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Multi-dimensional backward stochastic differential equations of
diagonally quadratic generators: the general resultI

Shengjun Fan∗, Ying Hu∗∗, Shanjian Tang†

Abstract

This paper is devoted to a general solvability of a multi-dimensional backward stochastic differ-

ential equation (BSDE) of a diagonally quadratic generator g(t, y, z), by relaxing the assump-

tions of Hu and Tang [15] on the generator and terminal value. More precisely, the generator

g(t, y, z) can have more general growth and continuity in y in the local solution; while in the

global solution, the generator g(t, y, z) can have a skew sub-quadratic but in addition “strictly

and diagonally” quadratic growth in the second unknown variable z, or the terminal value can

be unbounded but the generator g(t, y, z) is “diagonally dependent” on the second unknown

variable z (i.e., the i-th component gi of the generator g only depends on the i-th row zi of the

variable z for each i = 1, · · · , n ). Three new results are established on the local and global

solutions when the terminal value is bounded and the generator g is subject to some general as-

sumptions. When the terminal value is unbounded but is of exponential moments of arbitrary

order, an existence and uniqueness result is given under the assumptions that the generator

g(t, y, z) is Lipschitz continuous in the first unknown variable y, and varies with the second un-

known variable z in a “diagonal” , “component-wisely convex or concave”, and “quadratically

growing” way, which seems to be the first general solvability of system of quadratic BSDEs with

unbounded terminal values. This generalizes and strengthens some existing results via some

new ideas.
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BMO martingale, unbounded terminal value.
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1. Introduction

Fix a terminal time T ∈ (0,+∞) and two positive integers n and d. Let (Bt)t∈[0,T ] be a

d-dimensional standard Brownian motion defined on some complete probability space (Ω,F ,P),

and (Ft)t∈[0,T ] be the augmented natural filtration generated by the standard Brownian motion

B. Consider the following backward stochastic differential equation (BSDE in short):

Yt = ξ +

∫ T

t
g(s, Ys, Zs)ds−

∫ T

t
ZsdBs, t ∈ [0, T ], (1.1)

where the terminal value ξ is an FT -measurable n-dimensional random vector, the generator

function g(ω, t, y, z) : Ω× [0, T ]×Rn×Rn×d → Rn is (Ft)-progressively measurable for each pair

(y, z), and the solution (Yt, Zt)t∈[0,T ] is a pair of (Ft)-progressively measurable processes with

values in Rn × Rn×d which almost surely verifies BSDE (1.1). The history of BSDEs (1.1) can

be dated back to Bismut [2] for the linear case, and to Bismut [3] for a specifically structured

matrix-valued nonlinear case where the matrix-valued generator contains a quadratic form of

the second unknown. In 1990, Pardoux and Peng [24] established the existence and uniqueness

result for a multidimensional (n ≥ 1) nonlinear BSDE with a uniformly Lipschitz continuous

generator. Subsequently, there has been an increasing interest in BSDEs with applications in

various fields such as stochastic control, mathematical finance, partial differential equations

(PDEs).

The class of BSDEs, with generators having a quadratic growth in the state variable z, has

attracted a lot of attention in recent years. On the one hand, the existence and uniqueness theory

is well developed in the scalar (n = 1) case. Kobylanski [19] established the first existence and

uniqueness result for scalar-valued quadratic BSDEs with bounded terminal values, and some

subsequent intensive efforts can be founded in Tevzadze [26], Briand and Elie [4], Fan [10] and

Luo and Fan [22] for the bounded terminal value case, and in Briand and Hu [5, 6], Delbaen et al.

[8, 9], Barrieu and El Karoui [1] and Fan et al. [11] for the unbounded terminal value case. On

the other hand, Frei and Dos Reis [13] constructed an example of multidimensional quadratic

BSDE with a simple generator and a bounded terminal value to show that the equation might fail

to have a global bounded solution on [0, T ], which illustrates the difficulty of the quadratic part

contributing to the underlying scalar generator as an unbounded process. Moreover, it is well

known that some tools used when n = 1, like Girsanov’s transform and monotone convergence,

can no longer be applied when n > 1 in most cases. Consequently, multidimensional quadratic

BSDEs, the focus of the present paper, pose a great challenge. Solutions of multidimensional

quadratic BSDEs with unbounded terminal values have been listed as an open problem in

Peng [25, Section 5, page 270].
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Nevertheless, motivated by their intrinsic mathematical interest and especially by diverse

applications in various fields, such as nonzero-sum risk-sensitive stochastic differential games,

financial price-impact models, financial market equilibrium problems for several interacting

agents, and stochastic equilibria problems in incomplete financial markets, many scholars have

studied systems of quadratic BSDEs in recent years. First of all, by the theory of BMO (bounded

in mean oscillation) martingales and using the contract mapping argument, Tevzadze [26] proved

a general existence and uniqueness result for multi-dimensional quadratic BSDEs when the ter-

minal value is small enough in the supremum norm, which has inspired subsequent works under

some different types of “smallness” assumptions on the terminal value and the generator, see for

example Frei [12], Kardaras et al. [17], Jamneshan et al. [16], Kramkov and Pulido [21, 20] and

Harter and Richou [14]. We also note that some different ideas and methods have been applied in

these works mentioned above. Secondly, in the Markovian setting, Cheridito and Nam [7] proved

the solvability for a special system of quadratic BSDEs, and Xing and Žitković [27] obtained,

by virtue of analytic PDE methods, the global solvability for a large class of multidimensional

quadratic BSDEs with weak regularity assumptions on the terminal value and the generator.

Finally, by utilizing the Girsanov transform and adopting a distinct idea from the above works,

which is to search for some sufficient conditions on the generator such that the corresponding

system of quadratic BSDEs admits a (unique) local or global solution for any bounded terminal

values rather than some certain terminal values, Cheridito and Nam [7], Hu and Tang [15] and

Luo [23] respectively established several existence and uniqueness results of local and global

solutions for systems of BSDEs with some structured quadratic generators. More specifically,

Cheridito and Nam [7] investigated system of BSDEs with projectable quadratic generators and

subquadratic generators, Hu and Tang [15] addressed a kind of multi-dimensional BSDEs with

diagonally quadratic generators, in which the ith (i = 1, · · · , n) component gi of the generator

g has a quadratic growth only on the ith row of the matrix z, and Luo [23] considered a class

of multi-dimensional BSDEs with triangularly quadratic generators. We would like to mention

that all of these results mentioned in this paragraph are obtained under the bounded termi-

nal value condition, and up to our best knowledge, in existing literature there seems to be no

positive general solvability result on the system of quadratic BSDEs with unbounded terminal

values.

The present paper is the continuation and extension of Hu and Tang [15]. Under more general

assumptions on the generator and the terminal condition than those used in [15], we are devoted

to the general solvability of multidimensional diagonally quadratic BSDEs. A local solution is

first constructed by virtue of uniform a priori estimates on the solution of scalar-valued BSDEs
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and the fixed-point argument, where the terminal value is bounded and the generator g can have

a general growth in the variable y. We note that a simpler and more direct idea than that used in

the proof of [15, Theorem 2.2 ] is used to obtain the radius of the centered ball within which the

constructed mapping is stable. Then, by stitching local solutions we proved two existence and

uniqueness results on global solution of system of diagonally quadratic BSDEs with bounded

terminal values, where the generator g needs to satisfy an additional one-sided growth condition

with respect to the variable y. In particular, we eliminate the restriction condition used in [15]

that the ith component of the generator g is bounded with respect to the jth (j 6= i) row of the

matrix z by imposing a strictly quadratic condition on the generator g (see assumption (H5) in

Section 2). Finally, assuming that for each i = 1, · · · , n, the ith component gi of the generator

g is Lipschitz continuous in the state variable y, depends only on the ith row zi of the state

variable z, and is either convex or concave with quadratic growth in zi, utilizing the iterative

algorithm together with uniform a priori estimates and the θ-method, we prove existence and

uniqueness of the global solution to the multidimensional diagonally quadratic BSDE with the

terminal value of exponential moments of arbitrary order, which seems to be the first result on

the general solvability of system of quadratic BSDEs with unbounded terminal values.

The rest of the paper is organized as follows. In Section 2, we introduce some notations

used later, and state the main results of this paper. In Sections 3-5, we respectively prove

our existence and uniqueness results on the local and global solution for our multi-dimensional

diagonally quadratic BSDEs with bounded and unbounded terminal values. Finally, in the

Appendix we present some auxiliary results for scalar-valued quadratic BSDEs with bounded

and unbounded terminal values, including existence, uniqueness and several a priori estimates.

2. Notations and statement of main results

2.1. Notations

Let a∧ b and a∨ b be the minimum and maximum of two real numbers a and b, respectively.

Set a+ := a ∨ 0 and a− := −(a ∧ 0). Denote by 1A(·) the indicator of set A, and sgn(x) :=

1x>0 − 1x≤0.

Throughout this paper, all the processes are assumed to be (Ft)t∈[0,T ]-progressively measur-

able, and all equalities and inequalities between random variables and processes are understood

in the sense of P−a.s. and dP×dt−a.e., respectively. The Euclidean norm is always denoted by

| · |, and ‖ · ‖∞ denotes the L∞-norm for one-dimensional or multidimensional random variable

defined on the probability space (Ω,F ,P).
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We define the following four Banach spaces of stochastic processes. By Sp(Rn) for p ≥ 1 ,

we denote the totality of all Rn-valued continuous adapted processes (Yt)t∈[0,T ] such that

‖Y ‖Sp :=

(
E[ sup
t∈[0,T ]

|Yt|p]

)1/p

< +∞.

By S∞(Rn), we denote the totality of all Y ∈
⋂
p≥1 Sp(Rn) such that

‖Y ‖S∞ := ess sup
(ω,t)

|Yt(ω)| =

∥∥∥∥∥ sup
t∈[0,T ]

|Yt|

∥∥∥∥∥
∞

< +∞.

By Hp(Rn×d) for p ≥ 1, we denote the totality of all Rn×d-valued (Ft)t∈[0,T ]-progressively

measurable processes (Zt)t∈[0,T ] such that

‖Z‖Hp :=

{
E

[(∫ T

0
|Zs|2ds

)p/2]}1/p

< +∞.

By BMO(Rn×d), we denote the totality of all Z ∈ H2(Rn×d) such that

‖Z‖BMO := sup
τ

∥∥∥∥Eτ [∫ T

τ
|Zs|2ds

]∥∥∥∥1/2

∞
< +∞.

Here and hereafter the supremum is taken over all (Ft)-stopping times τ with values in [0, T ],

and Eτ denotes the conditional expectation with respect to Fτ .

The spaces Sp[a,b](R
n), S∞[a,b](R

n), Hp[a,b](R
n×d), and BMO[a,b](Rn×d) are identically defined

for stochastic processes over the time interval [a, b]. We note that for Z ∈ BMO(Rn×d), the

process
∫ t

0 ZsdBs, t ∈ [0, T ], is an n-dimensional BMO martingale. For the theory of BMO

martingales, we refer the reader to the monograph Kazamaki [18].

For i = 1, · · · , n, denote by zi, yi and gi respectively the ith row of matrix z ∈ Rn×d, the

ith component of the vector y ∈ Rn and the generator g.

Finally, we write Y ∈ E(Rn) if

exp (|Y |) ∈
⋂
p≥1

Sp(Rn),

and Z ∈M(Rn×d) if

Z ∈
⋂
p≥1

Hp(Rn×d).

2.2. Statement of the main results

Throughout the paper, we always fix an (Ft)-progressively measurable scalar-valued non-

negative process (αt)t∈[0,T ], a deterministic nondecreasing continuous function φ(·) : [0,+∞)→

[0,+∞) with φ(0) = 0 and several real constants β ≥ 0, 0 < γ̄ ≤ γ, λ ≥ 0 and δ ∈ [0, 1).

The first main result of this paper concerns local solutions for the bounded terminal value

case. We need the following three assumptions.
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(H1) For i = 1, · · · , n, gi satisfies that dP× dt− a.e., for each (y, z) ∈ Rn × Rn×d,

|gi(ω, t, y, z)| ≤ αt(ω) + φ(|y|) +
γ

2
|zi|2 + λ

∑
j 6=i
|zj |1+δ;

(H2) For i = 1, · · · , n, gi satisfies that dP×dt−a.e., for each (y, ȳ, z, z̄) ∈ Rn×Rn×Rn×d×Rn×d,

|gi(ω, t, y, z)− gi(ω, t, ȳ, z̄)|

≤ φ(|y| ∨ |ȳ|)

(1 + |z|+ |z̄|)
(
|y − ȳ|+ |zi − z̄i|

)
+
(

1 + |z|δ + |z̄|δ
)∑
j 6=i
|zj − z̄j |

 ;

(H3) There exists two non-negative constants C1 and C2 such that

‖ξ‖∞ ≤ C1 and

∥∥∥∥∫ T

0
αtdt

∥∥∥∥
∞
≤ C2.

In the first two assumptions (H1) and (H2), it creates no essential difference to replace both

terms
∑

j 6=i |zj |1+δ and
∑

j 6=i |zj − z̄j | with |z|1+δ and |z− z̄|, respectively. The underlying way

of formulation is more convenient for subsequent exposition.

Theorem 2.1. Let assumptions (H1)-(H3) hold. Then, there exist a real ε > 0 (depending only

on constants (n, γ, λ, δ, C1, C2) and function φ(·)) and a bounded subset Bε of the product space

S∞[T−ε,T ](R
n) × BMO[T−ε,T ](Rn×d) such that BSDE (1.1) has a unique local solution (Y,Z) on

the time interval [T − ε, T ] with (Y, Z) ∈ Bε.

Remark 2.2. Assumptions (H1) and (H2) of Theorem 2.1 are more general than those of Hu

and Tang [15, Theorem 2.2, p. 1072] in that the former relaxes the growth and continuity of

the generator in the first unknown variable y. For example, the following generator g satisfies

the former, while not the latter:

gi(ω, t, y, z) = (|y|2 + sin |zi|)|z|+ |z|
3
2 + |zi|2, i = 1, · · · , n.

The second and third main results of this paper concern global solutions of quadratic BSDEs

with bounded terminal values. The following two assumptions are further required.

(H4) For i = 1, · · · , n, gi satisfies that dP× dt− a.e., for each (y, z) ∈ Rn × Rn×d,

sgn(yi)gi(ω, t, y, z) ≤ αt(ω) + β|y|+ λ|z|1+δ +
γ

2
|zi|2;

(H5) For i = 1, · · · , n, it holds that dP× dt− a.e., for each (y, z) ∈ Rn × Rn×d,

gi(ω, t, y, z) ≥ γ̄

2
|zi|2 − αt(ω)− β|y| − λ|z|1+δ (2.1)

or

gi(ω, t, y, z) ≤ − γ̄
2
|zi|2 + αt(ω) + β|y|+ λ|z|1+δ. (2.2)
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Remark 2.3. Assumption (H5) holds for the generator g if some components of g satisfy (2.1),

and the others satisfy (2.2).

Theorem 2.4. Let assumptions (H1)-(H4) be satisfied. If the constant λ in (H4) vanishes,

then BSDE (1.1) admits a unique global solution (Y,Z) ∈ S∞(Rn)× BMO(Rn×d) on [0, T ].

Theorem 2.5. Let assumptions (H1)-(H5) hold. Then BSDE (1.1) admits a unique global

solution (Y, Z) ∈ S∞(Rn)× BMO(Rn×d) on [0, T ].

Remark 2.6. Assumption (H4) is some kind of one-sided linear growth condition of the gen-

erator g with respect to the variable y, and assumption (H5) can be regarded as some kind of

strictly quadratic condition of gi with respect to zi. A generator g satisfying assumptions (H1)-

(H5) can still have a general growth in the variable y. For example, the following generator g

satisfies all these assumptions:

gi(ω, t, y, z) = (e−y
i

+ cos |zi|)|z| − |z|
4
3 + (−1)i|zi|2, i = 1, · · · , n.

Note that this g does not satisfy the corresponding assumptions used in Hu and Tang [15].

For the sake of studying global solutions of multidimensional diagonally quadratic BSDEs

with unbounded terminal values, we introduce the following four assumptions on the data (g, ξ)

of BSDEs.

(B1) For i = 1, · · · , n, gi(ω, t, y, z) varies with (ω, t, y) and the ith row zi of the matrix z ∈ Rn×d

only, and grows linearly in y and quadratically in zi, i.e., dP× dt− a.e.,

|gi(ω, t, y, z)| ≤ αt(ω) + β|y|+ γ

2
|z|2 for each (y, z) ∈ Rn × R1×d;

(B2) g is uniformly Lipschitz continuous in y, i.e., dP× dt− a.e.,

|g(ω, t, y, z)− g(ω, t, ȳ, z)| ≤ β|y − ȳ| for each (y, ȳ, z) ∈ (Rn)2 × R1×d;

(B3) dP× dt− a.e., for each i = 1, · · · , n and y ∈ Rn, gi(ω, t, y, ·) is either convex or concave;

(B4) The terminal value ξ is of exponential moments of arbitrary order as well as
∫ T

0 αtdt. That

is, we have for each p ≥ 1,

E
[
exp

{
p

(
|ξ|+

∫ T

0
αtdt

)}]
< +∞.

Remark 2.7. Assumption (B3) holds for the generator g if some components of g are convex

in z, and the others are concave in z.
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The following theorem seems to be the first result on the general solvability of systems of

quadratic BSDEs with unbounded terminal values, and constitutes the last main result of the

paper.

Theorem 2.8. Let assumptions (B1)-(B4) be in force. Then BSDE (1.1) admits a unique

global solution (Y, Z) ∈ E(Rn)×M(Rn×d) on [0, T ].

Remark 2.9. In the case of unbounded terminal values, the martingale part of the first known

process Y goes beyond the space of BMO martingales, and some delicate and technical computa-

tions are developed in the proof of Theorem 2.8, in which a priori estimates on one-dimensional

quadratic BSDEs, the θ-method for convex functions and Doob’s maximal inequality for mar-

tingales play a crucial role.

3. Local solution with bounded terminal value: proof of Theorem 2.1

For each i = 1, · · · , n, H ∈ Rn×d and z ∈ R1×d, define by H(z; i) the matrix in Rn×d whose

ith row is z and whose jth row is Hj for any j 6= i.

Let assumptions (H1)-(H3) hold. For a pair of processes (U, V ) ∈ S∞(Rn) × BMO(Rn×d),

we consider the following decoupled system of quadratic BSDEs:

Y i
t = ξi +

∫ T

t
gi(s, Us, Vs(Z

i
s; i))ds−

∫ T

t
ZisdBs, t ∈ [0, T ]; i = 1, · · · , n. (3.1)

For each fixed i = 1, · · · , n, in view of assumptions (H1) and (H2), it is not difficult to verify

that dP× dt− a.e., for each (z, z̄) ∈ (R1×d)2,

|gi(t, Ut, Vt(z; i))| ≤ αt + φ(|Ut|) + nλ|Vt|1+δ +
γ

2
|z|2

and

|gi(t, Ut, Vt(z; i))− gi(t, Ut, Vt(z̄; i))| ≤ φ(|Ut|) (1 + 2|Vt|+ |z|+ |z̄|) |z − z̄|.

This means that the generator gi(t, Ut, Vt(z; i)) satisfies assumptions (A1) and (A2) defined in

Appendix. Then, in view of assumption (H3), it follows from Lemma A.1 that for each i =

1, · · · , n, one-dimensional BSDE with the terminal value ξi and the generator gi(t, Ut, Vt(z; i))

has a unique solution (Y i, Zi) such that Y i is (essentially) bounded and Zi·B :=
(∫ t

0 Z
i
sdBs

)
t∈[0,T ]

is a BMO martingale. That is to say, the system of BSDEs (3.1) has a unique solution

(Y, Z) ∈ S∞(Rn)× BMO(Rn×d).

Now, define the solution map Γ : (U, V ) 7→ Γ(U, V ) as follows:

Γ(U, V ) := (Y,Z), ∀ (U, V ) ∈ S∞(Rn)× BMO(Rn×d).
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It is a transformation in the space S∞(Rn)×BMO(Rn×d). Moreover, it follows from Lemma A.1

that for each i = 1, · · · , n, t ∈ [0, T ] and stopping time τ with values in [t, T ],

|Y i
t | ≤

1

γ
ln 2 + ‖ξi‖∞ +

∥∥∥∥∫ T

0
αsds

∥∥∥∥
∞

+φ
(
‖U‖S∞

[t,T ]

)
(T − t) + γ

1+δ
1−δCδ,λ,n‖V ‖

2 1+δ
1−δ

BMO[t,T ]
(T − t)

and

Eτ
[∫ T

τ
|Zis|2ds

]
≤ 1

γ2
exp(2γ‖ξi‖∞) +

1

γ
exp

(
2γ

∥∥∥∥∥ sup
s∈[t,T ]

|Y i
s |

∥∥∥∥∥
∞

)

·
(

1 + 2

∥∥∥∥∫ T

0
αsds

∥∥∥∥
∞

+ 2φ
(
‖U‖S∞

[t,T ]

)
(T − t) + 2Cδ,λ,n‖V ‖

2 1+δ
1−δ

BMO[t,T ]
(T − t)

)
,

where the constant Cδ,λ,n is defined in (A.4) of Appendix. Therefore, in view of assumption

(H3), for each t ∈ [0, T ], we have

‖Y ‖S∞
[t,T ]

≤ n

γ
ln 2 + n(C1 + C2)

+nφ
(
‖U‖S∞

[t,T ]

)
(T − t) + nγ

1+δ
1−δCδ,λ,n‖V ‖

2 1+δ
1−δ

BMO[t,T ]
(T − t)

(3.2)

and

‖Z‖2BMO[t,T ]
≤ n

γ2
exp(2γC1) +

n

γ
exp

(
2γ‖Y ‖S∞

[t,T ]

)
·
(

1 + 2C2 + 2φ
(
‖U‖S∞

[t,T ]

)
(T − t) + 2Cδ,λ,n‖V ‖

2 1+δ
1−δ

BMO[t,T ]
(T − t)

)
.

(3.3)

Define

K1 :=
n

γ
ln 2 + n(C1 + C2),

K2 :=
n

γ2
exp(2γC1) +

n

γ
exp (4γK1) (1 + 2C2)

and

ε0 :=

(
K1

nφ (2K1) + nγ
1+δ
1−δCδ,λ,n(2K2)

1+δ
1−δ

)∧(
γ
n exp (−4γK1)K2

2φ (2K1) + 2Cδ,λ,n(2K2)
1+δ
1−δ

)
> 0.

By virtue of (3.2) and (3.3), we can verify directly that for each ε ∈ (0, ε0], if

‖U‖S∞
[T−ε,T ]

≤ 2K1 and ‖V ‖2BMO[T−ε,T ]
≤ 2K2,

then

‖Y ‖S∞
[T−ε,T ]

≤ 2K1 and ‖Z‖2BMO[T−ε,T ]
≤ 2K2.

This means that

Γ(U, V ) ∈ Bε, ∀ (U, V ) ∈ Bε,
9



where

Bε :=
{

(U, V ) ∈ S∞(Rn)× BMO(Rn×d) :

‖U‖S∞
[T−ε,T ]

≤ 2K1 and ‖V ‖2BMO[T−ε,T ]
≤ 2K2

} (3.4)

is a Banach space with the following norm

‖(U, V )‖Bε :=
√
‖U‖2S∞

[T−ε,T ]
+ ‖V ‖2BMO[T−ε,T ]

, ∀ (U, V ) ∈ Bε.

That is, the mapping Γ is stable in the Banach space Bε for each ε ∈ (0, ε0].

It remains to show that there exists a real ε ∈ (0, ε0] depending only on constants (n, γ, λ, δ, C1, C2)

and function φ(·) such that Γ is a contraction in Bε. Indeed, for any fixed ε ∈ (0, ε0], and

(U, V ) ∈ Bε and (Ũ , Ṽ ) ∈ Bε, we set

(Y,Z) := Γ(U, V ), (Ỹ , Z̃) := Γ(Ũ , Ṽ ).

That is, for i = 1, · · · , n and t ∈ [0, T ],

Y i
t = ξi +

∫ T

t
gi(s, Us, Vs(Z

i
s; i))ds−

∫ T

t
ZisdBs,

Ỹ i
t = ξi +

∫ T

t
gi(s, Ũs, Ṽs(Z̃

i
s; i))ds−

∫ T

t
Z̃isdBs.

Define for i = 1, · · · , n and s ∈ [0, T ],

∆1,i
s := gi(s, Us, Vs(Z

i
s; i))− gi(s, Us, Vs(Z̃is; i)), ∆2,i

s := gi(s, Us, Vs(Z̃
i
s; i))− gi(s, Ũs, Ṽs(Z̃is; i)).

Then,

Y i
t − Ỹ i

t +

∫ T

t

(
Zis − Z̃is

)
dBs −

∫ T

t
∆1,i
s ds =

∫ T

t
∆2,i
s ds, t ∈ [0, T ]. (3.5)

It follows from assumption (H2) that dP× ds− a.e., for each i = 1, · · · , n,

|∆1,i
s | ≤ φ(|Us|)

(
1 + 2|Vs|+ |Zs|+ |Z̃s|

)
|Zis − Z̃is| (3.6)

and

|∆2,i
s | ≤ φ(|Us| ∨ |Ũs|)

[(
1 + |Vs|+ |Ṽs|+ |Zs|+ |Z̃s|

)
|Us − Ũs|

+
√
n
(

1 + |Vs|δ + |Ṽs|δ + 2|Z̃s|δ
)
|Vs − Ṽs|

]
.

(3.7)

For i = 1, · · · , n, by (3.6) we can define the Rd-valued process G(i) in an obvious way such that

∆1,i
s =

(
Zis − Z̃is

)
Gs(i) and |Gs(i)| ≤ φ(|Us|)

(
1 + 2|Vs|+ |Zs|+ |Z̃s|

)
, s ∈ [0, T ]. (3.8)

Finally, in view of the fact that all pairs of processes (U, V ), (Ũ , Ṽ ) and (Y,Z), (Ỹ , Z̃) are in

Bε together with definition (3.4) of Bε and inequalities (3.5)-(3.8), using Girsanov’s transform,

Hölder’s inequality, the energy inequality for BMO martingale and Lemma A.4 in Hu and Tang

[15] we can follow the argument in pages 1078-1079 of Hu and Tang [15] to get the desired

conclusion. Theorem 2.1 is then proved.
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4. Global solution with bounded terminal value: proof of Theorems 2.4 and 2.5

We need the following lemma.

Lemma 4.1. Let assumption (H3) hold. Assume that for some h ∈ (0, T ], the BSDE (1.1) has

a solution (Y,Z) ∈ S∞[T−h,T ] × BMO[T−h,T ] on time interval [T − h, T ]. We have

(i) If the generator g satisfies assumption (H4) with λ = 0, then

‖Y ‖S∞
[T−h,T ]

≤ (2n)[2nβT ]+2C1 +
(

2n+ (2n)2 + · · ·+ (2n)[2nβT ]+2
)
C2,

where and hereafter [x] denotes the maximum of integers smaller than or equal to x.

(ii) If the generator g satisfies assumptions (H4) and (H5), then

‖Y ‖S∞
[T−h,T ]

≤ (4n)[4nβT ]+2C1 +
(

4n+ (4n)2 + · · ·+ (4n)[4nβT ]+2
)
C5,

where C5 is a positive constant depending only on (n, β, γ, γ̄, λ, δ, T, C2).

Proof. For i = 1, · · · , n, it follows from assumption (H4) that

sgn(Y i
t (ω))gi (ω, t, Yt(ω), Zt(ω)) ≤ αt(ω) + β|Yt(ω)|+ λ|Zt(ω)|1+δ +

γ

2
|Zit(ω)|2, t ∈ [T − h, T ],

which means that the generator of ith equation in system of BSDEs (1.1) satisfies (A.8) in

Appendix (by letting f(ω, t, z) ≡ gi (ω, t, Yt(ω), Zt(ω))). It then follows from (i) of Lemma A.2

and assumption (H3) that for each i = 1, · · · , n,

exp
(
γ|Y i

t |
)
≤ exp

(
γ(C1 + C2) + βγ‖Y ‖S∞

[t,T ]
(T − t)

)
·Et
[
exp

(
λγ

∫ T

t
|Zs|1+δds

)]
, t ∈ [T − h, T ].

(4.1)

(i) In the case of λ = 0, it follows from (4.1) that for i = 1, · · · , n,

|Y i
t | ≤ C1 + C2 + β‖Y ‖S∞

[t,T ]
(T − t), t ∈ [T − h, T ].

Therefore,

‖Y ‖S∞
[t,T ]
≤ n(C1 + C2) + nβ‖Y ‖S∞

[t,T ]
(T − t), t ∈ [T − h, T ]. (4.2)

For β = 0, it is clear that

‖Y ‖S∞
[T−h,T ]

≤ n(C1 + C2). (4.3)

Otherwise, let m0 is the unique positive integer satisfying

T − h ∈ [T −m0ε, T − (m0 − 1)ε)
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or, equivalently,

2nβh =
h

ε
≤ m0 <

h

ε
+ 1 ≤ 2nβT + 1 (4.4)

with

ε :=
1

2nβ
> 0.

If m0 = 1, then nβ(T − t) ≤ nβh ≤ nβε = 1/2 for t ∈ [T − h, T ], and it follows from (4.2) that

‖Y ‖S∞
[t,T ]
≤ 2n(C1 + C2), t ∈ [T − h, T ],

which yields that

‖Y ‖S∞
[T−h,T ]

≤ 2n(C1 + C2). (4.5)

If m0 = 2, then nβ(T − t) ≤ nβε = 1/2 for t ∈ [T − ε, T ], and it follows from (4.2) that

‖Y ‖S∞
[t,T ]
≤ 2n(C1 + C2), t ∈ [T − ε, T ],

which yields that

‖YT−ε‖∞ ≤ ‖Y ‖S∞
[T−ε,T ]

≤ 2n(C1 + C2). (4.6)

Now, consider the following system of BSDEs

Yt = YT−ε +

∫ T−ε

t
g(s, Ys, Zs)ds−

∫ T−ε

t
ZsdBs, t ∈ [T − h, T − ε].

In view of (4.6), identically as in obtaining (4.5) , we have

‖Y ‖S∞
[T−h,T−ε]

≤ 2n (2n(C1 + C2) + C2) ,

and therefore,

‖Y ‖S∞
[T−h,T ]

≤ (2n)2C1 +
(
2n+ (2n)2

)
C2.

Proceeding the above computation gives that if m0 satisfies (4.4), then

‖Y ‖S∞
[T−h,T ]

≤ (2n)m0C1 +
(
2n+ (2n)2 + · · ·+ (2n)m0

)
C2,

which together with (4.4) and (4.3) yields assertion (i) immediately.

(ii) For i = 1, · · · , n, it follows from assumption (H5) that

gi (ω, t, Yt(ω), Zt(ω)) ≥ γ̄

2
|Zit(ω)|2 − αt(ω)− β|Yt(ω)| − λ|Zt(ω)|1+δ

or

gi (ω, t, Yt(ω), Zt(ω)) ≤ − γ̄
2
|Zit(ω)|2 + αt(ω) + β|Yt(ω)|+ λ|Zt(ω)|1+δ,
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which means that the generator of ith equation in system of BSDEs (1.1) satisfies (A.9) or

(A.10) in Appendix (by letting f(ω, t, z) ≡ gi (ω, t, Yt(ω), Zt(ω))). It then follows from (ii) of

Lemma A.2 and assumption (H3) that for each i = 1, · · · , n,

Et
[
exp

(
γ̄

2
ε0

∫ T

t
|Zis|2ds

)]
≤ Et

[
exp

(
6ε0

∥∥∥∥∥ sup
s∈[t,T ]

|Y i
s |

∥∥∥∥∥
∞

+ 3ε0

∥∥∥∥∫ T

0
αsds

∥∥∥∥
∞

+ 3ε0βT‖Y ‖S∞
[t,T ]

+ 3ε0λ

∫ T

t
|Zs|1+δds

)]

≤ exp
(

3ε0C2 + 3ε0(2 + βT )‖Y ‖S∞
[t,T ]

)
Et
[
exp

(
3ε0λ

∫ T

t
|Zs|1+δds

)]
, t ∈ [T − h, T ],

where

ε0 :=
( γ̄

9

)∧(
γ

12(βT + 2)

)
> 0.

Thus, by Hölder’s inequality we get that for t ∈ [T − h, T ],

Et
[
exp

(
γ̄ε0

2n

∫ T

t
|Zs|2ds

)]
≤ exp

(
3ε0C2 + 3ε0(2 + βT )‖Y ‖S∞

[t,T ]

)
Et
[
exp

(
3ε0λ

∫ T

t
|Zs|1+δds

)]
.

(4.7)

Note by Young’s inequality that for each pair of a, b > 0,

ab1+δ =

((
1 + δ

2

) 1+δ
1−δ

a
2

1−δ

) 1−δ
2 (

2

1 + δ
b2
) 1+δ

2

≤ b2 +
1− δ

2

(
1 + δ

2

) 1+δ
1−δ

a
2

1−δ . (4.8)

By letting a = 12nλ/γ̄ and b = |Zs| in (4.8), we have

3ε0λ|Zs|1+δ =
γ̄ε0

4n

(
12nλ

γ̄
|Zs|1+δ

)
≤ γ̄ε0

4n
|Zs|2 + C3, s ∈ [0, T ], (4.9)

where

C3 :=
γ̄ε0(1− δ)

8n

(
1 + δ

2

) 1+δ
1−δ
(

12nλ

γ̄

) 2
1−δ

.

Coming back to (4.7), by (4.9) and Hölder’s inequality we deduce that for t ∈ [T − h, T ],

Et
[
exp

(
γ̄ε0

2n

∫ T

t
|Zs|2ds

)]
≤ exp

(
6ε0C2 + 2C3T + 6ε0(2 + βT )‖Y ‖S∞

[t,T ]

)
. (4.10)

On the other hand, it follows from (4.1) and Jensen’s inequality that

exp (γ|Yt|) ≤ exp
(
nγ(C1 + C2) + nβγ‖Y ‖S∞

[t,T ]
(T − t)

)
·Et
[
exp

(
nλγ

∫ T

t
|Zs|1+δds

)]
, t ∈ [T − h, T ].

(4.11)

By letting a = 2n2λγ/γ̄ε0 and b = |Zs| in (4.8), we have

nλγ|Zs|1+δ =
γ̄ε0

2n

(
2n2λγ

γ̄ε0
|Zs|1+δ

)
≤ γ̄ε0

2n
|Zs|2 + C4, s ∈ [0, T ], (4.12)
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where

C4 :=
γ̄ε0(1− δ)

4n

(
1 + δ

2

) 1+δ
1−δ
(

2n2λγ

γ̄ε0

) 2
1−δ

.

Combining (4.10)-(4.12) yields that

|Yt| ≤ n(C1 + C2) +
C4T

γ
+

6ε0C2 + 2C3T

γ
+

6ε0(2 + βT )

γ
‖Y ‖S∞

[t,T ]

+nβ‖Y ‖S∞
[t,T ]

(T − t), t ∈ [T − h, T ].

And, from the definition of ε0 it follows that

‖Y ‖S∞
[t,T ]
≤ 2n(C1 + C5) + 2nβ‖Y ‖S∞

[t,T ]
(T − t), t ∈ [T − h, T ], (4.13)

where

C5 := C2 +
6ε0C2 + 2C3T

nγ
+
C4T

nγ
.

Finally, observing that (4.13) is almost the same as (4.2), we can use the same computation

as in (i) to obtain the desired conclusion of (ii). The proof of Lemma 4.1 is then complete.

Remark 4.2. Observe that the term ‖U‖S∞
[t,T ]

(T − t) in the conclusion (i) of Lemma A.1 can

be replaced with
∫ T
t ‖U‖S∞[s,T ]

ds. Then the term ‖Y ‖S∞
[t,T ]

(T − t) in inequalities (4.1) and (4.2)

can be replaced with
∫ T
t ‖Y ‖S∞[s,T ]

ds. Therefore, by Gronwall’s inequality, we obtain the following

better upper bound under the assumptions of (i) in Lemma 4.1:

‖Y ‖S∞
[T−h,T ]

≤ n(C1 + C2) exp (nβh) ≤ n(C1 + C2) exp (nβT ) .

The same computation yields the following estimate under the assumptions of (ii) in Lemma 4.1:

‖Y ‖S∞
[T−h,T ]

≤ 2n(C1 + C5) exp (2nβh) ≤ 2n(C1 + C5) exp (2nβT ) .

Using Theorem 2.1 and Lemma 4.1, we can follow the proof of Cheridito and Nam [7,

Theorem 4.1] to derive our Theorems 2.4 and 2.5. All the details are omitted here.

5. Global solution with unbounded terminal value: proof of Theorem 2.8

Let assumptions (B1)-(B4) be in force. For a pair of processes (U, V ) ∈ E(Rn)×M(Rn×d),

we consider the following decoupled system of quadratic BSDEs:

Y i
t = ξi +

∫ T

t
gi(s, Us, Z

i
s)ds−

∫ T

t
ZisdBs, t ∈ [0, T ]; i = 1, · · · , n. (5.1)

For each fixed i = 1, · · · , n, in view of assumptions (B1) and (B3), it is clear that dP×dt−a.e.,

|gi(t, Ut, z)| ≤ αt + β|Ut|+
γ

2
|z|2, ∀ z ∈ R1×d,
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and gi(t, Ut, z) is convex or concave in z. Furthermore, in view of assumption (B4) and the fact

that U ∈ E(Rn), by Hölder’s inequality we have

∀ q > 1, E
[
exp

{
q

(
|ξi|+

∫ T

0
(αt + β|Ut|) dt

)}]
< +∞, i = 1, · · · , n.

It then follows from Corollary 6 in Briand and Hu [6] that for each i = 1, · · · , n, the BSDE

Y i
t = ξi +

∫ T

t
gi(s, Us, Z

i
s)ds−

∫ T

t
ZisdBs, t ∈ [0, T ]

has a unique adapted solution (Y i, Zi) such that for each q > 1,

E

[
exp

(
q sup
t∈[0,T ]

|Y i
t |

)
+

(∫ T

0
|Zit |2dt

) q
2

]
< +∞,

which means that, in view of Hölder’s inequality, the system of BSDEs (5.1) admits a unique

solution (Y,Z) in the space of processes E(Rn)×M(Rn×d).

Based on the above argument, we can set (Y (0), Z(0)) = (0, 0) and define, recursively, the

sequence of processes {(Y (m), Z(m))}∞m=1 in the space of processes E(Rn) ×M(Rn×d) by the

unique adapted solution of system of BSDEs:

Y
(m+1);i
t = ξi +

∫ T

t
gi(s, Y (m)

s , Z(m+1);i
s )ds−

∫ T

t
Z(m+1);i
s dBs, t ∈ [0, T ]; i = 1, · · · , n, (5.2)

where for sake of convenience, we denote by Y (m);i and Z(m);i, respectively, the ith component

of Y (m) and the ith row of Z(m). In the sequel, we will show that {(Y (m), Z(m))}∞m=1 is a

Cauchy sequence in the space Sq(Rn)×Hq(Rn×d) for each q ≥ 1, and then converges to a pair

of adapted processes (Y,Z) in E(Rn)×M(Rn×d), which is the unique desired solution of system

of BSDE (1.1).

We first prove that

∀ q > 1, sup
m≥0

E

[
exp

(
qγ sup

t∈[0,T ]
|Y (m)
t |

)]
≤ K(q), (5.3)

where

K(q) := (A(2q)A(8nq))[2nβT ]+1 E
[
exp

(
4n(8n)[2nβT ]+1qγ|ξ|

)]
·E
[
exp

(
4n(16n)[2nβT ]+1qγ

∫ T

0
αsds

)]
< +∞

with

A(q) :=

(
q

q − 1

)2q

. (5.4)

In fact, for each i = 1, · · · , n and m ≥ 0, it follows from (B1) and (B3) that dP× dt− a.e.,

∀ z ∈ R1×d, |gi(t, Y (m)
t , z)| ≤ αt + β|Y (m)

t |+ γ

2
|z|2, (5.5)
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and gi(t, Y
(m)
t , z) is convex or concave in z. Furthermore, in view of assumption (B4) and the

fact that Y (m) ∈ E(Rn), by Hölder’s inequality we have

∀ p ≥ 1, E

[
exp

{
p

(
sup
t∈[0,T ]

|Y (m+1);i
t |+

∫ T

0

(
αt + β|Y (m)

t |
)

dt

)}]
< +∞.

Then, we can use Lemma A.3 in Appendix to get that for i = 1, · · · , n and m ≥ 0,

exp
(
γ|Y (m+1);i

t |
)
≤ Et

[
exp

(
γ|ξi|+ γ

∫ T

t

(
αs + β|Y (m)

s |
)

ds

)]
, t ∈ [0, T ].

Consequently, by Jensen’s inequality we have, for each m ≥ 0,

exp
(
γ|Y (m+1)

t |
)
≤ Et

[
exp

(
nγ|ξ|+ nγ

∫ T

t

(
αs + β|Y (m)

s |
)

ds

)]
, t ∈ [0, T ]. (5.6)

In view of (5.6), Doob’s maximal inequality for martingales together with Hölder’s inequality

yields that for each q > 1, m ≥ 0 and t ∈ [0, T ], we have

E

[
exp

(
qγ sup

s∈[t,T ]
|Y (m+1)
s |

)]

≤
(

q

q − 1

)q
E

[
exp

(
nqγ|ξ|+ nqγ

∫ T

t
αsds+ nqγβ sup

s∈[t,T ]
|Y (m)
s |(T − t)

)]

≤ [C(q)]1/2

{
E

[
exp

(
2nqγβ sup

s∈[t,T ]
|Y (m)
s |(T − t)

)]}1/2

,

(5.7)

where, in view of assumption (B4),

C(q) := A(q)E
[
exp

(
2nqγ|ξ|+ 2nqγ

∫ T

0
αsds

)]
< +∞

with A(q) being defined in (5.4).

For β = 0, it is clear from (5.7) that

∀ q > 1, sup
m≥0

E

[
exp

(
qγ sup

t∈[0,T ]
|Y (m)
t |

)]
≤
√
C(q). (5.8)

Otherwise, let m0 is the unique positive integer satisfying T −m0ε ≤ 0 < T − (m0 − 1)ε or,

equivalently,

2nβT =
T

ε
≤ m0 < 2nβT + 1 (5.9)

with

ε :=
1

2nβ
> 0.

If m0 = 1, then 2nqγβ(T − t) ≤ 2nqγβT ≤ 2nqγβε = qγ for t ∈ [0, T ], and it follows from (5.7)

that for each m ≥ 0, q > 1 and t ∈ [0, T ] ,

E

[
exp

(
qγ sup

s∈[t,T ]
|Y (m+1)
s |

)]
≤
√
C(q)

(
E

[
exp

(
qγ sup

s∈[t,T ]
|Y (m)
s |

)])1/2

,
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and, by induction,

E

[
exp

(
qγ sup

s∈[t,T ]
|Y (m+1)
s |

)]
≤
√
C(q)

1+ 1
2

+···+ 1
2m

(
E

[
exp

(
qγ sup

s∈[t,T ]
|Y (0)
s |

)]) 1
2m+1

≤ C(q).

Consequently, by Hölder’s inequality we have, for each q > 1,

sup
m≥0

E

[
exp

(
qγ sup

t∈[0,T ]
|Y (m)
t |

)]
≤ A(q)E [exp (4nqγ|ξ|)]E

[
exp

(
4nqγ

∫ T

0
αsds

)]
< +∞.

(5.10)

If m0 = 2, then 2nqγβ(T − t) ≤ 2nqγβε = qγ for t ∈ [T − ε, T ], and from the argument in the

case of m0 = 1 it follows that for each q > 1,

sup
m≥0

E

[
exp

(
qγ sup

t∈[T−ε,T ]
|Y (m)
t |

)]
≤ A(q)E [exp (4nqγ|ξ|)]E

[
exp

(
4nqγ

∫ T

0
αsds

)]
< +∞,

(5.11)

which yields that

sup
m≥0

E
[
exp

(
qγ|Y (m)

T−ε|
)]
≤ A(q)E [exp (4nqγ|ξ|)]E

[
exp

(
4nqγ

∫ T

0
αsds

)]
< +∞. (5.12)

Now, consider the following system of BSDEs: for i = 1, · · · , n,

Y
(m+1);i
t = Y

(m+1);i
T−ε +

∫ T−ε

t
gi(s, Y (m)

s , Z(m+1);i
s )ds−

∫ T−ε

t
Z(m+1);i
s dBs, t ∈ [0, T − ε].

In view of (5.12), a similar argument as that obtaining (5.10) yields that for each q > 1,

sup
m≥0

E

[
exp

(
qγ sup

t∈[0,T−ε]
|Y (m)
t |

)]

≤ A(q) sup
m≥0

E
[
exp

(
4nqγ|Y (m)

T−ε|
)]

E
[
exp

(
4nqγ

∫ T

0
αsds

)]
,

≤ A(q)A(4nq)E
[
exp

(
16n2qγ|ξ|

)]
E
[
exp

(
32n2qγ

∫ T

0
αsds

)]
< +∞,

and then, in view of (5.11) and Hölder’s inequality,

sup
m≥0

E

[
exp

(
qγ sup

t∈[0,T ]
|Y (m)
t |

)]
≤ A(2q)A(8nq)E

[
exp

(
32n2qγ|ξ|

)]
E
[
exp

(
64n2qγ

∫ T

0
αsds

)]
< +∞.

Proceeding the above computation gives that if m0 satisfies (5.9), then for each q > 1,

sup
m≥0

E

[
exp

(
qγ sup

t∈[0,T ]
|Y (m)
t |

)]

≤ (A(2q)A(8nq))m0−1 E
[
exp

(
4n(8n)m0−1qγ|ξ|

)]
E
[
exp

(
4n(16n)m0−1qγ

∫ T

0
αsds

)]
< +∞,

which together with (5.9) and (5.8) yields the desired conclusion (5.3).
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In the sequel, we show that

∀ q > 1, sup
m≥0

E

[(∫ T

0
|Z(m)
s |2ds

)q/2]
< +∞. (5.13)

In fact, using Itô-Tanaka’s formula to compute exp(2γ|Y (m+1;i)
t |) and utilizing inequality (5.5),

we can deduce that for each i = 1, · · · , n and m ≥ 0,

γ2

∫ T

0
exp(2γ|Y (m+1);i

s |)|Z(m+1);i
s |2ds

≤ exp(2γ|ξi|) + 2γ

∫ T

0
exp(2γ|Y (m+1);i

s |) (αs + β|Y m
s |)) ds

−2γ

∫ T

0
exp(2γ|Y (m+1);i

s |)sgn(Y (m+1);i
s )Z(m+1);i

s dBs.

In view of the previous inequality, we can use the BDG inequality and Young’s inequality to

derive that for each q > 1, m ≥ 0 and i = 1, · · · , n,

E

[(∫ T

0
|Z(m+1);i
s |2ds

)q/2]

≤ C

(
E

[
exp

(
2qγ sup

s∈[0,T ]
|Y (m+1);i
s |

)]
+ E

[(∫ T

0
αs + β|Y (m)

s |ds
)q])

≤ C̄

(
E
[
exp

(∫ T

0
αsds

)]
+ sup
m≥0

E

[
exp

(
2qγ sup

s∈[0,T ]
|Y (m)
s |

)])
,

(5.14)

where C and C̄ are two positive constants depending only on (q, γ) and (q, γ, β, T ), respectively.

Then the inequality (5.13) follows immediately from (5.14) and (5.3).

Next, without loss of generality, we assume that the generator g is component-wisely convex

in (B3), that is, dP×dt−a.e., gi(ω, t, y, ·) is convex for each i = 1, · · · , n and y ∈ Rn. Otherwise,

if gi(ω, t, y, ·) is concave for some integer i, it is sufficient to replace the primary unknown (yi, zi)

with the new pair of unknown variables (−yi,−zi) in the underlying system of BSDEs.

For each fixed m, p ≥ 1 and θ ∈ (0, 1), define

δθY
(m,p) :=

Y (m+p) − θY (m)

1− θ
and δθZ

(m,p) :=
Z(m+p) − θZ(m)

1− θ
.

Then (δθY
(m,p), δθZ

(m,p)) ∈ E(Rn)×M(Rn×d) solves the following system of BSDEs: for each

i = 1, · · · , n,

δθY
(m,p);i
t = ξi +

∫ T

t
δθg

(m,p);i(s, δθZ
(m,p);i
s )ds−

∫ T

t
δθZ

(m,p);i
s dBs, t ∈ [0, T ], (5.15)

where dP× ds− a.e., for each z ∈ R1×d,

δθg
(m,p);i(s, z) :=

1

1− θ

(
gi(s, Y (m+p−1)

s , (1− θ)z + θZ(m);i
s )− θgi(s, Y (m−1)

s , Z(m);i
s )

)
. (5.16)
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It follows from (5.16) and assumptions (B2), (B3) and (B1) that dP×ds−a.e., for each z ∈ R1×d,

δθg
(m,p);i(s, z) ≤ β|δθY

(m−1,p)
s |+ β|Y (m−1)

s |+ gi(s, Y
(m−1)
s , z)

≤ αs + β|δθY (m−1,p)
s |+ 2β|Y (m−1)

s |+ γ

2
|z|2,

which together with (5.3) means that all the conditions in Lemma A.4 are satisfied for BSDE

(5.15), and then for i = 1, · · · , n, we have

exp

(
γ
(
δθY

(m,p);i
t

)+
)

≤ Et
[
exp

(
γ(ξi)+ + γ

∫ T

t

(
αs + β|δθY (m−1,p)

s |+ 2β|Y (m−1)
s |

)
ds

)]
, t ∈ [0, T ].

(5.17)

On the other hand, define

δθỸ
(m,p) :=

Y (m) − θY (m+p)

1− θ
and δθZ̃

(m,p) :=
Z(m) − θZ(m+p)

1− θ
.

The same computation as above yields that for i = 1, · · · , n,

exp

(
γ
(
δθỸ

(m,p);i
t

)+
)

≤ Et
[
exp

(
γ(ξi)+ + γ

∫ T

t

(
αs + β|δθỸ (m−1,p)

s |+ 2β|Y (m+p−1)
s |

)
ds

)]
, t ∈ [0, T ].

(5.18)

Furthermore, observe that for i = 1, · · · , n and t ∈ [0, T ], we have

(
δθY

(m,p);i
t

)−
=

(
Y

(m+p);i
t − θY (m);i

t

)−
1− θ

=

(
θY

(m);i
t − Y (m+p);i

t

)+

1− θ

≤
θ
(
Y

(m);i
t − θY (m+p);i

t

)+
+ (1− θ2)|Y (m+p);i

t |

1− θ
≤

(
δθỸ

(m,p);i
t

)+
+ 2|Y (m+p)

t |

and, similarly, (
δθỸ

(m,p);i
t

)−
≤
(
δθY

(m,p);i
t

)+
+ 2|Y (m)

t |.

It follows from (5.17) and (5.18) together with Jensen’s inequality that for each i = 1, · · · , n

and t ∈ [0, T ],

exp
(
γ|δθY

(m,p);i
t |

)
= exp

(
γ
(
δθY

(m,p);i
t

)+
)
· exp

(
γ
(
δθY

(m,p);i
t

)−)
≤ Et

[
exp

(
2γ|ξ|+ 2γ|Y (m+p)

t |+ 2γ

∫ T

t

(
αs + 2β|Y (m−1)

s |+ 2β|Y (m+p−1)
s |

)
ds

+2γβ

∫ T

t

(
|δθY (m−1,p)

s |+ |δθỸ (m−1,p)
s |

)
ds

)]
and

exp
(
γ|δθỸ

(m,p);i
t |

)
= exp

(
γ
(
δθỸ

(m,p);i
t

)+
)
· exp

(
γ
(
δθỸ

(m,p);i
t

)−)
≤ Et

[
exp

(
2γ|ξ|+ 2γ|Y (m)

t |+ 2γ

∫ T

t

(
αs + 2β|Y (m−1)

s |+ 2β|Y (m+p−1)
s |

)
ds

+2γβ

∫ T

t

(
|δθY (m−1,p)

s |+ |δθỸ (m−1,p)
s |

)
ds

)]
.
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Consequently, by Jensen’s inequality again we have for each t ∈ [0, T ],

exp
(
γ
(
|δθY

(m,p);i
t |+ |δθỸ

(m,p);i
t |

))
≤ Et

[
exp

{
4γ

(
|ξ|+ |Y (m)

t |+ |Y (m+p)
t |+

∫ T

t

(
αs + 2β|Y (m−1)

s |+ 2β|Y (m+p−1)
s |

)
ds

)
+4γβ

∫ T

t

(
|δθY (m−1,p)

s |+ |δθỸ (m−1,p)
s |

)
ds

}]
, i = 1, · · · , n,

and then

exp
(
γ
(
|δθY

(m,p)
t |+ |δθỸ

(m,p)
t |

))
≤ Et

[
exp

{
4nγ

(
|ξ|+ |Y (m)

t |+ |Y (m+p)
t |+

∫ T

t

(
αs + 2β|Y (m−1)

s |+ 2β|Y (m+p−1)
s |

)
ds

)
+4nγβ

∫ T

t

(
|δθY (m−1,p)

s |+ |δθỸ (m−1,p)
s |

)
ds

}]
.

(5.19)

In view of (5.19), Doob’s maximal inequality for martingales together with Hölder’s inequality

yields that for each q > 1 and t ∈ [0, T ], we have

E

[
exp

(
qγ sup

s∈[t,T ]

(
|δθY (m,p)

s |+ |δθỸ (m,p)
s |

))]

≤
(

q

q − 1

)q
E

[
exp

{
4nqγ

(
|ξ|+ sup

s∈[t,T ]

(
|Y (m)
s |+ |Y (m+p)

s |
))

+4nqγ

∫ T

t

(
αs + 2β|Y (m−1)

s |+ 2β|Y (m+p−1)
s |

)
ds

+4nqγβ sup
s∈[t,T ]

(
|δθY (m−1,p)

s |+ |δθỸ (m−1,p)
s |

)
(T − t)

}]

≤ [C̄(q)]1/2

{
E

[
exp

(
8nqγβ sup

s∈[t,T ]

(
|δθY (m−1,p)

s |+ |δθỸ (m−1,p)
s |

)
(T − t)

)]}1/2

,

(5.20)

where, in view of (5.3),

C̄(q) := A(q) sup
m,p≥1

E

[
exp

{
8nqγ

(
|ξ|+ sup

t∈[0,T ]
|Y (m)
t |+ sup

t∈[0,T ]
|Y (m+p)
t |

)

+ 8nqγ

∫ T

0

(
αs + 2β|Y (m−1)

s |+ 2β|Y (m+p−1)
s |

)
ds

}]
< +∞

with A(q) being defined in (5.4).

Based on the above analysis, we now can prove that {(Y (m), Z(m))}∞m=1 is a Cauchy sequence

in the space Sq(Rn)×Hq(Rn×d) for each q > 1. In fact, observing the similarity of (5.20) and

(5.7), we can induce with respect to m and use a similar argument as that obtaining (5.3) to

derive the existence of a positive constant K̄(q) depending on q and being independent of θ
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such that for each q > 1,

E

[
exp

(
qγ sup

t∈[0,T ]

(
|δθY

(m,p)
t |+ |δθỸ

(m,p)
t |

))]

≤ K̄(q)

(
E

[
exp

(
qγ sup

t∈[0,T ]

(
|δθY

(1,p)
t |+ |δθỸ

(1,p)
t |

))]) 2[2nβT ]+1

2m

,

from which together with (5.3) it follows that for each q > 1 and θ ∈ (0, 1),

lim sup
m→∞

sup
p≥1

E

[
exp

(
qγ sup

t∈[0,T ]

(
|δθY

(m,p)
t |+ |δθỸ

(m,p)
t |

))]
≤ K̄(q). (5.21)

Thus, for each θ ∈ (0, 1),

lim sup
m→∞

sup
p≥1

E

[
sup
t∈[0,T ]

|Y (m+p)
t − θY (m)

t |

]
≤ (1− θ)K̄(2)

2γ
,

and then, in view of (5.3),

lim sup
m→∞

sup
p≥1

E

[
sup
t∈[0,T ]

|Y (m+p)
t − Y (m)

t |

]
≤ (1− θ)

(
K̄(2)

2γ
+ sup
m≥1

E

[
sup
t∈[0,T ]

|Y (m)
t |

])
< +∞.

Sending θ to 1, in view of (5.3), we see that there is an adapted process Y ∈ E(Rn) such that

for each q > 1,

lim
m→∞

E

[
sup
t∈[0,T ]

|Y (m)
t − Yt|q

]
= 0 (5.22)

and

lim
m→∞

E

[
exp

(
q sup
t∈[0,T ]

|Y (m)
t − Yt|

)]
= 1. (5.23)

Furthermore, it follows from Itô’s formula that for each m, p ≥ 1,

E
[∫ T

0
|Z(m+p)
s − Z(m)

s |2ds

]
≤ 2E

[
sup
t∈[0,T ]

∣∣∣Y (m+p)
t − Y (m)

t

∣∣∣
·
∫ T

0

n∑
i=1

∣∣∣gi(s, Y (m+p−1)
s , Z(m+p);i

s )− gi(s, Y (m−1)
s , Z(m);i

s )
∣∣∣ds] . (5.24)

And, by virtue of (B1), (5.3) and (5.13) we get that

sup
m,p≥1

E

(∫ T

0

n∑
i=1

∣∣∣gi(s, Y (m+p−1)
s , Z(m+p);i

s )− gi(s, Y (m−1)
s , Z(m);i

s )
∣∣∣ ds)2

 < +∞. (5.25)

Then, applying Hölder’s inequality to (5.24) and using (5.22) and (5.25) leads to that

lim
m→∞

sup
p≥1

E
[∫ T

0
|Z(m+p)
s − Z(m)

s |2ds

]
= 0,

from which together with (5.13) it follows that there exists a process Z ∈M(Rn×d) such that

∀ q > 1, lim
m→∞

E

[(∫ T

0
|Z(m)
s − Zs|2ds

)q/2]
= 0. (5.26)
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Finally, in view of (5.22), (5.23) and (5.26), by sending m to infinity in (5.2) we can deduce

that (Y, Z) is a desired solution of system of BSDE (1.1).

It remains to show the uniqueness part for completing the proof of Theorem 2.8. For this,

let (Ỹ , Z̃) be also a solution of system of BSDE (1.1) in the space E(Rn) ×M(Rn×d), and for

θ ∈ (0, 1), define

δθU :=
Y − θỸ
1− θ

, δθV :=
Z − θZ̃
1− θ

,

and

δθŨ :=
Ỹ − θY
1− θ

, δθṼ :=
Z̃ − θZ
1− θ

.

Using a similar argument as that from (5.15) to (5.20), we can deduce that for each q > 1,

E

[
exp

(
qγ sup

s∈[t,T ]

(
|δθUs|+ |δθŨs|

))]

≤
(

q

q − 1

)q
E

[
exp

{
4nqγ

(
|ξ|+ sup

s∈[t,T ]

(
|Ys|+ |Ỹs|

)
+

∫ T

t

(
αs + 2β|Ys|+ 2β|Ỹs|

)
ds

)

+4nqγβ sup
s∈[t,T ]

(
|δθUs|+ |δθŨs|

)
(T − t)

}]

≤
[
C̃(q)

]1/2
{
E

[
exp

(
8nqγβ sup

s∈[t,T ]

(
|δθUs|+ |δθŨs|

)
(T − t)

)]}1/2

, t ∈ [0, T ],

(5.27)

where

C̃(q) := A(q)E
[
exp

{
8nqγ

(
|ξ|+ supt∈[0,T ]

(
|Yt|+ |Ỹt|

)
+
∫ T

0

(
αs + 2β|Ys|+ 2β|Ỹs|

)
ds
)}]

< +∞

with A(q) being defined in (5.4). For β = 0, it is clear from (5.27) that

E

[
2γ sup

t∈[0,T ]
|δθUt|

]
≤ E

[
exp

(
2γ sup

t∈[0,T ]
|δθUt|

)]
≤
√
C̃(2),

and then

E

[
sup
t∈[0,T ]

|Yt − Ỹt|

]
≤ E

[
sup
t∈[0,T ]

|Yt − θỸt|

]
+ (1− θ)E

[
sup
t∈[0,T ]

|Ỹt|

]

≤ (1− θ)


√
C̃(2)

2γ
+ E

[
exp

(
sup
t∈[0,T ]

|Ỹt|

)] ,

in which letting θ → 1 yields that Y = Ỹ and then Z = Z̃ on the time interval [0, T ]. Otherwise,

in the case of T ≤ ε̄ := 1/8nβ, it follows from (5.27) that

E

[
2γ sup

t∈[0,T ]
|δθUt|

]
≤ E

[
exp

(
2γ sup

t∈[0,T ]
|δθUt|

)]
≤ C̃(2),
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and then Y = Ỹ and Z = Z̃ on the time interval [0, T ]. Similarly, if m0 is the unique positive

integer such that (m0 − 1)ε̄ < T ≤ m0ε̄, then we can successively prove the uniqueness on the

time intervals [T − ε̄, T ], [T −2ε̄, T − ε̄], · · · , [T −(m0−1)ε̄, T −(m0−2)ε̄] and [0, T −(m0−1)ε̄].

The proof of Theorem 2.8 is then complete.

Appendix A. Several auxiliary results on one-dimensional quadratic BSDEs

We consider the following one-dimensional BSDE:

Yt = η +

∫ T

t
f(s, Zs) ds−

∫ T

t
Zs dBs, t ∈ [0, T ], (A.1)

where the terminal value η is a real-valued FT -measurable random variable, and the generator

function f(·, ·, z) : Ω × [0, T ] → R is (Ft)-progressively measurable for each z ∈ R1×d. Here,

the solution (Yt, Zt)t∈[0,T ] is defined as a pair of (Ft)-progressively measurable processes taking

values in R× R1×d, such that (A.1) is satisfied.

Assume that there exists a pair of processes (U, V ) ∈ S∞(Rn)× BMO(Rn×d) such that the

generator f satisfies the following assumptions.

(A1) dP× dt− a.e., we have

|f(ω, t, z)| ≤ αt(ω) + φ(|Ut(ω)|) + nλ|Vt(ω)|1+δ +
γ

2
|z|2 for each z ∈ R1×d;

(A2) dP× dt− a.e., we have

|f(ω, t, z)− f(ω, t, z̄)| ≤ φ(|Ut(ω)|) (1 + 2|Vt(ω)|+ |z|+ |z̄|) |z − z̄|

for each (z, z̄) ∈ (R1×d)2.

The following lemma slightly generalizes Hu and Tang [15, Lemma 2.1].

Lemma A.1. Let the generator f satisfy assumptions (A1) and (A2), and both |η| and
∫ T

0 αtdt

be (essentially) bounded. Then, BSDE (A.1) admits a unique solution (Y,Z) such that Y is

(essentially) bounded and Z ·B :=
(∫ t

0 ZsdBs

)
t∈[0,T ]

is a BMO martingale. Moreover, for each

t ∈ [0, T ] and each stopping time τ with values in [t, T ], we have

|Yt| ≤
1

γ
ln 2 + ‖η‖∞ +

∥∥∥∥∫ T

0
αsds

∥∥∥∥
∞

+φ
(
‖U‖S∞

[t,T ]

)
(T − t) + γ

1+δ
1−δCδ,λ,n‖V ‖

2 1+δ
1−δ

BMO[t,T ]
(T − t)

(A.2)
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and

Eτ
[∫ T

τ
|Zs|2ds

]
≤ 1

γ2
exp(2γ‖η‖∞) +

1

γ
exp

(
2γ

∥∥∥∥∥ sup
s∈[t,T ]

|Ys|

∥∥∥∥∥
∞

)

·
(

1 + 2

∥∥∥∥∫ T

0
αsds

∥∥∥∥
∞

+ 2φ
(
‖U‖S∞

[t,T ]

)
(T − t) + 2Cδ,λ,n‖V ‖

2 1+δ
1−δ

BMO[t,T ]
(T − t)

)
,

(A.3)

where

Cδ,λ,n :=
1− δ

2
(1 + δ)

1+δ
1−δ (nλ)

2
1−δ . (A.4)

Proof. Since V ∈ BMO(Rn×d), it follows from Young’s inequality that for each real k > 0,

knλ|Vs|1+δ =

(
(1 + δ)

1+δ
1−δ ‖V ‖

2 1+δ
1−δ

BMO[t,T ]
(knλ)

2
1−δ

) 1−δ
2

(
|Vs|2

(1 + δ)‖V ‖2BMO[t,T ]

) 1+δ
2

≤ 1

2‖V ‖2BMO[t,T ]

|Vs|2 + k
2

1−δCδ,λ,n‖V ‖
2 1+δ
1−δ

BMO[t,T ]
, 0 ≤ t ≤ s ≤ T,

(A.5)

where the constant Cδ,λ,n is defined in (A.4). On the other hand, it follows from John-Nirenberg

inequality for BMO martingale (see for example Lemma A.1 in Hu and Tang [15]) that for each

t ∈ [0, T ] and each stopping time τ with values in [t, T ],

Eτ

[
exp

(
1

2‖V ‖2BMO[t,T ]

∫ T

τ
|Vs|2ds

)]
≤ 1

1− 1
2

= 2, t ∈ [0, T ]. (A.6)

Thus, combining previous inequality and inequality (A.5) with k := pγ yields that for each

p ≥ 1 and t ∈ [0, T ],

Et
[
exp

(
pγnλ

∫ T

t
|Vs|1+δds

)]
≤ 2 exp

(
(pγ)

2
1−δCδ,λ,n‖V ‖

2 1+δ
1−δ

BMO[t,T ]
(T − t)

)
< +∞, (A.7)

and then, in view of U ∈ S∞(Rn) and the boundedness of |η| and
∫ T

0 αsds,

Et
[
exp

(
pγ|η|+ pγ

∫ T

t

(
αs + φ(|Us|) + nλ|Vs|1+δ

)
ds

)]
≤ 2 exp

(
pγ‖η‖∞ + pγ

∥∥∥∥∫ T

0
αsds

∥∥∥∥
∞

+ pγφ
(
‖U‖S∞

[t,T ]

)
(T − t)

+(pγ)
2

1−δCδ,λ,n‖V ‖
2 1+δ
1−δ

BMO[t,T ]
(T − t)

)
< +∞.

In view of assumptions (A1)-(A2) and with previous inequality in the hand, we can apply

Theorem 2 in Briand and Hu [6] to see that BSDE (A.1) admits a solution (Y,Z) such that

E
[∫ T

0
|Zs|2ds

]
< +∞
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and

exp (γ|Yt|) ≤ 2 exp

(
γ‖η‖∞ + γ

∥∥∥∥∫ T

0
αsds

∥∥∥∥
∞

+ γφ
(
‖U‖S∞

[t,T ]

)
(T − t)

+γ
2

1−δCδ,λ,n‖V ‖
2 1+δ
1−δ

BMO[t,T ]
(T − t)

)
.

This shows that (A.2) holds and Y is bounded.

We now show that (A.3) holds and Z ·B is a BMO martingale. Using Itô-Tanaka’s formula

to compute exp(2γ|Yt|) and utilizing assumption (A1), we have, for each t ∈ [0, T ] and each

stopping time τ with values in [t, T ],

exp(2γ|Yτ |) + 2γ2Eτ
[∫ T

τ
exp(2γ|Ys|)|Zs|2ds

]
≤ Eτ [exp(2γ|η|)] + 2γEτ

[∫ T

τ
exp(2γ|Ys|)

(
αs + φ(|Us|) + nλ|Vs|1+δ +

γ

2
|Zs|2

)
ds

]
.

Therefore, in view of (A.5) with k := 1,

γ2Eτ
[∫ T

τ
|Zs|2ds

]
≤ exp(2γ‖η‖∞) + 2γ exp

(
2γ

∥∥∥∥∥ sup
s∈[t,T ]

|Ys|

∥∥∥∥∥
∞

)

·
(∥∥∥∥∫ T

0
αsds

∥∥∥∥
∞

+ φ
(
‖U‖S∞

[t,T ]

)
(T − t) +

1

2
+ Cδ,λ,n‖V ‖

2 1+δ
1−δ

BMO[t,T ]
(T − t)

)
< +∞,

from which the desired conclusions follows immediately.

Finally, in view of assumption (A2) with (U, V ) ∈ S∞(Rn) × BMO(Rn×d), by a similar

argument to that in Hu and Tang [15, Lemma 2.1 ], we can use the Girsanov transform to prove

a comparison result on the solutions of BSDE (A.1), which yields the desired uniqueness.

Lemma A.2. Assume that (U, V ) ∈ S∞(Rn)×BMO(Rn×d), both |η| and
∫ T

0 αtdt are (essen-

tially) bounded, and (Y, Z) is a solution of BSDE (A.1) such that Y is (essentially) bounded.

(i) If dP× dt− a.e., it holds that

sgn(Yt(ω))f (ω, t, Zt(ω)) ≤ αt(ω) + β|Ut(ω)|+ λ|Vt(ω)|1+δ +
γ

2
|Zt(ω)|2, (A.8)

then for each t ∈ [0, T ], we have

exp (γ|Yt|) ≤ Et
[
exp

(
γ‖η‖∞ + γ

∥∥∥∥∫ T

0
αsds

∥∥∥∥
∞

+βγ‖U‖S∞
[t,T ]

(T − t) + λγ

∫ T

t
|Vs|1+δds

)]
;

(ii) If dP× dt− a.e., it holds that

f (ω, t, Zt(ω)) ≥ γ̄

2
|Zt(ω)|2 − αt(ω)− β|Ut(ω)| − λ|Vt(ω)|1+δ (A.9)
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or

f (ω, t, Zt(ω)) ≤ − γ̄
2
|Zt(ω)|2 + αt(ω) + β|Ut(ω)|+ λ|Vt(ω)|1+δ, (A.10)

then for each ε ∈ (0, γ̄9 ] and t ∈ [0, T ], we have

Et
[
exp

(
γ̄

2
ε

∫ T

t
|Zs|2ds

)]
≤ Et

[
exp

(
6ε

∥∥∥∥∥ sup
s∈[t,T ]

|Ys|

∥∥∥∥∥
∞

+ 3ε

∥∥∥∥∫ T

0
αsds

∥∥∥∥
∞

+3εβ‖U‖S∞
[t,T ]

(T − t) + 3ελ

∫ T

t
|Vs|1+δds

)]
.

Proof. In view of (A.7), using Itô-Tanaka’s formula to compute

exp

(
γ|Yt|+ γ

∫ t

0

(
αs(ω) + β|Us(ω)|+ λ|Vs(ω)|1+δ

)
ds

)
one can easily obtain (i). And, in view of (A.7) again, we can apply a similar argument as in

the proof of Fan et al. [11, Proposition 2] to get (ii). The detailed proof is omitted here.

The following two lemmas provide some bounds on the (possibly unbounded) solutions of

one-dimensional quadratic BSDEs, which can be derived from (i) of Fan et al. [11, Proposition

1]. We omit the detailed proof here.

Lemma A.3. Assume that there exists an (Ft)-progressively measurable scalar-valued non-

negative process (ᾱt)t∈[0,T ] such that dP× dt− a.e.,

∀ z ∈ R1×d, |f(ω, t, z)| ≤ ᾱt(ω) +
γ

2
|z|2.

Then, for any solution (Y,Z) of BSDE (A.1) satisfying

E

[
exp

(
2γ sup

t∈[0,T ]
|Yt|+ 2γ

∫ T

0
ᾱsds

)]
< +∞,

we have

exp (γ|Yt|) ≤ Et
[
exp

(
γ|η|+ γ

∫ T

t
ᾱsds

)]
, t ∈ [0, T ]

and

E
[∫ T

0
|Zs|2ds

]
≤ 1

γ2
E
[
exp

(
2γ|η|+ 2γ

∫ T

0
ᾱsds

)]
.

Lemma A.4. Assume that there exists an (Ft)-progressively measurable scalar-valued non-

negative process (ᾱt)t∈[0,T ] such that dP× dt− a.e.,

∀ z ∈ R1×d, f(ω, t, z) ≤ ᾱt(ω) +
γ

2
|z|2.

Then, for any solution (Y,Z) of BSDE (A.1) satisfying

E

[
exp

(
2γ sup

t∈[0,T ]
Y +
t + 2γ

∫ T

0
ᾱsds

)]
< +∞,

we have

exp
(
γY +

t

)
≤ Et

[
exp

(
γη+ + γ

∫ T

t
ᾱsds

)]
, t ∈ [0, T ].
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