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The E × B electron drift instability, present in many plasma devices, is an important agent in
cross-field particle transport. In presence of a resulting low frequency electrostatic wave, the motion
of a charged particle becomes chaotic and generates a stochastic web in phase space. We define
a scaling exponent to characterise transport in phase space and we show that the transport is
anomalous, of super-diffusive type. Given the values of the model parameters, the trajectories stick
to different kinds of islands in phase space, and their different sticking time power-law statistics
generate successive regimes of the super-diffusive transport.
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I. INTRODUCTION

The formation of stochastic web structures and the
chaotic transport of charged particles in presence of elec-
trostatic waves and magnetic field have been investi-
gated for several decades [1–7]. In purely chaotic situ-
ations where a central limit theorem is valid, the trans-
port process is like a discrete time random walk, and
the variance grows linearly with time [8–10]. But in
the case of mixed phase space where both chaotic and
regular trajectories coexist, the transport processes are
not so clear [11–13]. Usually, trajectories spend more
time near the border of the regular region. This type
of dynamics can sometimes be modeled using continu-
ous time random walks (CTRW), where the number of
jumps within a time interval [0, t), and the displacement
in each jump are taken from two mutually independent
probability densities, and these two probability densities
fully specify the probability distribution describing the
random walk [14, 15]. Transport in such systems can be
linked with Lévy flight type processes [16–18]. In pres-
ence of a magnetic field, due to the interaction with elec-
trostatic waves, the dynamics of the charged particles
become chaotic and, for certain parameter values, they
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form stochastic webs where chaotic sticky islands, inside
which trajectories show regular features, coexist with a
chaotic “sea” between islands. Large scale transport is
possible through this chaotic domain [19–21].

These web structures exhibit different shapes which de-
pend on the wave vectors k and amplitudes of the electro-
static waves, and on ωk/ωce the frequency ratios of elec-
trostatic waves frequencies ωk to the electron cyclotron
frequency ωce [22]. The study of particle transport in
these web structures helps to understand the anomalous
collisionless transport mechanism in magnetized plasmas.
In most previous studies, the formation of stochastic webs
and the associated transport were investigated for high
wave frequency (ωk � ωce). Moreover, the perpendicu-
lar diffusion coefficient in that limit is calculated by in-
voking the linear time dependence of the variance [23].
However, deviations from the linear time dependence of
variance are frequently observed in case of mixed phase
space.

Here, we consider the collisionless transport mecha-
nism of electrons due to the E×B electron drift instabil-
ity. In magnetized Hall plasmas [24], the E×B electron
drift, plasma density, temperature, magnetic field gradi-
ents and ion flow are the sources of the E×B drift insta-
bilities or electron cyclotron drift instability [25]. This in-
stability is observed in many magnetized plasma devices
like magnetrons for material processing [26], magnetic fil-
ters [27], Penning gauges [28], linear magnetized plasma
devices dedicated to study cross-field plasma instabilities
[29], Hall thrusters for space propulsion and many fusion
devices. In Hall thrusters and other devices, this E×B
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drift instability plays a dominant role in anomalous par-
ticle transport. In most of these devices, the electrostatic
modes generated by E×B drift instability have very small
frequencies compared to the electron cyclotron frequency
(ωk � ωce). Therefore, the resonance condition with the
cyclotron harmonics, ωk − k‖v‖ = `ωce, is not satisfied.

In previous works, the chaotic dynamics of test parti-
cle (electron) near the anode region in Hall thrusters due
to inhomogeneities in magnetic field, and its effect on
ionization efficiency and anomalous electron transport,
were reported even in the absence of waves [30, 31]. In
our recent work [32], we present the anomalous trans-
port of electrons due to wave-particle interaction in Hall
thruster using a three-dimensional test particle model,
even in a uniform magnetic field. But in three space di-
mensions, the dynamics in the presence of waves is very
complicated.

In this paper, we focus on the consequence of the E×B
drift instability. We discuss the formation of chaotic
web structures and characterize the associated trans-
port properties using a reduced two-degrees-of-freedom
Hamiltonian which helps to simplify the original dynam-
ics complexity. In real thrusters, due to the presence
of wall boundaries, particles can reflect from the bound-
ary, a process which may destroy the web formation. We
find that, in presence of a single background electrostatic
wave along with the uniform, static electric and magnetic
fields, the trajectories generate web structures, and that,
due to the presence of sticky islands, particle transport is
super-diffusive. Then we analyse the sticking time statis-
tics by observing a power-law decay of particle presence
in each of the sticky sets. Therefore, this work comple-
ments our previous findings with a new understanding of
the particle transport, which can be applicable in other
systems having mixed phase space.

Section II presents the model and its two descriptions
(respectively time-dependent and time-independent).
Sec. III indicates the numerical method used to integrate
the evolution equations. Sec. IV discusses the chaotic
web structures generated by the dynamics, Sec. V anal-
yses the transport in these structures, and Sec. VI dis-
cusses the effect of sticking to invariant islands on trans-
port. We conclude in Sec. VII.

II. REDUCED HAMILTONIAN DYNAMICS
AND THE ELEMENTARY MODEL

A. Fields acting on an electron

We consider a Cartesian coordinate system for the nu-
merical modelling, with x-direction along the magnetic
field B0, y-direction as E0 × B0 drift direction and z-
direction along the constant electric field E0 (see fig. 1
of [32]).

In Hall thruster geometry, unstable low frequency
(ωk � ωce) electrostatic waves are generated due to
E ×B drift instability. A 3D dispersion relation of this

instability for Hall thruster has been derived by Cava-
lier et al. [33]. The most unstable mode [34] is given

by kmax ∼ (λDe

√
2)−1 and ωmax ∼ ωpi/

√
3, where λDe

and ωpi are the electron Debye length and ion plasma
frequency respectively. Its propagation angle deviates by
tan−1(kz/ky) ∼ 10 − 15◦ from the y-direction near the
thruster exit plane. Hence, the wave vector along the
z-direction is small (kz ∼ 0.2 ky), and the electric field
along the z-direction is dominated by the stronger con-
stant axial electric field E0. Therefore, for simplicity, we
remove here the z-variation of the electric field.

For this first investigation, we consider only the fastest
growing mode. The total electric field acting on the par-
ticle is

E(x, y, z, t) = φ1k sinα(x, y, t) + E0 ez, (1)

with the local phase α(x, y, t) := kxx+ kyy − ω1t, where
the wave vector k = kxex + kyey and the wave angular
frequency ω1 follow the dispersion relation of the E×B
electron drift instability [33] and kz = 0. The origin of
time is such that α = 0 for x = y = 0, t = 0. The position
r = (x, y, z), velocity v, time t and the potential φ1 are
normalized with Debye length λDe, thermal velocity vthe,
inverse electron plasma frequency ω−1

pe and mev
2
the/|qe|,

respectively. We choose the amplitude φ1 equal to the
saturation potential [34] at the exit plane of the thruster

|δφy,rms| = Te/(6
√

2) = 0.056 v2
the. We consider a single

mode with (kx, ky, ω1) = (0.001, 0.754, 1.23 · 10−3).
Earlier studies of Hall thruster [33] reported that the

comb-like unstable modes found in axial-azimuthal plane
get smoothed out as one increases the wave vector kx par-
allel to the magnetic field ; for large kx values (kx > 0.08),
the dispersion relation tends to follow an asymptotic
curve corresponding to a modified ion acoustic instability.
At small kx values, the real part of the frequency given
by the dispersion function oscillates about this asymp-
totic curve and crosses this asymptotic curve at each res-
onance (and also one time between each resonance), as
can be seen in figure 2 of ref. [33], while the growth rate
depends strongly on kx at that point. As our model is
not self-consistent, so that the amplitude of the wave
is fixed according to experimental measurements in Hall
thruster[35], we only use the real part of the frequency
of the unstable mode. The mode considered is the one
having the largest growth rate and corresponds to one of
the resonances. So the real part of the frequency at that
point is correctly given by the approximated dispersion
relation [34], even though the value of kx chosen here is
too small to ensure a smoothed dispersion relation.

From here on, we write ωc for ωce. In normalized
units, the cyclotron frequency ωc = |qeB0|/me = 0.1ωpe,
|qeE0|/me = 0.04ωpevthe, and the drift velocity vd =
E0/B0 = 0.4 vthe. Therefore, the y-component of the
mode phase velocity is small (ω1/ky � vd).

As a result, in the Lorentz equation of motion of a
particle with mass m and charge q

r̈ =
q

m
(E(r, t) + ṙ×B) , (2)
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the electric field E(r, t) has a constant part E0 along z-
direction and a slowly time varying part in (x, y) plane.
Eq. (2) can be written componentwise, using Eq. (1), as

ẍ =
qE1x

m
sin(kxx+ kyy − ω1t), (3)

ÿ =
qE1y

m
sin(kxx+ kyy − ω1t) + ωcż, (4)

z̈ =
qE0

m
− ωcẏ, (5)

where E1x = kxφ1 and E1y = kyφ1 are the amplitude
of the x- and y-components of electric field, respectively.
Eq. (5) can be integrated:

ż + ωcy =
qE0

m
t+ a, (6)

where a = vz0 + ωcy0 is a constant of integration, vz0
and y0 are the particle’s initial z-component velocity and
position along y-direction, respectively. Substituting ż in
Eq. (4), and recalling the drift velocity vd = E0/B0, we
reduce the equation of motion of the particle to a system
of two equations,

ÿ + ω2
cy =

qE1y

m
sin (kxx+ kyy − ω1t) + vdω

2
c t+ ωca,

ẍ =
qE1x

m
sin (kxx+ kyy − ω1t) .

(7)

B. Time-dependent Hamiltonian

System (7) derives from the Hamiltonian
H(px, py, x, y, t)

H =
p2
x + p2

y

2m
+
m

2
ω2

c y
2 − (t+A)mvdω

2
c y

+qφ1 cos (kxx+ kyy − ω1t) , (8)

where A = (vz0 + ωcy0) / (ωcvd) is a constant. By means
of the generating function

F (Px, Py, x, y, t) = Pxx+ (Py + vd) (y − (t+A)vd) ,
(9)

we change to new variables (Px, Py, X, Y ) in a frame
moving with a constant velocity vd along the y-direction
(which we call a “drifted frame” for figures),

X =
∂F

∂Px
= x,

Y =
∂F

∂Py
= y − (t+A) vd,

px =
∂F

∂x
= Px,

py =
∂F

∂y
= Py + vd,

∂F

∂t
= − (Py + vd) vd.

(10)

Using these new coordinates (10), the new Hamiltonian
(after removing terms irrelevant to the motion) and the
equations of motion read

K (Px, Py, X, Y, t) =
P 2
x + P 2

y

2m
+
m

2
ω2

c Y
2 + qφ1 cosα,

Ẍ =
qφ1

m
kx sinα,

Ÿ + ω2
cY =

qφ1

m
ky sinα,

(11)

with α = kxX + kyY + (vdky − ω1)t + ζ and where ζ =
kxvdA is constant.

The dimensionless equations of motion are obtained
using the dimensionless variables X ′ = kxX + ζ, Y ′ =
kyY , t′ = ωct. Introducing the new notation β = kx/ky,
ε = qφ1k

2
y/(mω

2
c ) and ν1 = (vdky − ω1)/ωc, we obtain

the dimensionless equations

d2X ′

dt′2
= εβ2 sin (X ′ + Y ′ + ν1t

′) ,

d2Y ′

dt′2
+ Y ′ = ε sin (X ′ + Y ′ + ν1t

′) .

(12)

In this paper, we solve Eqs (12) numerically using a sec-
ond order symplectic scheme. The dynamics involves two
degrees of freedom with a time-periodic dynamics (with
period 2π/ν1), so that the effective phase space is 5-
dimensional. The coordinate X ′ admits periodic bound-
ary condition (with period 2π), whereas Y ′ runs over the
real line.

The dynamics depends on three parameters, ε, β and
ν1. For ε = 0, X ′ is ballistic and Y ′ is a harmonic os-
cillator, in agreement with the well-known solutions for
particle motion in stationary, uniform fields E0 and B0.

Note that, in Hall thrusters, B0 is radial and E0 is ax-
ial, so that the drift is azimuthal. The coordinates y and
Y are thus defined on circles, while x and X are actu-
ally bounded by the inner and outer cylindrical chamber
walls. The origin for Y and X are determined by the
initial conditions (y0, vz0) and the phase convention for
the electrostatic mode, respectively.

C. Time-independent Hamiltonian

A time-independent Hamiltonian can be derived by
means of a Galileo transformation along X with veloc-
ity ν1ωc/kx. With the generating function and change of
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variables

F =

(
Px −

ν1mωc

kx

)(
X +

ν1ωct+ ζ

kx

)
+ PyY,

X = X +
ν1ωc

kx
t+

ζ

kx
,

Px = Px −
ν1mωc

kx
,

Y = Y,

Py = Py,
∂F
∂t

=
ν1ωc

kx

(
Px −

ν1mωc

kx

)
,

(13)

the Hamiltonian (up to terms irrelevant to the motion)
and the equations of motion can be written as

K (Px,Py,X ,Y) =
P2
x + P2

y

2m
+
m

2
ω2

cY2

+qφ1 cos (kxX + kyY) ,

Ẍ =
qφ1

m
kx sin (kxX + kyY) ,

Ÿ + ω2
cY =

qφ1

m
ky sin (kxX + kyY) .

(14)

Setting X ′ = kxX , Y ′ = kyY and t′ = ωct, the equations
of motion (14) reduce to

d2X ′
dt′2

= εβ2 sin (X ′ + Y ′) ,
d2Y ′
dt′2

+ Y ′ = ε sin (X ′ + Y ′) .
(15)

Eq. (15) is solved numerically for various parameters and
initial conditions.

This dynamics depends on two parameters only, ε and
β. It involves two degrees of freedom, with the coordinate
X ′ obeying periodic boundary condition (with period
2π), whereas Y ′ runs over the real line. As the dynam-
ics is autonomous, it preserves the “energy” K. There-
fore, trajectories stay on smooth 3-dimensional surfaces,
and they may be visualised by means of 2-dimensional
Poincaré sections.

While coordinates (x, y) and (X,Y ) are related with
the Hall thruster chamber, coordinates (X ,Y) simplify
further the dynamics, provided one does not worry about
boundary conditions. Therefore, we use both the time-
independent and the time-dependent representations in
the following discussions.

For ε = 0, viz. in absence of electrostatic wave, the dy-
namics is integrable. Its dimensionless actions are the
linear momentum dX ′/dt′ with angle the position X ′
periodic with period 2π in agreement with the bound-

ary condition, and the gyration energy R′2/2 = (Y ′2 +
(dY ′/dt′)2)/2 (divided by the cyclotron frequency, which
is 1) with angle the gyrophase in the (Y ′,dY ′/dt′) plane.
In presence of the electrostatic wave, for small ε, these ac-
tions generate two adiabatic invariants. For β also small,

the actions evolve on different time scales (in terms of
the dimensionless t′), namely ε−1 for the oscillations of
Y ′ and ε−1β−2 for the nearly-ballistic motion of X ′.

III. NUMERICAL METHOD

Because the right hand sides of Eqs (12) and (15)
depend on space, the infinitesimal generators for both
velocity and position equations do not commute, and
one uses a time-splitting numerical integration scheme.
Since the dynamics is Hamiltonian and we are interested
in long-time evolution, we choose a symplectic scheme,
which guarantees preservation of the hamiltonian struc-
ture exactly and ensures over very long time the conser-
vation of a hamiltonian close to the original one [36, 37].

The positions are advanced with the map r(t+ ∆t) =
Tv,∆t(r(t)) = r(t) + v∆t, and the velocities are ad-
vanced in the form vx(t+ ∆t) = TEx,∆t(vx(t)) = vx(t) +
εβ2 sin(X + Y) ∆t and vy(t + ∆t) = TEy,∆t(vy(t)) =
vy(t) + (ε sin(X + Y) − Y) ∆t. As a result, we use a
second-order symmetric leapfrog scheme, which evolves
(15) as the map

(
r(t+ ∆t)
v(t+ ∆t)

)
= A

(
r(t)
v(t)

)
, (16)

A = Tv,∆t/2 ◦ TE,∆t ◦ Tv,∆t/2. (17)

We evolve Eqs (12) similarly, with TE,∆t evaluated at
midstep t+ ∆t/2.

IV. STOCHASTIC WEB STRUCTURE

The values of (ε, β2, ν1) in a Hall thruster device for the
fastest growing mode (kx = 0.001, ky = 0.754, ω = 1.23 ·
10−3) are ε = 3.21, β2 = 1.75 · 10−6 and ν1 = 3. As ε is
not small, the gyration action is definitely not conserved,
as will be seen in the phase space plots. However, εβ2 ∼
5 · 10−6 so that the ballistic action is almost conserved
over times t ∼ 105 ω−1

c = 106 ω−1
pe . Moreover, kx = 0.01,

so that εβ2 = 5.6 · 10−4 which also ensures conservation
of the action for long time. We checked that setting kx =
0.01 with all other parameter kept constant gives similar
phase space plots as kx = 0.001. For higher values like
kx ≥ 0.1, the action is not conserved over long times,
which changes the phase space structure.

Here we first focus on transport for web structures with
three-fold rotational symmetry (ν1 = 3) as in the Hall
thruster geometry, and its harmonic the six-fold rota-
tional symmetry (ν1 = 6) with respect to gyration vari-
ables (Y ′, vy). By “rotational symmetry” we mean that,
if one rotates the (Y ′, vy)-space web structure by angle
2π/n around the origin, then it generates an identical
phase space structure. To assess the importance of hav-
ing an integer value for the forcing frequency ν1, we also



5

FIG. 1: Web network generated by Poincaré section of differ-
ent trajectories with different initial Ẏ ′0 values and X ′0 = 0 for
ε = 0.5, β2 = 1.75 · 10−6 and ν1 = 3.

FIG. 2: Web network generated by Poincaré section of a single
trajectory for ε = 0.5, β2 = 1.75 · 10−4 and ν1 = 3. The
rotation is due to fast change in X ′.

consider the non-resonant value ν1 = 1.39. For the time-

independent description, the initial velocity Ẋ0
′

plays a
similar role, and we also contrast the integer values 3 and
6 with the rational value 3.5.

For small values εβ2 � 1, the dynamics generate a
spiral stochastic web [3] in the three-dimension space

(X ′, Y ′, Ẏ ′). Moreover, for ε� 1, the dynamics is nearly
integrable and the chaoticity vanishes. In the section
cut by a plane X ′ = const, the web is a system of con-
centric circles and of straight lines passing through the
co-ordinate origin in the (Y ′, Ẏ ′) plane. The cells of the
web form concentric “belts” around the coordinate ori-
gin. These trajectories are called “web trajectories”, due
to their special structural shape. Birkhoff’s theorem en-
sures that, for small, nonzero ε and β, the Poincaré map

has O type (elliptic) fixed points and X type (hyper-
bolic) ones ; regular trajectories are organized in islands
around the O points, while chaotic ones wander through
the heteroclinic and homoclinic tangles associated with
the stable and unstable manifolds of the X points [38].

Fig. 1 presents the web network for different initial
particle positions, for ε = 0.5, β2 = 1.75 · 10−6 and
ν1 = 3. Due to small ε value, the Hamiltonian is nearly
integrable and KAM theory applies. When X ′ varies,
as a result of detuning from longitudinal cyclotron reso-
nance (kxẊ = `ωce), the separatrix network and, conse-
quently, the stochastic web rotate about the coordinate
origin with angular velocity Ẋ ′ ∼ β2. But the shape and
area of the shells remain constant, and a particle that is
executing rapid rotation inside a cell sufficiently far from
the separatrix of the averaged motion will never intersect
the stochastic web and will move regularly.

For high values of β2 or Ẋ ′0, X ′(t) varies rapidly and
the chaotic tangle network also rotates rapidly compared
to the case with slowly varying X ′. This precludes the
presence of islands in the (Y ′, Ẏ ′) phase space for long
time evolution. Fig. 2 presents the rotation of a regular
web trajectory due to the high β2 value.

In our simulations, we evolve the dynamics of 1024 par-
ticles having initial Gaussian velocity distribution with
unit standard deviation along the y-direction and covari-
ance 〈Ẋ ′0 Ẏ ′0〉 = 0. Along the x-direction, we consider a
very small standard deviation σx = 0.001, and choose
the square of wave vector ratio β2 ∼ 10−6. We first con-
sider the time-dependent dynamics in Sec. IV A, then the
time-independent cases in Sec. IV B.

A. Time-dependent Hamiltonian

For the time-dependent Hamiltonian, the dynamics de-
pends on (ε, β2, ν1). Parameter ε expresses the ratio of
bounce frequency to cyclotron frequency, β expresses the
ratio of the parallel and perpendicular components of the
wave electric field, and ν1 is the normalized frequency of
the electrostatic wave in the drifted frame.

A large value of β2 or Ẋ ′0 causes the dynamics detuning

from the longitudinal resonance condition, kxẊ
′ = `ωc,

where ` is an integer. Therefore, the orbits in the web
structure drift more rapidly away from their initial action
values, covering the entire phase space inside the web and
destroying islands. In our present simulation, β2 ∼ 10−6

and |Ẋ ′0| � 1 which induces a slow drift of the trajectory.
We evolve Eqs (12) numerically for three different

sets of parameters (ε, β2, ν1) = (3.21, 1.75 · 10−6, 6.0),
(3.21, 1.75 ·10−6, 3.0) and (0.69, 1.83 ·10−5, 1.39), respec-
tively. The frequency of the electrostatic mode ω1 is very
small with respect to ωc. In the drifted frame, one has

ν1 > ωc, and the chaoticity criterion ε > 0.25 ν
2/3
1 de-

rived by Karney [22] must hold. For all three sets of pa-
rameters, this stochasticity criterion is indeed satisfied.

We first plot the stroboscopic Poincaré section in the
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FIG. 3: Poincaré section of a single trajectory of (12) for
ε = 3.21, β2 = 1.75 · 10−6 and ν1 = 6.
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FIG. 4: Poincaré section of a single trajectory of (12) for
ε = 3.21, β2 = 1.75 · 10−6 and ν1 = 3.

(Y ′, P ′y) plane of a single particle trajectory at times
t = 2nπ/ν1, where n = 0, 1, 2.... The parameter ε de-
termines the radius of the stochastic web. The value of
ν1 determines the shape of the web structure. For inte-
ger ν1, we observe a web structure with ν1-fold rotational
symmetry (Figs 3 and 4). For parameters (ε, β2, ν1) =
(0.69, 1.83 · 10−5, 1.39) with non-integer ν1, the dynam-
ics generates a Halloween mask-like, deformed three-fold
web structure (Fig. 5).

Along Y ′, the dynamics Eq. (12) has two time scales,
one associated with the electrostatic wave (with period
2π/ν1 in the drifting frame) and the other associated with
a simple harmonic oscillator with period 2π. Therefore,
an integer value of ν1 causes resonance between these two
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FIG. 5: Poincaré section of a single trajectory of (12) for
ε = 0.69, β2 = 1.83 · 10−5 and ν1 = 1.39.
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FIG. 6: Stochastic web of a single trajectory of (15) for ε =

3.21, β2 = 1.75 · 10−6 and Ẋ ′0 = 3.0.

time scales and one can eliminate the time dependence
by taking the Poincaré section at a regular time interval,
nT = 2πn/ν1, to generate the stochastic web structures
in the Poincaré section plot. The reduced frequency ν1

will determine the shape of the web structure.

For fixed values of ε, β2 and ν1, any initial condi-
tion (X ′0, Y

′
0 , Ẋ

′
0, Ẏ

′
0), within the chaotic domain of the

stochastic web, generates a similar web structure, and the
particles with initial conditions outside the web structure
and well inside the sticky islands (regions with no points
in the web structures) generate regular trajectories.
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FIG. 7: Stochastic web of a single trajectory of (15) for ε =

3.21, β2 = 1.75 · 10−6 and Ẋ ′0 = 7/2 = 3.5.

B. Time-independent Hamiltonian

In the time-independent Hamiltonian, Ẋ ′ = Ẋ ′ − ν1

and the dynamics depends on (ε, β2) only. In this case,

for any initial condition (X ′0,Y ′0, Ẋ ′0, Ẏ ′0) within the
chaotic domain of the stochastic web, the shape of the
web structure depends on the initial Ẋ ′0 values. For dif-
ferent Ẋ ′0 values, the trajectory lies on different energy
surfaces K = constant. Thus, particles with different ini-
tial conditions generate different web structures. Since
β2 ∼ 10−6 in this study, the motion along the X ′ direc-
tion is almost ballistic, Ẋ ′ ∼= constant. Therefore, we
can generate Poincaré section plots by taking sections at
X ′ = n2π, where n is an integer.

Figs. 6 and 7 display the stroboscopic plot of the time-
independent dynamics Eq. (15) with (ε, β2) = (3.21, 1.75·
10−6) and two different initial velocities along the X ′
direction, Ẋ ′0 = 3 and 3.5 respectively. For integer values

of Ẋ ′0 as in Fig. 6, the dynamics generates web structures
similar to those generated in the Poincaré section plot
for the cases of time-dependent dynamics (12) with same
integer values of ν1. Fig. 7 presents the stroboscopic
plot of a particle with v0x = 3.5, which corresponds to
a higher-order resonance (7/2) : for fractional values of

Ẋ ′0, the stroboscopic plot generates different structures,
because each of the different initial conditions lies on a
different energy (K = constant) surface. Therefore, the
web structures in the time-independent dynamics highly
depend on the initial conditions of the particle.

V. TRANSPORT PROPERTIES

To characterise the transport properties, we consider
a simple observable. Previous studies [7, 39] for time-
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FIG. 8: Distribution of average speed for the stochastic web
with ν1 = 3 at ωpe t = 8 · 102, 13 · 103, 21 · 104, 85 · 104, 34 · 105,
13 · 106 and 5.4 · 107.

dependent one-degree-of-freedom Hamiltonian systems
focused on the norm of velocity (ṗ, q̇) in phase space,
where p, q are canonical co-ordinates. Here, we consider
the arc length s of the trajectory in position space only,
or, in dimensionless variables of Eqs (12),

S′(t) =

∫ t

0

√
dX ′2 + dY ′2. (18)

Numerically, we consider the global average speed
along the trajectory of a typical particle i

v̄i(n) =
1

n∆t

n−1∑

k=0

√
[∆X ′i(tk)]2 + [∆Y ′i (tk)]2 , (19)

where k is the timestep index, with coordinate increments

∆X ′i(tk) = X ′i(tk+1)−X ′i(tk) , (20)

∆Y ′i (tk) = Y ′i (tk+1)− Y ′i (tk) . (21)

In eq. (19), the discretized form of the integral (18) is
used.

When conditions are met so that we can apply the
central limit theorem, the distribution of quantity

Zi :=
1√
n

n∑

k=1

(vi(k)− 〈v〉),

gives a normal distribution function with mean 0 and
variance σ2, where vi(k) =

√
[∆X ′i(tk)]2 + [∆Y ′i (tk)]2

and 〈v〉 is defined below. The difference between the
quantity v̄i and Zi is the rescaling by 1/

√
n in v̄i. The

variance of the distribution of v̄i shrinks with rate σ2 ∼
1/
√
n as n increases. Since the area under the distribu-

tion function is constant (equal to unity), the height of
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FIG. 9: Distribution of average speed for the stochastic web
with ν1 = 6 at ωpe t = 8·102, 6.7·103, 1.0·105, 4.2·105, 1.7·106,
6.9 · 106 and 2.7 · 107.

the distribution increases with rate
√
n as the variance

shrinks. We define ρn(v̄) as the sampling density of the
distribution of v̄i(n)’s. Therefore, good ergodic proper-
ties of the dynamics (12) would include the convergence
of ρn towards a Dirac distribution for n → ∞, in which
case the support 〈v〉 of the limit is the time average of
the v̄i(n)’s,

lim
n→∞

ρn(v̄) = δ(v̄ − 〈v〉), (22)

and, almost surely with respect to the initial condition
(viz. index i),

〈v〉 := lim
n→∞

v̄i(n). (23)

In the present case, what is understood by ergodic prop-
erties is that, when considering initial conditions in the
chaotic sea, they will almost surely give rise to the same
natural ergodic measure, meaning that they equally sam-
ple all the accessible chaotic domain of phase space when
the dynamics evolve for sufficiently long time.

One method to assess the convergence of ρn is to look
at how fast its maximum value ρmax(n) diverges towards
+∞ with n. In order to characterize this speed, one can
typically expect that a scaling applies to increments in
(19), so that one may expect

ρmax(n) ∼ nα, (24)

where the exponent α characterises the nature of the
transport. If increments in (19) are quite independent
and a central limit theorem applies, transport is diffusive
and α = 1/2. For α > 1/2 it is sub-diffusive, and for
α < 1/2 it is super-diffusive.

Indeed, instead of considering the global average quan-
tity (speed) v̄i, one may consider the arc length Si(t) =

3 4 5 6 7 8
log10(t)
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FIG. 10: Evolution of ρmax versus n for the time-dependent
Hamiltonian with ν1 = 3 (magenta) and ν1 = 6 (black).

∑n
k=1

√
[∆X ′i(tk)]2 + [∆Y ′i (tk)]2 = nv̄i in order to char-

acterise the transport. Here, when we can apply the
central limit theorem, one expects the variance of the
distribution of Si’s to grow like

√
n. One can also cal-

culate different moments Mq of the distribution of Si’s
and extract the characteristic exponent µ from

Mq = 〈|Si − 〈Si〉|q〉 ∼ tµ(q). (25)

The second order exponent q = 2 may be related [7] to
the variance of the displacement in space, σ2 ∼ tµ(2).
For a chaotic system of diffusive type, µ(2) = 1, while
µ(2) 6= 1 for an anomalous transport.

Moreover, the area under the distribution function is
constant, which implies that the variance grows faster in
presence of fat tails than in the diffusive case. Therefore,
µ(2) > 1 implies super-diffusive transport and µ(2) < 1
implies sub-diffusive transport. The exponent α asso-
ciated with ρmax of the speed distribution is different
from this µ(2) which is associated with the moment of
the position-displacement distribution, but in the same
spirit and due to the fact that normalized distributions
have constant area, the existence of fat tails will im-
ply that the maximum ρmax will not grow so fast, and
thus α < 1/2 for ρmax indicates super-diffusive trans-
port, whereas α > 1/2 indicates sub-diffusive transport.
Both the scaling parameter α and µ(2) characterise the
diffusion property, and one may derive [39] a relation
α = 1− µ(2)/2 between them.

The non-diffusive aspect of transport implies that the
usual central limit theorem does not apply. However, the
motion of trajectories in the chaotic web does lose corre-
lations, and each trajectory typically generates a similar
picture of the web. Thus, one can still view a trajectory
as a sequence of pieces which are essentially mutually
independent, but with duration in time and extent in
space which do not meet the finite variance assumption
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necessary for the gaussian central limit. In other words,
the successive pieces generate a process obeying a scal-
ing law, viz. it is infinitely divisible, and their (properly
rescaled) sum has a Lévy distribution characterized by
the scaling exponent [9, 20].

A. Time-dependent Hamiltonian

In Figs. 8 and 9, we plot the distribution of

ui,n = v̄i(n)− 〈v〉 (26)

for two different web structures, with ν1 = 3 and ν1 = 6,
respectively. One can calculate the arc length for a time-
independent dynamics also, but in the time-dependent
dynamics, the parameter ν1 = (vdky − ω1)/ωc is impor-
tant in Hall thrusters. It expresses the frequency of the
electrostatic modes generated by the E × B instability,
in a frame which moves with the drift velocity vd along
the E0 ×B0 direction. As our study is motivated by the
anomalous chaotic transport in Hall thruster devices, we
choose the time-dependent dynamics for characterising
the transport for ν1 = 3 and ν1 = 6.

To characterize the transport, we consider two
different stochastic webs corresponding to values
(3.21, 1.75 · 10−6, 3) and (3.21, 1.75 · 10−6, 6) for param-
eters (ε, β2, ν1). We evolve the equations of motion (12)
for 1024 particles with all initial conditions inside the
chaotic domain, we calculate the arc length for each par-
ticle trajectory for a long time evolution (108 ω−1

pe ) using

a timestep value ∆t = 3.33·10−3 ω−1
c = 3.33·10−2 ω−1

pe in
simulation, and we generate the distribution of the global
average speed.

We plot the distribution at different times in Figs. 8
and 9 for both cases. To avoid nonphysical peaks in the
distribution of ρn, the length n of the time sequence
should be sufficiently long for the dynamics to reach a
saturation state, i.e. for the Poincaré section of each par-
ticle’s trajectory to sample the whole phase space reach
of the web. Here, we construct the distribution functions
ρn at times tn ≥ 800ω−1

pe .
In the plot, the strong sharp peaks are associated with

the stickiness phenomenon, by which a trajectory may
remain for a long time close to the regular islands. The
number of sharp peaks depends on the number of res-
onance generating sticky islands within the web struc-
tures, which we further discuss in the next section. We
obtain more peaks for ν1 = 6 (Fig. 9) than for ν1 = 3
(Fig. 8). In the figure, log10 t = log10(nτP), where τP
is the average time between two successive Poincaré sec-
tions. The relative magnitude of these sharp peaks de-
creases as n → ∞, because the contribution from the
chaotic domain becomes large compared to the contribu-
tion from the sticky regular trajectories as we consider a
longer time evolution.

In both Figs. 8 and 9, the distribution after time tn ∼
107 ω−1

pe (yellow line) has almost zero relative strength of
the sharp peaks, compared to the height of the smoother

distribution. Stickiness generates a memory effect and
Lévy flights [40]. In absence of these sticky trajectories,
the transport is purely diffusive and the exponent α takes
the value 1/2. In the presence of these sticky trajectories,
the transport will be anomalous.

To measure α, we find the value of ρmax from the local
maximum of the central smooth flat peak location which
corresponds to the bulk and particles evolving in the
chaotic domain, and not the sticky domains. In Fig. 10,
we plot the time evolution of ρmax for both cases ν1 = 3
and ν1 = 6. From the curve fitting, we obtain two dif-
ferent values α3 = 0.17 and 0.39 for the case ν1 = 3
(magenta dashed line and data dots), and α6 = 0.15 and
0.33 for ν1 = 6 (black). Both values of α in both cases are
below 0.5. Thus, the diffusion is anomalous and super-
diffusive.

After a longer time evolution, most of the particles
spend more time exploring the chaotic region of the
stochastic web and sampling the ergodic measure. It ap-
pears that the contribution from the sticky islands “de-
creases” in comparison with the contribution from the
chaotic domain, and that the “diffusion” rate increases
at longer time (tn > 105 ω−1

pe ). Note however that, even
for large times, the exponent being smaller than 1/2 im-
plies that the average speed fluctuations v̄i − 〈v〉 do not
approach a Gaussian distribution, hence they do not obey
the central limit theorem over this time scale, and trans-
port is superdiffusive.

B. Time-independent Hamiltonian

Similarly, we analyse transport for a stochastic web
structure generated from the time-independent Hamilto-
nian with the corresponding arc length

S ′(t) =

∫ t

0

√
dX ′2 + dY ′2. (27)

Transport in web with simple rational parameter: The
trajectories of 1024 particles are computed numerically
up to time 108 ω−1

pe with time step ∆t = 5.5 · 10−3. All
particles are initially randomly distributed in (X ′,Y ′)
plane within −π ≤ X ′0 ≤ π and −π ≤ Y ′0 ≤ π. Their
initial velocities along the Y ′-direction are drawn from
a Gaussian distribution with unit standard deviation.
Along the X ′-direction, we consider three different val-
ues Ẋ ′0 = 3, 3.5 and 6 (simple rational) in order to anal-
yse the transport in three different web structures gen-
erated from the time-independent Hamiltonian (15). For
all three cases, we consider ε = 3.21 and β2 = 1.75 ·10−6.

Figs. 11, 12 and 13 present the distribution of the aver-
age speed at different times for all three cases. Similarly
to the time-dependent cases, sharp peaks in the distribu-
tion of average speed appear due to the presence of the
sticky islands, and the number of sharp peaks is larger
for the web structures with six-fold rotational symme-

try, Ẋ ′0 = 6, than for the three-fold rotational symmetry,
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FIG. 11: Distribution of average speed for the stochastic web
with Ẋ ′0 = 3 and (ε, β2) = (3.21, 1.75 ·10−6) at ωpe t = 8 ·102,
13 · 103, 21 · 104, 85 · 104, 34 · 105, 13 · 106 and 5.4 · 107.
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FIG. 12: Distribution of average speed for the stochastic web
with Ẋ ′0 = 3.5 and (ε, β2) = (3.21, 1.75·10−6) at ωpe t = 8·102,
13 · 103, 21 · 104, 85 · 104, 34 · 105, 13 · 106 and 5.4 · 107.

Ẋ ′0 = 3. In the case Ẋ ′0 = 3.5, as seen in Fig. 7, the num-

ber and area of sticky islands are smaller than for Ẋ ′0 = 3.
Therefore, the height in the smooth part of the distribu-

tion, due to the chaotic domain, is larger for Ẋ ′0 = 3.5.

To estimate the exponent values from Eq. (24), we plot
in Fig. 14 the time evolution of ρmax for all three cases.
For Ẋ ′0 = 3 (magenta) and 6 (black), the plots are similar
to the time-dependent cases. From the curve fitting, we
obtain two different values of α in two different regimes of
the plots, α3 = (0.15, 0.25) and α6 = (0.18, 0.25). In both
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FIG. 13: Distribution of average speed for the stochastic web
with Ẋ ′0 = 6 and (ε, β2) = (3.21, 1.75 ·10−6) at ωpe t = 8 ·102,
6.7 · 103, 1.0 · 105, 4.2 · 105, 1.7 · 106, 6.9 · 106 and 2.7 · 107.
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FIG. 14: Evolution of ρmax versus n for the time-independent
Hamiltonian for (ε, β2) = (3.21, 1.75 ·10−6) with Ẋ ′0 = 3 (ma-

genta), Ẋ ′0 = 6 (black) and Ẋ ′0 = 3.5 (green).

cases, the transport is anomalous of super-diffusive type.
The values for the shorter time span (t < 5 · 105 ω−1

pe )
are very close to the values that are recovered for the
time-dependent dynamics.

For fractional values of Ẋ ′0, the number and area of the
sticky islands are smaller than for the other two cases.
Most of the region within the stochastic webs is part of
the chaotic domain, therefore the height of the distribu-
tion increases at a higher rate than in the other two cases,
as we increase the value of n. For Ẋ ′0 = 3.5 = 7/2, we
find higher exponent values, α3.5 = (0.23, 0.46). At short
time, the relative contribution from sticky trajectories is
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FIG. 16: Evolution of ρmax versus n for the time-independent
Hamiltonian with (ε, β2) = (0.69, 1.83 · 10−5) and Ẋ ′0 = 1.39.

significantly large, which reduces the exponent value to
α3.5 = 0.23 ; in contrast, for longer time t > 5 · 104 ω−1

pe ,
the contribution from the chaotic region dominates over
the contribution from sticky islands, and sharp peaks al-
most disappear, which increases the exponent value to
α3.5 = 0.46, so that the transport becomes closer to a
diffusive type.

Transport in Halloween mask like web: For Ẋ ′0 = 1.39
(further away from a simple rational) and (ε, β2) =
(0.69, 1.83 · 10−5), we also draw 1024 initial conditions in
the chaotic part of the domain defined by −π ≤ X ′0 ≤ π,

Ẏ ′0 a Gaussian random number with expectation 0 and
standard deviation 1, and Y ′0 outside the islands (typi-
cally, 0.1π ≤ |Y ′0| ≤ 0.6π). With these parameters and
initial conditions, the same analysis applies, as seen from
the peaks in the distribution in Fig. 15 and from the

FIG. 17: Localization of three different sticky regions in
the stochastic web with three-fold symmetry of Eq. (15) for

ε = 3.21, β2 = 1.75 · 10−6 and Ẋ ′0 = 3.0 as in Fig. 6.
These different sticky regions are associated with three differ-
ent peaks in the distribution plot of average speed (Fig. 11)
when log10(ωpet) = 2.92, which are Pk1 at un = 1.0 (blue
dots), Pk2 at un = 3.0 (red dots) and Pk3 at un = 5.0 (black
dots), respectively.

slopes α1.39 = (0.32, 0.42) in Fig. 16. In the next section,
we discuss this change of exponent values more quanti-
tatively.

VI. EFFECT OF STICKY ISLAND ON
ANOMALOUS TRANSPORT: CHANGE OF α

In this section, we will attempt to quantify the impact
of a sticky set on the transport, recalling that α must
be 0.5 when the central limit theorem can be applied,
whereas it is anomalous if α 6= 0.5. The superdiffusive
or subdiffusive nature of transport is measured by the
weight of the tails in the distributions : (i) if there are fat
tails (compared to the diffusive bulk of the distribution),
the maximum ρmax of the distribution will grow slower
than power 1/2 and we expect superdiffusion, while (ii) if
there are thinner tails, the maximum ρmax of the distri-
bution will grow faster than power 1/2 and we expect
subdiffusion. The presence of the sharp peaks in the dis-
tribution of ρn(v̄), Figs 8, 9, 11, 12, 13 and 15, increases
the effective weight of the tail of the distribution, which
makes exponent α < 1/2.

Each of the sharp peaks is related to the presence
of sticky islands in the phase space. Thus, one can
select the portions of trajectories contributing to each
peak and locate them in the Poincaré map. Specifically,
given a trajectory zi(t) (with initial condition labeled
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1 ≤ i ≤ N = 1024) over a long time span Tmax, and
a sticking time Ts, we fix a delay τ , and consider the arc
lengths ∆S ′i,m(Ts) = S ′i(Ts +mτ)−S ′i(mτ) of the portion
of zi over [mτ, Ts + mτ ], for 0 ≤ m ≤ M − 1 for some
large M = (Tmax − Ts)/τ , where Tmax is the maximum
value of the time evolution, Tmax = 108. For a moderate
value of τ (say, ∼ 200), this method generates MN time
sequences of length Ts which we analyse. Indeed we gen-
erate the distribution functions using the same technique.
Therefore, Ts is any time when the distribution function
is generated. The minimum value of Ts and τ should
be such that the dynamics become sufficiently ergodic
within that time, i.e. it covers the entire chaotic domain
of the phase space. Since we plot Ts in log10 scale, we
choose the values Ts = 200, 400, 800, 1600, 3200, 6400....
The maximum value of Ts is determined by the rela-
tion M ≥ 50, such that the total number of data points
for each distribution MN > 5 · 103, which constructs a
smooth distribution function at any time Ts.

In particular, we extract the points (X ′,Y ′, Ẏ ′) asso-
ciated with each v̄i that generates a sharp peak in the
distribution and we plot their Poincaré section in the
(Y ′,dY ′/dt′) plane, which generates the particular sticky
set. This is done in Fig. 17 for the web structures with
three-fold symmetry for the trajectories with sticking du-
ration Ts such that log10(ωpeTs) = 2.92. There are three
peaks, Pk1 at un = 1.0, Pk2 at un = 3.0 and Pk3 at
un = 5.0, in Fig. 11, each with a finite width. For
each peak, we identify the trajectories contributing to
the peak, and plot their Poincaré section, whereby the
sticky regions emerge. In Fig. 17, the sticky regions de-
noted by blue, red and black dots are associated with the
peaks Pk1, Pk2 and Pk3, respectively.

In Fig. 13, the distribution of average speed for the web
with six-fold symmetry has seven peaks, namely Pk1 at
un = −3.6, Pk2 at un = −1.5, Pk3 at un = 0.5, Pk4 at
un = 2.3, Pk5 at un = 4.2, Pk6 at un = 6.2 and Pk7 at
un = 8.1. In a similar way, we locate the sticky region
in the phase space for each of these peaks for the same
duration Ts, such that log10(ωpeTs) = 2.92. In Fig. 18,
the blue, red, green, magenta, cyan, yellow and black dots
identify the sticky regions associated with the peaks Pk1

to Pk7, respectively. Thus, all peaks in the distribution
plots are associated with different sticky sets. In Fig. 19,
we similarly identify the sticky sets associated with the
peaks for the stochastic web with Halloween mask like
structure of Eq. (15) for ε = 0.69, β2 = 1.83 · 10−5 and

Ẋ ′0 = 1.39.

Sticky sets are special in the dynamics, because they
influence transport in the chaotic domain. Therefore,
they are not islands in which the trajectory remains for-
ever : their trajectories leave them to wander further
through the chaotic domain. This implies that a group
of trajectories initially in the sticky set will leak into the
main chaotic sea – but slowly enough for their stickiness
to show up. Geometrically, sticky regions correspond to
tangles bordering islands. If the initial condition of a
particle is well inside an island, the dynamics of the par-

FIG. 18: Localization of seven different sticky regions in the
stochastic web with six-fold symmetry of Eq. (15) for ε = 3.21,

β2 = 1.75 · 10−6 and Ẋ ′0 = 6.0. These different sticky regions
are associated with seven different peaks in the distribution
plot of average speed (Fig. 13) with sticking duration Ts such
that log10(ωpeTs) = 2.92, which are Pk1 at un = −3.6 (blue
dots), Pk2 at un = −1.5 (red dots), Pk3 at un = 0.5 (green
dots), Pk4 at un = 2.3 (magenta dots), Pk5 at un = 4.2 (cyan
dots), Pk6 at un = 6.2 (yellow dots) and Pk7 = 8.1 (black
dots), respectively.

ticle will be essentially regular : it never exits from the
islands chain and generates a sharp peak in the distri-
bution which never becomes empty with time. Those
regular trajectories do no contribute to the anomalous
transport. We exclude all the regular trajectories to re-
move those peaks by considering all the initial condition
inside the chaotic domain.

Each sticky set leaks into the main chaotic domain
at its own rate, which we discuss below. However, be-
cause our dynamics is hamiltonian, we also know from
the Poincaré recurrence theorem that any trajectory will,
after a sufficiently long but finite time, return to a state
arbitrarily close to its initial state. Therefore, the leakage
from a sticky set is a transient process and, in general,
the trajectories having left such a set behave afterwards
like any other trajectory of the chaotic domain. It will
almost surely return, at a later time, close to its initial
state, but the statistics of this Poincaré recurrence time
and its sensitivity to the initial data are another issue,
which we do not discuss.

To understand the influence of stickiness on anoma-
lous transport, we now consider the web structure with
three-fold symmetry, and investigate the change of each
peak for increasing evolution time t = n∆t. This anal-
ysis makes it possible to see the time evolution of the
particles trapped in the corresponding islands. From the
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FIG. 19: Localization of six different sticky regions in the
stochastic web with Halloween mask like structure of Eq. (15)

for ε = 0.69, β2 = 1.83 · 10−5 and Ẋ ′0 = 1.39. These differ-
ent sticky regions are associated with six different peaks in
the distribution plot of average speed (Fig. 15) with sticking
duration Ts such that log10(ωpeTs) = 3.86, which are Pk1 at
un = −1.75 (red dots), Pk2 at un = −7.5 (blue dots), Pk3 at
un = 0.4 (magenta dots), Pk4 at un = 1.05 (green dots), Pk5

at un = 1.22, 1.33, 1.38 (yellow dots), Pk6 at un = 1.6, 1.78
(black dots), respectively.

distribution ρn(v̄) of average speed, one can count the
number of data points that contribute to each specific
peak at different times t. Then one estimates how long
the particles are sticking to each specific island, by mon-
itoring the change of area localized under each of those
peaks as a function of n. Therefore, this area yields the
weight of sticking to that particular island, until at least
t1 = n∆t, which can be written as

wPk(t1, Tmax ) = (Tmax − t1)−1

∫ Tmax

t1

ρPk(t)dt, (28)

where Pk is the index for each peak, ρPK(t) is the area
under the peak Pk at time t, and the statistics are gath-
ered from a “very long” run [0, Tmax ]. Under an ergodic
assumption [40, 41], this weight would enable one to es-
timate the probability that a trajectory would stick to
island Pk for at least the duration t1. For large sticking
time, a self-similar behaviour in the small scales in phase
space near the island will be associated with a power law
decay with an exponent γ,

wPk(Ts, Tmax) ∼ T 1−γPk
s , (29)

where we consider ρPk(t) ∝ t−γ and replace t1 with Ts.
This integration is valid only for γPK > 1.

In order to analyze the sticking-times statistics, we
count the number of data points sticking to each island
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FIG. 20: Time evolution of number of points WPk in each of
the three peaks Pk1 at un = 1.0 (blue dots), Pk2 at un = 3.0
(red dots) and Pk3 at un = 5.0 (black dots), respectively, in
the distribution of average speed (Fig. 11). Here t denotes
the sticking time Ts.

and plot them in logarithmic scale versus the duration.
One way to do is by integrating the distribution along
the u axis, at the particular sharp peak location. But
when we locate, in the (Y ′, Ẏ ′) Poincaré section, the dots
associated with the sharp peaks, we found some dots
actually situated within the main chaotic domain, and
moreover the sticky sets overlap with each other on this
one-variable (u) axis. Therefore, to find the actual ρPk

value associated with the sticky sets only, one should
count the dots situated only near the chaotic tangle bor-
dering the island. Each sticky set leaks with time and
mixes into the more regular chaotic domain.

So, we define the border of the web network by
an invariant surface with dimensionless radius R′ =√
Y ′2 + (dY ′/dt′)2, which is associated with the gyra-

tion action. The number density within each sticky set
decreases rapidly away from the surface R′ = constant.
Therefore, to count the dots belonging only to the sticky
sets, we denote the maximum and minimum value of R′
by R′out and R′in respectively for each peak. We con-
sider three different annular domains in phase space, one
for each peak, using the radius R′. In the (Y ′,dY ′/dt′)
section plane, Pk1 is associated with the annulus with
inner radius R′in = 9.4 and outer radius R′out = 13.5 ;
similarly, Pk2 with R′in = 12.23 and R′out = 16.76, and
Pk3 with R′in = 15.72 and R′out = 20.0. From the
data set associated with each peak, we identify those

points which satisfy R′in ≤ ky

√
Y2 + Ẏ2/ω2

c ≤ R′out.

We perform this counting for all the n values to obtain
WPk(n) ∼= MNwPk, we plot log10(WPk) vs. log10(ωpeTs),
and read the exponent γPk from the slope according to
Eq. (29). During the counting process, one should keep
in mind that the length of analysed data set MN should
be constant for all the time Ts.
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FIG. 21: Three sticky regions in the stochastic web with
three-fold symmetry for ε = 3.21, β2 = 1.75 · 10−6 and
Ẋ ′0 = 3.0 as in Fig. 17 with sticking duration Ts such that
log10(ωpeTs) = 5.63.

Fig. 20 presents these results. The time evolutions
of Pk1, Pk2 and Pk3 are presented by blue, red and
black dot respectively. Among all three peaks, Pk1 is
the strongest peak in the distribution. Initially, the ex-
ponents in Eq. (29) for all three peaks have very small
values |1 − γPk| � 1, namely γPk1 = 1.23, γPk2 = 1.17
and γPk3 = 1.06. For log10(ωpeTs) = 5.3, the exponent
value for the strongest peak Pk1 increases to γPk1 = 2.11.
The cross-over of the second strongest peak Pk2 occurs
for log10(ωpeTs) = 4.2, when the exponent value changes
to γPk2 = 1.64, which still implies |1−γPk2| < 1. For the
weakest peak Pk3, the exponent changes to γPk3 = 2.15
when log10(ωpeTs) = 5.7. Since the exponent value for
the strongest peak changes when log10(ωpeTs) = 5.3,
the strength of this peak starts to decrease (leak) faster,
which helps to increase the maximum ρmax of the average
distribution ρn(v̄) at a faster rate. Therefore, the value of
the transport exponent α, from Eq. (24), increases after
log10(ωpeTs) = 5.3, which is also observed in Fig. 14.

Fig. 21 presents the three sticky regions for the stick-
ing time Ts such that log10(ωpeTs) = 5.63. Comparing
with Fig. 17 (with log10(ωpeTs) = 2.92) extracted from
the same MN time sequences, we see that the strength
(number of dots) of the sticky set associated with the
peak Pk1 decreases by a very large amount and starts to
become empty.

VII. CONCLUSIONS

In this paper, we discuss the transport due to elec-
trostatic waves generated by the E × B electron drift

instability. The original time-dependent 3-degrees-of-
freedom problem is reduced to a 2-degrees-of-freedom
time-dependent model and a 2-degrees-of-freedom au-
tonomous model. Due to the wave-particle interac-
tion, the dynamics become chaotic, and trajectories form
stochastic web structures with different shape for differ-
ent parameters, which we investigated for both the time-
dependent and time-independent descriptions.

Along with each web structure, there occur sticky is-
lands where the trajectory spends more time compared
to the purely chaotic domain, which affects the diffusion
rate [32]. We use a scaling exponent for characterising the
particle transport, and find that the transport is anoma-
lous, of super-diffusive type. The presence of sticky is-
lands generates sharp peaks in the distribution of average
speed (a phase space observable) which increases the ef-
fective weight of the tail in the distribution. Considering
the Poincaré recurrence theorem and Kac’ lemma for the
sticky sets, we estimate a power law decay for the prob-
ability that a trajectory would stick to an island. With
increasing duration of the time evolution, sticky sets start
to become empty and they decay with a higher exponent
value. This change in the exponent γ values also affects
the transport-coefficient exponent α values.

In real Hall thrusters, the E × B instability gener-
ates many unstable modes, with different frequencies
and wavevectors. In this case, even for small ampli-
tude waves, the dynamics cannot be reduced to a time-
independent 2-degrees-of-freedom model. However, each
wave will typically bear its own dimensionless parame-
ters (εi, βi, kzi/kyi), with small values for βi and kzi/kyi.
Therefore, the several-wave dynamics will exhibit reso-
nance overlap between the structures generated by these
individual waves, resulting in smaller islands (if any sur-
vive [42–44]) and more regular transport [32]. In case
of presence of harmonics modes, different types of web
structures (mixed phase space) are formed in the phase
space [3], which therefore will generate super-diffusive
transport.

Beside the effect of several waves, three issues must also
be considered. First, the thruster chamber is a cylinder,
where the intensity of the radial magnetic field decreases
for larger radius (here x) and the azimuthal coordinate
(here y) is periodic. Second, electrons do not stay for-
ever in the chamber, which implies that tools of transient
chaos [45] will be relevant. Third, the electrons charge
and current generate electromagnetic fields, so that the
system needs a self-consistent many-body description.
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Lévy flights and related topics in physics (Nice, 27-30
June, 1994), Springer (Berlin, 1995).

[17] D. del-Castillo-Negrete, Phys. Fluid, 10, 576 (1998),
doi:10.1063/1.869585.

[18] T. H. Solomon, E. R. Weeks and H. L. Swinney, Physica
D 76, 70 (1994), doi:10.1016/0167-2789(94)90251-8.

[19] A.H. Boozer, Phys. Lett. 185, 423 (1994), doi:10.1016/
0375-9601(94)90178-3.

[20] G. M. Zaslavsky, The physics of chaos in hamiltonian
systems, 2nd ed., Imperial College Press (London, 2007).

[21] G. Contopoulos and M. Harsoula, Int. J. Bif. Chaos 20,
2005–2043 (2010), doi:10.1142/S0218127410026915.

[22] C. F. F. Karney, Phys. Fluids 21, 1584 (1978), doi:10.
1063/1.862406.

[23] C. F. F. Karney, Phys. Fluids 22, 2188 (1979), doi:10.
1063/1.862512.

[24] I. D. Kaganovich et al., arxiv.org/abs/2007.09194.

[25] A. B. Mikhailovskii, Electromagnetic instabilities in an
inhomogeneous plasma, transl. E. W. Laing, Institute of
Physics Publishing (Bristol, 1992).

[26] S. N. Abolmasov, Plasma Sources Sci. Technol. 21,
035006 (2012), doi:10.1088/0963-0252/21/3/035006.

[27] J. P. Boeuf, J. Clauster, B. Chaudhury and G. Fu-
biani, Phys. Plasmas 19, 113510 (2012), doi:10.1063/

1.4768804.
[28] C. L. Ellison, Y. Raitses and N. J. Fisch, Phys. Plasmas

19, 013503 (2012), doi:10.1063/1.3671920.
[29] M. Matsukuma, Th. Pierre, A. Escarguel, D. Guy-

omarc’h, G. Leclert, F. Brochard, E. Gravier and Y.
Kawai, Phys. Lett. A 314, 163 (2003), doi:10.1016/

S0375-9601(03)00865-X.
[30] S. Marini and R. Pakter, Phys. Plasmas 24, 053507

(2017), doi:10.1063/1.4982685.
[31] A. A. Skovoroda, E. A. Sorokina, and O. I. Podtur-

ova, Plasma Phys. Rep. 45, 941 (2019). doi:10.1134/

S1063780X19100064.
[32] D. Mandal, Y. Elskens, N. Lemoine and F. Doveil, Phys.

Plasmas 27, 032301 (2020), doi:10.1063/1.5134148.
[33] J. Cavalier, N. Lemoine, G. Bonhomme, S. Tsikata, C.
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