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Can regional aerial images from orthophoto surveys produce high quality 2 

height model in forest context? A single tree approach in Western Europe  3 
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Abstract: 11 

Forest monitoring tools are needed to promote effective and data driven forest management and 12 

forest policies. Remote sensing techniques can increase the speed and the cost‐efficiency of the 13 

forest monitoring as well as large scale mapping of forest attribute (wall‐to‐wall approach). Digital 14 

Aerial Photogrammetry (DAP) is a common cost‐effective alternative to airborne laser scanning (ALS) 15 

which can be based on aerial photos routinely acquired for general base maps. DAP based on such 16 

pre‐existing dataset can be a cost effective source of large scale 3D data. In the context of forest 17 

characterization, when a quality Digital Terrain Model (DTM) is available, DAP can produce 18 

photogrammetric Canopy Height Model (pCHM) which describes the tree canopy height. While this 19 

potential seems pretty obvious, few studies have investigated the quality of regional pCHM based on 20 

aerial stereo images acquired by standard official aerial surveys. Our study proposes to evaluate the 21 

quality of pCHM individual tree height estimates based on raw images acquired following such 22 

protocol using a reference filed‐measured tree height database. To further ensure the replicability of 23 

the approach, the pCHM tree height estimates benchmarking only relied on public forest inventory 24 

(FI) information and the photogrammetric protocol was based on low‐cost and widely used 25 

photogrammetric software. Moreover, our study investigates the relationship between the pCHM 26 

tree height estimates based on the neighboring forest parameter provided by the FI program. 27 

Our results highlight the good agreement of tree height estimates provided by pCHM using DAP with 28 

both field measured and ALS tree height data. In terms of tree height modeling, our pCHM approach 29 

reached similar results than the same modeling strategy applied to ALS tree height estimates. Our 30 

study also identified some of the drivers of the pCHM tree height estimate error and found forest 31 

parameters like tree size (diameter at breast height) and tree type (evergreenness/deciduousness) as 32 

well as the terrain topography (slope) to be of higher importance than image survey parameters like 33 

the variation of the overlap or the sunlight condition in our dataset. In combination with the pCHM 34 

tree height estimate, the terrain slope, the DBH and the evergreenness factor were used to fit a 35 

multivariate model predicting the field measured tree height. This model presented better 36 

performance than the model linking the pCHM estimates to the field tree height estimates in terms 37 

of r² (0.90 VS 0.87) and RMSE (1.78 VS 2.01 m). Such aspects are poorly addressed in literature and 38 

further research should focus on how pCHM approaches could integrate them to improve forest 39 

characterization using DAP and pCHM. Our promising results can be used to encourage the use of 40 
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regional aerial orthophoto surveys archive to produce large scale quality tree height data at very low 41 

additional costs, notably in the context of updating national forest inventory programs. 42 
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1. Introduction 46 

Forests cover almost a third of global land area (Keenan et al., 2015). They provide numerous 47 

ecosystem services and are of major importance in public policies worldwide. Monitoring tools, like 48 

forest inventories (FI), are regularly set up on national scale in order to promote knowledge‐based 49 

forest management and policies. On such scale, a complete censing of all trees is prohibitively 50 

expensive and subsequently, FI must rely on sample‐based approach. In this context, remote sensing 51 

techniques can increase the speed and the cost‐efficiency of the field operation while increasing the 52 

precision and timeliness of estimates (McRoberts and Tomppo, 2007). Remote sensing can also 53 

facilitate the construction of ‘wall‐to‐wall’ maps of forest attributes covering entire countries. 54 

Since the late 90’s, airborne LiDAR point clouds (or Airborne Laser Scanning, ALS) have become the 55 

state‐of‐art remote sensing technique to characterize the 3D structure of forest (Michez et al., 2016). 56 

ALS forest characterization approaches have been in the focus of research for two decades and are 57 

now an important component of operational large‐scale FI (Næsset, 2014). As ALS surveys remain 58 

expensive, there is a need for alternative technology like Digital Aerial Photogrammetry (DAP). Aerial 59 

photography is the traditional source of information for forest characterization which has been 60 

completed by satellite imagery since the 80’s and by 3D point clouds since the late 90’s. The 61 

development of DAP renewed the interest for the use of aerial imagery in forest monitoring which 62 

has tended to fade in the late 1990s with the advent of ALS. In the context of forest characterization, 63 

when a quality Digital Terrain Model (DTM) is available, DAP can produce photogrammetric Canopy 64 

Height Model (pCHM) which describes the tree canopy height. Leberl et al. (2010) identified 4 main 65 

innovations which eased the implementation of DAP: cost‐free increase of overlap between digitally 66 

sensed images, an improved radiometry, the development of multi‐view matching algorithm and the 67 

ability to run the process on Graphics Processing Unit (GPU). These innovations have made DAP 68 

workflows very practical and automated, potentially reaching sub‐pixel 3D total accuracy. DAP is a 69 

cost‐effective alternative to ALS, reducing the cost of the survey to one half to one third (Leberl et al., 70 

2010; White et al., 2013) while it presents similarities with ALS in terms of data structure (i.e. point 71 

clouds). Nevertheless, the most important difference from ALS is that DAP is limited to characterizing 72 

the outer canopy envelope while ALS provides precious information about the sub canopy layers. 73 

DAP can be processed from aerial photos routinely acquired for general base maps updates as 74 

highlighted by Ginzler and Hobi (2015). As such systematic surveys (ALS and aerial photos) are more 75 

and more carried out in many European and North‐American countries, DAP could be used to 76 

produce 3D data on a national scale at little or no additional cost.  77 

DAP and associated pCHM are subject to inaccuracies with specific spatio‐temporal patterns which 78 

can thus induce additional intra‐variability among large‐scale surveys. They can be related with the 79 

weather condition and the sun position during the survey (Rahlf et al., 2017), the flight plan and the 80 

overlap between images (Zimmermann and Hoffmann, 2017), the terrain complexity as well as the 81 

characteristics of the studied forest itself (Goodbody et al., 2019). For example, DAP globally fails to 82 

reconstruct the canopy of deciduous forest under leaf‐off conditions (Huang et al., 2019) but highly 83 

heterogeneous forest structure can also challenge the DAP 3D reconstruction, notably in relation 84 

with the fine‐tuning of the reconstruction parameters (Ginzler and Hobi, 2015). Numerous studies 85 

(see Goodbody et al. (2019) for a complete review on the subject) have used DAP to describe forest 86 

structure. Most of these studies are using an area based approach (ABA) to characterize forest 87 

structure (timber volume, dominant height, basal area, etc.) of boreal forests (mainly from Canada 88 



and Northern Europe). In the context of area based forest inventory, Goodbody et al. (2019) found 89 

that “attribute predictions generated using DAP data in an ABA have been found to be of comparable 90 

accuracy to that of ALS data across a range of forest environments, although inventory attribute 91 

predictions made using ALS data are consistently more accurate”.  From a practical point of view, 92 

DAP and pCHM can thus be used to timely update regional forest 3D structure as aerial images are 93 

generally acquired on a regular basis by national or regional mapping agencies. This interest is 94 

reinforced as countrywide ALS surveys providing accurate DTMs are occurring more and more 95 

frequently throughout the world. Another major interest of using DAP approaches based on stereo‐96 

images acquired during regular national campaigns is to value potentially very dense time series 97 

which can cover time period which may cover periods prior to the acquisition of data ALS.  98 

While the potential of using pCHM build with aerial images regularly acquired by national or regional 99 

mapping agencies seems pretty obvious, few studies have investigated the quality of such 100 

regional/countrywide pCHM, especially on the single tree scale. Evaluating the 3D accuracy of DAP 101 

derived from such regional/national aerial survey is nevertheless an essential topic as such surveys 102 

are generally not designed to produced high density 3D point clouds but only orhtophotomosaics 103 

which typically require less overlap. In this context, Ginzler and Hobi (2015) re‐used national aerial 104 

surveys to produce countrywide (41285 km²) photogrammetric Digital Surface Model (DSM) and 105 

pCHM in Switzerland. They assessed the accuracy of the DSM with topographic field observations as 106 

well as the quality of the individual tree height estimates based on field measurements (3109 trees). 107 

While they achieved very good results in terms of 3D accuracy of the DSM (sub‐metric accuracies), 108 

their result in terms of individual tree height estimates were of lower accuracy than those commonly 109 

found with ALS CHM (r² = 0.69). On smaller spatial extent, Zimmermann and Hoffmann (2017) and 110 

Hirschmugl et al. (2007) achieved better tree height estimates than Ginzler and Hobi (2015) but on a 111 

smaller reference trees set (respectively 51 and 356 trees) even if the lack of harmonized accuracy 112 

metrics hampers real accuracy benchmarking. None of the pre‐cited studies investigated the 113 

relationship between pCHM error at single tree level and the forest characteristics around the 114 

considered trees (e.g., stem density, volume, basal area, canopy roughness). 115 

In this context, we propose to evaluate the accuracy of individual tree height estimates provided by 116 

pCHM build using aerial images acquired in the specific context of countrywide orthophoto survey 117 

protocols. To further ensure the replicability of the approach, the pCHM tree height estimates 118 

benchmarking only relied on public FI information and the photogrammetric protocol was based on 119 

low‐cost and widely used photogrammetric software. Moreover, our study investigates the 120 

relationship between the pCHM tree height estimates based on the neighboring forest parameter 121 

provided by the FI program in a European temperate forest context. 122 

2. Material and Methods 123 

2.1. Study site 124 

The study site covers the southern region of Belgium, Wallonia (16,902 km²), representing ca.  55 % 125 

of Belgium’s area. Wallonia presents contrasted landscapes and can be divided in five natural 126 

ecoregions. Forest landscapes cover one third of the study area (5,546 km²). Broad‐leaved forests are 127 

more frequent than needle‐leaved forest (ca. 57% VS 43%). They are largely dominated by beech 128 



(Fagus sylvatica) and oaks (Quercus robur and Q. petraea) but other species such as birch (Betula 129 

pendula), maple (Acer pseudoplatanus), ash (Fraxinus excelsior), and hornbeam (Carpinus betulus) 130 

are also regularly found. Needle‐leaved forests are largely composed of spruce (Picea abies) and 131 

Douglas fir (Pseudotsuga menziesii) and to a lesser extent, larches (Larix sp.) and pines (Pinus 132 

sylvestris and P. nigra). The evergreen stands are mostly managed as even‐aged stands and 133 

harvested by the means of clear‐cuts (Alderweireld et al., 2015). 134 

2.2. Aerial surveys 135 

The regional orthophoto surveys in the study area are achieved by private operators on a regular 136 

basis, notably for the sake of controls related to European Union common agricultural policy. They 137 

were initially acquired on a triennial basis and since 2015, on an annual basis. The timetable of the 138 

regional surveys is driven by the objectives stated above and typically ranges from April to October 139 

(Table 1). Such timetable can indeed lead to the acquisition of aerial images of deciduous forest in 140 

leaf‐off condition. Since the 2009 survey, the targeted Ground Sampling Distance (GSD) is 0.25m in 141 

order to allow the photointerpretation of fine landscape features. The entire time series was 142 

acquired using Vexcel UltraCam Imaging Sensors (https://www.vexcel‐imaging.com/) based on flight 143 

plan using 60% along‐track and 30% across‐track overlaps. Such large frame sensors present low lens 144 

distortion and provide a multispectral imagery covering the Red, Blue, Green and Near‐Infrared 145 

spectral ranges. 146 

We also used a regional LiDAR survey performed from 12 December 2012 to 09 March 2014. This 147 

LiDAR survey was used as a Digital Terrain Model (1m GSD) to compute the pCHMs (photo. DSMs ‐ 148 

ALS DTM) as well an ALS CHM (1m GSD, ALS DSM ‐ ALS DTM) to benchmark the 5 pCHMs in terms of 149 

single tree height estimates. 150 

Table 1: essential aerial survey parameters of regional orthophoto coverage. 151 

Survey 

reference 
Images GSD (m) Start End 

2006 4532 0.5 10/06/2006 22/04/2007 

2009 7070 0.25 23/05/2009 7/07/2010 

2012 6501 0.25 14/05/2012 8/07/2013 

2015 8208 0.25 9/04/2015 17/06/2015 

2016 8358 0.25 10/06/2016 1/11/2016 

2.3. Regional Digital Surface Model 152 

2.3.1. Photogrammetric reconstruction 153 

We used Agisoft Metashape 1.5.4 in network mode for all the photogrammetric reconstruction steps 154 

synthetized in Figure 1. Agisoft is one of the most used photogrammetric packages using a multiview 155 

matching strategy (Smith et al., 2016). It also allows to handle large images (200 Mpx and more) 156 

generated by large frame sensors like the UltraCam in an easy to set up network processing 157 

interface. We choose this software for its relatively user friendly GUI as well as its rather low cost (ca. 158 

549 $ for educational license and 3500 $ for commercial license) compared to other state‐of‐art 159 



photogrammetric package like Trimble Inpho or Imagine Photogrammetry (LPS). These 160 

characteristics will ease the reproducibility of the methodology.  161 

We set up a processing network of 3 to 5 (depending on the resources available) computers 162 

equipped with GPU processing (NVidia GTX) and 64 Go RAM. The very same photogrammetric 163 

protocol was applied to process the raw images of the different regional orthophoto coverages. 164 

Based on the GPS positions (metric coordinates system “Lambert 72”, EPSG: 31370) and the camera 165 

calibration information delivered by the service provider, we realized the tie point extraction in full 166 

resolution using the “High” accuracy parameter, “Key points limit” and “Tie point limit” set to 40000 167 

and 4000 respectively. To avoid overfitting, we followed the recommendations of James et al. (2017) 168 

and used a rather conservative lens calibration strategy. The following lens calibration parameters 169 

remained fixed: b1b2 (affinity and skew transformation coefficients), k4 and p3/p4 (additional 170 

tangential and radial distortion coefficients). This lens calibration strategy was pursuit during the 171 

entire photogrammetric processing. This first alignment process resulted in a first 3D reconstruction 172 

(sparse point cloud) based on an initial bundle block adjustment (BA) as highlighted in Figure 1‐1.  173 

Based on this initial result, ground control points (GCP) were easily located on raw images thanks to 174 

the pre‐positionning performed by the software. Two types of GCP were used to ensure and evaluate 175 

the quality of the photogrammetric reconstruction. A first set of GCP is based on a set of GCP 176 

network installed by the service provider who produced the orthophoto coverage for the 2012 177 

survey. This network is made of 89 black and white circular marks (0.6 m radius) on the ground which 178 

can be easily located on the aerial images. All these points were accurately georeferenced on the 179 

ground using precision GPS (Figure 3‐I). As this network was not available for the entire time series 180 

(2006 and 2009 surveys), we used a dense network (1088 units, Figure 3‐II) of reference ground 181 

marked points provided by the National Geographic Institute which consists of various particular 182 

points which can be seen on aerial images and have precisely been georeferenced on the ground 183 

with precision GPS (pedestrian crossing, change in road color, ...). The total GCP network represents 184 

an important reference dataset covering the entire study area (Figure 3‐I and Figure 3‐II).  185 

The accuracy assessment process is based on a cross‐validation using repeated k‐fold technique (k=5, 186 

repetition = 50) implemented in Agisoft Metashape through python scripting. For each of the 50 187 

iterations, the GCP dataset is randomly divided into five folds of GCP and five BA processes are 188 

successively run (Figure 2). Each BA process is run based on a set of GCP from one fold as checkpoint 189 

(not used in the process, i.e. test set), the other GCP (associated to the 4 other folds) being used as 190 

control points (to constrain the BA process, i.e. training set). The XYZ errors associated with the GCP 191 

from the test fold are saved and another BA is run, using GCP’s from one other fold as checkpoints. 192 

Once all the GCP’s from the k folds have been successively used as checkpoints (and thus as 193 

independent test set), the entire process is repeated over 50 times to ensure the robustness of the 194 

cross‐validation. Indeed, all the GCPs of the network are used to assess the 3D accuracy of the 3D 195 

reconstruction with 50 different neighboring conditions. As the accuracy of the 3D model is 196 

subsequently evaluated 50 times for each GCP, the XYZ error values were aggregated by mean. The 197 

quality of the photogrammetric DSMs was finally assessed through box‐and‐whisker plots as they 198 

allow to investigating the accuracy (i.e. mean/median error) and the precision (i.e. the deviation of 199 

error) as promoted in the guidelines proposed by James et al. (2019). The evenly spatial distribution 200 

and the high density of the GCP network (1 GCP / 15 km²) allow avoiding the sampling of a test set of 201 

checkpoints within the GCP network and subsequently testing the entire network of ground control 202 



points. Once the accuracy assessment has been completed, all the GCP were used to run the final BA 203 

process (Figure 1‐2) with the GCP accuracy set to 0.01m in the Agisoft interface. 204 

The dense matching process was run using aggregated images (aggregation factor of 2, half 205 

resolution) as a compromise between spatial resolution and computing time. The “Aggressive” depth 206 

filtering strategy was selected to limit the noise in the dense cloud. The final output is a DSM 207 

(“Interpolation” enabled) which results in 5 regional DSM in raster format (Figure 1‐4, 1m GSD for the 208 

2006 and 0.5m for the other). 209 

   210 

Figure 1: main steps of the photogrammetric workflow implemented in Agisoft Metashape. Data/Input are represented 211 
in solid white box, processes are in grey boxes and results are bolded, italicized and numbered from (1) to (4). 212 

 213 



  214 

Figure 2: k-fold process applied to assess the 3D accuracy associated with the GCP set. GCPs from the light grey folds are 215 
used as control points (training set), GCPs from dark greyed fold are use as checkpoints (test set). This process was 216 

repeated 50 times with error being aggregated by mean. 217 
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 221 

 222 

Figure 3: field reference data used in the different accuracy assessments of the study: I. black and white circular marks 223 
GCP (89), II. GCP from reference marked points provided by the National Geographic Institute (1088), III. forest inventory 224 

plots (610) used to complete an individual tree height reference database. 225 

  226 



2.4. Regional photo Canopy Height Model (pCHM) 227 

2.4.1. pCHM Processing 228 

The regional photogrammetric DSMs were combined with a regional ALS Digital Terrain Model 229 

(photogrammetric DSM ‐ ALS DTM) resampled according to the resolution of the DSM. As the ALS 230 

survey occurred from 12 December 2012 to 09 March 2014 (see 2.2 section), we considered the 231 

topography as constant during the entire study period. As our study is dedicated to trees located 232 

inside forest landscapes, this assumption is reasonable considering the low erosion rate in forested 233 

landscape as well as the infrequency in the study area of catastrophic events (e.g. landslide or 234 

earthquakes).  235 

2.4.2. Accuracy assessment of tree height estimates from pCHM 236 

A selection of field reference plots from the regional FI program was performed using temporal and 237 

spatial criteria. The FI plots collect various parameters such as tree height, diameter above breast 238 

height (DBH), tree species, health condition, etc. The measurements of tree height were performed 239 

with a vertex ultrasound instrument. Measured trees are spatially located using azimuth and distance 240 

relative to the plot center which is georeferenced with off‐the‐shelf GNSS receivers. In terms of 241 

absolute positioning accuracy, a study conducted in a similar context in France (Monnet and Mermin, 242 

2014) shows that such GNSS gives a plot positioning accuracy of 9 m (± 8.7 m). The field sampling is 243 

designed to cover the study area on a yearly basis. The ongoing inventory (second cycle) is a single‐244 

phase, non‐stratified inventory using a systematic sampling design based on plots located at the 245 

intersections of a 1000 m (east‐west) × 500 m (north‐south) grid with 11 000 sampling plots located 246 

in the forest. Each year 10 % of all plots are assessed. They are selected on a systematic basis to be 247 

evenly distributed throughout the region. Sampling plots is composed of concentric circular plots 248 

with radius from 4.5m to 18m depending of the dbh class of the trees (Alderweireld et al., 2016). 249 

More information about the Walloon FI protocol can be found online (http://iprfw.spw.wallonie.be). 250 

For every aerial survey, we selected field plots which were measured in the same vegetative year 251 

(considering the growing cycle from April to October) in order to minimize errors linked to tree 252 

growth and tree removal. The relative position of the individual trees was converted to absolute ones 253 

based on the GPS XY position of the plot center. As the plot centers are located using low‐quality 254 

GNSS receivers, relocation of the field plot was performed in QGIS 3.0 software (QGIS Delopment 255 

Team, 2020) by a trained operator. Using reference GIS layers (orthophoto based on photo. DSM and 256 

pCHM time series), the operator looked for the best XY shift and applied it to the entire trees of the 257 

FI plot. As the tree XY positions are relative to the stem position (at breast height) and not to tree 258 

tops, we used the method developed by Eysn et al. (2015). Their approach performs XY and height 259 

matching with local maxima detected in the associated pCHM by the tree_detection() function (lmf 260 

algorithm, adaptive moving windows based on tree height) of the lidR R package (Roussel and Auty, 261 

2019). This approach allows identifying trees from the upper canopy envelope as this information is 262 

not recorded during the field measurements of the FI. This results in a database of 1850 reference 263 

individual trees (Table 2) from 489 FI plots presenting an evenly spatial distribution in the study area. 264 

To avoid 3D reconstruction issues linked to (partial) leaf‐off conditions, FI plots were selected only 265 

when they were in leaf‐on condition during the associated aerial survey. In even‐aged forests (mainly 266 

spruce and Douglas fir), the field survey of the tree height is limited to few individuals in order to 267 



compute the dominant height. As the evergreen forests are mainly managed as even‐aged stands, 268 

they occur in a rather low proportion in the reference tree database as compared to deciduous trees.  269 

We performed the same matching between field measured tree heights from FI plots and tree height 270 

estimates extracted from the ALS CHM. This database was composed of 1579 trees from 260 FI plots 271 

(1144 deciduous, 435 evergreen). The Figure 3‐III represents the FI plots network used in this study. 272 

In order to test the reliability of tree height information provided by pCHM, we performed linear 273 

modelling between field measured tree height (from the reference tree database) and tree height 274 

estimates from local maxima of the 5 different pCHM’s. We applied a similar method with ALS 275 

reference dataset to benchmark tree estimates provided by the pCHM with a reference tree height 276 

remote sensing data source. 277 

 278 

Table 2: reference tree dataset used to assess the accuracy of tree height estimates based on pCHM 279 

Reference 

year  

(aerial 

survey) 

Reference tree 

Total Evergreen Deciduous 

2006 95 23 72 

2009 380 63 317 

2012 510 185 325 

2015 246 152 94 

2016 619 174 445 

Total 1850 597 1253 

2.4.3. Drivers of the pCHM tree height estimates error 280 

To investigate the robustness of the pCHM tree height estimates, we compared the impact of various 281 

parameters suspected to have an impact on the 3D reconstruction uncertainties or the tree height 282 

estimate itself (see Table 3). Some parameters are assessed at the scale of the individual tree, others 283 

at the forest inventory plot scale. The mean solar angle of the aerial images is a good proxy for the 284 

light conditions during the surveys. Lower values can be associated to more important cast 285 

shadowing and higher reconstruction uncertainties. The time difference between the aerial images 286 

could also highlight artificial heterogeneity between the aerial images and hamper the 287 

photogrammetric reconstruction. The number of overlapping images used for the photogrammetric 288 

reconstruction is positively linked to the quality of the 3D reconstruction. As the 60% along‐tracks 289 

and 30% across‐track overlap scheme induces varying image overlap condition, the number of 290 

images used to reconstruct the forest canopy of the FI plot is an interesting parameter. The 291 

uncertainties of the 3D photogrammetric reconstruction of tree canopy can also be linked to the 292 

characteristic of the tree itself as well as its environment. The forest species and its evergreenness 293 

were investigated as well as forest structure. Forest structure was here investigated in terms of stem 294 

densities and tree size within the FI plot with the basal area. The relative DBH allows addressing the 295 

size of the considered tree in relation with the size of the biggest trees in the FI plot (i.e. proxy of the 296 

social status). Lastly, the terrain slope and altitude is also investigated as they can have a significant 297 

impact on the 3D reconstruction but also on the accuracy of the ALS DTM itself. 298 



To evaluate the significance of the linear relationship between the selected parameters and the tree 299 

height absolute differences (abs( field tree height - pCHM tree height )), we used one‐way analysis of 300 

variance, (ANOVA) for qualitative factors, and linear regressions for quantitative factors. 301 

We ran a best subset regression approach to build a multivariate linear model with the variables 302 

previously highlighted using the regsubsets tools from the leaps package in R (Miller, 2017). We used 303 

best subsets regression to fit all potential models of pCHM tree height estimate absolute error in 304 

order to highlight the best combination of predictors (using bayesian information criterion, BIC) 305 

Finally, we ran a second best subsets regression to test the potential of the highlighted parameters 306 

from Table 3 to improve the tree height estimates with pCHM’s data (using BIC). 307 

 308 

Table 3: parameters and associated explanatory variables used to assess the robustness of tree height from pCHM. The 309 
relative diameter is the ratio of the DBH of tree (DBHtree) and the mean DBH of the 100 biggest trees / acre (dominant 310 

DBH, DBHdominant) for the FI plot. 311 

Parameter Symbol 
Explanatory 

variable 
Rationale Scale 

Type of 

parameter 

Sun angle 

during aerial 

image survey 

��������  

Mean sun azimuth 

of aerial images 

overlapping  

(angular degree) 

Low solar angle induces cast 

shadow 

FI 

plot 

Image 

survey 

Overlapping 

images 
	
������. 

Number of images 

overlapping 

Higher overlaps improves 3D 

reconstruction quality 

FI 

plot 

Image 

survey 

Time difference �������  

Max time 

difference between 

the survey of the 

aerial images (day) 

Noise induced by varying 

phenological states 

FI 

plot 

Image 

survey 

Aerial survey ���������  

Reference year of 

the associated 

pCHM 

Test differences among 

aerial surveys 

FI 

plot 

Image 

survey 

Basal area ��������  Basal area (m²/Ha) 

Forest structure is linked to 

3D reconstruction 

uncertainty 

FI 

plot 
Forest 

Stem density ��������  
Number of stem by 

hectare 

FI 

plot 
Forest 

Canopy 

roughness 
 ��!�"�#$�%. 

Variation 

Coefficient of 

associated pCHM 

(%) 

FI 

plot 
Forest 

Stem diameter 

at breast height 
&�'  DBH (cm) 

Impact of tree size or species 

characteristics 
Tree Forest 

Relative 

diameter 
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3. Results 314 

3.1. Accuracy assessment 315 

The cross‐validation process of the photogrammetric reconstruction highlights very low mean X, Y 316 

and Z error values associated with the 3D model of the aerial surveys (Figure 4‐I., II., III.). The XYZ 317 

error (Figure 4‐IV.) which is the root mean square of the X, Y and Z error is quite higher (ca. 0.7 m) 318 

but remains acceptable for all the surveys. It is worth mentioning that such low error values are 319 

associated to the 3D reconstruction of simple surfaces situated in homogeneous topography (mostly 320 

roads). The 3D reconstruction uncertainties are expected to be higher when the algorithms have to 321 

deal with complex surfaces like tree canopies.  322 

 323 

Figure 4: boxplot of the X, Y, Z and XYZ error resulting from the cross validation process. The XYZ error is the root mean 324 
square error of the 3 error components. 325 

The accuracy assessment of the tree height models highlights that the pCHM tree height estimates 326 

agreed well with the field tree height estimates (Figure 5). The r² values ranges from 0.84 to 0.88 327 

with RMSE values ranging from 1.91 to 2.08 m. A global model fitted regardless the aerial survey (not 328 

plotted in Figure 5) on the pCHM and the FI tree height estimates reached similar performance with 329 

r² value of 0.87 and a RMSE of 2.01 m. The quality of the pCHM tree height linear models is in line 330 

with the quality reached by the ALS CHM using the same approach (r²=0.86; RMSE=1.96 m). The 331 

Table 4 gathers the results of the same modelling approach considering the deciduous and the 332 

evergreen species separately. Compared to deciduous species, the r² of the models fitted with 333 



evergreen species are higher (from 0.83 to 0.95) and the associated RMSE present lower values (from 334 

1.4 to 1.7 m). 335 

Our results also highlight a clear underestimation of the tree height by pCHM. The same trend is 336 

observed to a lesser extent for tree height based on ALS CHM. The mean tree height estimate error 337 

(FI tree height ‐ pCHM tree height) ranges from 1.66 to 2.25 m for the pCHM estimates and 0.54 m 338 

for the ALS CHM. The mean tree height estimate error is higher for the evergreen species as it ranges 339 

from 2.5 to 3 m while it ranges from 0.92 to 2.02 m for deciduous species. The same trend can be 340 

observed in the ALS models but again with lower mean error values (< 1 m). 341 

 342 



  343 

Figure 5: biplots of tree height estimates from pCHM’s and ALS CHM in comparison with FI tree height estimates. 344 

Deciduous and evergreen trees are marked using “ + “ and “ . ” symbols respectively. The mean error (err. ) is computed 345 
from the difference between the reference tree height (from FI) and the tree height estimates (provided by pCHM or ALS 346 

CHM). 347 



  348 

Table 4: tree height estimates with pCHM and ALS CHM compared to tree estimates from FI. 349 

Aerial survey 

Evergreen Deciduous 

r² 
RMSE 

(residuals) 

Mean error 

(y‐x, m) 
r² 

RMSE 

(residuals) 

Mean error 

(y‐x, m) 

2006 0.83 1.68 3 0.83 2.17 2.02 

2009 0.92 1.67 2.92 0.87 1.92 1.68 

2012 0.91 1.72 2.52 0.83 2.03 1.4 

ALS CHM 0.92 1.6 0.6 0.82 2.07 0.52 

2015 0.93 1.43 3.05 0.88 1.92 0.92 

2016 0.95 1.51 2.76 0.86 2.08 1.23 

All photo  

surveys 
0.93 1.59 2.78 0.87 2.01 1.85 

3.2. Drivers of the pCHM tree height estimates error 350 

Among the 13 potential parameters listed in Table 3, our analysis highlighted 8 variables which 351 

present a significant statistical link with the absolute error of the pCHM height estimates (Table 5). 352 

Except the basal area and the number of trees in the FI plots, all the forest parameters were selected 353 

as well as the topographic parameters (slope and altitude). In terms of correlation, the slope is the 354 

only parameter which presents a negative correlation coefficient with the pCHM absolute error. 355 

The reference year of the aerial survey is the only image parameter which was highlighted by our 356 

analysis. As the number of levels in the factor is rather low for this variable, we ran a Tukey Honest 357 

Significant Differences implemented in the TukeyHSD function in the R basic package. This test 358 

highlighted that only the observations from the aerial surveys 2015 and 2016 were significantly 359 

different (p‐value = 0.011). 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 



Table 5: parameters and associated explanatory variables used to assess the robustness of tree height from pCHM. For 370 
linear model, AH0 (acceptation of null hypothesis) stands for no relationship among the variables and for ANOVA 371 

models, AH0 implies equality of means between the groups. 372 

Symbol Model Results DAP 

��������  
Linear 

regression 

AH0 

(p = 0.65) 

	
������. 
Linear 

regression 

AH0 

(p = 0.12) 

�������  
Linear 

regression 

AH0 

(p = 0.38) 

���������  ANOVA 
RH0 

(p = 0.004) 

��������  
Linear 

regression 

AH0 

(p = 0.11) 

��������  
Linear 

regression 

AH0 

(p = 0.55) 

 ��!�"�#$�%. 
Linear 

regression 

RH0 

(p = 0.020; r = 0.05) 

&�'(�$�/  
Linear 

regression 

RH0 

(p < 0.001; r = 0.09) 

&�'���  
Linear 

regression 

RH0 

(p < 0.001 ; 0.13) 

���*���(���  ANOVA 
RH0 

(p < 0.001) 

+
��,���� ANOVA 
RH0 

(p < 0.001) 

-����.� 
Linear 

regression 

RH0 

(p < 0.001; r = 0.11) 

�!�� 
Linear 

regression 

RH0 

(p < 0.001; r = -0.08) 

 373 

Within the set of variables which were proved to have a significant statistical relationship with the 374 

pCHM tree height absolute error, we removed the reference year and the tree species factorial 375 

variables before running the best subset regression process. This choice was made in order to ease 376 

the interpretation (the ���*���(���  factor presents 29 levels in our dataset) and the replication of the 377 

fitted pCHM error model. Indeed, the aerial survey reference gathers a bunch of environmental 378 

parameters at the time of the flight survey (lights conditions, phenology …) with a rather low interest 379 

for understanding the drivers of the pCHM tree height estimates error. 380 

The best subsets regression model selected following the BIC a model with 2 variables: the DBH and 381 

the evergreenness factor to predict pCHM tree height estimate error. This model presents a rather 382 

low r² score (0.10) and a RMSE of 1.3 m.  383 

Finally, we used the same initial set of variables used to fit the pCHM tree height estimate error 384 

model to evaluate their potential income in terms of accuracy improvement of a global model linking 385 

the tree height estimates provided with pCHM data (all pCHM used) and the FI tree height estimates. 386 

The best subsets regression model selected following the BIC a model with 4 variables to predict the 387 

field measured tree height: the pCHM tree height, the DBH, the evergreenness factor and the terrain 388 

slope. This model is significantly different (ANOVA test, p‐value < 0.001) of the linear model linking 389 

pCHM tree height and field measured tree height. It presents a slightly higher r² score (0.90 VS 0.87) 390 



and a smaller RMSE (1.78 VS 2.01 m). Therefore, the use of these variables in a multiple linear model 391 

improved the tree height estimate based on pCHM. 392 

4. Discussion 393 

4.1. Accuracy of tree height estimates with pCHM 394 

The good agreement between the pCHM and field tree height estimates was clearly highlighted by 395 

the fitted linear models. They reached similar performance than ALS tree height estimates model. 396 

Globally, pCHM and ALS CHM underestimate the field measured tree height estimate (see Table 4). 397 

This was commonly found in literature by various authors like Heurich et al. (2004). Nevertheless, the 398 

ALS tree height estimate remains more accurate with mean signed error (field height ‐ CHM height) 399 

being submetric (0.54) while pCHM mean signed error being more than three times higher (1.85 m 400 

for all pCHM).  401 

While the mean difference between pCHM and field tree height estimates is more important for 402 

evergreen species than for deciduous ones, the performance of the model fitted with evergreen tree 403 

species is better with r² values above 0.9 and model RMSE below 2 m. On one hand, the larger 404 

difference between pCHM and field tree height estimates for evergreen species can be associated to 405 

their higher mean height in the study area. On the other hand, the better model performance is 406 

probably related to their simpler canopy structure. These results are in line with a lot of studies 407 

having compared the single tree height modeling with CHM (pCHM or ALS CHM) as Ginzler and Hobi 408 

(2015) for a pCHM case study. 409 

It is worth noting that the 2006 survey presents similar results but with slightly lower model 410 

performance and higher mean error values. These results are probably directly linked to the lower 411 

spatial resolution of the pCHM (1 m GSD) even if our study design does not permit to further proof it. 412 

Our results are in line with those obtained with pCHM approaches at a smaller study area extents by 413 

Zimmermann and Hoffmann (2017) or Hirschmugl et al. (2007) even if the lack of harmonized 414 

accuracy metrics hampers real accuracy benchmarking. The most similar case studies found in 415 

literature is from Ginzler and Hobi (2015) who fitted with pCHM a tree height estimate model based 416 

on 3109 field measured trees with r² of 0.68. Our slightly better results in terms of 417 

accuracy/performance can be linked to the geographical context (mountainous complex landscapes 418 

VS lowlands / low mountain landscapes) and the tree top position extraction algorithm (fixed buffer 419 

around ground GPS position VS matched position with local maxima) or even the image matching 420 

strategy (stereo matching VS multiview matching).  421 

4.2. Drivers of the pCHM tree height estimates error 422 

Our results in Table 5 highlight the significant impact of all the forest parameters except the basal 423 

area and the number of trees in the FI plots. This draws attention on a subject poorly addressed in 424 

literature: the relationship between forest structure and DAP products quality at the single tree 425 

scale. If the impact of leaf abundance is well addressed in literature (see Huang et al. (2019) for a 426 

recent case study), our results in Table 5 draw attention on parameters which should be addressed 427 

by researchers: the canopy roughness, the tree size (both absolute and relative to its neighbors), the 428 



tree species, the deciduousness/evergreenness as well as the topography (slope and altitude). In our 429 

results, all of the parameters except the slope are positively correlated with the absolute pCHM tree 430 

height estimate error. These results could be synthetized as the bigger the tree is, the bigger the 431 

error of its pCHM height estimate is. The positive correlation between the canopy roughness 432 

(assessed here through the pCHM coefficient of variation in the FI plot) can be interpreted by the 433 

lower ability of DAP to model high slope variation, especially when considering the rather low 434 

overlap of our aerial images dataset (60% along‐track, 30% across‐track) as suggested by Hirschmugl 435 

et al. (2007). The altitude is generally considered as a very good proxy of the ecological gradient in 436 

various studies in the study area (Brogna et al., 2018; Dufrene and Legendre, 1991; Georges et al., 437 

2019). Beside the link with an ecological gradient, the positive correlation with the absolute pCHM 438 

height estimate error can partially be linked to the tendency of evergreen stands to be located in 439 

higher altitude while having a higher height. The negative correlation between the absolute pCHM 440 

height estimate error and the terrain slope is quite counterintuitive a CHM tends to overestimate the 441 

actual tree height (Khosravipour et al., 2015). This overestimation could thus partially counter the 442 

general trend to underestimation by pCHM previously highlighted. Subsequently, the surprisingly 443 

negative correlation is interpreted as a compensation effect.  444 

Among the variables related to the image acquisition, only the reference of the aerial survey was 445 

highlighted by our analysis. The absence of impact of the sun light condition during the survey can be 446 

related to the rather strict conditions asked to the service provider. Our analysis focused on tree tops 447 

from the upper canopy layer, the sun light condition (and associated cast shadows) as well as the 448 

images overlap are expected to be of higher importance for studies dealing with canopy gaps for 449 

example (Hirschmugl et al., 2007) or when working on lower canopy attributes. 450 

Among the parameters underlined in this first analysis, the best subsets regression highlighted the 451 

DBH and the evergreenness factor as the best predictors of the absolute pCHM tree height estimate 452 

error. This result highlights some interesting potential drivers of the pCHM tree height estimate error 453 

but it also highlights that a significant part of its variability was not addressed with these set of 454 

parameters. Nevertheless, the use of the same initial set of variables used to fit a model predicting 455 

the field measured tree height produced interesting results. The use of these additional variables 456 

allows to significantly improving the tree height field measurement model (ANOVA test, p‐value < 457 

0.001) in terms of r² and RMSE.  458 

In our study, we considered the field measured tree height as the reference information for the 459 

benchmarking of the tree height estimate with the pCHM. Nevertheless, tree height estimates on the 460 

ground are both subject to instrumental and measurement errors. As the field height data were 461 

collected using ultrasound equipment which tends to have low instrumental errors (if properly 462 

maintained), the most important potential errors are suspected to occur in the measurement step 463 

itself. Rondeux (1999) highlighted that tree height measurement errors can be considered as 464 

random. They are linked to the shape of the tree and its position, the equipment set‐up or even the 465 

field operator himself. More recently, Wang et al. (2019) highlighted that field measurements tend to 466 

overestimate the height of tall trees but also that this trend was more related to non‐dominant 467 

individuals trees (co‐dominant, intermediate, suppressed). Our study design did not allow the 468 

evaluation of the field measurement error among pCHM tree height estimate error. Nevertheless, 469 

the values of the slope parameter in the different fitted models was close to 1 for the linear models 470 



in Figure 5. This result highlights that the differences between field and pCHM tree height 471 

measurements tend to remain relatively constant across the tree height range in our datasets. 472 

5. Conclusions 473 

Our results allow highlighting the good agreement of tree height estimates provided by pCHM using 474 

DAP with both field measured and ALS tree height data. In terms of tree height modeling, our pCHM 475 

approach reached similar results than the same modeling strategy applied to ALS tree height 476 

estimates. Our results highlight the interest of re‐processing stereo‐images acquired during regular 477 

national campaigns for orthophotomosaics layers production in order to produce regional pCHM. We 478 

tested it at a regional scale (ca. 17,000 km²) using 5 different aerial surveys and a large single tree 479 

and FI plots dataset (ca. 3000 trees from 600 FI plots). Our approach presents a great potential as it 480 

relies on publically and regularly acquired datasets (aerial images and FI data) and could be thus 481 

easily replicated in other countries to build dense time series of pCHM which can even cover time 482 

periods prior the ALS survey when the hypothesis of constancy of topography under forest cover can 483 

be realized. 484 

Our study also identified some of the drivers of the pCHM tree height estimate error and found 485 

forest parameters and the terrain slope to be of higher importance than image survey parameters 486 

like the variation of the overlap or the sunlight condition in our dataset. In combination with the 487 

pCHM tree height estimate; the terrain slope, the DBH and the evergreenness factor were used to fit 488 

a multivariate model predicting the field measured tree height. This model presented better 489 

performance than the model linking the pCHM estimates to the field tree height estimates in terms 490 

of r²  (0.90 VS 0.87) and RMSE (1.78 VS 2.01 m). As the integration of these environmental 491 

parameters is rather straightforward, these results could be further in order to improve forest 492 

attributes prediction based on DAP and pCHM. Such aspects are poorly addressed in literature and 493 

further research should focus on how pCHM approaches could integrate them to improve forest 494 

characterization using DAP and pCHM.  495 

Our promising results can be used to encourage the use of regional aerial orthophoto surveys archive 496 

to produce large scale quality tree height data at very low additional costs, notably in the context of 497 

updating national forest inventory programs. 498 
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