Iain Duff

Philippe Leleux

Daniel Ruiz

F Sukru Torun

Improving the scalability of the ABCD Solver with a combination of new load balancing and communication minimization techniques

Keywords: Block Cimmino, hybrid solver, sparse matrix, distributed memory parallelism, iterative solver

The hybrid scheme block row-projection method implemented in the ABCD Solver is designed for solving large sparse unsymmetric systems of equations on distributed memory parallel computers. The method implements a block Cimmino iterative scheme, accelerated with a stabilized block conjugate gradient algorithm. An augmented pseudo-direct variant has also been developed to overcome convergence issues. Both methods are included in the ABCD solver with a hybrid parallelization scheme. The parallel performance of the ABCD Solver is improved in the first non-beta release, version 1.0, which we present in this paper. Novel algorithms for the distribution of partitions to processes are introduced to minimize communication as well as to balance the workload. Furthermore, the master-workers approach on each subsystem is also improved in order to achieve higher scalability through run-time placement of processes. We illustrate the improved parallel scalability of the ABCD Solver on a distributed memory architecture by solving several problems from the SuiteSparse Matrix Collection.

The iterative and augmented block-Cimmino method

The Augmented Block Cimmino Distributed Solver (ABCD Solver) is a distributed hybrid scheme designed to solve large sparse unsymmetric linear systems of the form:

Ax = b, (1)
where A is a full row rank m × n matrix, m ≤ n, x is a vector of size n and b is a vector of size m. The approach is based on the block Cimmino row projection method (BC) [START_REF] Elfving | Block-iterative methods for consistent and inconsistent linear equations[END_REF]. BC is applied to the system which is partitioned in p row blocks such that

A =      A 1 A 2 . . . A p      (2)
where p < m, and each block A i is of size m i , i ∈ {1, . . . , p}. Starting from an arbitrary initial estimate x (0) , a BC iteration improves the estimated solution by summing the projections of the current iterate on the subspaces spanned by the blocks of rows to converge to a solution. The convergence rate of BC is known to be slow [START_REF] Bramley | Row projection methods for large nonsymmetric linear systems[END_REF]. When looking at the fixed point of the iterations, we obtain the following equivalent system [START_REF] Ruiz | Solution of large sparse unsymmetric linear systems with a block iterative method in a multiprocessor environment[END_REF]:

Hx = k, where        H = p i=1 P R(A T i) = p i=1 A + i A i k = p i=1 A + i b i . (3)
As the row blocks A i are assumed to have full row rank, H is symmetric and positive definite. To accelerate the convergence of the block Cimmino method, we solve instead this system using a block conjugate gradient algorithm (BCG) improved with stabilization of both residuals and directions [START_REF] Ruiz | Solution of large sparse unsymmetric linear systems with a block iterative method in a multiprocessor environment[END_REF]. The convergence of this method stays problem dependent and in some cases, convergence profiles with long plateaux can be observed. The eigenvalues of the matrix H are directly linked to the principal angles between subspaces spanned by the row partitions. If these angles are wider, the convergence becomes faster.

As an alternative, that we call ABCD, our solver also offers the possibility of constructing a larger system A C B S

x y = b f where the numerical orthogonality between partitions is enforced.

As a result, the block Cimmino method converges in exactly one iteration and x is the solution of the original system. This results in a pseudo-direct method [START_REF] Duff | The augmented block cimmino distributed method[END_REF] where the solution is dependent on the projections as in BC, and on the direct solution of a system involving the matrix S. However, the efficiency of such an approach, compared to other sparse direct solvers, depends on the size or the density of the condensed system S which are problem dependent. Implementation of both ABCD and BC are available in the ABCD Solver1 package.

Hybrid parallelism

In this section, we present the parallelization scheme of the ABCD Solver using MPI and OpenMP, and the need for an optimization of the load balancing and communication reduction. Both BC and ABCD methods perform the same preprocessing steps. Firstly, after scaling the system, we partition the matrix so that the principal angles between the subspaces given by the partitions are not too small, and the sizes of the partitions are balanced. There are many ways to construct these partitions. In the case of an iterative solution with BC, we will consider graph partitioners on the normal equations as they tend to reduce the number of iterations, as illustrated in [START_REF] Torun | A novel partitioning method for accelerating the block cimmino algorithm[END_REF]. In the case of the pseudo-direct solution with ABCD, we shall consider instead the multilevel hypergraph partitioner PaToH [START_REF] Catalyürek | Patoh: a multilevel hypergraph partitioning tool[END_REF], which essentially decreases the size of the augmentation scheme, see [START_REF] Zenadi | The solution of large sparse linear systems on parallel computers using a hybrid implementation of the block Cimmino method[END_REF]. Secondly, the basic idea is to distribute each partition A i to one process, called master, which builds the augmented system [START_REF] Björck | Iterative refinement of linear least squares solutions i[END_REF]:

I n A T i A i 0 m u i v i = 0 r (4)
Thirdly, these augmented systems are solved using the sparse direct solver MUMPS2 [START_REF] Amestoy | A fully asynchronous multifrontal solver using distributed dynamic scheduling[END_REF] to compute the projection on the subspace spanned by the block of rows in the partition. This direct solver uses the well-known multifrontal method and performs three steps: analysis (preprocessing, estimation of workload and memory), LDL T factorization, and finally solve (forward elimination and backward substitution). Analysis and factorization must only be performed once, while one solve is needed to compute each projection at each iteration. These local projections are then summed through non-blocking point-to-point communications between masters. The amount of data communicated is equal to the number of shared columns, called interconnections. Note that additionally in ABCD, the matrix S is built in an embarrassingly parallel way by computing each column with a projection independently, then S is given in distributed form directly to MUMPS for a parallel solve on the global communicator (see [START_REF] Duff | The augmented block cimmino distributed method[END_REF] and [START_REF] Zenadi | The solution of large sparse linear systems on parallel computers using a hybrid implementation of the block Cimmino method[END_REF] for the details of the construction and solution of S).

The ABCD Solver is a hybrid scheme, in the sense that the method is iterative but relies on a direct solver for each subproblem defined by the partition. The solver also implements a hybrid parallelism in the sense that several levels of parallelism are exploited at the same time:

1. the projections are independent and can be computed in parallel, 2. the MUMPS solver introduces two levels of parallelism: through the exploitation of its elimination tree and through the factorization of large frontal matrices using parallel linear algebra dense kernels.

Figure 1 depicts the parallelization scheme, including the fundamental steps of the algorithm, for the BC and ABCD algorithms.

Depending on the number of processes and the number of partitions, there are various possibilities for scheduling the computations. In the following sections of the article, we propose and study three different approaches. In the first approach, we consider an equal number of processes and partitions, in which case each master has exactly one partition. We seek, in Section 3, the optimal number of processes per node to reduce the execution time.

In the second approach, the number of MPI processes is assumed to be less than the number of partitions. In such a case, the idea is to assign groups of partitions to the masters, which will construct one single block diagonal system, from the various partitions. This block diagonal system can be solved using MUMPS as before. When distributing the partitions, the goal is to balance the workload over all masters . In Section 4, we propose a new algorithm that aims to group partitions on each master so as to minimize the overhead of communication between masters, and at the same time maintain the load balance across masters.

In the third approach, we assume more MPI processes than partitions, in which case processes with no partitions can be associated with the masters, as worker processes, in order to contribute to the parallel computations in MUMPS. The target is to create master-workers groups with balanced workloads, by taking into account the anticipated number of flops given by the MUMPS analysis of each partition. In Section 5, we first present a fast and optimal assignment of the workers that balances the workload across subgroups of processes. Then we introduce a new method to assign the processes, masters and workers, in the physical computing resources to decrease the communication overhead both within and between master-workers groups depending on the method used, BC or ABCD.

In the ABCD Solver, we distinguish three types of communications [START_REF] Zenadi | The solution of large sparse linear systems on parallel computers using a hybrid implementation of the block Cimmino method[END_REF]: the intra-communication within master-workers group which only occurs when computing a projection using MUMPS; the inter-communication between masters which occurs when summing the projections; finally in ABCD, global communication used when solving the system based on S with all available processes.

To illustrate the impact of our contributions, we run the ABCD Solver on three square unsymmetric matrices from the SuiteSparse Matrix Collection [START_REF] Davis | The university of florida sparse matrix collection[END_REF]. Table 1 shows characteristics of the matrices. We conduct our experiments on MareNostrum4, a peta-scale supercomputer at the Barcelona Supercomputing Center3 . It is a cluster with Intel Xeon Platinum processors. Each compute node is a 2-socket system where the 24 cores of each processor constitute a separate NUMA (non-uniform memory access) domain and nodes are interconnected with the Intel Omni-Path architecture. MareNostrum4 offers 96 GB RAM memory per NUMA domain, which means around 4 GB per core.

Optimal node configuration

When the number of partitions equals the number of processes, we determine the best distribution of MPI processes with respect to the execution time. With a fixed number of 128 MPI processes and an equal number of 128 partitions, we increase the number of processes per node from 2 to 64. Table 2 shows the execution times and we see that 2 MPI processes per node yields the minimum overall times. Although this results in more communication, because the linear algebra kernels used throughout the code and in MUMPS are memory-bound, they benefit from distributing the memory. Fewer processes per node implies less concurrent access to memory and faster computation. We will allocate 2 processes per node as our optimal configuration in the rest of the paper. Since only a subset of the cores in the nodes is used by MPI processes, when increasing the number of nodes we have the possibility of activating OpenMP parallelism. Multithreading is out of the scope of this study, we focus on workload balancing and communication reduction.

Load balancing: distribution of partitions

In the case where the number of partitions is higher than the number of processes, a master process owns a group of partitions. In this section, the goal is to distribute the partitions to the masters with the right trade-off between balancing the weight of the local groups of partitions over all processes and minimizing the overhead in communication between masters.

Balancing the weight of the local partitions

We first consider only balancing the weight of the partitions. The weights should represent the future workload to compute projections. In the absence of more precise data at this point of the solver, we simply use the number of rows as a crude measure. Although this gives reasonable results here, it could result in bad load imbalance on other cases. In the next section, we will use accurately estimated workloads from a latter phase of the solver to distribute the worker processes.

To balance the weights, we use the greedy algorithm introduced in [START_REF] Zenadi | The solution of large sparse linear systems on parallel computers using a hybrid implementation of the block Cimmino method[END_REF]. The algorithm, presented in Algorithm 1, distributes partitions sorted in decreasing order of weights to masters. First, in order, one partition is given to each master. Then at each step, the master with current lowest accumulated weight receives the next partition. This process results in an optimal distribution of the partitions over all masters in terms of balancing our criterion.

Minimize the overhead of communication

Globally, balancing the weights of local sets of partitions is not the only concern, one should also consider the overhead from inter-communication between masters resulting from the distributed sum of local projections. Point-to-point communication is then effectively performed on values corresponding to interconnections between two masters, see [START_REF] Duff | The augmented block cimmino distributed method[END_REF] and Figure 2 for an illustration with three masters. Also, in ABCD, from the parallel solution of the condensed system S. Therefore, the best distribution of the partitions should find the right trade-off between this communication, i.e. g kmin = g kmin ∪ {i} 5: end for Figure 2: Distributed sum of projections between three master processes. Only a subset of the complete projection vector needs to be considered locally on each master, and only interconnections between two masters actually result in communication.

minimizing the number of interconnected columns between processors, and balancing the workload over processes in order to achieve minimum parallel execution time.

We propose a new algorithm which is based on this principle, see Algorithm 2. The algorithm first creates a graph G. The vertices of G are the partitions weighted by their respective size. There is an edge between two vertices if the corresponding partitions are interconnected, i.e. they share a nonzero column, and the cost of that edge equals the number of such columns. In the final step, we partition G using the multilevel graph partitioning tool METIS [START_REF] Karypis | Metis: A software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices[END_REF] to minimize the number of interconnections between the groups of partitions for each master, with a parameter µ that allows a certain imbalance in the accumulated weight over the groups of partitions.

Experimental results

The experiments are conducted on the three matrices with the greedy algorithm (Greedy) and the communication reducing algorithm where µ = 1% (Comm1) and µ = 10% (Comm10). Each matrix is partitioned into 1 024 blocks and is solved using 128 MPI processes spread over 64 distributed nodes with no multithreading. The numerically aware partitioning [START_REF] Torun | A novel partitioning method for accelerating the block cimmino algorithm[END_REF] is applied for BC, and the PaToH hypergraph partitioner is used for ABCD. Results are reported in Table 3. The column 'Com. col%' of Table 3 reports the total communication volume, equal to the number of intercon-Algorithm 2 Algorithm for the distribution of partitions minimizing communications while keeping a balance over the weight of partitions. Input: w: weight of the partitions Input: colIndex: indices of the non-empty columns for each partition Input: nb masters, nb parts, µ: imbalance threshold interactions(p 1 , p 2) = size (colIndex(p 1) colIndex(p2)) 5: end for 6: Create graph G = (V, E) using AdjacencyM atrix and interactions 7: METIS(G, nb masters, µ) nected columns, normalized with respect to the greedy method. The table also reports execution times for the factorization as well as the imbalance ratio between the slowest and average factorization times over all masters. Finally, the table gives the BCG execution time and iterations for BC, and the time to compute the pseudo-direct solution including the solution of the system S for ABCD.

As seen in the table, for BC, the proposed methods Comm1 and Comm10 achieve around 55% and 62% reduction in the total number of exchanged columns for the cases of Hamrle3 and memchip, respectively. This improvement in turn leads to faster parallel execution of BCG for Hamrle3 and memchip. Our experiments show that the larger ratio µ has a limited effect on the reduction of the total size of communication. On the other hand, for cage15, although there is considerable reduction in the communication values, the execution time increases because the overhead of load imbalance absorbs the gain from the minimization of communication.

In the case of ABCD, there is only one iteration, thus each communication is only performed once. Compared to the gain of having balanced workloads over the MUMPS instances, the final communication overhead is low and thus the time is only increasing, even if slightly, with the proposed algorithm.

Placement of masters and workers

In this section, we consider the case where there are more processes than partitions. We make use of the extra processes to act as workers to help the master MPI processes to parallelize the computation further. We balance the workload over all masters by assigning more workers to a master with a relatively higher workload.

Assignment of the workers

We consider w k the accurate estimated workload of master k ∈ {1..nb masters} given by MUMPS, i.e. the number of flops required for MUMPS factorization. We propose a new 2-step algorithm for the distribution of the workers. Firstly, considering the number of workers corresponding to the relative workload of each master k:

s (theo) k = (w k / nb masters i=1 w i) × nb workers,
a number of workers equal to the floor part of this amount is assigned to each master. Since most of the workers are now associated with a master, the second step only has to allocate the remaining workers. Secondly, we apply a greedy algorithm: at each step, one of the remaining workers is assigned to the master-workers group with the currently highest average workload, until all workers have been assigned. We obtain an optimal distribution of the workers in terms of average workload and, thanks to the first step, the number of greedy searches performed is decreased, see Algorithm 3.

Algorithm 3 Distribution of workers to the masters Input: w: the workload for each master Input: nb masters, nb workers

1: s k = f loor(
k max = arg max k w k s k +1 5:
s kmax ++ 6: end for

Hierarchy of the computing architectures

The ABCD Solver is designed to solve large systems on distributed memory architectures where the computing resources are hierarchically structured, as is the case here with the supercomputer MareNostrum4.

When launching our distributed application, we specify a certain number of MPI processes per node which are allocated by the batch system. As a result, when the program starts, processes are already allocated and placed on the system architecture in a set way. Depending on the situation at runtime, we need to decide which processes will be given the role of master or worker in order to minimize the total overhead of the communication between masters (inter-communication) on the one hand, and inside master-workers groups (intra-communication) on the other hand. This process is composed of three steps: firstly the placement of the masters, secondly determining the number of workers for each master using the estimation of the workload with MUMPS as in the last section, and thirdly choosing the workers for each master depending on its position in the architecture.

Two opposite approaches emerge for the latter step. We can place masters close to each other to accelerate inter-communication, we refer to this approach as Compact. Alternatively, we can place the master-workers group together on a node, to simultaneously improve intra-communication and decrease concurrent access to memory by masters. We refer to this latter approach as Scatter.

Explicit placement of masters and workers over nodes

The approach first implemented in the ABCD Solver, see [START_REF] Zenadi | The solution of large sparse linear systems on parallel computers using a hybrid implementation of the block Cimmino method[END_REF], is Compact: the first ranks of MPI make the masters and the rest of the processes are assigned in a sequence to them as workers depending on the rank. Although this approach minimizes the inter-communication, both the intra-communication as well as the sequential calls to dense kernels, known to be memory-bound, are slowed down due to concurrent memory access among masters.

Based on the results obtained in Section 3, mainly for BC, we have seen that spreading processes over the nodes is better because of more efficient memory access. Thus, we propose to implement the Scatter approach to improve the execution time of the ABCD Solver. Note that we currently use a "manual" implementation of this approach, but in the future this implementation could be replaced by existing architecture aware mechanisms [START_REF] Jeannot | Process placement in multicore clusters: Algorithmic issues and practical techniques[END_REF]. We define two algorithms for placement of the masters and the workers.

The principle of these algorithms is simple:

• To place masters, see Algorithm 4, we first gather information to know which node each process is on. We then assign one master per non-full node in a zig-zag fashion, starting from the largest node to smallest then alternating.

• To place workers, see the Algortihm 5, we first sort the masters in descending number of desired workers. Then for each master, we place its workers in the same node and, when the node is full, we group the remaining workers in other nodes as grouped as possible.

In Figure 3, we illustrate the effect of the Compact and Scatter approach on a toy example. We partition a matrix in 3 partitions solved using block Cimmino with 12 processes. We define 3 masters each with 3 workers and launch the solver on 3 nodes each with 4 processes.

Algorithm 4 Placement of masters

Input: nb masters Output: ptype: the type of each process (0 for master, 1 for worker) Output: map: non-assigned processes inside of each node Output: M node: the node of each master 1: Get system information: construct map containing the id of the processes for all nodes. The nodes are ordered in descending order of number of processes 2: node = 1, direction = 1 3: ptype[proc] = 1, ∀proc 4: master = 1 5: while master < nb masters do end while 18: end for

Experimental results

The results are presented in Table 4. Firstly, we observe that the execution times for the factorization remain mostly unchanged using both algorithms for memchip and Hamrle3. In the case of cage15, which is dominated by this phase, the execution time of factorization is decreased in Scatter, benefiting from less concurrent access to memory. Concerning the BC method, the times for the sum of projections, which is included in the time for BCG, can increase in some cases with the Scatter approach, due to most master-workers communicators being spread over the nodes. However, the overall BCG run-times always benefit from spreading the masters over the nodes, inducing less concurrency in memory access, and from grouping master-workers groups, thanks to faster intra-communication. The effects of changing the algorithm are globally small. In the end, we only have 2 processes per node so changing their placement does not change the global performance. We ran the same experiment for the matrices Hamrle3 and memchip, using 16 processes per node, thus 128 MPI processes on 8 nodes. The memory required for cage15 was too high for this configuration. Regarding the run-time of the BCG, Hamrle3 is solved in 203s with Compact and 161s with Scatter, while memchip is solved in 254s with Compact and 186s with Scatter. While the overall run-time with Scatter is higher than running with only 2 processes per node, the difference is only 4.5% for both matrices. Using the Compact algorithm however, the degradation is around 25%. This means that using the Scatter algorithm is more robust to having multiple active cores per node, which is a big step towards gaining scalability with BC. However, in the case of ABCD the time to compute the pseudo-direct solution no longer benefits from spreading the masters with Scatter. In this approach, the computation is completely distributed, thus the overhead in communication absorbs the improvement from lower concurrent access to memory. Overall, the timings are not too different. Because of an implementation mixing together multiple layers of parallelism from MUMPS and the partitioning itself, the hybrid parallelism used is robust.

Conclusion

We have shown the potential improvement that can be obtained in a master-workers scheme by considering the minimization of communication on an equal footing with the balancing of workload. Firstly, we proposed a new distribution of partitions such that we decrease the communication between masters in the block Cimmino method, thus decreasing the total execution time in a context where many iterations are necessary with processes communicating at each iteration. Secondly, we propose a new way of attributing the roles of master or worker to processes depending on the runtime situation on the machine. We have identified two specific schemes : scattering the masters over the nodes is well adapted to the block Cimmino method, especially when the number of iterations is high, while compacting the masters in the same nodes is adapted for the augmented block Cimmino pseudo-direct method. Furthermore, the Scatter approach is more robust with respect to the number of processes per node, which is a big step towards scalability. Finally, we demonstrate the improved parallel scalability on a distributed memory architecture.

Figure 1 :

 1 Figure 1: Hybrid parallelism scheme of ABCD Solver.

Algorithm 1

 1 Algorithm for distribution of the partitions to the masters Input: w: weight of the partitions (sorted in descending order) Input: nb masters, nb parts Output: g: indices of the partitions owned by each master 1: g k = {k}, k = 1..nb masters 2: for i = nb masters + 1 . . . nb parts do 3: k min = arg min k j∈g k w j 4:

× 3 :

 3 nb workers), k = 1..nb masters 2: nb remains = nb workersfor i = 1..nb remains do 4:

6 : 9 :

 69 if ∃proc ∈ map[node] not assigned then 7: M node[master] = node 8: ptype[proc] = 0 mark proc as assigned in map[node]

Figure 3 :

 3 Figure 3: 3 nodes with 4 processes on each and we have 3 masters with 3 workers each. M i corresponds to the master i and the S j of the same colour is its worker j. (Left) Compact scheme, (Right) Scatter scheme.

Table 1 :

 1 Characteristics of the test matrices. n: the order of the matrix, nnz: the number of nonzero values in the matrix.

	Hamrle3	1.45	5.51	3.81 circuit simulation problem
	cage15	5.15	99.20	19.24 directed weighted graph
	memchip	2.70	13.00	4.93 circuit simulation problem

Matrix

n (×10

6

) nnz (×10 6) nnz/n kind

Table 2 :

 2 Timings for the factorization of the augmented systems, for the BCG in BC, and for the pseudo-direct solution in ABCD. All runs were performed with 128 MPI processes spread with ppn processes per node and 128 partitions. Note that the memory required for ABCD was too large to solve the system cage15 on MareNostrum4.

	Matrix	ppn nodes		BC		ABCD
				facto(s) BCG(s) it. facto(s) sol.(s)
		32	4	0.17	192	500	0.22	9.44
	Hamrle3	16 4	8 32	0.19 0.18	138 79	" "	0.21 0.20	9.48 9.50
		2	64	0.18	77	"	0.22	10.10
		32	4	1 550	65	17	-	-
	cage15	16 4	8 32	1 380 1 230	52 40	" "	--	--
		2	64	1 210	38	"	-	-
		32	4	0.44	361	500	0.42	29.60
	memchip	16 4	8 32	0.31 0.28	269 171	" "	0.31 0.29	29.70 28.80
		2	64	0.27	168	"	0.29	28.10

Table 3 :

 3 Impact of the distribution of partitions on the execution times. All runs were performed with 1024 partitions and 128 MPI processes on 64 nodes with no multithreading. (Com. col %: Normalized column reduction values with respect to the Greedy algorithm. tot: Total time in seconds. Fact. imb: ratio of maximum over average factorization times. BCG it: Number of iterations required for convergence. Sol. time: Total solution time in seconds)

					BC				ABCD
	Matrix	Algo.	Com.	Fact.	BCG		Com.	Fact.	Sol.
			col%	tot	imb	tot	it. col% tot imb time
		Greedy	100	0.22 1.62 714.25 4249 100 0.24 1.21 8.17
	Hamrle3	Comm1	46	0.19 1.26 700.66 4249	42 0.25 1.35 9.12
		Comm10	45	0.20 1.36 713.69 4249	41 0.20 1.36 8.79
		Greedy	100	20.41 1.97 28.01	18	-	-	-	-
	cage15	Comm1	44 42.61 3.94	34.62	18	-	-	-	-
		Comm10	44 48.82 3.75	35.00	18	-	-	-	-
		Greedy	100	0.36 1.18 299.23	791 100 0.32 1.18 5.64
	memchip	Comm1	38	0.33 1.22 298.89	791	32 0.34 1.27 5.74
		Comm10	38	0.35 1.21 292.05 791	31 0.33 1.23 5.72

 Placement of workersInput: nb procs, nb masters Input: ptype: the type of each process (0 for master, 1 for worker) Input: map: processes inside of each node Input: numworkers: number of workers for each master Input: M node: the node of each master Output: workers: the workers of each master

	10: Algorithm 5 9: nonF ullN ode ++ master ++ 11: 10: end while end if 12: 11: node = nonF ullN ode if node = 1 then 13: 12: end if direction ++ 14: 13: select proc ∈ map[node] not assigned else if node =size(map) then 15: 14: workers[master] = workers[master] ∪ {proc} direction --16: 15: mark proc as assigned in map[node] end if 17: 16: numworkers[master] --node = node + direction 18: end while 17:

1: workers[master] = {}, ∀master 2: Ω=Sort(numworkers, descending) 3: nonF ullN ode = 0 4: for master = 1..nb masters ordered as in Ω do 5: node = M node[master] 6: while numworkers[master] > 0 do 7: if map[node] fully assigned then 8:

while map[nonF ullN ode] fully assigned do

Table 4 :

 4 Impact of the placement of masters and workers on the execution times of the ABCD Solver. All runs were performed with 32 partitions and 128 MPI on 64 nodes with no multithreading.

	Matrix	Algo.		Block Cimmino		ABCD
			facto(s) BCG(s) it. proj. sum(s) facto(s) Sol.(s)
	Hamrle3	Compact Scatter	0.41 0.40	159 154	500 500	76.4 77.4	0.36 0.33	43.2 45.1
	cage15	Compact Scatter	567 560	22.7 22.3	15 15	14.6 14.7	--	--
	memchip	Compact Scatter	0.40 0.43	184 178	365 365	89.1 85.8	0.46 0.45	24.8 28.8

http://abcd.enseeiht.fr/

http://mumps-solver.org/

https://www.bsc.es/marenostrum/marenostrum

Acknowledgements

This work was supported by the Energy oriented Centre of Excellence (EoCoE), grant agreement number 676629, funded within the Horizon2020 framework of the European Union. We acknowledge PRACE for awarding us access to MareNostrum4 at the Barcelona Supercomputing Center (BSC), Spain.

Bibliography