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The numerical approximation of incompressible fluid-structure interaction problems with Lagrange mul-
tiplier is generally based on strongly coupled schemes. This delivers unconditional stability but at the
expense of solving a computationally demanding coupled system at each time-step. For the case of the
coupling with immersed thin-walled solids, we introduce a class of semi-implicit coupling schemes which
avoids strongly coupling without compromising stability and accuracy. A priori energy and error esti-
mates are derived. The theoretical results are illustrated through numerical experiments in an academic
benchmark.

Keywords: fluid-structure interaction, immersed boundary method, Lagrange multiplier, finite elements,
time-splitting schemes.

1. Introduction

The numerical simulation of multi-physics systems coupling an incompressible viscous fluid with an im-
mersed thin-walled elasitc solid is of major importance in many engineering and living systems. Among
the examples, we can mention the aeroelasticity of parachutes and sailing boats and the mechanics of
capsules, biological cells and heart valves (see, e.g., Lombardi ef al. (2012); Takizawa & Tezduyar
(2012); Eswaran et al. (2009); Paidoussis et al. (2011); Pozrikidis (2010); Heil & Hazel (2011); Miiller
et al. (2010); Tian et al. (2014)).

These coupled problems often feature large interface displacements, with potential contact between
solids, so that the favored spatial discretization is mainly based on unfitted mesh approximations (the
fluid mesh is not fitted to the fluid-solid interface). Among these methods, the most popular are the
immersed boundary method (see, e.g., Peskin (2002); Newren et al. (2007); Boffi et al. (2011a)) and
the fictitious domain method (see, e.g., Glowinski ef al. (1999); Baaijens (2001); De Hart et al. (2003);
Astorino et al. (2009); Kamensky et al. (2015); Boffi et al. (2015a); Alauzet et al. (2016a); Boffi &
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Gastaldi (2017); Casquero et al. (2018)), which treat the solid in its natural Lagrangian formalism.
We refer to Boilevin-Kayl ez al. (2019b) for a recent numerical study which compares some of these
approaches.

Over the last decade, significant advances have been achieved in the development and the analysis
of time splitting schemes that avoid strong coupling without compromising stability and accuracy. The
majority of these studies is limited to fitted fluid and solid meshes (see, e.g., Fernandez et al. (2007);
Quaini & Quarteroni (2007); Badia et al. (2008); Burman & Fernandez (2009); Guidoboni et al. (2009);
Bukac et al. (2013); Lukacova-Medvid’ovaa et al. (2013); Fernandez (2013); Fernandez et al. (2013);
Banks et al. (2014); Ferndndez et al. (2015b,a); Landajuela et al. (2016)). Within the unfitted mesh
framework, splitting schemes which efficiently avoid strong coupling are much more rare. The original
time-stepping scheme of the immersed boundary method uncouples the fluid and solid time-marchings
(actually, the solid solver is never called) but at the price of enforcing severe time-step restrictions for
stability (see, e.g., Boffi et al. (2011a)). The splitting schemes reported in Burman & Ferndndez (2014);
Alauzet et al. (2016a); Kim et al. (2018); Kadapa et al. (2018) are also known to enforce severe time-step
restrictions for stability/accuracy or to be sensitive to the amount of added-mass effect.

In the present paper, we introduce a semi-implicit coupling scheme for a formulation based on the
introduction of a Lagrange multiplier which avoids the above mentioned issues. The proposed approach
generalizes the ideas introduced in Fernandez (2013); Ferndndez & Landajuela (2020) to the case of un-
fitted mesh approximations with Lagrange multipliers (see Boffi ez al. (2015b); Boffi & Gastaldi (2017)).
The analysis shows, in particular, that the scheme with first-order extrapolation yields unconditional sta-
bility and optimal (first-order) accuracy in time. To the best of our knowledge, this is the first time that
the full numerical analysis is addressed for linear incompressible fluid-structure interaction problems
with Lagrange multipliers. Numerical experiments in an academic test case illustrate the behavior of
the proposed approach.

The rest of the paper is organized as follows. Section 2 presents the coupled system and its weak
formulation with Lagrange multipliers. The numerical methods are described in Section 3. Section 4
presents the stability and the error analysis. Numerical evidence of the theoretical findings is provided
in Section 5.

2. Problem setting and weak formulation

We consider fluid-structure interaction problems characterized by a thin-walled structure immersed in
an incompressible viscous fluid. Let Q C R?, d = 2,3, be a fixed bounded domain with Lipschitz
continuous boundary I". In order to describe the dynamics of the structure immersed in the fluid, we use
a Lagrangian framework. The elastic thin-walled structure is represented by its mid-surface (i.e., a curve
if d =2 or a surface if d = 3). Let £ C R? be the reference configuration of the thin-walled structure
mid-surface. Its current position, denoted by X (z), is obtained as the image of the deformation mapping
¢(-,1): X — Z(t) C . The domain occupied by the fluid is denoted 2(¢) = Q\X(¢) and its boundary
by dQ(tr) = I'UZ(t). We assume that the interface X(¢) is oriented by a unitary normal vector field
n, which induces a positive and a negative side in the fluid domain  (¢), with respective unit normals
nt :=nandn~ := —non X(¢). Thus, we can define the positive and negative sided-restrictions to X (r)
of a given field f defined in Q(r), as f*(x) := limg_,o+ f(x+En'),  f7(x) :=limg_o- f(x+&En),
Vx € X(t), and the normal jump [fn] := f*n* + f n".

We adopt the Eulerian framework to write the Navier-Stokes equations which govern the dynamics
of the incompressible fluid and the Lagrangian framework for the elastodynamics of the thin structure.



SPLITTING SCHEMES FOR A LAGRANGE MULTIPLIER FORMULATION 3 of 30

Q

2(¢)

FIG. 1. Geometrical configuration of the FSI problem.

We denote by 6' := —pl + 2u€(u) the Cauchy stress tensor for incompressible fluids, where £(u) :=
(Vu+Vu')/2 is the strain tensor. We assume that the abstract linear surface differential operator L
describes the solid elastic effects. Hence, we have the following coupled problem.

Problem 1. Given u, do and di, fort €]0,T}, find the fluid velocity u, the pressure p in Q(t), the solid
displacement d and velocity d in X such that:

o Fluid sub-problem:
p'(du+uVu) —dive' =0 inQ(r),
divu=0 in Q(t), (2.1)
u=>0 onI.

e Solid sub-problem:
p'edd+Ld=fs inX,
dd=d inX, (22)
d=0 ondoX.

e Interface coupling conditions:

o=I1+d in X,
uop=d on X,

(2.3)
/fZ'W:*/ [[()‘fn]]~wo¢t’l vw: X — R smooth.
z 2(1)
o Initial conditions:
u(-,0) =u in 2(0),
(+,0)=uo . (0) 2.4)
d(-,0)=dy, d(-,0)0=d; inZX.
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The relation (2.3), enforces the so-called kinematic coupling condition (continuity of velocity across
the interface), while (2.3)3 states that the tractions along the immersed interface have to be equilibrated
(dynamic coupling).

REMARK 2.1 In Problem 1, the solid mid-surface is fully identified with the fluid-solid interface X, by
neglecting the solid thickness effects in the interface coupling. This is a rather widespread modeling
assumption when coupling thin-walled solids with a 3D media (see, e.g., Chapelle & Ferent (2003);
Landajuela et al. (2017)). Yet, in the context of immersed boundary methods, a correction term is
often introduced to remove the across-the-thickness additional fluid mass (see, e.g., Boffi ef al. (2011b,
2015b)).

In the following, we introduce the weak formulation of Problem 1. We shall make use of the standard
Sobolev space H} (D)? of the vector valued functions in H'(D) which vanish on the boundary I', and
of L3(D) the subspace of functions in L*(D) with zero mean value in D. The corresponding norms
are denoted by | - ||; and || - ||o, respectively. The scalar product in L?(D) is denoted by (-,-)p. The
subscript is dropped if D = Q. We denote by W C H'(X)¢ the subspace of admissible deformation
which satisfy the Dirichlet boundary condition for the solid. Moreover, we shall use the bilinear forms
at: (H} () x L3(Q)) x (HI(2)4 x 13(2)) — R and @* : W x W — R and the trilinear form b :
HI(2)? x H} (2)4 x H} () — R, defined by:

a'((u,p),(v,q)) :=2u(&(u),&(v)) — (divv, p) + (divu,q),
f
b(z,u,v):= %((Z~VU,V) —(z-vv,u)), d*(d,w):=(Ld,w)x = (d,Lw)s.

We assume that a® is symmetric, continuous and coercive on W with associated norm || - ||> = a*(-, )
and that it commutes with the time derivative, that is dia®(w(t),w(t)) = 2a*(d,w(t), w(t)).

By multiplying the relations (2.1) and (2.2) by v € H} (Q)?, g € L3(22), w € W and after integration
by parts, and, taking into account the boundary conditions, we obtain:

pf(&,u,v) —l—b(ll,ll,V) —l—af((u,p), (VaQ)) - ([[anﬂvv)l(z) =0,

. 2.5)
pSe(9,d, w)s +a*(d,w) = (fr,w)s.

These relations are coupled through conditions (2.3). In this work, we will enforce the kinematic cou-
pling (2.3); variationally using Lagrange multipliers (see, e.g., Boffi ef al. (2015b)). To this purpose we
introduce the Lagrange multiplier space A := (%,Z)’, the trace space 2 := %,E and the bilinear form
c: A X% — R, defined as

c(p,w):=(1L,w) VHEAWEZ, (2.6)

where (-,-) denotes the duality pairing between A and 2. Problem 1 can hence be formulated in weak
form as follows:

Problem 2. Given ug, do, d; withugo ¢, =d; in L, fort €]0,T), find u(t) € H} (Q)4, p(t) € L3(Q),
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d(r) € W, d(t) € W and A(t) € A such that:

p'(dru(r),v) +b(u(t),u(t),v) +a'((u(),p(1)),(v,q))
+c(A(t),(vod)(1)) —c(p, (uo@)(1) —d(r)) = 0 V(v,q, 1) € Hy (2)! x L§(2) x A,
p*e(Ad(t),w)s +a*(d(r),w) = c(A(r),w) Ywew,
d(r) =0,d(1),
O(t)=I1+d(t)in X,
u(0) =ugin 2, d(0)=do in Z, d(0) =d, in Z.

2.7)

Comparing Problem 2 with the integral formulation (2.5), we see that the Lagrange multiplier cor-
responds to the fluid-structure interaction forces acting on the structure A = fy. By taking v = u(r),
g =p(t), w=d(r) and g = A(¢) in Problem 2, we have the following energy estimate:

t . .
P a0 +4/~t/0 €(u(s))[l5.0ds+p el d(®)[5 5 + A2 = p[lol[§ o + l|doll? + p€lld1 5 5--
2.8)

3. Numerical methods

This sections is devoted to the numerical approximation of Problem 2. The next section presents the
spatial discretization, using the immersed boundary/fictitious domain finite element method with La-
grange multipliers (see Boffi et al. (2015b); Boffi & Gastaldi (2017)). Section 3.2 is devoted to the time
discretization. In particular, new splitting schemes are introduced by generalizing the ideas introduced
in Fernandez (2013); Ferndndez & Landajuela (2020).

3.1 Unfitted mesh based semi-discretization in space

The weak treatment of the interface coupling in Problem 2, through the Lagrange multiplier, enables
the arbitrary choice of the fluid and solid meshes. The main difficulty lies in the computation of the
the coupling terms ¢([,v o @), which require to evaluate the velocity basis functions composed with
the mapping @, and, consequently, to intersect the current configuration of the immersed solid with the
fixed underlying fluid mesh. This problem also arises in alternative unffited mesh methods (see, e.g.,
Alauzet et al. (2016b)).

Let us introduce the finite element spaces we shall use to discretize the problem. We can choose
either a pair of space V; and Q) which satisfy the inf-sup conditions for the Stokes equations or sta-
bilized finite elements. In this paper, we choose the P; /IP; stabilized elements defined as follows. Let
I, be a regular subdivision of Q2 into triangles if d = 2, tetrahedrons if d = 3 and let .}, be a regular
subdivision of the reference domain X into segments if d = 2 or triangles if d = 3. We denote by /¢ and
hs the meshsizes of .7, and ., respectively. We introduce the following finite element spaces

Vy={ve H}(Q)" :v|x e P! VK € T},
On={q € L5(Q) : qlk € P1 VK € T},
W, ={weW:wxcP!VK c.%},
Ap={peH'(2)": px eP{VK € A},

3.1)
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where P; (K) stands for the space of affine polynomials on K. We use the stabilization technique intro-
duced in Brezzi & Pitkéranta (1984), by adding the following term in the discrete counterpart of (2.7):

su(p.g) =7 Y, hx(Vp,Va)k Vp,q€ Qn, (3.2)
Ke,

where ¥ > 0 is a suitable user-defined constant. We shall use also the broken norm \q|§h = su(q,q), for
all g € Qy, and the discrete Stokes bilinear form

ay((w,p), (v,q)) = a'((w, p). (v,q)) +sn(p,q)-
The space semi discrete approximation of Problem 2 then reads:

Problem 3. Given Uop € Vi, d()Jl ceWw, d1’h e W, and ¢0,h e W, fort e [O,T], find llh(l‘) €evy,
pu(t) € O, dy(t) € Wy, dyy(1) € Wy, and Ay (1) € Ay, such that:

pf(B,uh(t),v)+b(uh(t),uh(t),v)+a£((uh(t),ph(t)),(V,q))
+e(An(1),vod,(1) — (. (wyo 9,)(1) —di(1)) =0 V(v.q, 1) € Vi x Oy X Ay,
p*e(dly(1), W) +a*(dy(1), W) = c(An(t), W) Yw e Wi,

di(1) = Adu(2),
¢,(t) =T+d,(t) in X,
llh(O) = ll()’h n .Q7 dh(O) = dO,h in 2, dh(O) = dl,h nXk.

(3.3)

Using the same argument as in the continuous case, we easily obtain the discrete energy estimate:

t .
P lun(1)5.0 +4u/0 1€ (u(5))15.0ds + p€l|dn(t) (1§ 5 + 1dn(2)]]2
(3.4)

t .
+ [ PR, ds = plwoal o -+ 1doal2+p*eldl3

3.2 Time discretization and splitting schemes

In this subsection, we present a semi-implicit time discretization of Problem 3. Given a positive integer
N, let T =T /N be the time step, and 7, = nt forn =0,...,N. For a given function g depending on ¢, we
adopt the following notation

n__  n—l n_o nfl_;'_ n—2
g =2g(tn), 0:8" 1= %7 dreg" 1= g grz g :

3.2.1 Strongly coupled scheme. Using the backward Euler scheme and evaluating the term along the
structure location at the previous time step, we have the following strongly coupled scheme (see Boffi
et al. (2015b)).

Algorithm 1. Let Upp € Vi, dO,h cWy, d17h € W, and ¢O,h € W, be given. We set l12 =g p, d?l = d07h
and d2 =dy . Forn=1,... N, perform the following steps:
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Step 1. Find (u}}, p:, %d};,&ﬁ) €V, X O x Ay x Wy, x Wy, such that:

p'(Ocuf,,v) +b(uy ' i, v) +a, (W, pi), (v.9))
+C( Z?VO¢Z_1) —C(I-l»“z O¢Z_l _aZ) =0 v(V7CI7”‘) S Vh X Qh XAh,
p°e(d:d), W)y +a*(d}, w) = c(A}, W) Yw e Wy,

d = J.d].

(3.5)

Step 2. Update interface: ¢, =1+dj.

At each time step, Algorithm 1 involves the solution of the monolithic system (3.5) with a saddle
point structure. The existence and uniqueness of the continuous and discrete versions of such problem
have been analyzed in Boffi & Gastaldi (2017) in the case of inf-sup stable finite element discretization
of the Stokes equation, and optimal a priori error estimates have been deduced according to the theory of
discretization of saddle point problems (see, e.g. Boffi ef al. (2013)). More recently, the above analysis
has been extended to cover the case of stabilized P; /| elements in Annese (2017).

Testing (3.5) with (v,q,t,w) = (uj, p}, ';LdZ) and using the velocity-displacement relation dar =
c%dz, the energy estimate (3.4) extends also to Problem 1 in the following form (see also (Boffi et al.,
2015b, Proposition 4)):

N N
f 2 2 5 712 2 2
pluili3 e +an Y wle) R + ool s+ g2 +2 Y <oyl

£11.:0112 51130112
<p w50 +p elldylf s

This guarantees the unconditional stability of the strongly coupled scheme provided by Algorithm 1.
It should be noted that this superior stability comes at the cost of solving at each time step a high-
dimensional heterogenous system, which can be ill conditioned and computational demanding.

3.2.2  Splitting schemes. In order to circumvent the computational complexity of the strong coupling
(Algorithm 1), the time discretizations of the original immersed boundary method introduced a sig-
nificant time splitting in the computation of the fluid and solid fields (see, e.g., Peskin (1977); Tu &
Peskin (1992)). Basically, the idea consisted in treating explicitly the solid elastic contributions within
the fluid and then retrieving the solid displacement directly from the interpolation of the fluid velocity
into the solid grid. The fundamental drawback of this approach is that restrictive CFL-like conditions
are required for stability (see, e.g., Tu & Peskin (1992); Stockie & Wetton (1999); Boffi er al. (2007b,a,
2011b)). Within the context of the spatial approximation provided by Problem 3, this solution procedure
would take the following form:

Algorithm 2. Let Upp € A\ d()’h ceWw,, dl,h €W, and ¢0,h € W,, be given. We set 112 =Ug p, dg = d()’h
and d2 =d;, Forn=1,...,N, perform the following steps:

Step 1. Find (w},, p)}, Z,dZ) €V, x Qn X A X Wy, such that:
' (Ozus, v) +b(wy i, v) +aj, ((uf, ph), (v,9))

+e(Apvodr ) —c(pujod  —dp) =0 Y(v,q,n) EVyxQpxAp  (3.6)
pse(0:d}, W)y = c(A},W) —a*(dy ' w) Yw e Wy,



8 of 30 M. ANNESE, M.A. FERNANDEZ AND L. GASTALDI

. . . _an—1 -
Step 2. Update solid displacement: dj, = d;”" + td}.
Step 3. Update interface: ¢y, =1I+dj.

The main idea behind the splitting of Algorithm 2 is to treat separately the two forcing terms: the
solid inertial and elastic contributions are, respectively, implicitly and explicitly coupled with the fluid.
The first avoids added-mass stability issues while the second introduces a certain degree of splitting in
the time-discretization. Note that, contrarily to Algorithm 1, the solid solver is never called in Algo-
rithm 2. In fact, this is the source of instability in the scheme. Indeed, a simple argument shows that by
testing (3.6) with (v,q,1t) = (u}, p, A};) we get the energy estimate

N N
£l),07)12 2 ST 2 2
plluylle.q +4p Y tlle@n)ls o +peldylds +IdlIE+2 ) Tlpyl:,

m=1 m=1

N
<pudlgo+p eld)§s + IdplZ+ ldR)F+2 Y et (dy —dp ' dy). (3.7)

m=1

Note that the last term is nothing but the artificial power generated by the explicit treatment of the solid
elastic contributions in (3.6). This can be controlled, but at the expense of enforcing restrictive CFL-like
stability conditions (see Remark 3.1 for the details).

REMARK 3.1 In order to get stability from (3.7), the last term can be controlled via a Gronwall type
argument. Indeed, it suffices to use the continuity of ' and a discrete inverse inequality to obtain

’L'Clﬁs

(0 ) = 212 < B < e 18 = e

TCIB s mi2
o5e()? 147 116,
where 3%, Ct > 0 respectively denote the continuity and inverse inequality constants. Hence, the energy
stability follows by inserting this estimate into (3.7) and by applying the discrete Gronwall lemma (see
Lemma 1 below), under the parabolic CFL condition

pSS 2
T< -(h°)~.
Clﬁb( )

In this paper, we propose to avoid the stability issues of Algorithm 2 by generalizing the arguments
of Fernandez (2013); Fernandez & Landajuela (2019) to the unfitted mesh approximation provided by
Problem 3. Basically, the idea consists in replacing the displacement-velocity relation of Step 2 in
Algorithm 2 by a full call of the solid solver, using the fluid load provided by Step 1. The resulting
solution procedure is detailed in Algorithm 3 below, where the symbol d}* denotes an extrapolation of

the solid velocity, namely,
a! ifr=1
nwx _ h . )
" { d; ' ody ! ifr=2. G:8)

Note that, if dj, is a smooth function of ¢, then the above extrapolations provide an approximation error
of order r.

Algorithm 3. Let Up, € Vi, dO,h cWy, d17h €W, and ¢O,h € W, be given. We set 112 =Ug p, d?l = d07h
and d2 =dy . Forn=1,... N, perform the following steps:
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) n wn—t
Step 1. Find (w, pj, Ay, d, *) € Vi x Oy x Ay x Wy, such that

P (Ocufy, v) +b(uy ™! uj v )+a2((uZ,pZ),(V,q))

n 1
+C( Z?VO¢Z_ ) (”‘ uho¢ 2) =0 V(VJLIJ) evh X Qh XAha (39)
Se

(d, 2 —d"" W)z =c(A),w) —a(d}, W) Vw € W,

Step 2. Find (d},d}) € W, x W), such that

{pse(affl W) +a*(dj, w) = (4, w) vw e W, (3.10)

d} = o.d/.

Step 3. Update interface: ¢, =1+ dj.

1
REMARK 3.2 For a specific choice of the Lagrange multipliers space A}, the unknowns A} and d 2

in step 1 of Algorithm 3 can be eliminated in terms of (u}, p}.) (see Boilevin-Kayl et al. (2019a)).

4. Numerical analysis of Algorithm 3

This section is devoted to the numerical analysis of the splitting schemes given by Algorithm 3. The
energy stability properties of the methods are analyzed in the next section, while Section 4.2 provides
an a priori error analysis in the case of a linearized version of Problem 1.

4.1 Energy stability analysis

This section is devoted to the analysis of the stability properties of Algorithm 3. To this purpose, we first
recall some auxiliary results which will be used later. The first one is a quite general version of discrete
Gronwall’s Lemma from Heywood & Rannacher (1990).

Lemma 1. Let T,B and a,,, by, Ciny Y, fOr integers m > 1, be non negative numbers such that, forn > 1

n n n
an+TY by <TY Ymam+7Y cm+B.
m=1 m=1 m=1
Suppose that tY,, < 1 for allm > 1. Then, for n > 1 it holds

anttY b exp< ey In )(Tmi]cm—kB).

m=1 ml1 T

We define a discrete counterpart L, : W — W), of the elastic operator L as follows:
(Lpw,z)x = a®(w,z) 4.1)

for all z € Wy,. In (Ferndndez, 2013, Lemma 1) the following properties of L; have been proved:
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Lemma 2. Let Lw € L*(X), then
[Lpwllo.x < C|[Lwlloz. 4.2)

Under the assumption that the mesh %), is quasi-uniform, then there exists a positive constant Cy such
that for all wy, € Wy, it holds true
-2
HLhWh”s < Clhs HwhHg (43)

From equation (3.10) we obtain the following characterization of the intermediate value of the dis-
placement velocity in terms of the solid velocity and displacement:

P .
Lemma 3. Let {(u},p}, Z,dz .dpdi) st C Vi X Qp x Ay X Wy x Wy, x Wy, be given by Algo-
rithm 3. We have

Rt pTSL (d — ). d.4)
Proof. By subraction (3.10); form (3.9), we get
P W) —a (@) w) =0 4.5)

for all w € W;,. The relation hence follows by from the definition of the discrete elastic operator (4.1).
O

The energy estimate for Algorithm 3 is given in terms of the discrete energy E; and of the discrete
dissipation D}, defined, respectively, as

= Pf||“0h||3g +p°elld, h||(2)2 + [l dosll3,
=p ||“h||og +pe|d; 5.5 + 1713, 4.6)

Z T (4ule (“h)”og +2|pj sh)

m=1

The following theorem states that the splitting scheme is unconditionally stable for r = 1, while for r =2
it is conditionally stable.

Theorem 1. Let {(u}},p},A}.d, : L2 d)) st C Vi X Q) X A x Wy, x W, X Wy, be given by Algo-
rithm 3.

e Scheme withr = 1. Forn > 1, we have

Ej+Dj +72||dy |2 + HLhd ||oz < Ep+72|dyll + HLthhHOE 4.7

2pS

e Scheme with r = 2. Let T and hg be such that there exist o« > 0 such that

(4.8)

then, for n > 1, we have

2
E}'+ D)} <exp ( L ) E). (4.9)
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2

Proof. By takingv=1uj, g = pj, w = dZﬁ and g = —A} in (3.9), and using the well known equality

2(a—b,a) = (a*> —b* + (a—b)?), we have

pf n|2 n—1
5 (||“hHo,Q — [,

5.0+l — w7l o) +27i ] €(w)) 5.0 + TIPAL, “.10)
Sp(qT3 gqn-1 13 s(qn+ g3 .
+p'e(d, ? —d;ldy 7))y =—ta’(d)".d, 7).

enl
On the other hand, by testing (4.5) with w = dZ % and by adding the resulting equation to (4.10), we
get

—

NS

2 —12 —12 2 2
(Ilajl5.0 = o~ 115, + ) — w5 o) + 271l €(up)[[5 o + TIP4IS,
. . e L . e L
+pe(dy—d;'.d, %), +71a'(d),d, 2)=0.

en_ 1
By introducing in the above equation the characterization of dZ 2 given in (4.4) yields

)

p _ _
3(”“2\\3,9—““2 5.0+ luh —ui =5 o) +270lle@i)§ o + P4,
pse (2 —172 n n—12 (411)
+ 5 (1515 5 — 1 1+ 15— & 1 <) -
1 _ _
+§(IIdZII§*IIdZ HE+ldy—dy ' 5) +Ti+ T =0,
with
n n—1 n nx 1‘-2 S/an n nx
o= (§-d 7 Lud ) o= e (L] —d).

We estimate this terms as in (Fernandez, 2013, Theorem 1), by treating each case of extrapolation
separately.

CASE r = 1. We have d}* = d!" !, so that L, (d} — d}*) = L;,(d} —d! ') = 7L,d}. By using the
definition of the discrete operator L, we get the following relations for 77 and 7>:

1= (& -d7 Ld;) = (d-dpd)
T . . . .
= 2 (12 = 12+ g — &)1
‘L'2
T = g (Ladl L (df ),
2
T _ —
= g (st — sy 3+ L@ — )

By inserting these equalities into (4.11) and summing over n, we obtain (4.7).

CASEr=2. Wehaved! =d/~!' 4 td!~!, which yields

Ly(d] —dl*) = Ly(d} —d) ' —7d! ') = tLy(d} —d! ).



12 of 30 M. ANNESE, M.A. FERNANDEZ AND L. GASTALDI

Substituting the last relation in 77 and 7, gives
1= (& - L@ - i)
= Ta (- di dj - dih) = 7y - a1

3 3
T . . T . .
7= —ps @ (dj, Li(dy — ™)) = —=—a* (L, df — d; ")

dn l”s

=

ps
e
~ (pse)hl
> —to®|d|)> — 2|y — d )2

][z — || dy — )2

In the two last bounds of 73, the inverse estimate (4.3), the Young’s inequality and (4.8); were used. By
inserting these expression into (4.11) and by summing over n, we get

f n
P
3““ ||OQ+ Hd ||02+ dpli+7 Z 2u| & (uy ||0.Q+|Ph| )

< p—f 2 Lq —1d, 2 3 an 2
< huosla+ 2 ol +7 Y o a2
m=1

Finally, the estimate (4.9) follows by applying the discrete Gronwall’s Lemma 1 with %, := 2o and by
assuming that (4.8), holds. O

4.2 Error estimates for a linear model problem

This section is devoted to the convergence analysis of Algorithm 3 by assuming that the structure un-
dergoes infinitesimal displacements. We can hence identify the current configuration with the reference
one. Therefore the terms in Problem 2 and in Algorithm 3 which contain the composition of a function
v with the mappings ¢ and ¢Z*1, respectively, will be written simply as v|y instead of vo ¢. Moreover,
in order to simplify the presentation, we drop out the non-linear convective term in the fluid and we
assume that the immersed structure is represented by a closed polygonal line or surface (see Fig. 1). As
a consequence the discrete spaces Wj, and A, coincide,

W, = A 4.12)

Since the pressure results to be discontinuous across the structure, we assume that the solution enjoys

the following regularity properties for 0 </ < 1/2and 0 <m < 1:

ue (H'(0,T:H(Q)))?, dsue (L*(0,T;L*(2))),

peH'(0,T;H (Q)), AeH 0,T;H'?(X)),
de (H'(0,T:H™()), Lde (L*(0,T;L*(X))), @19
de (H'(0,T:H'™™(X))?, dud e (L*(0,T;L*(X)))%.

We introduce the projection operators which will be used in the proof of the error estimates together
with some approximation results. Let ITy : H} (2)¢ x L3(2) — V, and ITg : H (2)4 x L3(2) — Oy
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be the Stokes projection operators which to any pair (u,p) € H}(2)? x L3() associate the solution
(ITy (w, p), M p(u,p)) € Vj, x Qy of the following discrete Stokes equations

ay((My (u, p), o (u. p)),(v,)) = a'((w,p),(v,q)) V(v.q) € Vi x Op. (4.14)
Exploiting carefully the stabilization term appearing in the Stokes equations discretized by the stabilized

P; /P elements, one can extend the standard error estimates to the case of non smooth pressure and
velocity, as follows:

[u—Iy(u,p)|l1.0+Ilp—Hou,p)loa < Ch (|[uflireo+plee) - (4.15)

Moreover, assuming that the domain £ is convex, by standard duality argument one can obtain the
estimate in the L?-norm for the velocity, namely

[u—ITy (u,p)|l0.0 < Ch ™ (JJullie0 +pllee) - (4.16)

We denote by ITy : W — W), the elliptic projection operator associated to the bilinear form a® as follows:
forany d € W, ITyyd € W, with

a*(IIwd,wy) = a*(d,wy,) Vwj, € Wy, 4.17)
Since a® is assumed to be coercive on W the following approximation estimate holds true
[d—ITwdlls < Ch(|d]]14m,x (4.18)
At the end, we introduce the projection operator IT5 : A — Ay, for the Lagrange multiplier as follows:
c(ITpA,wy) =c(A,w,) Yw, € Wy (4.19)

We observe that we have used the same discrete space for Aj; and W, and that for smooth functions the
bilinear form ¢ can be seen as the scalar product in L?(X). Then we have the following approximation
property.

Lemma 4. Assume that .}, be quasi-uniform. We have

1A — T Allx < ChOAll,_y 5 (4.20)

forany A € H'": ().
Proof. In the following we shall use the L2-projection Py onto W, defined by

(w—PRw,z)s =0 vz € Wy,
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By definition of the norm in the space A and using (4.12), we have

c(A —TI A,z
||A—HAA'HA = sup w
1 ]|,
zeH2 (X)4 27X
¢(A —TI\A,z— Pyz)
= sup
zEH%(ZJ)d HZH%’E
_ C(AHZ_POZ)_(HAAHZ_POZ)E
= S']lp ||Z||1 “4.21)
2eH (£)! 2%
c(A,w—Pyw)
= sup ————=
I [[wlly
weH?2 ()4 2%
< s A0y sllW—Powll1 5
Sy [[wlly
weH?2 ()4 3x

It remains to bound [|[w — Pow/||1/2-¢ (x)¢- Since the mesh is quasi uniform, we observe that the 12-

projection is stable in H!(X), see Auricchio et al. (2015) and the references quoted therein which can
weaken the requirement of a quasi-uniform mesh. Therefore by application of interpolation operator
theory (see for example Brenner & Scott (2008)) Fy is stable also in H 1/ 2(Z), so that there exists a
constant c¢g such that

[Powlls » < coll Wl 5

This implies the following error estimates

|lw—Pow

1
lo.s < Ch2|[wl| 5
Iw—Powlly 5 < (1+co) [Wl] -
Applying again the interpolation operator theory, we arrive at the desired estimate
[w—Powlly gy < CHOW[y
and this inserted in (4.21) concludes the proof. Il
The following auxiliary result provides an estimate of the error between the time derivative and the

backward finite difference approximation.

Lemma 5. Let X be a real Hilbert space endowed with the norm || -||x. Then for all v € H*(0,T;X) we
have

3
[0V — I v"[[x < 72 ”attVHLz(tn,l,t,,;X)’ (4.22)

Moreover, for all v € H'(0,T;X) it holds true

1
|0V [[x < 229Vl 20, ) (4.23)
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By subtracting equations (3.9) and (3.10) from (2.7) we obtain the error equations.

P (Ou" — dewjy,v) +a' (" —wj, p" = pj), (v.q)) +€(A" — A}, v|x)

. opn_ L
+C(#7(u"—u2)|£—(d"—d2 2))—Sh(PZ»C]):O V(V7Q7“‘) e\]thhX/xhv
PYe(Ad" — dedl, w)s + (A — d,w) — ¢(A" — Aj,w) =0 Vw e W,

od" — 9,d} =d" —dJ.
. (4.24)
In order to simplify the writing, we introduce some notation. Given (u”,p",d",d",A") € H}(2)? x
L3(2) x W x W x A, we set
uy = Iy (u*, p), ply =", p"), dfy := Myd", &y := [Iyd", AT =TI, A"

and we split the errors as follows:

u'—u; =07+ 05, i=u"—uf, 0 :=uf—uj,
P =rh=0n+9, on:=r"—prm O =rn—"rh
n n n n
d'—d, =&y +&,, &p:=d"-dp, &, :=dy—dj, (4.25)
. . .n 'n 'n . . .n . .
dn_dzzén‘i_gh, én::dn_ ?17 éh:d?]— 27
M-, =0+ ), o :=A"-A, 0} :=A;—2).

In the next lemma we provide an estimate of @ in terms of the other errors.

Lemma 6. Let us assume that  is convex and that the mesh ., is quasi-uniform. If hy/hg is sufficiently
small, we have

, 1
l@hlla < C(ll0flla + 210l 2, | a2 + 19:(07 +07)lo.q +[1€(87) 0.0 +471s,)
(4.26)

Proof. In (Boffi & Gastaldi, 2015, Prop. 13) the following inf-sup condition has been proved: there
exists a positive constant § such that

C(COZ,V|2)

Bll@]la < sup
e

veVy ||V

where V denotes the subspace of HJ ()¢ made of divergence free functions. Therefore, there exists
Vv € Vj such that

c(@;,Vlz) = Bllopllallvliie, [Vlie = [[@h]la-
Let (v, P,,) € Vi, x Oy, be the solution of the associated discrete problem
aj,((Vi:74). (v.9)) = a'((¥,0),(v.9))  ¥(V,q) € Vi x Oy (4.27)
The following bounds thus hold true, by taking into account that £ is convex,

1¥all1.2 + 1Pallo.@ + [Puls, < ClIV]1.0:
1V —=9ullo.e < Che|V]1 0, (4.28)

Wil <[¥l1a
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Hence, we have

Bllopllallvll < e(@),V]x) = e(@), V] = Valx) + ¢(@); Valx)

4.29
= (@}, V|x —Vilz) + (A — A", Vilx) + (A" — A}, Vilx). *29

We bound the three terms on the right hand side separately. An inverse inequality, trace theorem and the
error estimates above imply

1
_ _ he\ 2 _
c<mz7v|z—vh|z><c(h) AN
S

For the second term we use Lemma 4 as follows

(A1 — A" Vilz) < Cll@f[alIV]1.e-

We use the first equation in (4.24), the definition of the Stokes projection operator (4.14) and (4.27) to
estimate the last term in (4.29), namely

(A" = A7, Vuls) = —pl(du" — oru;, V) —2u(e(u" —uy), €(Vy)) + (divvy, p" — pf)
= —p'((9 — I )u",¥)) — p'(3: (071 + 0}), 1) — 211(£(8}), €(Va)) — s (P, $7)
_ 1 n n n n
< |Vl (72 9ull 2, | 2@yt + 1190+ 03)]l0. + [|€(67) 0.0 + |95 l51)-

Putting together the last inequalities in (4.29) and taking into account (4.28), we obtain

h.
Blafla <c
S

+19:(8%+ 87 0.0+ 1£(8llo.0 + 195, )

1/2
1/2
) el (el + 2130l s

Choosing h¢/hg sufficiently small we get (4.26), which concludes the proof. O

on 1
The solid intermediate velocity dZ 2 provided in Step 1 of Algorithm 3 is actually an approximation
of &Z» hence we introduce the following error

n__ . _ ('1”7%
Xp=dp—d, °.
Hence, owing to (4.4), we have

T
pe

n gn T n nx gn T n nx n nx
Xhzgh—pTth(dh—dh ):gﬁ‘pTth(&h— n)— ——=Lp(d" —d"™). (4.30)

The following theorem states the main result of this section. It provides an error bound on the discrete
approximation errors.

Theorem 2. Let (u",p",d",d",A") € H}(Q)? x L3(2) x W x W x A be the solution of Problem 2

wn_l .
and let (uﬁ,p;l’,dz 2A") € Vi x Oy x Wy X Ay and (d}},d}) € W, x Wy, be given by Algorithm 3,
respectively. Then, if h¢/hs is sufficiently small, the following bounds hold true:
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o Scheme withr =1:

P'116716.0 + €l ERlIGs + 1185115 < C(TzHatt“\ﬁz(o,,n;,‘z(g)d) + 72||3tza||22(0’,n;L2();)d)
+ 219l 201,00 210+ T 1908 20 1 (1) + 19011117200 4,02(2)0

: : 4.31

+||8t§H||i2(0,tn;L2(Z)d)+T”atgnHiz(O,tn;Lz(H'():)d)+7:3”a":gH”iz(O,tn;Lz(Hl(E)‘/) ( )

n
¢k ¢k
+ 2082 g, gm0+ Y (Fl0k 3 + 210518 o + 18R+ 1€k ).
k=1 )

e Scheme with r = 2: let T such that (4.8) holds true and

then forn > 1
PfHeZH%,Q +PS£||5Z||%,2 +1ERIIZ < C(72||att“|\i2(o7,n;L2(g)d) + r2||8,,('1||i2(0’tn;L2<2),,)
+72||‘9ttd”L2(o,zn;H1(z)d)+H3t nn||i2(o_,,n;L2(g)d)+||3t‘§'111||i2(0,,n;L2<);)d)+T3||3t‘§?1||i2(o_rln;m(z)d)

n
R k ok
+ 0L 2002 (my) + Y (TN @FIIR + /105170 + Tllﬁnlli;))-
k=1
4.32)

Proof. By using the notation introduced in (4.25) and recalling the definitions of the projection operators
introduced in (4.14), (4.17) and (4.19), the error equation (4.24) yields

P (9:6},v) +21((87), €(v) — (divv, ¢}) + (], V]x)

= —p'(Ju" — d:u",v) — p'(9:07;,v) — c(@]1,Vx) Vv eV,
(div(07%,q) +su(¢y,q9) =0 Vg € O,
c(u,05z—x7) = —c(u,07|s— &) Vi € Ay,

P e(9:E) w)s +a (E,w) — c(@), W) = —p°e(9d" — 0:d", W)z — p’e(: &l W)x YW E W),
0. &) =& —dly + 0.dY;.

(4.33)
We take v =10}, ¢ = 7¢), w = 17X}, L = —7®}, and sum the resulting expressions, so that we have

p'(07—8; 1, 87) + t21(€(6}), £(67)) + Tsu (0] 97) + pe(&f — & i) s + 7 (€ X))
= —1pf(Qu" — J.u",07) — 1p7(0:0%,07) — tc(@}y, 07 |5) — Tp°e(A,d" — I, d", X)) =
— P9y, 2]z + ze(@], 0] |x — Ey).
We observe that using (4.30), last equation in (4.33) and (4.17), we have

a (&), X1) = @' (§),9:83) +a*(§), 90" — 9rd").
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Using the well-known identity (a —b)a = 3 (a® — b + (a — b)?) and (4.30), we get

f

p _ _
g(neznag—nez 5.0 +165—057"15.0) + 271 €(81)5 0+ TI0k s,
pss gn 2 gn—12 gn gn—12 1 nn2 n—1,2 n n—1,2 8
+7(“€h||0,2_|‘ n llos+1E,—E&) ||0,2)+§(||§h||s—||§h s+ 1€, — & HS)ZZTiv
i=1
(4.34)
with the notations
T = —‘L'pf(8,u” —oJu",0}) — Tpf(&O?I, n)s
= _Tpsg(()t(.j" —3#.1”752)2 - Tpse(arg;lpé;i)z’
T := fras(éz,atd" —dd"),
Ty := —1c(@fy, 0)]x),
Ts .= te(a], 0|z — €7p), (435)
2
T *
Ts a* (&), L(dy —dj)),

= oo
Tro=1(&)— & Li(d) —d))) 5,
Ty := (90" — 00", Ly, (d) — d})) ;. + 7° (0:E 1, Ly () — df")) ..

We estimate the first 5 terms which do not depend on d}* using Lemmas 5 and 6, which yields

T < CPf(73/2||3n“||L2<t,,,1,z,,;LZ(Q)d) +1'2) 9, "n||L2(;n,1,t,,;L2(Q)d)> 16%ll0.2;

T, <Cp’e (1;3/2Hatz&HLz(,nihtn;Lz(Z)d) + 11/2“8;5?-[||L2(tn71’,n;L2(E)d)) HéZHo,;,
5 < CT3/2||attd||L2(t,,,1,t,,;Hl(E)") &0l (4.36)
Ty < Ct|| @ ]163]1.2;

75 < Ctl|@} |4 (1011, + I1EF 5 )-

Using Young’s inequality in (4.36) and the Korn inequality K||v||1.q < ||€(v)]o.q for all v € H} ()4,
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and adding the resulting inequalities to (4.34) we have

f

P _ _

5(”92”5,9—”92 N5.0+1167— 8, '15.0) +2tuk?||677 o + 05,
pse g2 gn—12 gn gn—12

+7(H‘§h|\0,2—\\§h 0.5 +11Er — &R Ho,z)
1 —1 ~1

+§(H§Z||§—||§Z I3+ 185—&n IIF)

‘L'51 . &

S (0103150 + el E51B = + €512 + 1031R o + 10712, .37)

+C(P1anmag, a2+ 19z, e

<

2 2 gn |2
+ 7kl 2, | gt () F 1Ok 1117||L2(,n71,tn;L2<g)d)JF||atgrﬁ||L2(,n71’tn;L2(g)d>

. 8
+ 7@ + <0l o+ TlERIR ) + LT
i=6

For the remaining three terms 7; for i = 6,7,8 we have to take into account the definition of dj*.

CASEr=1. We estimate the term T by noting that d = d’; — &}, and using (4.1). We have,

2

Ty = ——a* (&}, La(d; —d; "))
7? s/gn n n—1 7 s(gn n n—1
:*Ea (&5 Ln(Eh— &) ))Jrﬁa (& Lan(dy —df )
7 n n n—1 7? n n n—1
:_E(Lhéthh(gh_ h ))z""E(Lhéh’Lh(dU_dH ))E (4.38)
1 7? nn2 n—1,2 n n—1+12
\_Epss(”thhuo,E_Hthh 5.5+ 1La(&r— &L Dliox)
72 " .
+E||Lh€h||o,z [Ly(d" —d" ) loz-

The last equation in (4.33) implies that & — &' = T&Z + T&% —1(9,d" — 9;d") — 19, &', which
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inserted in 77 gives

B=r1(& & Ly —di "),
gn gn—1 n n—1 g gn—1 n n—1
Z—T(éh— nSLa(&,— &) ))2+T(€h_ n s La(dp —dp ));
=~ & 62— AESERA(TET I MIC R U
=—1%a (&h a&n)_f a (&h Z_laénn)
+7d° (&, I i laatdn*ardn)JFT a*(Ep— &' 0:ET) (4.39)
+T(§h— WL LAl — A ),
=—f(||¢ 12— 1€ 12+ 1€ — & "112)
+221&5— s (&I + 22198l 2g,, g ey + 19:E s )

— B
+7)|&5 =& llo.xl|Li(d" —a"H)lo.s.

The last term can be easily bounded as follows

= (9" — 90" Ly (d — ! ")) +12(aT&"H,Lh(d"—d"*‘))
= 1% (90" — 00", &} — &) — T (€T, & — &)
1(9,d" — 9:d", Ly (d}y —diy ")), + 7% (0c gH,Lh( —dyh), (4.40)
< 2|1&; & 12 (110d" — 9ed” |+ [|0:E Ty )
+Cl|Ly (@ —d" ") [lo.x (0" — ded" 0.5 +[|0:E T lo.x).

z

We estimate ||Lj,(d" —d"~!)||o.x on the right hand side of (4.38)-(4.40) using (4.2) and (4.23) as follows

La(@ —d" oz < CIIL@ —d" ) oz <CT LAl 2, | ,12(m))- (4.41)
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We use Young’s inequality in (4.38)-(4.40) and insert the resulting relations into (4.37), which yields
(||9 6.0 = 116550+ 1167 — 65" 15.0) +27uK>(| 0417 o + 7971,

pg . . _1 . . _1
+ 5 (I€5l5. — 1167 o= + 165 - 65 los)

1 ~1

g(lléhllzfllé N2+ l1ER—E07NIR)

1 12 - 1y)2
+§p7<||Lh€h”0£ ILLE) ||0£+|\le(€h )Ho,):)

T 2 & n gn—12

7(H€h|\s—|\ N2+E -

68 7 02
<2 (' DO+ 100, + Il

+;(rzné2—'2‘1||§+p88||&;1 B+ 18— & 12)
+c(r2||anu||§2(tﬂ_,,n;Lzm)d) + 20l a2y

+ 172||attd||L2(z,,,1,tn;Hl(z)d) +7° Hatt‘.l”iz(,n_] nsH (£)4)

+1100m 172, a2+ 198 ml7, 2oy
+THatgHHiZ(,nfl.1,1;1‘2(1.11(2)11)"'73HargnHiZ(,nfl,tn;Lz(Hl(z)d)+7Hw71||3\
710318 o + TIERIR , + PIALAI, | aieye + P IEHIE).

The error estimate (4.31) follows by choosing 8; = 1/2, so that the terms in the second bracket on the
right hand side can be absorbded into the left hand side, then we sum over n and apply Lemma 1.

CASEr=2. Since d.d}, = dz we have that

dz n* dn dn l—TdZ I_T(ardn 1)+T(dn dn 1)—’7,'( dn 1)_T(§h g n— 1)
As done for the first two schemes we analyze the three terms 7; with i = 6,7, 8.
3

T o T o o > en—1
To= g Gl — ) — oo (E.8 - 807 < 80 (- d 185 - £ )
(4.42)
Taking into account the definition (4.1), we can write 77 and Ty as follows
Ty =& — & Lyl — &)y - e (€] 5;, ) “443)
. _— . B .
<PEr— &L oz lLa(dly — dfy 1)||oz—f ||§h— ||0>:a
Ty = 7°(9,d" — 9:d", Ly (d}; — d}y 1)) +1 (&T!;H,Lh ),
3 s n n
a*(0,d" — 0.d" E} — —3a% (0. E7;,
(0 0. & - &) P (081 & - &) wan

2 (|9 d" - 9:d"[jo.5 + ||ar€17||0,2) I (A7 — d’;’{l)llo,z
T (|9,d" - 0:d"[|s + 19:E 7 s) €5 — &5 ' ls-
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Adding (4.42)-(4.44) to (4.37) and using Young’s inequality, we obtain

p' -1
?(HO ||0.Q 6} ||(%,Q+H92 ||09)+2WK2H9 ||1Q+T|¢h|sh
p Se . n—1 . :n—1
+*(||§Z||3,z—||§'é ||3,z+||§Z—Z o.5)
2 2 n n—12 T2 n gaot 2
(€M~ 1€ 12+ 115 — &) Hs)+*H§h— nolls

(010313 0 + el 5IR . + IEHI2 + 10513 0 + 197 )
5

Ll
2
70

s\

gn gn—1,2 en—1,2
+WH§}1_ no s+ P8||§h n oz

+C(PNanlEzg, | i + 191, a2
+T(19dl 2, it (20 + 19 rll_[||i2(l,17]’fn;[‘2(g)tl')
H10E T2,z + TNAERIR, o 0
sl + 1013 o +7lEnl

o - @2 L@ - R )
For the last two terms in the above inequality, we use again (4.23), so that we have

d" —a s < 7210l 2, gt myey < 710082, i oy

Ly (@" =" "llos < CIL(A" —d"lox < CT'2[ALd] 2, 4a2(my0)-

We choose 8; = 1/2 and 7 such that er ) < 1, then the application of Lemma 1 yields the esti-
mate (4.32). O

5. Numerical experiments

In this section, we perform numerical tests to check numerically the performances of the schemes re-
ported in Algorithm 3. In particular, we shall consider stability and convergence, and compare the
behavior of the proposed splitting schemes with that of the monolithic one. All the numerical tests are
performed using the classical 2D benchmark problem of an ellipsoidal structure that evolves to a circular
equilibrium position. The fluid domain £ is the square [0, 1] and the initial position of the structure is
an ellipse centered at (0.5,0.5) with the following initial configuration

0.5+ 0.25v/2coss

= .2
Xo(s) 054025 o |, sefo.2a]

V2

We used the following physical parameters p' = p*e = 1, u = 1. Moreover, we assume that the structure
is an elastic string with stiffness Kk = 2.
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5.1 Stability

The purpose of this paragraph is to illustrate the stability results of Theorem 1. Unconditional stability
is obtained for Algorithm 3 with » = 1 and conditional stability with » = 2. We compare the results with
those obtained with the strongly coupled scheme, Algorithm 1, for which unconditional stability has
been established in Boffi et al. (2015b).

The model problem consists in the evolution of an ellipsoidal structure toward a circular equilibrium
position. The only force that drives the motion is the elastic reaction force to the initial deformation,
hence we expect that the energy of the system decreases to a plateau value. In order to check the stability
properties of the schemes, we performed long term simulations decreasing the time step while keeping
fixed fluid and solid meshes. The fluid mesh is made of 40 x 40 square elements subdivided into two
triangles, whereas the reference configuration of the structure is divided into 40 subintervals.

Figure 2 resports the time evolution of the total energy of the fluid-structure system, namely,

= pf[u?|? o + piel|d?|]? :
h =P w50 + e elldi5 x + lldjlE-

The results of the tests are in agreement with the theoretical analysis. We can appreciate energy decreas-
ing for all the used time steps for Algorithm 1 (a) and for the Algorithm 3 with » =1 (b), whereas we
see instability for Algorithm 3 with r = 2 (c) when the time step is not sufficiently small.

— timestep = 1 — time step = 1
040 — time step = 0.5 040 — time step = 0.5 040
— time step = 0.1 \ — time step = 0.1
time step = 0.05 \ time step = 0.05
— time step = 0.01 \ — time step = 0.01 \

— timestep=1
— timestep = 0.5
— timestep = 0.1
time step = 0.05
time step = 0.01

(a) Algorithm 1. (b) Algorithm 3 with r = 1. (c) Algorithm 3 with r = 2.

FIG. 2. Evolution of the total energy Ej for different time-step lengths.

5.2 Convergence

In this paragraph, we numerically investigate the convergence of Algorithms 1 and 3 with respect to
the mesh size and to the time-step length. We consider the same model problem as in the previous
paragraph, with a different initial configuration of the structure. More precisely, it consists of the static
equilibrium of a circular elastic string, centered at the point (0.5,0.5) with radius 0.25, and immersed
in a fluid at rest.

In order to check the convergence rate, we consider as reference solution the one obtained with
Algorithm 1 and the following discretization parameters:

T=5-107. (5.1)

Tables 1-3 reports the spatial convergence history for Algorithms 1 and 3, respectively. Here, the
time-step length is fixed to T = 0.01 and errors are evaluated at the final time # = 0.5. The three schemes
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provide practically the same behavior and we observe a sub-optimal rate, which is driven by the regu-
larity of the solution.

Table 1. Algorithm 1. Spatial convergence for T = 0.01.

he = h 1/8 1/16 1/32 1/64 1/128
[} —ullo.0 7.65E-3 5.92E-3 2.29E-3 8.56E-4 2.94E-4
Rate - 0.37 1.37 1.42 1.54
|d;, —dllo.x 5.43E-4 4.29E-4 2.23E-4 1.06E-4 5.93E-5
Rate - 0.34 0.94 1.07 0.84
|} —d]|s 3E-02 1.58E-2 8.29E-3 4.69E-3 2.82E-3
Rate - 0.93 0.93 0.82 0.73
Table 2. Algorithm 3 with r = 1. Spatial convergence for 7 = 0.01.
he = h 1/8 1/16 1/32 1/64 1/128
[uj —ullo.0 7.61E-03 5.91E-3 2.28E-3 8.53E-4 2.91E-4
Rate - 0.37 1.38 1.42 1.55
|d;, —dllo.x 5.17E-4 4.15E-4 2.19E-4 1.05E-4 5.91E-5
Rate - 032 0.92 1.05 0.83
|} —d]|s 2.99E-2 1.57E-2 8.28E-3 4.69E-3 2.82E-3
Rate - 0.93 0.93 0.82 0.73
Table 3. Algorithm 3 with r = 2. Spatial convergence for 7 = 0.01.
he = h 1/8 1/16 1/32 1/64 1/128
[uj —ullo.0 7.60E-3 5.91E-3 2.28E-3 8.53E-4 2.93E-4
Rate - 0.36 1.38 1.42 1.54
|d;, —dllo.x 5.15E-4 4.16E-4 2.19E-4 1.06E-4 5.89E-5
Rate - 0.31 0.93 1.05 0.84
|} —d]|s 2.99E-2 1.57E-2 8.28E-3 4.69E-3 2.82E-3
Rate - 0.93 0.93 0.82 0.73

We test now the convergence rate with respect to the time-step length 7. We ran tests with the
following mesh sizes hy = hy = 1/64, varying the time step as follows: 7 € {1/2'};_4 5. We compute
the errors with respect to a reference solution obtained solving, for each advancing scheme, the problem
with Ty = SE —05s and hl, , = IS, , = 1/64.

We observe that the partitioned scheme with order two extrapolation results to be stable for suffi-
ciently small values of time step, hence we used values of 7 in the stability range. We can observe that
the error of the partitioned scheme with order two extrapolation, approaches the value of the monolithic
error when the time step reduces properly. This seems to be in agreement with the convergence results
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in Theorem 2. As far as the order one partitioned scheme, we can see that the rates of convergence
appear to be higher. Actually, the error is much higher for big time steps and it is close to the monolithic
error for small ones. All the errors have the same behavior as the time step goes to zero as the theory
predicts.

Table 4. Algorithm 1. Temporal convergence for iy = hs = 1/64.

T 1/16 1/32 1/64 1/128 1/256 1/512

lu! —ulloqo | 265E-6 | 173E-6 | 1.07E-6 | 596E-7 | 3.13E-7 | 1.58E-7
Rate - 0.61 0.69 0.84 0.93 0.98

|d, —dllox | 6.03E-6 | 407E-6 | 243E-6 | 132E-6 | 6.86E-7 | 3.46E-7
Rate - 0.57 0.74 0.88 0.95 0.99

|d}—d||, | 444B4 | 222E4 | 1.11E4 | 552B-5 | 274E-5 | 135E5
Rate 1.00 1.00 1.00 1.01 1.02

Table 5. Algorithm 3 with r = 1. Temporal convergence for hy = hy = 1/64.

T 1/16 1/32 1/64 1/128 1/256 1/512

[u} —ul|o.0 2.40E-4 | 9.90E-5 | 3.08E-5 | 6.86E-6 1.57E-6 4.04E-7
Rate - 1.28 1.69 2.17 2.12 1.96

|d}, —djo.s 1.6E-4 | 436E-5 | 1.29E-5 | 3.63E-6 | 1.11E-6 | 4.02E-07
Rate 1.87 1.75 1.84 1.71 1.46

|d?—d|l, | 1.81E-3 | 1.08E-3 | 4.37E-4 | 1.05E4 | 3.33E-5 1.42E-5
Rate - 0.75 1.30 2.06 1.65 1.23

Table 6. Algorithm 3 with r = 2. Temporal convergence for hy = hy = 1/64.

T 1/16 1/32 1/64 1/128 1/256 1/512

lu! —ulloo | 221E4 | 634E-5 | 4.64E-6 | 639E-7 3.17E-7 1.59E-7
Rate - 1.81 3.77 2.86 1.01 0.99

|d; —dlox | 832E-5 | 6.06E-5 | 6.04E-6 | 1.40E-06 | 6.83E-7 | 3.40E-07
Rate - 0.46 3.33 2.11 1.03 1.01

|d?—d|ls | 1.20E-3 | 6.03E4 | 126E4 | 550E-5 2.73E-5 | 1.35E-05
Rate - 0.98 2.25 1.20 1.01 1.02

We report the numerical values of the error and the computed convergence rates in Tables 4, 5 and
6. All the schemes provide a rate of converges which is about 1 confirming the theoretical results of
Theorem 2.
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5.3 Temporal accuracy

In order to illustrate the accuracy of Algorithms 1 and 3, we show the evolution of two nodes on the
structure during the simulation relative to the ellipsoidal structure evolving to a circular configuration.

Q

FIG. 3. Computational domain and interface with the control points A and B.

At the beginning of the numerical test, the major and minor axes of the ellipse are aligned with the
abscissa en coordinate axes, respectively, see Figure 3.

Time step =0.1s Time step =0.05:

00 05 10 15
Time

(a) T=0.1. (b) T=0.05. (c) T=0.01.

FIG. 4. Evolution of the abscissa of point A for different time-step lengths.
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FIG. 5. Evolution of the ordinate of point B for different time-step lengths.

Figures 4 and 5 show the evolutions of the abscissa of A and of the ordinate of B, respectively, for
different time-step lengths: 7= 0.1, 0.05, 0.01. The impact of the extrapolation order » on the accuracy
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of Algorithm 3 is clearly visible with the coarsest discretization. Indeed, for 7 = 0.1 we observe that the
accuracy of Algorithm 3 with r = 2 is superior to r = 1. After time-step refinement, 7 = 0.05, 0.01, this
difference is negligible and Algorithms 1 and 3 provide very close approximations. These numerical
findings are in agreement with relation (4.4), which shows that Algorithm 3 can be seen as a kinematic
perturbation of Algorithm 1. The size of this perturbation depends on both the extrapolation order r and
the time-step length 7.
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