers. Then for each master, we place its workers in the same node and, when the
node is full, we group the remaining workers in other nodes as grouped as possible.

In Figure 3, we illustrate the effect of the Compact and Scatter approach on a toy example.
We partition a matrix in 3 partitions solved using block Cimmino with 12 processes. We define 3
masters each with 3 workers and launch the solver on 3 nodes each with 4 processes.

9

Algorithm 4 Placement of masters

Input: nb masters
Output: ptype: the type of each process (0 for master, 1 for worker)
Output: map: non-assigned processes inside of each node
Output: M node: the node of each master
1: Get system information: construct map containing the id of the processes for all nodes. The

nodes are ordered in descending order of number of processes
2: node = 1, direction = 1
3: ptype[proc] = 1, ∀proc
4: master = 1
5: while master < nb masters do
6: if ∃proc ∈ map[node] not assigned then
7: M node[master] = node
8: ptype[proc] = 0
9: mark proc as assigned in map[node]

10: master ++
11: end if
12: if node = 1 then
13: direction ++
14: else if node =size(map) then
15: direction −−
16: end if
17: node = node+ direction
18: end while

10

Algorithm 5 Placement of workers

Input: nb procs, nb masters
Input: ptype: the type of each process (0 for master, 1 for worker)
Input: map: processes inside of each node
Input: numworkers: number of workers for each master
Input: M node: the node of each master
Output: workers: the workers of each master
1: workers[master] = {}, ∀master
2: Ω=Sort(numworkers, descending)
3: nonFullNode = 0
4: for master = 1..nb masters ordered as in Ω do
5: node = M node[master]
6: while numworkers[master] > 0 do
7: if map[node] fully assigned then
8: while map[nonFullNode] fully assigned do
9: nonFullNode ++

10: end while
11: node = nonFullNode
12: end if
13: select proc ∈ map[node] not assigned
14: workers[master] = workers[master] ∪ {proc}
15: mark proc as assigned in map[node]
16: numworkers[master] −−
17: end while
18: end for

11

Figure 3: 3 nodes with 4 processes on each and we have 3 masters with 3 workers each. Mi

corresponds to the master i and the Sj of the same colour is its worker j. (Left) Compact scheme,
(Right) Scatter scheme.

5.4 Experimental results

The results are presented in Table 4. Firstly, we observe that the execution times for the factor-
ization remain mostly unchanged using both algorithms for memchip and Hamrle3. In the case
of cage15, which is dominated by this phase, the execution time of factorization is decreased in
Scatter, benefiting from less concurrent access to memory. Concerning the BC method, the times
for the sum of projections, which is included in the time for BCG, can increase in some cases with
the Scatter approach, due to most master-workers communicators being spread over the nodes.
However, the overall BCG run-times always benefit from spreading the masters over the nodes,
inducing less concurrency in memory access, and from grouping master-workers groups, thanks to
faster intra-communication. The effects of changing the algorithm are globally small.
In the end, we only have 2 processes per node so changing their placement does not change the
global performance. We ran the same experiment for the matrices Hamrle3 and memchip, using
16 processes per node, thus 128 MPI processes on 8 nodes. The memory required for cage15 was
too high for this configuration. Regarding the run-time of the BCG, Hamrle3 is solved in 203s
with Compact and 161s with Scatter, while memchip is solved in 254s with Compact and 186s with
Scatter. While the overall run-time with Scatter is higher than running with only 2 processes per
node, the difference is only 4.5% for both matrices. Using the Compact algorithm however, the
degradation is around 25%. This means that using the Scatter algorithm is more robust to having
multiple active cores per node, which is a big step towards gaining scalability with BC.
However, in the case of ABCD the time to compute the pseudo-direct solution no longer bene-
fits from spreading the masters with Scatter. In this approach, the computation is completely
distributed, thus the overhead in communication absorbs the improvement from lower concurrent
access to memory. Overall, the timings are not too different. Because of an implementation mix-
ing together multiple layers of parallelism from MUMPS and the partitioning itself, the hybrid
parallelism used is robust.

12

Table 4: Impact of the placement of masters and workers on the execution times of the ABCD Solver.
All runs were performed with 32 partitions and 128 MPI on 64 nodes with no multithreading.

Matrix Algo.
Block Cimmino ABCD

facto(s) BCG(s) it. proj. sum(s) facto(s) Sol.(s)

Hamrle3
Compact 0.41 159 500 76.4 0.36 43.2
Scatter 0.40 154 500 77.4 0.33 45.1

cage15
Compact 567 22.7 15 14.6 - -
Scatter 560 22.3 15 14.7 - -

memchip
Compact 0.40 184 365 89.1 0.46 24.8
Scatter 0.43 178 365 85.8 0.45 28.8

6 Conclusion

We have shown the potential improvement that can be obtained in a master-workers scheme by
considering the minimization of communication on an equal footing with the balancing of workload.
Firstly, we proposed a new distribution of partitions such that we decrease the communication
between masters in the block Cimmino method, thus decreasing the total execution time in a context
where many iterations are necessary with processes communicating at each iteration. Secondly, we
propose a new way of attributing the roles of master or worker to processes depending on the run-
time situation on the machine. We have identified two specific schemes : scattering the masters
over the nodes is well adapted to the block Cimmino method, especially when the number of
iterations is high, while compacting the masters in the same nodes is adapted for the augmented
block Cimmino pseudo-direct method. Furthermore, the Scatter approach is more robust with
respect to the number of processes per node, which is a big step towards scalability. Finally, we
demonstrate the improved parallel scalability on a distributed memory architecture.

Acknowledgements

This work was supported by the Energy oriented Centre of Excellence (EoCoE), grant
agreement number 676629, funded within the Horizon2020 framework of the European Union.
We acknowledge PRACE for awarding us access to MareNostrum4 at the Barcelona Supercom-
puting Center (BSC), Spain.

Bibliography

References

[1] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, and J. Koster, A fully asynchronous
multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis
and Applications, 23 (2001), pp. 15–41.

[2] Å. Björck, Iterative refinement of linear least squares solutions i, BIT Numerical Mathemat-
ics, 7 (1967), pp. 257–278.

13

[3] R. B. Bramley and A. Sameh, Row projection methods for large nonsymmetric linear
systems, SIAM Journal on Scientific and Statistical Computing, 13 (1992), pp. 168–193.

[4] U. V. Catalyürek and C. Aykanat, Patoh: a multilevel hypergraph partitioning tool,
version 3.0, Bilkent University, Department of Computer Engineering, Ankara, 6533 (1999).

[5] T. A. Davis and Y. Hu, The university of florida sparse matrix collection, ACM Transactions
on Mathematical Software (TOMS), 38 (2011), p. 1.

[6] I. S. Duff, R. Guivarch, D. Ruiz, and M. Zenadi, The augmented block cimmino dis-
tributed method, SIAM Journal on Scientific Computing, 37 (2015), pp. A1248–A1269.

[7] T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Nu-
merische Mathematik, 35 (1980), pp. 1–12.

[8] E. Jeannot, G. Mercier, and F. Tessier, Process placement in multicore clusters: Algo-
rithmic issues and practical techniques, IEEE Transactions on Parallel and Distributed Sys-
tems, 25 (2013), pp. 993–1002.

[9] G. Karypis and V. Kumar, Metis: A software package for partitioning unstructured graphs,
partitioning meshes, and computing fill-reducing orderings of sparse matrices, Department of
Computer Science, University of Minnesota, (1995).

[10] D. Ruiz, Solution of large sparse unsymmetric linear systems with a block iterative method in
a multiprocessor environment, CERFACS TH/PA/9, 6 (1992).

[11] F. Torun, M. Manguoglu, and C. Aykanat, A novel partitioning method for accelerating
the block cimmino algorithm, SIAM Journal on Scientific Computing, 40 (2018), pp. C827–
C850.

[12] M. Zenadi, The solution of large sparse linear systems on parallel computers using a hybrid
implementation of the block Cimmino method, PhD thesis, EDMITT, 2013.

14

