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Abstract. In this work we present a duplex-based authenticated en-
cryption scheme Friet based on a new permutation called Friet-P. We
designed Friet-P with a novel approach for cryptographic permutations
and block ciphers that takes fault-attack resistance into account and that
we introduce in this paper.
In this method, we build a permutation fC to be embedded in a larger
one, f . First, we define f as a sequence of steps that all abide a chosen
error-correcting code C, i.e., that map C-codewords to C-codewords.
Then, we embed fC in f by first encoding its input to an element of C,
applying f and then decoding back from C. This last step detects a fault
when the output of f is not in C.
We motivate the design of the permutation we use in Friet and report on
performance in soft- and hardware. We evaluate the fault-detection ca-
pabilities of the software and simulated hardware implementations with
attacks. Finally, we perform a leakage evaluation.
Our code is available at https://github.com/thisimon/Friet.git.

Keywords: design of cryptographic primitives, fault injection countermeasures,
side channel attack, lightweight implementations

1 Introduction

Our daily routine relies on bank and transportation cards, car keys, phones and
other mobile and embedded devices. Many of these should consume little energy
and their continuous shrinking puts firm constraints on area and memory size.

These devices may be exposed to side channel attacks that exploits physical
leakage such as response time, power consumption or electromagnetic radiation
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to extract cryptographic keys or other secrets. Another vulnerability are fault
injection attacks, where an attacker provokes faults in the cryptographic com-
putation and uses the (faulty) outputs to recover the key. Side channel and fault
injection attacks have led to an active research field where the main challenge is
to come up with affordable and effective countermeasures.

The need for lightweight cryptography resistant to side channel and fault
injection attacks has been partially addressed by the cryptographic community
with many designs for (tweakable) block ciphers with small block sizes. The
concept of building efficient (authenticated) encryption schemes from a crypto-
graphic permutation such as proposed by the Bertoni et al. [7] has led to the
emergence of several lightweight solutions. Despite their larger width, the over-
head for permutation-based modes is smaller than that of block cipher-based
modes and the total solution often takes significantly less resources than a block
cipher-based solution.

At the primitive level, side channel attack countermeasures have been taken
into account by adopting a round function of algebraic degree 2, ideal for mask-
ing. This includes the Keccak-f permutation, Ascon [18], Gimli [4] and Xoodoo [13].

1.1 Related Work

Here we mention some related previous works that are proposing certain mod-
ifications to crypto algorithms to defend against side channel and fault at-
tacks. Intra-Instruction Redundancy [24] and Internal Redundancy Countermea-
sure [23] are generic countermeasures that can be applied to any cipher and they
imply interleaving k copies of the plaintext with some fixed data. While the
method can detect up to k faults, it is also quite expensive.

Some other approaches aim at combining resistance against both fault and
side channel attacks. Schneider et al. [29] introduce a countermeasure for cryp-
tographic hardware implementations that combines the concept of threshold
implementation with an error detecting approach. Similarly to this, Reparaz et
al. [27] propose a countermeasure that claims security against higher-order SCA,
multiple-shot DFA and also combined attacks.

Craft [3] is a cipher designed to be used in conjunction with various linear
codes which aims at implementations resistant against fault attacks. Craft differs
from the approaches mentioned above because the technique is not applied to
existing ciphers as an add-on, but takes into account fault attack resistance in
the design phase.

Our approach goes one step further as we design a permutation for a specific
linear code. This allows us to build the permutation from the most efficient step
functions for that code, resulting in a very lightweight round function.

1.2 Our Contributions

The main contributions of this paper are our novel design method for ciphers
with efficient fault-detecting implementations and the concrete authenticated en-
cryption scheme Friet implemented with a new permutation Friet-P designed
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with our method. Moreover, we provide a design rationale for the permutation,
performance evaluations in software and hardware including comparison with
other relevant permutations, results of fault detection experiments and an eval-
uation of the impact of our method on leakage.

1.3 Organization of this Paper

The remainder of paper is organized as follows. In Sect. 2 we explain our method.
The new authenticated encryption scheme Friet is presented in Sect. 3 where
we also discuss its properties and provide a security claim. The scheme is based
on a permutation called Friet-P and its embedding Friet-PC that we present
in Sect. 4. We provide rationale for the design choices in Friet-PC in Sect. 5.
Sect. 6 reports on our implementation results. In Sect. 7 and Sect. 8 we present
fault resistance and leakage evaluation results respectively. Sect. 9 concludes the
paper and gives directions for future work.

2 Code-abiding Permutations

2.1 Permutations Abiding Some Error-detecting Code

A (block) code C with block length n and message length k, with k < n, repre-
sents k-symbol messages with n-symbol codewords. The symbols belong to an
alphabet whose size is denoted by α. The αk codewords form a subset of the set
of all αn n-symbol vectors. With some abuse of notation, we denote the set of
codewords by C. The Hamming distance between two codewords is the number
of positions at which the corresponding symbols are different. The distance d of
a code is the minimum of the Hamming distance over all pairs of its codewords.
Often codes are characterized by their dimension parameters in the following
notation: [n, k, d]α.

We can now define a code-abiding permutation.

Definition 1. A permutation f on the set of n-symbol vectors is code-abiding
for code C if f(C) = C.

2.2 Protecting Against Faults by Permutation Embedding

As each codeword represents a message word, f induces a permutation over the
space of all k-symbol vectors. We denote this permutation by fC . We can express
fC as the composition of three steps: fC = decC◦f ◦encC with encC encoding the
k-symbol input as a n-symbol codeword in C and decC decoding the resulting
n-symbol to a k-symbol output. We call fC the embedding of f by C.

In general, the decoding decC of the output of f to a k-symbol message word
can fail: it only succeeds if the output of f is in C. It follows that if there is a
fault in the computation of f , it is likely that decoding fails. As a matter of fact,
the probability that a random fault is undetected is αk−n. Concretely, if f is y
bits wider than fC , this probability is 2−y.
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Hence, we can build a fault-resistant k-symbol permutation fC by choosing a
code C, designing a permutation f that abides C and embedding fC in f by C.
We call this design approach code embedding. Note that the datapath and key
(or tweakey) schedule of block ciphers are also permutations and can therefore
be designed with the code embedding approach.

2.3 Step Functions Abiding a Linear Code

The question is now: how do we choose a suitable code C and how do we define
a permutation f that abides that code? The latter problem is the easier to break
down: we define it as the iteration of a round function that abides C. That round
function can in turn be defined as a sequence of steps that abide C.

We target permutations that can be efficiently implemented in hardware and
in software using bitwise Boolean instructions and (cyclic) shifts. With this in
mind, we target codes that are linear over GF(2). In a linear [n, k, d]2-code, a
codeword satisfies n− k linear binary equations, the so-called parity equations.
Encoding simply consists in taking the k-bit message and appending n− k bits
so that the result satisfies the parity equations. We call the appended bits the
parity bits. Decoding consists in verifying whether the n-bit vector satisfies the
parity equations and if so, truncating to the first k bits. If the parity equations
are not satisfied, decoding will return an error message.

We consider permutations having a state of b bits. To allow some flexibility
in our choice of step functions, we apply a small code in parallel to parts of the
state. We call those parts slices. Each slice is n bits wide and has n − k bits
of redundancy, i.e., its bits satisfy the n − k parity equations. We denote the
first k bits of a slice as its native part and its last n− k bits as the parity part.
We index the slices by j from 0 to b/n − 1 and denote their number b/n by `,
typically a power of two. Orthogonal to the slices, we partition the state in n
equally sized limbs. A limb is an array of ` bits that are indexed by j from 0
to `− 1. In short, we arrange the b bits of the state in a two-dimensional array
consisting of n limbs by ` slices. As a consequence, we call the first k limbs the
native ones and the last n− k limbs the parity ones.

We propose two types of step functions for the round function:

limb adaptation This modifies a native limb, say with index j, by bitwise
adding to it a function φ of the state. It also adds the function φ to each
parity limb that depends on native limb j. This is code-abiding as each
parity equation remains satisfied. This operation is not inherently invertible
and care must be taken in the function φ and the part of the state it operates
on. For fault detection it is important to freshly compute φ for every adapted
limb. Indeed, if φ would be computed once for all adapted limbs, one fault in
its computation could lead to an incorrect output that decodes successfully.

limb transposition This is a re-ordering of the limbs, with a possible correcting
adaptation to leave the parity equations invariant. We distinguish between
native and non-native limb transpositions. In the former case, two native
limbs swap and in the latter a native limb swaps places with a parity limb. In
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many implementations, swapping two limbs as such has no cost: in software
it can be dealt with at indexing level, in a combinatorial circuit in dedicated
hardware, it is merely re-wiring. The correcting adaptation depends on the
code C and the indices of the limbs being swapped. Typically, this cost is
lower than the cost of a limb adaptation. For the simple code used in our
permutation Friet-P there is no correcting adaptation and in Appendix A,
we give an example of a limb transposition that costs an additional bitwise
limb addition.

A round function of a modern cipher consists of four types of operations.
Each of these can be implemented with our two types of step functions:

• non-linearity, as in AES SubBytes [15], with limb adaptation with a non-
linear function φ,

• mixing, as in AES MixColumns, with limb adaptation with a linear function
φ and a non-native limb transposition,

• shuffling, as in ShiftRows, with native limb transposition,
• round constant (or key) addition, as in AES AddRoundKey, with limb adap-

tation where φ consists of a mere round constant or key.

2.4 Fault Detection Capacity of Code-abiding permutations

The protection offered by code embedding is that faults in the computation of
the permutation are likely to lead to a decoding error. A decoding error implies
that a fault occurred, but the converse is not necessarily true. If faults lead to
an incorrect output that decodes successfully, we speak of undetected faults.

In order to analyze more precisely the fault detection capacity of code-abiding
permutations, we use a single-limb fault model. A single-limb fault, also simply
called single fault, is a fault that modifies the value of only one limb. If imple-
mented correctly, a single fault in the computation of a code-abiding permuta-
tion is guaranteed to give a decoding error. To establish this, we analyze what
happens when single faults are injected in a limb adaptation and transposition.

A limb transposition either involves no computation at all or a correcting
adaptation. In the latter case a single fault would only modify the value of one
parity limb, while leaving the native limbs unchanged. The corresponding parity
equation would then be not satisfied and decoding would fail.

In a limb adaptation, fresh computations of φ are added to a native limb and
one or more parity limbs. If the input of the limb adaptation is correct, it can
only lead to an incorrect output that decodes successfully if at least d limbs are
computed incorrectly, i.e. in the presence of d single faults, with d the distance
of the code. At first sight, this is an argument for taking C with high distance
d. However, this comes at a computational cost: limb adaptation adapts a single
native limb at a cost that is a d-fold of that.

So far, we have only treated the case of a single step starting from a correct
state. However, faults may be injected in different steps. As a fault in a single
limb may, and typically will, propagate to other limbs, in principle a fault may
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be compensated by another fault some steps later and result in an erroneous
state that decodes successfully. To prevent this, one may do intermediate checks
of the parity equations in between the steps. However, the fault will typically
propagate in a hard to predict way and compensating a fault becomes harder and
harder as computation continues. This makes it an uninteresting attack path and
we believe that intermediate parity checks are not worth their cost. Therefore,
we think that a single parity check at the end of the permutation gives the best
tradeoff between performances and fault detection.

Besides single faults, there are other types of faults that are not covered by
the code embedding and must be countered with other means. For example,
skipping a full step, round or number of rounds, will not lead to unsuccessful
decoding. Another example are faults in the decoding operation itself, e.g., just
faulting the reporting of the outcome from false to true. Clearly, implementations
must have some redundancy in the control flow logic for the handling of the steps
and the decoding operation. For an implementation to offer resistance against
fault attacks, it must additionally have mechanisms to detect such faults.

A recently introduced type of fault attack, coined statistical ineffective fault
attacks (SIFA) [17], can retrieve secrets even in the presence of fault checks. Here,
one inject faults in repeated computations and the only information the attacker
needs is the knowledge whether a fault occurred or not. Clearly, in the presence
of a fault detection countermeasure such as code embedding, this information
is available to the attacker. Using SIFA one can determine (secret) bits of the
state if the probability that a fault occurs depends on their value. The simplest
example is a fault in the computation of a multiplication in GF(2), say c = a · b
with a, b and c bits. Let us assume the adversary can inject faults in a. These
faults will propagate to c if and only if b = 1. Such an attack would require
knowledge of implementation details and on top of that the accurate injection
of single-bit fault in a. However, using statistical techniques one can relax the
latter requirement at the cost of more fault attempts. In Section 5.6 we present
an architecture for a specific permutation that results in resistance against SIFA.

2.5 Our Approach: the Parity Check Code

Due to the fact that the computation cost of limb adaptation grows linearly with
the distance of the code, we choose for the simple parity check code [n, n−1, 2]2.
This code has a single parity limb that is the sum of all n− 1 native limbs.

Adopting such a code simplifies limb adaptation and transpositions as follows:

• Limb adaptation modifies a limb and the parity limb. Its computation cost
is twice as large as if it was computed on the native state alone.

• None of the n! possible limb transpositions requires a correcting adaptation,
as all limbs are in the (single) parity equation. Paradoxically, as a non-
native limb transposition on the parity check code has no computation cost,
it is cheaper to compute it than do the equivalent embedded mapping that
requires n− 2 bitwise limb additions.
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The primary goal of our approach is the guaranteed detection of any single-
limb fault in the computation. The secondary goal is that it should be hard to
enforce two or more compensating faults in the computation or in the registers.
The easiest attack on limb adaptation would be to inject two compensating faults
in the two φ computations. In this respect it is a good idea in software implemen-
tations to use different computation sequences and/or different registers so that
the attacker has to induce two different faults for them to be compensating. For
the same reason, in dedicated hardware implementations one shall not use the
same combinatorial circuit for both φ. Instead of attacking the computation, an
attacker could attack the registers and inject compensating faults on two limbs.
To be successful, such attacks would require knowledge of the implementation
details and the ability to inject faults very precisely.

The parity check code offers fault detection capabilities that are close to
duplication. It detects any single-limb fault instead of any single fault, but not
multiple faults. On the other hand, it can be implemented much more efficiently
thanks to the cheap limb transpositions and uses less memory, since the state
size increases only by 1/(n− 1) instead of 2.

3 The Authenticated Encryption Scheme Friet

We showcase the practicality of code embedding with a lightweight authenti-
cated encryption (AE) scheme, called Friet. It is permutation-based and uses
SpongeWrap [7], a mode on top of the duplex [7] construction, similar to CAE-
SAR candidate Ketje [8] NIST lightweight competition submissions Ascon [18],
Gimli [4] and Xoodyak [11].

The permutation underlying our AE scheme is called Friet-PC and it is the
result of embedding a code on a permutation Friet-P. We do not see Friet
(and Friet-P) as the ultimate fault-attack resistant design but rather as a proof
of concept, quite competitive with modern AE schemes (and permutations).

In this section we specify the mode and provide its security claim.

3.1 The Permutation AE Mode SpongeWrap

We adopt the AE mode proposed in the paper that introduced the duplex con-
struction and its modes [7], namely SpongeWrap. SpongeWrap has the nice prop-
erty that it supports AE in sessions. A session AE scheme converts sequences of
messages, each consisting of (optional) associated data AD and plaintext P , both
bit strings of arbitrary length, into a sequences of cryptograms, each consisting
of possible associated data, ciphertext C (the enciphered plaintext) and a tag
T . The session aspect is related to the tag T : this is not only computed on the
associated data and ciphertext of its own cryptogram, but the full sequence of
cryptograms that were generated since the start of the session. In other words, a
session AE scheme is stateful. One can see session AE as support for intermediate
tags.
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Algorithm 1 SpongeWrap[f, ρ, τ ], with permutation f , block length ρ and tag
length τ .

Interface: T ← start(K,D)
s← 0∗ (State s is a persistent data element during the session)
absorb(K, none)
absorb(D, encrypt)
T ← squeeze(τ)
return T

Interface: (C, T )← wrap(AD, P )
absorb(AD, none)
C ← absorb(P, encrypt)
T ← squeeze(τ)
return (C, T )

Interface: P ← unwrap(AD, C, T )
absorb(AD, none)
P ← absorb(C,decrypt)
T ′ ← squeeze(τ)
if (T ′ 6= T ) then return error
return P

Internal interface: Y ← absorb(X, op) with op ∈ {none, encrypt, decrypt}
Let x[n] be X split in ρ-bit blocks, with n > 0 and last block possibly shorter
Y ← ε
for all blocks of x[n] do

if (op = none) then b← 0 else b← 1

if (this is the last block) then b← b+ 1

if op = decrypt then
temp← x[i] + (s truncated to |x[i]|)
Y ← Y ‖temp
duplex(temp‖b)

else if op = encrypt then
temp← x[i] + (s truncated to |x[i]|)
Y ← Y ‖temp
duplex(x[i]‖b)

else
duplex(x[i]‖b)

return Y

Internal interface: Z ← squeeze(`) with ` the requested length of the output Z
Z ← ε
while |Z| < ` do

Z ← Z‖(s truncated to ρ bits)
duplex(0)

return Z truncated to ` bits

Internal interface: duplex(σ) with |σ| ≤ ρ
s← s+ σ‖1‖0∗
s← f(s)
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We do not take SpongeWrap [7] as such, but make three minor modifications.
First, in the session startup we absorb a dedicated non-secret diversifier D that
should be a nonce for sessions started with the same key K. Second, we have
the session startup return a tag. Third, we allow for tag lengths longer than the
sponge rate. We specify the SpongeWrap mode, with the duplex construction
integrated, in Algorithm 1. Here, all parameters are arbitrary-length bit strings
with |X| denoting the length of a string X in bits.

SpongeWrap has a b-bit state, with b the width of the underlying permutation
f . It has a block length ρ and all input strings are first split up into ρ-bit blocks,
with the last block possibly shorter. Before a block is absorbed in the state,
SpongeWrap appends a domain separation bit to indicate whether the next
output will be used as keystream (1) or as tag or not at all (0). Then the block
is padded with a single 1 followed by zeroes. The so-called duplex rate r is the
size of the part of the state that is directly affected by absorbing, the outer
part. Due to the domain separation bit and the first bit of the padding, we have
r = ρ+ 2. The remaining part of the state is called the inner part and its size is
called the capacity c. We have c = b− r = b− ρ− 2.

The encryption of a message simply consists of splitting AD and P in blocks,
padding each block, adding it to the state s and performing the permutation f .
Concurrently, each plaintext block is encrypted by bitwise adding to it the outer
part of the state at that point. Finally, SpongeWrap squeezes the tag T from
the state with a (number of) duplex call(s). Decryption is very similar. After
a message has been encrypted or decrypted, one can continue the session with
more messages.

The state is initialized by absorbing first the key K and then the diversifier
D. For confidentiality the couple (K,D) must be unique per session.

Because it uses the duplex construction, SpongeWrap lends itself quite well to
the use of a code-embedded permutation fC . Actually, we just have to instantiate
duplex with the code-abiding permutation f and make some minor modifications:

• The state initialization must set the state to the codeword that encodes the
all-0 vector. For linear codes, this is just the all-0 vector.
• When absorbing σ, it must first be converted to a valid codeword. If σ is

one limb (as it turn out in Friet-PC), it suffices to (bitwise) add it to one
limb and the parity limbs that depend on it.
• Before using the outer part of the state as tag or keystream, one must check

whether the state is a valid codeword and return an error if not.

3.2 Exposure of Friet to Cryptanalysis and Side Channel Attacks

During a session, the outer state serves for in- and output and the inner state
remains secret. A feature setting duplex apart from block cipher modes is the
absence of a fixed key during operation. The state does depend on the key K, but
evolves. Doing statistical (side channel) attacks, such as differential and linear
cryptanalysis or DPA, require starting many sessions. If diversifier uniqueness is
respected, these attacks are limited to absorbing of the diversifier D.
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In typical use cases, Friet would secure communication between devices that
may both be accessible to attackers, such as IoT devices. We assume the two
devices share a secret key K and can keep track of a session counter that serves as
diversifier when a new session needs to be started. Whenever a session is started,
one device (master) initiates the session and determines the session counter D
and the other device (slave) follows and just must accept the session counter D.
Consequently, the slave can be forced in starting a session multiple times with
the same diversifier D. The slave can only be sure the session request comes from
a valid device when verifying the session startup tag. If this tag is invalid, it can
be a part of a denial of service attack, a statistical attack, or just corrupt due
to a noisy communication channel. One typically offers protection against such
attacks by having the slave keep track of two counters. The first of these two
is the session counter and the slave only accepts session startup requests that
have a higher session counter than any previously successful session. The second
is a session retry counter. A successful session startup increments the session
counter by 1 and resets the session retry counter to 0. An unsuccessful session
startup just increments the session retry counter. If the session retry counter
reaches some limit, the slave device refuses to use the key any longer. This limit
shall be set to a value small enough to prevent an adversary to collect enough
traces to conduct a statistical attack but large enough to still keep the session
robust in the presence of noise communication.

Another attack vector on the slave device is a fault attack. In such an attack,
an adversary forces a slave to start multiple sessions with the same diversifier
D and injects faults in at least one of it. She can then mount a differential
fault attacks to extract information about the secret inner state from a single
faultless output and faulted ones. This is where our fault detection capability
comes in. As soon as the slave device detects a fault, it will immediately abort
the computation and with that the session.

3.3 Dimension Parameters and Security Claim for Friet

The permutation in Friet is called Friet-PC and it has a width b of 384 bits,
similar to the permutations Gimli [4] and Xoodoo [13].

A bound for the resistance of the keyed duplex construction against generic
attacks was proven in [14] and it is mostly determined by the capacity c, the
length of the key k = |K| and the ability of an attacker to manipulate inputs.

Without access restrictions, and assuming c > r, the advantage of an at-
tacker to distinguish the output of m keyed duplex instances from random bits,
assuming the underlying permutation is randomly chosen, can be simplified to:

mN

2k
+
MN

2c
, (1)

with N the computational complexity and M the data complexity, expressed in
the number of executions of Friet-PC, respectively offline and online.

From this advantage and the tag length τ , the integrity and confidentiality
security of SpongeWrap built on top of this duplex object follows immediately:
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• Integrity is determined by forgery attacks, where forgery is the successful
decryption of a cryptogram by a slave where the cryptogram was not created
by the master. For generic attacks, this is upper bounded by (1) plus q2−τ

where q is the number of forgery attempts.
• Confidentiality is broken if keystream, i.e., keyed duplex output, can be

predicted or successful decryption of a cryptogram by a slave where the
cryptogram was not created by the master can be performed. For generic
attacks, this is the same bound as for forgery.

In Friet we choose a block length ρ = 128, implying a rate r = ρ+ 2 = 130
and a capacity c = b − r = 254. We limit the key length to k ≥ 160 and take
as tag length τ = 128. If we would assume that the underlying permutation
Friet-PC would be strong enough so that there are no attacks better than
generic ones, we could just take as as security claim (1) plus q2−τ . We take some
safety margin by using in our claim a smaller value for the parameter c, namely
c = 192.

Claim. The success probability of forgery or breaking confidentiality of Friet
is upper bounded by:

mN

2k
+
MN

2192
+

q

2128
,

with m the number of instances under attack, N the computational complexity,
M the data complexity, q the number of decryption attempts and k (≤ 160) the
key length. We assume independent and uniformly random k-bit keys.

Clearly, this is a claim for 128-bit security. In our claim we assume that the
adversary respects the nonce requirement for the diversifier and does not get
access to deciphered ciphertext of cryptograms with an invalid tag.

3.4 Rationale for the Mode and Dimensions

After the publication of SpongeWrap, many variants were published with each
specific advantages We opted for a slight SpongeWrap variant with large capac-
ity for the following reasons. First, the bounds obtained in the security proofs
assume ideal permutations and there may be better attacks that exploit specific
properties of the permutation. The difference between claim capacity 192 and
actual Friet capacity 254 leaves safety margin. Second, in the duplex construc-
tion side channel leakage can be modeled as an increase of rate and hence a
reduction of capacity. Also here this margin is advantageous.

4 Specification of the Permutations Friet-PC and Friet-P

In this section, we specify Friet-P, the permutation implemented in Friet. Be-
sides, we specify Friet-PC, its embedding by the linear code [4, 3, 2]2 with parity
bit the sum of the 3 native bits. As the propagation properties of Friet-PC are
most relevant, we introduce Friet-PC first and Friet-P second.
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4.1 The Permutation Friet-PC

Friet-PC has width 384 and has a round function Ri operating on three limbs
denoted as a, b and c. We index the bits of a limb by i ranging from 0 to 127.
Limb a and the bits of limb b with indices 0 and 1 form the outer part. The
nominal number of rounds is 24 and the round function Ri has 6 steps:

• two non-native limb transpositions τ1 and τ2,
• a round constant addition δi that is a limb adaptation,
• two mixing steps µ1 and µ2 that are limb adaptations,
• a non-linear step ξ, also a limb adaptation.

We specify the Friet-PC permutation in Algorithm 2 using following notation:

• x⊕ y, the exclusive or (XOR) of limbs x and y,
• x ∧ y, the bitwise logical AND of limbs x and y,
• x≪ n, the cyclic shift to the left by offset n of limb x. We assume the bits

with low indices at the right, so if y ← x≪ n, then yn = x0

The round constants are in Table 1 and the Friet-PC round function Figure 1.

Algorithm 2 Friet-PC

Input: a, b, c ∈ {0, 1}128
Output: (a′, b′, c′)← Friet-PC(a, b, c)
for Round index i from 0 to 23 do

(a, b, c)← Ri(a, b, c)

return (a, b, c)

Here Ri is specified by the following sequence of steps:

c ← c⊕ rci δi
(a, b, c) ← (a⊕ b⊕ c, c, a) τ1
b ← b⊕ (c≪ 1) µ1

c ← c⊕ (b≪ 80) µ2

(a, b, c) ← (a, a⊕ b⊕ c, c) τ2
a ← a⊕ ((b≪ 36) ∧ (c≪ 67)) ξ

Table 1. Round constants rci in hexadecimal notation, omitting the leading zero digits

i rci i rci i rci i rci i rci i rci
0 1111 4 101 8 1001 12 1 16 1110 20 1011

1 11100000 5 10110000 9 100000 13 110000 17 11010000 21 1100000

2 1101 6 110 10 100 14 111 18 1010 22 1100

3 10100000 7 11000000 11 10000000 15 11110000 19 1010000 23 10010000

12



Fig. 1. Round of Friet-PC Fig. 2. Round of Friet-P

4.2 The Round Function of Code-abiding Permutation Friet-P

We build a code-abiding permutation Friet-P such that its embedding by the
parity code [4, 3, 2]2 is Friet-PC. Friet-P has width 512, i.e., 4 limbs.

We denote the parity limb d and after any step the parity equation d = a⊕b⊕c
should be satisfied. It is now straightforward to derive the round function of
Friet-P from the round specification in Algorithm 2 by substituting (a⊕ b⊕ c)
by d in limb transpositions steps and duplicating all limb adaptations in d. This
results in:

c← c⊕ rci d← d⊕ rci δi
(a, b, c, d)← (d, c, a, b) τ1
b← b⊕ (c≪ 1) d← d⊕ (c≪ 1) µ1

c← c⊕ (b≪ 80) d← d⊕ (b≪ 80) µ2

(a, b, c, d)← (a, d, c, b) τ2
a← a⊕ ((b≪ 36) ∧ (c≪ 67)) d← d⊕ ((b≪ 36) ∧ (c≪ 67)) ξ

We transfer limb transpositions τ1 and τ2 to the end and merge them, yielding:

c← c⊕ rci d← d⊕ rci δi
b← b⊕ (a≪ 1) c← c⊕ (a≪ 1) µ1

a← a⊕ (c≪ 80) b← b⊕ (c≪ 80) µ2

c← c⊕ ((a≪ 67) ∧ (b≪ 36)) d← d⊕ ((a≪ 67) ∧ (b≪ 36)) ξ
(a, b, c, d)← (d, b, a, c) τ

This sequence of steps is depicted in Figure 2 of the Friet-P round function.
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5 Design Rationale of Friet-PC

An earlier version of the Friet-PC permutation, called Frit appeared on eprint
in a paper by the same authors as this one [30]. This was soon followed by attacks
exploiting weaknesses of Frit in the form of slow increase of algebraic degree
through the rounds, by Dobraunig et al. [19]. While these attacks did not assume
the target use case of authenticated encryption in a duplex-based mode, an
attack that was published somewhat later by Qin et al. did [25]. The Friet-PC
permutation has been designed taking into account these attacks. In this section,
we give a rationale for the design choices in Friet-PC: its structure, number
of rounds, shift offsets and round constants. For the concrete choice of the step
functions and their order, we considered the following propagation properties of
iteration of the round function in forward and backward direction:

• increase in algebraic degree,

• diffusion properties: full diffusion and (strict) avalanche criterion ((S)AC),

• existence of exploitable invariants.

The non-native limb transpositions τ1 and τ2 are attractive, requiring no com-
putation in Friet-P while still achieving intra-slice mixing. Additionally, τ1
shuffles the limbs between the rounds. To complement this, a very simple way
to obtain mixing between slices consist in bitwise adding (XOR) to a limb the
cyclic shift of another, as done by mixing steps µ1 and µ2. The simplest invert-
ible non-linear function is the addition to a limb of the bitwise multiplication
(AND) of two limbs. To avoid destructive intra-slice interaction with the limb
transposition steps, we opted for integrating cyclic shifts in ξ. Finally, round
constant addition δi breaks the shift-invariance of the round function.

Furthermore, all steps of the round function except τ1 are involutions. As
a consequence, the inverse round function is δi ◦ τ−11 ◦ µ1 ◦ µ2 ◦ τ2 ◦ ξ. The
similarity with the forward round function simplifies the analysis of the diffusion
and algebraic properties of Friet-PC in the backward direction.

We see Friet-PC as a permutation dedicated for use in Friet and hence
its propagation analysis shall be seen in that light. Namely, an adversary does
not have full access to the input and output of the Friet-PC permutation
in Friet. She can only apply chosen or known inputs to the outer state and
observe the outer part of the state at the output of Friet-PC. For the input,
in most attack scenario’s the full input is secret and the adversary can only
add (bitwise) a known or chosen value to the outer part of the state. If the
implementation permits, the adversary can do this repeatedly for the same state
and conduct statistical attacks or apply higher order differential techniques such
as cube attacks [16]. In any case, she is limited to inject only r = 130 bits to the
state or extract only 128 bits from it. Moreover, if the implementation of Friet
imposes that diversifier uniqueness is respected and does not release deciphered
ciphertext prior to tag validation, the adversary’s access is even much less. In
our analysis we have anticipated the worst case.
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5.1 Algebraic Degree

Permutations with low algebraic degree are vulnerable to attacks that make use
of higher order differentials, such as cube attacks [16]. Therefore, it is important
to verify that the algebraic degree of Friet-PC and its inverse is not too small.

Let f(r, x, i) be the Boolean function defined by the restriction of r rounds of
Friet-PC to output bit xi, where x ∈ {a, b, c} denotes the limb. This output bit
can be expressed as a polynomial over F2 in the input bits of f(r, x, i), which is
the algebraic normal form (ANF) of the boolean function. The algebraic degree
of f(r, x, i) is defined as the degree of its ANF. Similarly, we define finv(r, x, i)
for r inverse rounds of Friet-PC. We will study the algebraic degree of these
Boolean functions in terms of the number of rounds r.

Both the round function and its inverse have algebraic degree 2. Hence the
functions f(r, x, i) and finv(r, x, i) can have at most degree 2r. Since limbs b and c
are not modified by the linear operation ξ in the last round of the round-reduced
Friet-PC, f(r, b, i) and f(r, c, i) can be further bounded by 2r−1. Moreover, as
the round function is invertible, the maximum degree, irrespective of r, is 383.

These are just upper bounds and the actual algebraic degrees of f(r, x, i)
and finv(r, x, i) can be lower. Indeed, the structure of the round function does
not exclude possible cancellations in the terms of high degrees. The occurrence
of such cancellations depends on the values of the cyclic offsets. If the resulting
algebraic degree after 24 − ε rounds is well below 130, then Friet may be
vulnerable to cube attacks. Here ε accounts for the 1 or possibly 2 rounds that
may be skipped by carefully choosing the cube variables as in [31]. This is what
happened in our previous design and was exploited in [19] and [25].

To avoid that, we verified that the theoretical upper bound on the degree
for Friet-PC and its inverse was satisfied up to 4 rounds by finding maximum
degree monomials for all bit positions. For 5 rounds, we identified monomials of
degree 32 for f(5, a, 0) and finv(5, a, 0) given respectively by

b9b10b12b26b27b29b40b57b59b76b77b89b106b107b110b127c16c26c27c29c43c44c46c57c74c76c93c94c106c123c124c127 ,

b0b27b28b29b30b45b187b59b77b78b79b106b109b123b124b125c14c28c44c46c47c48c75c78c92c93c94c97c124c125c126c127 .

We conclude from this analysis that it is extremely unlikely that Friet is vul-
nerable to attacks using higher order differentials.

5.2 Diffusion Analysis

A property that is very informative about the vulnerability of a cryptographic
primitive against structural distinguishers such as impossible differentials, inte-
gral cryptanalysis or truncated differentials is diffusion. We say a cryptographic
permutation achieves full diffusion if every output bit depends on every input bit.
Often one takes the rule of thumb that a permutation achieving full diffusion in
r rounds is unlikely to have exploitable structural distinguishers covering more
than 2r rounds. We evaluated Friet-PC with respect to 3 avalanche-related
diffusion metrics introduced in [13] by Daemen et al..

Let T : Fb2 → Fb2 be a cryptographic primitive and ∆ be an input difference
of Hamming weight 1. Daemen et al. define the avalanche probability vector P∆T
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as the vector where component i is the probability that bit i of the output of T
flips due to input difference ∆. They then propose the three following metrics:

Avalanche dependence Number of output bits that may flip due to ∆:

Dav(T,∆) = b−
b−1∑
i=0

δ(P∆T [i]),

with δ(x) = 1 if x = 0 and 0 otherwise. Full diffusion means Dav(T,∆) = b
for all choices of ∆.

Avalanche weight Expected number of bits that flip due to ∆:

wav(T,∆) =

n−1∑
i=0

P∆T [i].

AC is satisfied if wav(T,∆) ≈ b/2 for all choices of ∆.
Avalanche entropy The uncertainty about whether output bits flip due to

input difference ∆:

Hav(T,∆) =

n−1∑
i=0

(−P∆T [i] log2(P∆T [i])− (1− P∆T [i]) log2(1− P∆T [i])).

SAC is satisfied if Hav(T,∆) ≈ b for all choices of ∆.

Table 2 reports on the diffusion performance of round-reduced Friet-PC and
its inverse. We generated the avalanche probability vectors for these results from
250 000 random samples. We evaluated each metric on all 384 input differences
∆ of Hamming weight 1 and, as is done for Xoodoo in [13], we report on the
worst-case values. From the table, one can observe that 8 rounds are needed for
Friet-PC and its inverse to exhibit the same behaviour as a random 384-bit
permutation with respect to the three metrics, i.e. Dav(T,∆) = 384, wav(T,∆) ≈
192 and Hav(T,∆) ≈ 384. Note moreover that 7 rounds are enough to achieve
full diffusion in the forward direction and 6 rounds in the inverse direction. This
suggests that it will be very hard to find structural distinguishers over more
than 14 rounds. Moreover, in Friet the adversary has only access to 1/3 of the
permutation’s input and output greatly limiting the degrees of freedom when
trying to exploit such distinguishers.

5.3 Invariant Attack

All round function steps except δi act uniformly on the limbs of the state. Let
F be the round function with the round constant addition step δi removed. We
observe that F satisfies the shift-invariance F◦ρk = ρk ◦F, with k ∈ {0, . . . , 127}
and where ρk(a, b, c) = (a≪ k, b≪ k, c≪ k). The addition of round constants
in step δi breaks these symmetries in the round function of Friet-PC.
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Table 2. Diffusion results

Round 0 1 2 3 4 5 6 7 8

Friet-PC
Dav 1 3 18 79 211 350 383 384 384
wav 1.0 2.5 10.5 33.1 75.5 128.7 174.8 189.6 191.8
Hav 0.0 1.0 12.2 62.2 161.7 298.0 374.3 383.7 384.0

Friet-PC−1
Dav 1 5 27 91 210 342 384 384 384
wav 1.0 5.0 18.0 45.2 90.2 150.7 184.6 191.6 191.9
Hav 0.0 0.0 18.0 71.0 175.3 304.1 378.6 384.0 384.0

Additionally, properly chosen round constants can defeat invariant attacks,
including slide attacks, invariant subspace attacks and non-linear invariant at-
tacks. As observed by Beierle et al. [2], both invariant subspace attacks and
non-linear invariant attacks use a non-trivial invariant subspace of the linear
layer. More formally, if we denote by λ the linear layer without the round con-
stant addition and by D the set containing the bitwise differences (XOR) of the
round constants, then the attacks require the existence of a non-trivial subspace
VD of Fb2 such that D ⊂ VD and λ(VD) ⊂ VD.

In the case of Friet-P, we generated a sequence (un)n∈N of 4-bit values from
a Fibonacci linear-feedback shift register with polynomial 1 + x+ x4 and initial
state u0 = 0b1111. The round constant rci at round i is then obtained by setting
its bits at indices 0, 4, 8 and 12 according to ui if i is even and at indices 16, 18, 20
and 24 if i is odd. This particular choice allows for a very efficient bit-interleaved
implementation of the round constant addition in software.

We verified with a simple SageMath [32] script that the smallest invariant
subspace containing D is of maximal dimension, i.e., it equals the state space
F384
2 , a trivial invariant space. Remarkably, this holds true when the set D is

reduced to the single difference between the two first round constants.

5.4 Choosing Shift Offsets

The round function has 4 shift offsets: One in each of µ1 and µ2 and two in
ξ. With some abuse of notation we denote the shift offsets by µ1, µ2, ξ1 and
ξ2. Because of Friet-PC’s shift invariance, we can fix µ1 to 1 without loss of
generality. Moreover, we can also choose ξ1 < ξ2 to reduce the number of possible
4-tuples to 220. In order to choose the 4 offsets, we ranked all possible 4-tuples
following the avalanche dependence metric.

Testing all these offset combinations, we found that the best ones reach full
diffusion after 6 rounds. From those we selected the one reaching degree 16 after
4 rounds, both forwards and backwards, with the best worst-case diffusion after
5 rounds. This gave the offset tuple (µ1, µ2, ξ1, ξ2) = (1, 80, 36, 67) that we finally
used in the Friet-P round function.

17



5.5 Analysis of Differential and Linear Propagation

We conducted a couple of experiments to study the differential propagation and
linear propagation in Friet-PC. Concretely, we searched for low-weight trails
on round-reduced Friet-PC.

We first remind the reader of what differential and linear trails are, then
characterize the differential and linear propagation through the non-linear step
of the Friet-PC round function and then report on our experiments.

Differential trails An r-round differential trail q is a sequence of r + 1 differ-
ence patterns q0, q1, q2, . . . , qr and its differential probability DP(q) is equal to
the probability that input pair (x, x+ q0) with x uniformly random will exhibit
the sequence of differences through the rounds. Assuming that the conditions due
to the round differentials are independent, DP(q) is the product of the proba-
bilities of the round differentials (qi−1, qi). We have DP(q) ≈

∏
i DP(qi−1, qi).

The weight of a differential w(qi−1, qi) is usually defined by DP(qi−1, qi) =
2−w(qi−1,qi) and the weight of a trail as the sum of the weight of its round
differentials. It follows that in the round differential independence assumption
we have DP(q) ≈ 2−w(q).

We call input difference p and output difference q compatible if DP(p, q) > 0.
We now characterize the differential propagation properties of the Friet-PC
round function by splitting it into a linear layer λ and a non-linear layer. Clearly
ξ is the only non-linear step and forms the non-linear layer, and we denote
the remainder of the round function as λ. The weight of a round differential
(λ−1(p), q) is equal to that of the differential (p, q) over ξ.

Linear trails Besides studying the differential propagation probabilities, we
also studied the input-output correlation properties. In other words, we tried
to find linear trails on round-reduced Friet-PC that exhibit high correlation
contributions.

An r-round linear trail q is a sequence of r + 1 masks q0, q1, . . . , qr. The
round correlation C(qi, qi+1) associated with two consecutive masks within a
linear trail corresponds to the correlation between qTi f(x) and qTi+1x for all x,
i.e. the correlation between the linear combination of the output bits of the round
function whose coefficients are determined by mask qi and the linear combination
of the input bits of the round function whose coefficients are determined by mask
qi+1. Analogously to the differential probability, the correlation contribution of
a trail C(q) is the product of its round correlations. The correlation weight of
a round correlation wC(qi, qi+1) is then defined by C2(qi, qi+1) = 2−wC(qi,qi+1)

and the correlation weight of the trail by wC(q) =
∑
i wC(qi, qi+1).

We say that an output mask q and an input mask p over a mapping are com-
patible if C(p, q) > 0. Clearly, the output mask q and the input mask p over the
linear layer are compatible if and only if q = λT (p) and the corresponding cor-
relation weight is 0. It follows that the correlation weight of a round correlation
(q, (λT )−1p) is given by that of the correlation (q, p) over ξ.
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Propagation properties of ξ. Proposition 1 and its corollary characterize the
behaviour of a differential over ξ.

Proposition 1 A non-zero difference p = (pa, pb, pc) at the input and a non-
zero difference q = (qa, qb, qc) at the output of ξ are compatible if

qb = pb, qc = pc, (qa ⊕ pa) ∧ ((pb ≪ 36) ∨ (pc ≪ 67)) = 0.

Corollary 1 The weight of a differential (p, q) over ξ is equal to Hw(pb∨(pc ≪
31)) or equivalently Hw(qb ∨ (qc ≪ 31)), with Hw the Hamming weight.

Proposition 2 and its corollary characterize the behaviour of a correlation
over ξ.

Proposition 2 A mask q = (qa, qb, qc) at the output and a mask p = (pa, pb, pc)
at the input of ξ are compatible if

qa = pa, qa ∨
[
((qb ≪ 36)⊕ (qb ≪ 36)) ∧ ((pc ≪ 67)⊕ (pc ≪ 67))

]
= 1.

Corollary 2 The correlation weight of a correlation (p, q) over ξ is equal to
2Hw(pa) or equivalently 2Hw(qa).

Trail experiments Because an adversary can only access the outer state in
Friet, we restricted our analysis to differential trails with input differences in
limb a and to linear trails starting from a mask q0 = (q0,a, q0,b, q0,c) such that
q0,a has small Hamming weight and q0,b = q0,c = 0.

Table 3 provides the minimum weights for differential trails starting with 1,
2 and 3-bit differences/masks in limb a.

Table 3. Minimum weight of trails starting from an n-bit difference/mask in limb a

differential linear
# Rounds 1 2 3 4 1 2 3 4 5 6

n = 1 4 10 18 29 2 4 6 12 22 36
n = 2 6 12 22 ? 4 8 12 20 ? ?
n = 3 8 14 ? ? 6 8 14 ? ? ?

Expanding from the minimum-weight 4-round trail starting from a 1-bit dif-
ference in limb a, we obtained a 6-round trail with weight 59 depicted in Table 4.

Expanding the minimum-weight 6-round linear trail starting from a 1-bit
mask in limb a, we obtained a 8-round trail with weight 80 depicted in Table 5.

These preliminary results are quite promising and give us reasonable confi-
dence that differential and linear cryptanalysis are no threat to Friet.
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Table 4. A 6-round differential trail for Friet-PC, in the form of limb differences at
the input of ξ in 6 successive rounds in hexadecimal notation and zeroes denoted as
dots.

round pa pb pc weight

0 ...............................1 ...........2...................2 ...........2...................1 4
1 ...............................2 ...........1...........2........ ...............................1 6
2 ...........2...................3 ...2.......4...........1.......4 ...2.......5...........3.......2 8
3 ...........3...........2.......5 ...1.......4...2...............2 ...3.......6...2.......1.......3 11
4 ...2.......1...........3.......4 ...4.......b...1.......4...2...8 ...5.......a...3.......2...2...5 15
5 ...3...........2.......5.......9 ...4...2...4...........a...1.... ...6...2...c...1.......b...3...4 15

Table 5. A 8-round linear trail for Friet-PC in the form of masks at the output of ξ
in the 8 successive rounds.

round δa δb δc weight

0 ...............................1 ................................ ................................ 2
1 ...............................1 ...............................1 ...............................1 2
2 ................8............... ................................ ...............................1 2
3 ................8...8..........1 ................8............... ................8..1............ 6
4 ................4..18...8......1 ....................8..........1 .......1........8...8..........1 10
5 ....4..1........4..14...8...8... ................4..1....8....... ....8...........4..18...8..1...1 14
6 8...c..14.......2...c......18..1 ....4..1............4.......8... ....4..18......14...4.......8... 22
7 8.......c......16...a...8..1...1 8...8...4.......2...8......1...1 8..18..14.......2...c......1...1 22

5.6 Combined Resistance Against 1st Order DPA and SIFA

A straightforward Friet-P implementation is vulnerable to SIFA [17] and SIFA-
like attacks [28]. A realistic attack scenario would be the following. An adversary
has access to the outer part of the state at a given time and can inject a fault
during the computation of the permutation in order to recover some information
on the inner part of the state. Provided that she can redo the attack multiple
times on the same initial state, She could then try to inject a fault in the first
round to modify one of the inputs of the AND operation in ξ. A bitflip in an input
of a binary AND only propagates to its output if the other input is 1 and hence
is only effective in that case. It can hence be simply be derived from the behavior
of the fault-detection mechanism. Simulating probabilistic or less precise fault
models such as, e.g., the random-AND fault model or a byte-based fault model
would also yield exploitable results, although the adversary might need to profile
the fault behavior of the device in advance with fault templates [28].

Figure 3 depicts an architecture for the Friet round function offering resis-
tance against first order DPA and SIFA, using countermeasures as introduced in
[12]. This architecture can be used as the basis for dedicated hardware or a soft-
ware implementation. It uses two-share masking, where the shares are indicated
by subscripts 0 and 1, effectively duplicating each limb. We divide the round
function processing in 4 algorithmic blocks that each operate on 4 limbs.
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– α covers the linear steps µ1 and µ2, the addition of the round constants δ (at
one side only), and the part of the non-linear step ξ that only takes input
from a single share. The two α blocks operate on the two shares separately.

– β covers the part of the nonlinear step ξ that takes input from both shares.
Each β block takes only a single share per limb.

Fig. 3. Hardware architecture of Friet secured against DPA and SIFA.

When instantiating this architecture in hard- or software, the main require-
ment is that the implementation must ensure that the computations of the
blocks, and their internal variables, are kept separated from each other to avoid
share recombination [1]. In hardware this can be achieved by hardwiring the 4
blocks in combinatorial logic and putting registers between the α and β layers,
giving rise to a two-stage pipeline of the round functions. In software the four
blocks will be executed serially and care must be taken to keep shares belonging
to the same limb separated, e.g., not overwrite a register containing a0 with a1.

This results in resistance to first-order DPA and with it resistance against
SIFA attacks that exploit faulty computations limited to a single block. Indeed,
every block only takes a single share for each limb and hence the occurrence of
a fault at the output of a block is independent of any native variable.

6 Implementation Results

In this section we discuss implementation specifics and we give results for dedi-
cated hardware (FPGA and ASIC) and software (embedded ARM Cortex M4).
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Although we envision Friet to be implemented with the fault attack counter-
measure in place, so by implementing Friet-P and embedding Friet-PC in it,
for comparison purposes we also implemented Friet with Friet-PC directly.
We refer to such an implementation as Friet-C, where C stands for compact.

6.1 Hardware

We implemented Friet and Friet-C both in 2 versions, one with 1 round per
clock cycle (1R), and another with 2 rounds per clock cycle (2R). We wrapped all
4 versions in a similar testing architecture and a full Friet circuit as illustrated
in Figure 4.

Fig. 4. Hardware architecture for Friet.

The Friet circuit has 5 registers: State IO, State D, State Inner, rc c and
rc d. The State IO register holds the outer part of the state, State Inner the
inner part. The State IO register is a circular shift register that loads 32 bits
every clock cycle and has size 160 bits. The sponge rate is 130 and not 160 and
thus the remaining 30 bits in State IO register actually belong to the inner part
that is supposedly in State Inner. The State D holds the parity limb. The rc c
and rc d registers hold the round constants. The Friet-C circuit differs from
that of Friet by the absence of registers State D and rc d.

The circuit communicates through a single 32-bit bus via a 3-field protocol:
the command (4 bytes) encoding one of {reset, duplex-none, duplex-encrypt,
duplex-decrypt, tag generate, tag verify}, the data length (4 bytes) and the
data itself (variable). After receiving a command and data length, it takes 4
cycles to feed 16 bytes into the State IO register. Then it performs the Friet-P
permutation, during which the circuit does not acknowledge the data in the
“din” port. This takes 24 cycles int the 1R case and 12 in the 2R case.

When the circuit starts or receives a reset command, all state registers are
reset with zeroes, thus satisfying the parity check. If the circuit receives data
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though the “din”, then the new data is fed into State IO and State D simulta-
neously, keeping the parity unchanged. A dedicated circuit does a parity check
every clock cycle for detecting faults. If it detects a fault, it sets a register “fault
detected” to 1. We assume our circuit to be used with another circuit that mon-
itors the state of this register and performs the appropriate action. During the
design of the Friet circuit, it was necessary to enforce the tools to not optimize
the redundant part of the circuit.

Table 6 shows the hardware results for Friet after place and route in FPGA
and ASIC. We compare our results with Ketje-Sr from Guido Bertoni GitHub
repository [6].

Table 6. Xilinx Virtex-7 xc7vx485tffg1761-3 and ASIC Nangate 45 nm standard cell
results for Ketje Sr., Friet, Friet-C.

FPGA ASIC
Resources Freq. Throu. Area Freq. Throu. Power (µW)

AE Scheme Slice LUT FF (MHz) (Mb/s) (GE) (MHz) (Mb/s) static dynamic

Ketje-Sr[6] 452 1680 448 282 9037 9478 503 16096 161 2152

Friet (1R) 450 1653 628 399 1828 9253 508 2322 148 2226
Friet-C (1R) 251 905 494 410 1874 6943 508 2322 110 1724

Friet (2R) 601 2258 628 363 2909 11100 508 4064 174 2245
Friet-C (2R) 385 1401 493 391 3135 8890 508 4064 141 1737

6.2 Software

We implemented and benchmarked Friet-PC and Friet-P on an embedded
ARM Cortex-M4 microcontroller.

The bitwise logical operations and cyclic shifts on the 128-bit limbs can be
implemented very efficiently on the M4’s 32-bit architecture using the technique
of bit interleaving [5]. More precisely, we represent every 128-bit limb x as four
32-bit words x0, x1, x2 and x3 such that the word xi contains the bits of x with
indices congruent to i modulo 4. We also assume that input and output of the
permutation are directly mapped to the bit-interleaved format in the state. The
bit-interleaving representation offers two main advantages:

• The mixing steps, sum operations and the non-linear layer only require a sin-
gle register as temporary variable. This allows computing Friet-PC within
the 14 registers that can be freely used.

• The mixing and non-linear steps combine bitwise logical operations with
cyclic shifts. The barrel shifter, a feature of the Cortex M4, allows com-
puting the shift operations alongside the bitwise Boolean instructions at no
extra cost. This reduces the cost of a mixing step in Friet-PC to 4 XOR
operations and that of a non-linear step to 4 XOR and 4 AND operations.
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The round constants were chosen such that they could be represented in bit-
interleaved representation as the shift of an 8-bit value. As a consequence, the
round constant addition consists in a single XOR operation for Friet-PC and
2 XOR operations for Friet-P. In Friet-PC, the limb transposition takes
8 XOR instructions, while in Friet-P it comes naturally for free. All in all,
one round of Friet-PC requires 29 XOR and 4 AND instructions and one
round of Friet-P takes 26 XOR, 8 AND and 4 load and store instructions
because the 512-bit state does not fit into the registers. To further increase the
performance, we fully unrolled the 24 rounds of the permutation. The Friet-PC
permutation takes 853 cycles and the Friet-P permutation takes 1163. Hence
in this implementation the code embedding results in an overhead of about 36%
mostly due to the additional load and store instructions.

We compare our implementations in Table 7 with other permutations, ranked
by decreasing cycles per byte per round ratio. We also provide the cycles per byte
ratios. However, these results should be taken with a grain of salt as, the security
margin taken in terms of the number of rounds and the amount of propagation
achieved by a single round differs from one permutation to the other.

Table 7. Performance Comparison on Cortex-M3/M4

Permutation Width Rounds Cycles/byte Cycles/byte Device
(bits) per round

Xoodoo [13] 384 12 1.10 13.20 Cortex-M3
Friet-P (this work) 384 24 1.01 24.23 Cortex-M4
Gimli [4] 384 24 0.91 21.81 Cortex-M3
Friet-PC (this work) 384 24 0.74 17.78 Cortex-M4

7 Fault Resistance Evaluation

In this section we report on a number of experiments we conducted on imple-
mentations of Friet to test the fault detection capability of our countermeasure.

7.1 Fault Attack on the Simulated Hardware Implementation

In this section we describe the simulation flow we used to evaluate the resistance
against fault attacks of Friet-P in hardware and the results we obtained. The
flow we used for carrying out simulated attacks is implemented using standard
electronic design automation commodities, and it is composed by a logic simula-
tor (Modelsim 10.4d), a synthesis tool (Synopsys design compiler), and a number
of custom made scripts. The routine to inject the faults is integrated into the
logic simulator by means of dedicated test benches.

Resistance against fault attacks can be verified at different stages of the
design flow. The first stage is called Register Transfer Level (RTL). At this
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level, it is possible only to examine the cycle-accurate behavior hardware circuit.
RTL does not map the circuit to a technological library that will compose the
hardware and therefore information such as the exact delay of the circuit is not
present yet. Still, verification at RTL allows confirming that injected faults can
be effectively detected with granularity of a clock cycle. Furthermore, this level
of simulation is independent from the target hardware platform.

The second stage is the netlist level. We carried out the synthesis using
Synopsys Design Compiler as synthesis tool and the Nangate 45nm open cell
library as target technological library. Designs used in these experiments are
obtained imposing a minimal area constraints to the design tool. The synthesis
maps the RTL description on the gates of the technological library. After this
step, we fully know the library gates that our circuit consists of and we have
precise information about their delay. However, the results obtained at this stage
are specific to the implementation and using a different technological libraries
may lead to other conclusions.

We simulated fault injections by forcing a signal (or a set of signals) to a
specific value, for a certain amount of time. With this approach, we simulated
glitches injected with a minimum granularity of one bit (for instance, a single
output of a flip flop or a single output of a gate) and a glitch minimal length
equal to the time resolution of the simulation tool, which, in our case, was
pico seconds. We randomly injected 500 000 single-bit glitch faults during the
permutation execution on different signals of the design. We carried out the
same analysis at RTL level and on the post-synthesis netlist.

In both cases the hardware cores under attack have been simulated till the
completion of the permutation execution. All the faults we injected have been
correctly detected. The results we obtained in simulation confirmed that all the
single faults injected are indeed detected as expected by the hardware imple-
menting Friet-P, both at RTL level and after synthesis.

7.2 Fault Attack on the Software Implementation

Here we describe the setup that we use to evaluate the fault resistance of the
permutation. We apply electro-magnetic fault injection, which is accomplished
by emitting a short EM pulse from a specific position close to the target.

Figure 5 shows an overview of the setup. Our target is an STM32F407IG
development board containing an ARM Cortex-M4F microcontroller. The xy-
table moves a probe across the target with high precision. The VC Glitcher sends
a signal so the probe will emit a pulse and it also controls a reset line, in case
the pulse was too strong and the board is unable to respond. An oscilloscope is
used together with a current probe to measure the power consumption in order
to determine a time window where the fault should be injected.

We conducted an electro-magnetic fault injection experiment where we scanned
the whole chip. We divided the surface of the chip in a 100 by 100 grid, injected 10
faults per position and repeated this 10 times. This resulted in a total of 1 000 000
faults. For the experiment, we focused on the last round. Table 8 shows the fault
detection results of the experiment. Each fault has four possible outcomes:
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Current Probe

Target XY-Table

EM-FI
Transient Probe

VC Glitcher

Picoscope

Fig. 5. The setup.

• Normal: no fault has occurred and the device behaves as expected,
• Reset: the EM pulse was too strong and the device was unable to respond

so the device was reset,
• Undetected: a fault occurred that was not detected,
• Detected: a fault occurred that was detected.

Table 8. Experimental results of 1 000 000 glitches.

Result Normal Reset Detected Undetected

Number 860488 138916 596 0

The table shows that all faults are detected by our implementation. To achieve
this, we added another countermeasure to the implementation. During prelimi-
nary experiments, we noticed in a handful of cases that a single glitch was able
to modify bits from different words in the same bit-position. To counter this
effect, we store the limbs in bit-interleaved format, where the 32-bit words rep-
resenting limb b, c and d undergo a circular shift to the left by 1 bit for b, 2 bits
for c and 3 bits for d. The rotated words in each limb ensure a glitch causing
a fault in multiple words in the same bit position is still detected. During our
fault resistance analysis we did not consider ineffective faults [9].

8 Side Channel Attack Evaluation

Many applications require protection against both fault injection and side chan-
nel attacks. The doubling of the φ function evaluations due to embedding sug-
gests an increase in leakage. Regazzoni et al. [26] showed that, in the context of
an AES S-box, various error detection mechanisms increase the vulnerability to
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power analysis attacks. Using a similar approach, Cojocar et al. [10] investigated
the effect of instruction duplication and ineffective faults and their contribution
to the overall side channel leakage. Both works note that standard side channel
attacks, such as univariate correlation power analysis or even templates, are often
unable to exploit the increase in leakage due to fault analysis countermeasures.
In order to exploit this redundancy, horizontal attacks should be considered.

We investigate the impact of the code-abiding technique on the side chan-
nel attack vulnerability of Friet-P with Soft Analytical Side Channel Attacks
(SASCA) [33]. SASCA is a horizontal type of side channel attack based on the
Belief Propagation (BP) algorithm [22]. The structure of SASCA allows exploita-
tion of leakage of any instruction/gate and for our case it can also take advantage
of the parity limb (up to XOR limitation studied in [20,21]).

Our SASCA evaluation has the following goals:

• Assess the increase in leakage between Friet-PC and Friet-P.
• Compare the side channel leakage of Friet-P with that of a duplication
Friet-PC.

We simulate the leakage measurements of each 1-bit intermediate variable
v using a Normal distribution N (v, σ2), where the mean is the identity leakage
function of the variable and the standard deviation σ is the same for all variables.
The goal of the attack is to retrieve the value of bit b0 of the initial state. Attacks
are similar for other bits, and can be recovered with independent attacks in order
to reduce computational cost of SASCA.

Figure 6 shows average success rate of simulated experiments for SNR = 0.1
in function of the number of traces used for the attack. Analyzing how fast the
different success rates converge to 1, we can make three observations.

• BP converges to success rate 1 faster on Friet-P than on Friet-PC. Using
SASCA we are able to observe and quantify the extra leakage penalty that
is incurred by the fault-detecting extension.
• BP on Friet-P converges slower than on duplicated Friet-PC. Hence, our

code-abiding leads to less exploitable leakage than duplication. As a result,
considering side channel and fault injection attacks jointly, Friet-P offers
a better overall security level than duplicated Friet-PC.
• We underline the need for such horizontal exploitation. The limited scope of

standard techniques such as univariate correlation and templates can pro-
duce misleading results. Most forms of redundancy (such as the CRAFT/
Friet-P error-detecting codes, the IIR method or duplication) can remain
undetected without horizontal techniques that can cause extra leakage.

9 Conclusions and Future Work

We have presented a novel method to design cryptographic permutations and
block ciphers such that they have efficient fault-detecting implementations by
building code-abiding permutations and embedding a permutation in that. By
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Fig. 6. Success rate of simulated SASCA

a judicious choice of components, these permutations can be very lightweight,
as demonstrated by our permutation Friet-P that can be used to build an AE
scheme Friet offering 128 bits of claimed security. The result can compete with
similar schemes that do not offer efficient protection against faults. We have
evaluated the fault detection capabilities of Friet-P in two instantiations and
those results are very encouraging. As for the protection against side channel
attacks, we only see a slight increase in leakage due to our embedding technique.
All in all, this design method seems to be a very promising research avenue.
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A Design Strategy for a [6, 3, 3]2-abiding Permutation

In this section, we discuss adapting the code embedding technique on a larger
linear code. We focus on code C = [6, 3, 3]2 and showcase the different limb
transposition operations that a C-abiding permutation could take advantage of.

Let fC be a C-abiding permutation on a state (a, b, c, d, e, f), with a, b, c
native limbs and d, e, f parity limbs satisfying equations:

d = b+ c, e = a+ c, f = a+ b.

Let’s say that a native and a parity limb are related when both of them appear in
the same parity equation. In particular, limb a is related to limbs e and f , but not
to d. A native limb transposition then requires swapping two native limbs and the
two parity limbs that are related to only one of the two native limbs involved. An
example for such operation is given by π(a, b, c, d, e, f) = (a, c, b, d, f, e). On the
other hand, a non-native limb transposition requires swapping a native limb x
with a parity limb x+y and bitwise add the other native limb y to the other parity
limb related to x. An example for this is ρ(a, b, c, d, e, f) = (e, b, c, d, a, f+c). Note
that this the same computational cost of one bitwise addition as the associated
embedded operation ρC(a, b, c) = (a + c, b, c). By contrast, a limb adaptation
operation requires three times as much computation as its embedded equivalent.
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