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Abstract. We analyze the qualitative properties and the order of convergence of a splitting
scheme for a class of nonlinear stochastic Schrödinger equations driven by additive Itô noise.
The class of nonlinearities of interest includes nonlocal interaction cubic nonlinearities. We
show that the numerical solution is symplectic and preserves the expected mass for all times.
On top of that, for the convergence analysis, some exponential moment bounds for the exact
and numerical solutions are proved. This enables us to provide strong orders of convergence
as well as orders of convergence in probability and almost surely. Finally, extensive numerical
experiments illustrate the performance of the proposed numerical scheme.
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1. Introduction

Deterministic Schrödinger equations are widely used within physics, plasma physics or
nonlinear optics, see for instance [43, 1, 12, 34]. In certain physical situations it may be
appropriate to incorporate some randomness into the model. One possibility is to add a
driving random force and obtain a stochastic partial differential equation (SPDE) of the form

i
Bu

Bt
px, tq “ ∆upx, tq ` F px, uq ` ξpx, tq,

considered for x P Td, the d-dimensional torus, with periodic boundary conditions. The
nonlinearity F and the white noise ξ are described in details below. See Equation (1) for
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the formulation of this problem as a stochastic evolution equation. See for example [35, 24,
21, 20, 23] and references therein for further details and applications. The nonlinearities
we shall consider encompass for instance the case of an external potential or of a nonlocal
interaction cubic nonlinearity. Such long-range interaction is defined as the convolution of an
interaction kernel with the density function |u|2 and is a smooth version of the Schrödinger–
Poisson equation. Such nonlinearities are used in modeling deterministic problems arising
in quantum physics, chemistry, materials sciences, and biology [5, 8]. However, the case of
power-law nonlinearities cannot be treated by the techniques employed in this paper.

Let us now review the relevant literature on temporal discretizations of stochastic Schrödinger
equations driven by an Itô noise. In [23], a Crank–Nicolson scheme is studied for the stochas-
tic Schrödinger equation with regular coefficients. First order of convergence, resp. rate one
half is obtained in the case of additive noise, resp. multiplicative Itô noise. In addition, con-
vergence in probability as well as almost-surely are studied for the case of a power-law nonlin-
earity. Observe that the numerical scheme from [23] is implicit. The references [25, 6] present
thorough numerical simulations and numerically study the effect of noise in the stochastic
Schrödinger equation with a power-law nonlinearity. The work [29] provides a strong con-
vergence analysis of a splitting strategy to the variational solution of Schrödinger’s equation
with regular coefficients. The recent article [3] proves strong convergence of an exponential
integrator for stochastic Schrödinger equations with regular coefficients. In addition, longtime
behaviors of the numerical solutions of a linear model is investigated. The paper [32] pro-
vides a convergence rate of the weak error under noise discretizations of some Schrödinger’s
equations. Finally, the work [33] shows convergence in probability of a stochastic (implicit)
symplectic scheme for stochastic nonlinear Schrödinger equations with quadratic potential
and an additive noise.

In the present work, we shall analyze a splitting strategy for an efficient time integration of
a class of nonlinear stochastic Schrödinger equations. In a nutshell, the main idea of splitting
integrators is to decompose the vector field of the original differential equation in several parts,
such that the arising subsystems are exactly (or easily) integrated. We refer interested readers
to [30, 9, 40] for details on splitting schemes for ordinary (partial) differential equations. The
splitting scheme considered in this publication is given by equation (8).

Despite the fact that splitting schemes are widely used for an efficient time integration of
deterministic Schrödinger-type equations, see for instance [10, 7, 39, 26, 28, 38, 4], we are not
aware of a numerical analysis of such integrators approximating mild solutions of nonlinear
stochastic Schrödinger equations driven by an additive Itô noise. In the present publication
we prove

‚ bounds for the exponential moments of the mass of the exact and numerical solutions
(Theorem 10);

‚ a kind of longtime stability, a so called trace formula for the mass, of the numerical
solutions (Proposition 5);

‚ preservation of symplecticity for the exact and numerical solutions (Proposition 8);
‚ strong convergence estimates (with order) of the splitting scheme, as well as orders of

convergence in probability and almost surely (Theorem 14 and Corollary 16).

Observe that, since the nonlinearity in the class of stochastic Schrödinger equation considered
here may not be globally Lipschitz, we employ the exponential moments estimates mentioned
above to obtain strong rates of convergence, see Propositions 12 and 13. In these propositions,
we consider moments of the error multiplied by an exponential discounting factor, and obtain
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the expected rate of convergence for this quantity. To the best of our knowledge, this quantity
has not been considered elsewhere in the literature. Combining those estimates with the above
exponential moment bounds to remove the exponential factor, we can then prove Theorem 14.
Note finally, that the choice of a splitting strategy is crucial in obtaining exponential moment
bounds for the numerical solution.

We begin the exposition by introducing some notations, present our main assumptions and
provide several moment bound estimates for the exact solution to the considered SPDE. We
then present the splitting scheme and study some geometric properties of the exact and nu-
merical solutions in Section 3. The main results of this publication are presented in Section 4.
In particular, exponential moments in the L2 norm of the exact and numerical solutions are
given, as well as several convergence results. More involved and technical proofs of results
needed for convergence estimates are provided in Section 5. Various numerical experiments il-
lustrating the main properties of the splitting scheme when applied to stochastic Schrödinger
equations driven by Itô noise are given in Section 6. The paper ends with an appendix
containing proofs of auxiliary results.

We use C to denote a generic constant, independent of the time-step size of the numerical
scheme, which may differ from one place to another.

2. Setting

In this work, we consider the following class of stochastic nonlinear Schrödinger equations

(1)
i duptq “ ∆uptqdt` F puptqqdt` αdWQptq,

up0q “ u0,

where the unknown
`

uptq
˘

tě0
is a stochastic process with values in the Hilbert space L2 “

L2pTdq of square integrable complex-valued functions defined on the d-dimensional torus Td.
Details concerning the regularity and growth properties of the nonlinearity F and the covari-
ance operator Q are provided below. In addition, α ą 0 is a real parameter measuring the size
of the noise WQ. The initial condition u0 P L2 is deterministic, however the results below can
be adapted to random initial conditions, satisfying appropriate integrability conditions, using
a standard conditioning argument. The space L2 is equipped with the norm ∥¨∥L2 , where for
all u, v P L2,

∥u∥2L2 “ xu, uy, xu, vy “

ż

Td

ūpxqvpxqdx.

The Sobolev spaces H1 “ H1pTdq and H2 “ H2pTdq are Hilbert spaces, and the associated
norms are denoted by ∥¨∥H1 and ∥¨∥H2 . The notation H0 “ L2 will also be used below. For
σ P t0, 1, 2u, let also ∥¨∥Cσ denote the norm in the Banach space Cσ “ CσpTdq of functions of
class Cσ defined in Td.

Solutions of (1) are understood in the mild sense:

(2) uptq “ Sptqu0 ´ i

ż t

0
Spt´ sqF pupsqqds´ iα

ż t

0
Spt´ sqdWQpsq,

where Sptq “ e´it∆. Let us state the following result (see e.g. [37, Lemma 3.1] and [23,
Appendix A1]).
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Lemma 1. The linear operator ´i∆ generates a group
`

Sptq
˘

tPR of isometries of L2, such
that for all σ P t0, 1, 2u, all u P Hσ, and all t ě 0, one has

∥Sptqu∥Hσ “ ∥u∥Hσ .

In addition, for σ P t1, 2u, there exists Cσ P p0,8q such that for all u P Hσ and all t ě 0,∥∥`

Sptq ´ I
˘

u
∥∥
L2 ď Cσt

σ
2 ∥u∥Hσ .

The Wiener process WQ, with covariance operator Q, in the SPDE (1) is defined by

WQptq “
ÿ

kPN
γkβkptqek,

where
`

ek
˘

kPN is a complete orthonormal system of L2,
`

βk
˘

kPN is a sequence of independent
real-valued standard Wiener processes on a stochastic basis pΩ,F ,P, pFptqqtě0q, and

`

γk
˘

kPN
is a sequence of complex numbers such that

ÿ

kPN
|γk|2 ă 8. The linear operators Q and Q

1
2

are defined by Qek “ γ2kek and Q
1
2 ek “ γkek, for all k P N.

For a linear operator Ψ from Hσ to Hσ, and any complete orthonormal system pεkqkPN of
Hσ, we define

∥Ψ∥2Lσ
2

“
ÿ

kPN
∥Ψεk∥2Hσ .

This definition is independent of the choice of the orthonormal system.
With this notation,

∥∥∥Q 1
2

∥∥∥2
Lσ
2

“
ÿ

kPN
|γk|2 ∥ek∥2Hσ (whenever the sum is finite).

We now set the assumptions on the spatial Sobolev regularity of the noise as well as on
the nonlinearity in the stochastic Schrödinger equation (1) required to prove well-posedness
for the SPDE (1), to prove H1-regularity of the solution, and to show strong convergence of
order 1{2 of the proposed splitting integrator in Section 4.

Assumption 1. One has ∥∥∥Q 1
2

∥∥∥2
L1
2

“
ÿ

kPN
|γk|2 ∥ek∥2H1 ă 8.

The nonlinearity F satisfies F puq “ V rusu for all u P L2, where V : u P L2 ÞÑ V rus P R is a
real-valued mapping. Furthermore, it is assumed that V ru1s “ V ru2s if |u1| “ |u2| (i. e. the
potential V is a function of the modulus).

In addition to the above, assume that the mapping F is locally Lipschitz continuous with
at most cubic growth: there exists CF P p0,8q and KF P p0,8q such that for all u1, u2 P L2,
one has

(3) ∥F pu2q ´ F pu1q∥L2 ď

´

CF `KF p∥u1∥2L2 ` ∥u2∥2L2q

¯

∥u2 ´ u1∥L2 .

Finally, there exists C1 P p0,8q and a polynomial mapping P1, such that for all u P H1, one
has

(4)
∥F puq∥H1 ď C1 ∥u∥H1

´

1 ` ∥u∥2L2

¯

|Impx∇u,∇F puqyq| ď C1 ∥∇u∥2L2 ` P1

´

∥u∥2L2

¯

.
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Note that assuming that V rus is real-valued implies that the equality Impxu, F puqyq “ 0
holds for all u P L2.

The value of KF appearing in the right-hand side of (3) plays a crucial role in the conver-
gence analysis below.

Let us recall the definition of the stochastic integral in the mild form (2) and the associated
Itô isometry property. If for all t ě 0, Ψptq is a linear operator from Hσ to Hσ, the stochas-

tic integral
ż T

0
Ψptq dWQptq is understood as

ÿ

kPN
γk

ż T

0
Ψptqek dβkptq, and the Itô isometry

formula is given by

E

«∥∥∥∥ż T

0
Ψptq dWQptq

∥∥∥∥2
Hσ

ff

“

ż T

0

∥∥∥ΨptqQ
1
2

∥∥∥2
Lσ
2

dt.

Under Assumption 1, the stochastic convolution ´i

ż t

0
Spt ´ sqdWQpsq is thus well-defined

and takes values in H1. It solves the linear stochastic Schrödinger equation driven by additive
noise

i duptq “ ∆uptqdt` dWQptq, up0q “ 0.

Most of the analysis can be performed when Assumption 1 is satisfied, in particular we
will prove below that (1) admits a unique global solution, and that the splitting scheme has
a strong convergence order 1{2. To get strong convergence order 1 of the proposed splitting
integrator for the semilinear problem (1), we need further assumptions.

Assumption 2. On top of Assumption (1), let us assume that one has∥∥∥Q 1
2

∥∥∥2
L2
2

“
ÿ

kPN
|γk|2 ∥ek∥2H2 ă 8.

Furthermore, let us assume that the nonlinearity F is twice differentiable, and there exists
C P p0,8q such that for all u, h, k P L2, one has

(5)
∥∥F 1puq.h

∥∥
L2 ď Cp1 ` ∥u∥2L2q ∥h∥L2∥∥F 2puq.ph, kq

∥∥
L2 ď Cp1 ` ∥u∥L2q ∥h∥L2 ∥k∥L2 .

Finally, let us assume that there exists C2 P p0,8q and a polynomial mapping P2, such that
for all u P H2, one has

(6)
∥F puq∥H2 ď Cσ ∥u∥H2

´

1 ` ∥u∥2L2

¯

|Impx∇2u,∇2F puqyq| ď C2

∥∥∇2u
∥∥2
L2 ` P2

´

∥u∥2L2 , ∥∇u∥2L2

¯

.

We next give examples of nonlinearities verifying Assumption 1 or 2. First, the conditions
in Assumption 1 or 2 are satisfied in the case of a linear mapping F puq “ V u, where the
external potential function V : Td Ñ R is a real-valued mapping of class Cσ, with σ “ 1 (resp.
σ “ 2) to satisfy Assumption 1 (resp. Assumption 2). In that case, the mapping F is globally
Lipschitz continuous, and (3) holds with CF “ ∥V ∥C0 and KF “ 0. Second, the conditions in
Assumption 1 or 2 also hold for the following class of nonlocal interaction cubic nonlinearities.
Note that KF ą 0 in this case.
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Proposition 2. Let σ P t1, 2u and let V : Td Ñ R be a real-valued mapping of class Cσ. For
every u P L2, set

V rus “ V ‹ |u|2 “

ż

V p¨ ´ xq|upxq|2 dx,

where ‹ denotes the convolution operator.
Then Assumption 1 (resp. Assumption 2) is satisfied for the nonlinearity F puq “ V rusu “

`

V ‹ |u|2
˘

u when σ “ 1 (resp. when σ “ 2).

Proof. Observe that for any u P L2, the mapping V rus is of class Cσ, with ∇σV rus “ ∇σV ‹

|u|2. It thus follows that ∥V rus∥Cσ ď ∥V ∥Cσ ∥u∥2L2 for all u P L2.
First, assume that σ “ 1. Let us check that (3) holds. Let u1, u2 P L2, then one has

∥F pu2q ´ F pu1q∥L2 ď ∥V ru2spu2 ´ u1q∥L2 ` ∥pV ru2s ´ V ru1squ1∥L2

ď ∥V ru2s∥C0 ∥u2 ´ u1∥L2 ` ∥V ru2s ´ V ru1s∥C0 ∥u1∥L2

ď ∥V ∥C0

´

∥u2∥2L2 ` ∥u1 ` u2∥L2 ∥u1∥L2

¯

∥u2 ´ u1∥L2

ď
3

2
∥V ∥C0

´

∥u1∥2L2 ` ∥u2∥2L2

¯

∥u2 ´ u1∥L2 .

Thus (3) holds with CF “ 0 and KF “ 3
2 ∥V ∥C0 . The conditions in (4) follow from straight-

forward computations.
Second, assume that σ “ 2. The conditions in (5) follow from writing, for all u, h, k P L2,

F 1puq.h “ V rush` 2
`

V ‹ Repūhq
˘

u

F 2puq.ph, kq “ 2
`

V ‹ Repūhq
˘

k ` 2
`

V ‹ Repk̄uq
˘

h` 2
`

V ‹ Reph̄kq
˘

u.

The conditions in (6) follow from straightforward computations.
This concludes the proof of the Proposition. □

Note that the conditions in Assumption 1 or 2 are not satisfied in the standard cubic nonlin-
ear Schrödinger case, where V rus “ ˘|u|2, or for other (non-trivial) power-law nonlinearities.

To conclude this section, let us state a well-posedness result for the stochastic Schrödinger
equation (1) in terms of mild solutions (2), and several moment bound estimates. Note
that additional bounds for the exponential moments in L2 of the exact solution are given in
Section 4.

Proposition 3. Let Assumption 1 be satisfied.
For any initial condition u0 P L2, there exists a unique mild solution

`

uptq
˘

tě0
of the

stochastic Schrödinger equation (1), which satisfies (2) for all t ě 0. In addition, for every
T P p0,8q, σ P t0, 1, 2u, u0 P Hσ, and p P r1,8q, there exists CppT, α,Q, u0q P p0,8q such
that one has a moment bound in Hσ

sup
0ďtďT

Er∥uptq∥2pHσ s ď CppT, α,Q, u0q,

with σ “ 1, resp. σ “ 2, when Assumption 1, resp. Assumption 2, is satisfied.
Finally one has the following temporal regularity estimate: for all t1, t2 P r0, T s,

E
”

∥upt2q ´ upt1q∥2p
L2

ı

ď CppT, α,Q, u0q|t2 ´ t1|p.

The proof uses standard arguments and is postponed to the appendix.
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3. Splitting scheme

In this section we define a splitting integrator for the stochastic Schrödinger equation (1)
and show some geometric properties of this time integrator. The main idea of splitting
schemes is to decompose the original problem, equation (1) in our case, into subsystems that
can be solved explicitly (or efficiently numerically). Splitting schemes are widely used for time
discretization of deterministic cubic Schrödinger equations, see, e.g. the key early reference
[31].

The definition of the splitting scheme studied in this article relies on the flow associated
with the differential equation i 9u “ F puq “ V rusu. For all u P L2 and t P R, define
(7) Φtpuq “ e´itV rusu.

Since V rus P R, one has |Φtpuq| “ |u| for all t ě 0, which gives V rΦtpuqs “ V rus using
Assumption 1 or 2. It is then straightforward to check that

`

Φt

˘

tPR is the flow associated
with the differential equation i 9u “ F puq. Indeed, for all u P L2 and all t P R, one has

i
d

dt
Φtpuq “ F pΦtpuqq .

Observe that the flow of the above ODE preserves the L2-norm: ∥Φtpuq∥L2 “ ∥u∥L2 for all
t ě 0 and all u P L2.

The splitting scheme for the stochastic Schrödinger equation (1) considered in this article
is then defined by the explicit recursion
(8) un`1 “ Spτq

`

Φτ puq ´ iαδWQ
n

˘

,

where τ denotes the time-step size, and δWQ
n “ WQppn ` 1qτq ´ WQpnτq are Wiener incre-

ments. Recall that Spτq “ e´iτ∆. Without loss of generality, it is assumed that τ P p0, 1q.
The scheme is obtained using a splitting strategy: at each time step, first one may write
ũn “ Φτ punq, i. e. the equation i 9u “ F puq with initial condition un is solved exactly, sec-
ond one has un`1 “ Spτqũn ´ iαSpτqδWQ

n , which comes from applying an exponential Euler
scheme to the stochastic differential equation idu “ ∆u dt` αdWQptq. Observe that bounds
for the exponential moments in L2 of the numerical solution are given in Section 4.
Remark 4. Alternatively, solving exactly the stochastic differential equation idu “ ∆udt `

αdWQptq yields the following numerical scheme for the SPDE (1)

(9) un`1 “ SpτqΦτ puq ´ iα

ż pn`1qτ

nτ
Sppn` 1qτ ´ tqdWQptq.

Generalizing the results obtained below to this numerical scheme is straightforward.
The error analysis for the splitting scheme (8) presented in the next section will make use

of the following additional assumption.
Assumption 3. There exists C P p0,8q such that for all t P r0, 1s and u P L2 one has

∥Φtpuq ´ u∥L2 ď C|t|
´

1 ` ∥u∥3L2

¯

.

Note that Assumption 3 is satisfied for the two examples of nonlinearities described in
Section 2. Indeed, ∥Φtpuq ´ u∥L2 ď t ∥V rus∥C0 ∥u∥L2 , with ∥V rus∥C0 “ ∥V ∥C0 in the external
potential case (V rus “ V ) and ∥V rus∥C0 ď ∥V ∥C0 ∥u∥2L2 in the nonlocal interaction case
(V rus “ V ‹ |u|2).

We now present some geometric properties of the splitting scheme (8).
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3.1. Trace formula for the mass. It is well known that, under periodic boundary condi-
tions for instance, the mass, or L2-norm or density

Mpuq :“ ∥u∥2L2 “

ż

|u|2 dx

of the deterministic Schrödinger equation iBu
Bt ´ ∆u ´ V rusu “ 0, where V rus “ V (external

potential) or V rus “ V ‹ |u|2 (nonlocal interaction) or V rus “ |u|2 (cubic), is a conserved
quantity. In the stochastic case under consideration, one immediately gets a trace formula
for the mass of the exact solution of equation (1) as well as for the numerical solution given
by the splitting scheme (8).

Proposition 5. Consider the stochastic Schrödinger equation (1) with a trace class covariance
operator Q and an initial value satisfying ErMpu0qs ă 8. We assume that the nonlinearity in
(1) is such that F puq “ V rusu, where V rus is real-valued and a function of the modulus |u|.
Furthermore, we assume that an exact global solution exists and that the differential equation
in the splitting scheme can be solved exactly. This is the case for instance when one considers
an external potential, a nonlocal interaction, a cubic or power-law nonlinearity.

Then, the exact solution (2) satisfies a trace formula for the mass:

E rMpuptqqs :“ E
”

∥uptq∥2L2

ı

“ E rMpu0qs ` tα2TrpQq for all time t.

Furthermore, the numerical solution (8) to the nonlinear stochastic Schrödinger equation (1)
satisfies the exact same trace formula for the mass:

E rMpunqs “ E rMpu0qs ` tnα
2TrpQq for all time tn “ nτ.

Observe that the above result for the exact solution is already available in the literature
in different settings, for instance in [22, 3]. However, to the best of our knowledge, the result
for the numerical solution is one of the first results in the literature on a longtime qualitative
behavior of the numerical solution to nonlinear SPDEs driven by Itô noise. Such a longtime
behavior is not satisfied for classical time integrators like the (semi-implicit) Euler–Maruyama
schemes, see the numerical experiments below.

Proof. We apply Itô’s formula to the mass Mpuptqq and get
(10)

Mpuptqq “ Mpup0qq `

ż t

0
xM 1pupsqq, ´iαdW psqy `

ż t

0
xM 1pupsqq,´i∆upsq ´ iV rusupsqyds

`

ż t

0

1

2
α2Tr

”

M2pupsqq

´

Q1{2
¯ ´

Q1{2
¯˚ı

ds.

An integration by part and the hypothesis on the potential V show that the third term on
the right-hand side is zero. Taking expectation now gives

E rMpuptqqs “ E rMpup0qqs ` tα2TrpQq

which concludes the proof of the trace formula for the mass of the exact solution.
We next show that the above trace formula is also satisfied for the numerical solution given

by the splitting integrator (8). Using the definition of the numerical scheme (8), properties
of the Wiener increments δWQ

n , as well as the isometry property of Spτq, one gets

E rMpun`1qs “ E
”

∥SpτqΦτ punq∥2L2

ı

` α2E
”∥∥δWQ

n

∥∥2
L2

ı

“ E
”

∥Φτ punq∥2L2

ı

` τα2TrpQq.
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The definition of the flow Φτ yields

E rMpun`1qs “ E rMpunqs ` τα2TrpQq

and a recursion completes the proof of the proposition. □

Remark 6. The same trace formula for the mass holds for the numerical solution given by the
time integrator (9). Indeed, using the definition of the numerical scheme (9), Itô’s isometry,
as well as the isometry property of the operator Spτq, one gets

E rMpun`1qs “ E
”

∥Φτ punq∥2L2

ı

` τα2TrpQq.

Employing the definition of the flow Φτ followed by a recursion shows the trace formula for
the mass of the splitting scheme (9).

Remark 7. It may also be possible to study the longtime behavior of the exact and numerical
solutions along the expected value of the Hamiltonian of (1) with α ‰ 0. However, in general,
the drift in the expected Hamiltonian will depend on the solution u, see for example [25,
Equation p11q] for the cubic case. In particular, the evolution of this quantity will not be
linear in time. Such a trace formula for the energy will thus unfortunately not be as simple
as the one for the mass. Very recent studies have been carried on for (mainly) the Crank–
Nicolson scheme in the preprint [41]. In particular, it is observed that this numerical scheme
does not verify an exact trace formula for the mass, see also the numerical experiments below.
We leave the question of investigating such trace formula for the Hamiltonian of the splitting
scheme for future work.

3.2. Stochastic symplecticity. Symplectic schemes are known to have excellent longtime
properties when applied to Hamiltonian (partial) differential equations, see for instance [36,
30, 15, 19, 17, 18, 27] and references therein. These particular integrators have thus naturally
come into the realm of stochastic (partial) differential equations, see for example [11, 13, 2,
42, 14, 33, 16] and references therein.

The next result shows that the exact flow of the SPDE (1) as well as the proposed splitting
scheme (8) are stochastic symplectic.

Proposition 8. Consider the stochastic Schrödinger equation (1) and assume that a global
solution exists. Under the same assumptions as in the previous proposition, the exact flow of
this SPDE is stochastic symplectic in the sense that it preserves the symplectic form

ω̄ptq “

ż

Td

dp^ dq dx a.s.,

where the overbar on ω is a reminder that the two-form dp^ dq (with differentials made with
respect to the initial value) is integrated over the torus. Here, p and q denote the real and
imaginary parts of u.

Furthermore, the splitting scheme (8) applied to the stochastic Schrödinger equation (1) is
stochastic symplectic in the sense that it possesses the discrete symplectic structure:

ω̄n`1 “ ω̄n a.s.,

for the symplectic form ω̄n :“

ż

Td

dpn ^ dqn dx, where pn, resp. qn denoting the real and
imaginary parts of un, and d denotes differentials in the phase space.
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Proof. The symplecticity of the phase flow of the stochastic Schrödinger equation (1) can
be shown using similar arguments as in [33, Theorem 3.1] for a stochastic cubic Schrödinger
equation with quadratic potential, see also [14].

In order to show that the numerical solution is stochastic symplectic as well, we use the
same argument as in the proof of [16, Prop. 4.3]. Taking the differential of the numerical
solution yields

dun`1 “ d
`

Spτq
`

Φτ punq ´ iαδWQ
n

˘˘

“ d pSpτqΦτ punqq “ dun,

where in the last equality we have used the fact that the composition of exact flows is sym-
plectic. This concludes the proof. □
Remark 9. The exact same proof shows that the splitting scheme (9) possesses a discrete
symplectic structure.

4. Convergence results

In this section, we study various types of convergence (strong, in probability and almost-
surely) of the splitting scheme (8) when applied to the stochastic Schrödinger equation (1).
In order to do this, we first show bounds for the exponential moments in the L2 norm of the
exact and numerical solutions as well as two auxiliary results. The proofs of these results are
given in Section 5 for the reader’s convenience.
Theorem 10. Let us apply the splitting scheme (8) to the stochastic Schrödinger equation
(1) with a trace class covariance operator Q and deterministic initial value u0 P L2. Assume
that the nonlinearity in (1) satisfies F puq “ V rusu, where V rus “ V rūs is real-valued, and
that the exact and numerical solutions are well defined on the interval r0, T s. One then has
the following bounds for the exponential moments: there exists κ ą 0 and τ‹ such that if
µα2T ă κ

TrpQq
, then one has:

sup
0ďtďT

E
”

exp
´

µ ∥uptq∥2L2

¯ı

ď Cpµ, T, α,Q, u0q ă 8

for the exact solution and

sup
τPp0,τ‹q

sup
0ďnτďT

E
”

exp
´

µ ∥un∥2L2

¯ı

ď Cpµ, T, α,Q, u0q ă 8

for the numerical solution.
In the proof of this theorem, the lower bound κ ě e´1

2 is obtained, note that it does not
depend on the nonlinearity. Furthermore, observe that the condition µα2T ă κ

TrpQq
gets more

restrictive when α and T increase.
It is immediate to deduce the following moment estimates for the exact and numerical

solutions from Theorem 10.
Corollary 11. Under the assumptions of the previous theorem, for any p P r1,8q and
T P p0,8q, one has the following moment estimates for the L2 norm of the exact and
numerical solutions: for any u0 P L2, there exists CppT, α,Q, u0q P p0,8q such that

sup
0ďtďT

Er∥uptq∥2p
L2s ď CppT, α,Q, u0q

and
sup

τPp0,τ‹q

sup
0ďnτďT

Er∥un∥2pL2s ď CppT, α,Q, u0q.
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Observe that one could show this statement for τ P p0, 1q directly without using the expo-
nential moments estimates given in Theorem 10.

In order to show the main convergence result of this article, we will make use of the following
two propositions. Each one of these propositions are used to show strong convergence order
1{2, resp. 1, of the numerical solution given by the splitting scheme.

Proposition 12. Consider the time discretization of the stochastic Schrödinger equation (1)
by the splitting scheme (8). Let Assumptions 1 and 3 be satisfied. Assume that u0 P H1.

Let T P p0,8q. For every q P r1,8q, there exists CqpT, u0q P p0,8q (which depends on F ,
Q and on α), such that for every τ P p0, τ‹q, one has

sup
0ďnτďT

E
“

expp´qKFSnq ∥un ´ uptnq∥q
L2

‰

ď CqpT, u0qτ
q
2 ,

where KF is given in (3) (see Assumption 1), and Sn “ τ
n´1
ÿ

k“0

´

∥upkτq∥2L2 ` ∥uk∥2L2

¯

.

Proposition 13. Consider the time discretization of the stochastic Schrödinger equation (1)
by the splitting scheme (8). Let Assumptions 2 and 3 be satisfied. Assume that u0 P H2.

Let T P p0,8q. For every q P r1,8q, there exists CqpT, u0q P p0,8q (which depends on F ,
Q and on α), such that for every τ P p0, τ‹q, one has

sup
0ďnτďT

E
“

expp´qKFSnq ∥un ´ uptnq∥q
L2

‰

ď CqpT, u0qτ q,

where KF is given in (3) (see Assumption 1) and Sn “ τ
n´1
ÿ

k“0

´

∥upkτq∥2L2 ` ∥uk∥2L2

¯

.

The proofs of the technical results, Theorem 10 and Propositions 12 and 13, are postponed
to Section 5.

We are now in position to state the main convergence result of this article.

Theorem 14. Let uptq denote the exact solution to the stochastic Schrödinger equation (1)
and un the numerical solution given by the splitting scheme (8). Let Assumption 3 be satisfied.
Let also σ “ 1, resp. σ “ 2, if Assumption 1, resp. Assumption 2, is satisfied. Assume that
u0 P Hσ.

Recall the notation Sn “ τ
n´1
ÿ

k“0

´

∥upkτq∥2L2 ` ∥uk∥2L2

¯

. Let T P p0,8q. Assume that

µ P p0,8q and τ0 P p0, τ‹q are chosen such that

(11) sup
τPp0,τ0q

sup
0ďnτďT

E rexppµSnqs “ CpT, u0, α,Q, τ0, µq ă 8.

Then, for all r P p0,8q and all µ P p0, µq, there exists CrpT, u0, α,Q, τ0, µq ă 8 such that for
all τ P p0, τ0q one has

(12) sup
0ďnτďT

pE r∥un ´ uptnq∥rL2sq
1
r ď CrpT, u0, α,Q, τ0, µqτ

σ
2
minp1, µ

rKF
q
.

As a consequence of this theorem, the convergence is polynomial in LrpΩq, for all r P r1,8q.
The rate of convergence of the splitting scheme depends on r in (12), and vanishes when
r Ñ 8. Note that for sufficiently small r ą 0, one has minp1, µ

rKF
q “ 1, thus the convergence
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rate of the splitting scheme is σ
2 when r is sufficiently small. Observe also that a sufficient

condition for condition (11) to be verified is that

µ ă
κ

α2T 2TrpQq
,

where κ ą 0 is some positive constant (see Remark 15 below). Thus the value of minp1, µ
rKF

q

depends on the quantity α2T 2KF (considering that TrpQq is fixed and that the size of the
noise is given by α). The larger this quantity, the more restrictive the condition to have
minp1, µ

rKF
q “ 1 becomes.

In the external potential case V rus “ V u, one has KF “ 0, thus there is no restrictions
and the order of convergence is σ

2 in LrpΩq for all r P r1,8q.

Remark 15. Owing to Theorem 10 concerning exponential moments of the exact and numer-
ical solutions, the set of parameters µ, τ0 such that (11) holds is non-empty. Indeed, recalling

that Sn “ τ
n´1
ÿ

k“0

´

∥upkτq∥2L2 ` ∥uk∥2L2

¯

and using Cauchy–Schwarz inequality, one has

E rexppµSnqs “ E

«

n´1
ź

k“0

´

exppµτ ∥uptkq∥2L2q exppµτ ∥uk∥2L2q

¯

ff

ď

n´1
ź

k“0

´

E
”

expp2nτµ ∥uptkq∥2L2q

ı

E
”

expp2nτµ ∥uk∥2L2q

ı¯
1
2n

ď sup
0ďkďn

E
”

expp2Tµ ∥uptkq∥2L2q

ı

sup
0ďkďn

E
”

expp2Tµ ∥uk∥2L2q

ı

ď Cpµ, T, α,Q, u0q,

if µ ă κ
α2T 2TrpQq

and τ ă τ‹, where κ and τ‹ are given in Theorem 10. The value of µ
obtained by the argument above (as well as the values of κ “ e´1

2 and τ‹) may not be optimal.

Proof of Theorem 14. Set en “ ∥un ´ uptnq∥L2 . For every R P p0,8q, let χn,R “ 1SnďR.
Then

Ererns “ Erernχn,Rs ` Erernp1 ´ χn,Rqs.

For a given µ P p0, µq, let p P p1,8q such that µ “ p1 ´ 1
pqµ.

On the one hand, applying the Cauchy–Schwarz and Markov inequalities yields

E rernp1 ´ χn,Rqs ď pE rerpn sq
1
p pE r1 ´ χn,Rsq

1´ 1
p ď pErerpn sq

1
p PpSn ą Rq

1´ 1
p

ď pErerpn sq
1
p P pexppµSnq ą exppµRqq

1´ 1
p ď pErerpn sq

1
p

ˆ

ErexppµSnqs

exppµRq

˙1´ 1
p

.

Using moment bounds for the exact and the numerical solution (Corollary 11) and the expo-
nential moment estimate (11) for Sn, then yield (for a constant C that does not depend on
R)

E rernp1 ´ χn,Rqs ď Ce´µR.
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On the other hand, let q “ pr for p introduced above. Applying the Cauchy–Schwarz inequal-
ity yields

Erernχn,Rs “ Ererne
´rKFSnerKFSnχn,Rs ď

`

E
“

eqne
´qKFSn

‰˘

1
p

ˆ

E
„

e
rKF p

p´1
Snχn,R

ȷ˙1´ 1
p

.

Using Proposition 12 with σ “ 1, or Proposition 13 with σ “ 2, and the relation q “ pr, for
the first factor one has

`

E
“

eqne
´qKFSn

‰˘

1
p ď Cτ

rσ
2 .

For the second factor, using the exponential moment estimates and the upper bound Sn ď R
when χn,R ‰ 0, one obtains

ˆ

E
„

e
rKF p

p´1
Snχn,R

ȷ˙1´ 1
p

ď

ˆ

E
“

eµSn
‰

exppmaxp0,
rKF p

p´ 1
´ µqRq

˙1´ 1
p

ď C exp pmaxp0, rKF ´ µqRq ,

using the identity µ “ p1 ´ 1
pqµ.

Finally, for all R P p0,8q, one has

Ererns ď C
´

τ
rσ
2 exp

`

maxp0, rKF ´ µqR
˘

` expp´µRq

¯

.

It remains to optimize the choice of R in terms of τ . If rKF ď µ, there is no condition
and passing to the limit R Ñ 8 yields Ererns ď Cτ

rσ
2 . If rKF ą µ, the right-hand side is

minimized when τ
rσ
2 erKFR “ 1, i. e. e´R “ τ

rσ
2KF and one obtains

Ererns ď Cτ
rσµ
2KF .

This concludes the proof of the theorem. □

To conclude this section, let us state results concerning convergence in probability, with
order of convergence equal to σ

2 , and almost sure convergence with order of convergence σ
2 ´ε

for all ε P p0, 12q, with σ P t1, 2u.

Corollary 16. Consider the stochastic Schrödinger equation (1) on the time interval r0, T s

with solution denoted by uptq. Let un be the numerical solution given by the splitting scheme
(8) with time-step size τ . Under the assumptions of Theorem 14, one has convergence in
probability of order σ

2

lim
CÑ8

P
´

∥uN ´ upT q∥L2 ě Cτ
σ
2

¯

“ 0,

where T “ Nτ .
Moreover, consider the sequence of time-step sizes given by τM “ T

2M
, M P N. Then, for

every ε P p0, σ2 q, there exists an almost surely finite random variable Cε, such that for all
M P N one has

∥u2M ´ upT q∥L2 ď Cε

ˆ

T

2M

˙
σ
2

´ε

.

Proof. Let r be chosen sufficiently small, such that applying Theorem 14 yields

E r∥uN ´ upT q∥rL2s ď Cpr, T qτ
rσ
2 .
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Then the convergence in probability result is a straightforward consequence of Markov’s in-
equality:

P
´

∥uN ´ upT q∥L2 ě Cτ
σ
2

¯

“ P
´

∥uN ´ upT q∥rL2 ě Crτ
rσ
2

¯

ď
E r∥uN ´ upT q∥rL2s

Crτ
rσ
2

“
Cpr, T q

Cr
Ñ

CÑ8
0.

To get the almost sure convergence result, it suffices to observe that (again by applying
Theorem 14)

8
ÿ

m“0

E r∥u2m ´ upT q∥rL2s

τ
rpσ

2
´εq

m

ă 8,

thus ∥u2M
´upT q∥r

L2

τ
rp σ2 ´εq

M

Ñ
MÑ8

0 almost surely. □

5. Proofs of technical results

This section is devoted to giving the proofs to Theorem 10 and Propositions 12 and 13.
To simplify notation, we let Qα “ α2Q, where we recall that Q is the covariance operator

of the noise in the SPDE (1).

5.1. Proof of Theorem 10. We start with the proof of Theorem 10.

Proof. Set λ “ 1
2TTrpQαq

and define the stochastic process Xptq “ e´t{T ∥uptq∥2L2 . An applica-
tion of Itô’s formula gives

d
´

eλXptq
¯

“ eλXptq

ˆ

´λ{TXptqdt` λe´t{TTrpQαqdt`
λ2

2
dxXyt

˙

` 2λeλXptqe´t{T xuptq, dWQαptqy,

where the quadratic variation xXyt satisfies

dxXyt ď e´2t{T 4TrpQαq ∥uptq∥2L2 dt ď 4TrpQαqe´t{TXptq dt.

Taking expectation in the first equation above and observing that Xptq ě 0 a.s, one gets

dEreλXptqs

dt
ď λTrpQαqEreλXptqs ` EreλXptq

`

2λ2TrpQαq ´ λ{T
˘

Xptqs

ď λTrpQαqEreλXptqs

by definition of λ.
By definition of the stochastic process Xptq, the above reads

dE
”

exp
´

λe´t{T ∥uptq∥2L2

¯ı

dt
ď λTrpQαqE

”

exp
´

λe´t{T ∥uptq∥2L2

¯ı

and applying Gronwall’s lemma provides the following estimate

E
”

exp
´

λe´t{T ∥uptq∥2L2

¯ı

ď exp
´

λ ∥u0∥2L2

¯

eλTrpQαqt,

Finally, let µ ď e´1

2TTrpQαq
“ e´1λ. Then for all t P r0, T s,

E
”

exp
´

µ ∥uptq∥2L2

¯ı

ď E
”

exp
´

λe´t{T ∥uptq∥2L2

¯ı

ď exp
´

λ ∥u0∥2L2

¯

eλTrpQαqT ,
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where we recall that λ “ 1
2TTrpQαq

“ 1
2α2TTrpQq

. This concludes the proof of the exponential
moment estimates for the exact solution of the stochastic Schrödinger equation (1).

Let us now prove the exponential moment estimates for the numerical solution (8). Let
p, q ą 1 such that 1{p ` 1{q “ 1, and set λ “ 1

2TpTrpQαq
. Define rn “ λ expp´ n

N q for
n “ 1, . . . , N , where Nτ “ T , and introduce the filtration Fn “ σtδWQα

k ; k ď n ´ 1u. Note
that un is Fn-measurable. Let also τ‹ P p0, ppp´ 1qq.

Using the definition of the scheme (8) and Hölder’s inequality, one has

E
“

exp
`

rn`1 ∥un`1∥2L2

˘

| Fn

‰

ď Erexp
´

rn`1 ∥un∥2L2

¯

s
`

Erexpp2prn`1ImpxΦτ punq, δWQα
n yqq | Fns

˘

1
p

´

Erexp
´

qrn`1

∥∥δWQα
n

∥∥2
L2

¯

s

¯
1
q
.

On the one hand, since δWQα
n is a centered Gaussian random variable and by definition of

rn, one has

E
”

exp
´

qrn`1

∥∥δWQα
n

∥∥2
L2

¯ı

ď

´

1 ´ 2qrn`1E
”∥∥δWQα

n

∥∥2
L2

ı¯´ 1
2

ď p1 ´ 2qλτTrpQαqq
´ 1

2 ,

under the condition that τ ă 1
2qλTrpQαq

“
p2

q . This condition thus holds when τ ă τ‹.
On the other hand, conditional on Fn, the random variable xΦτ punq, δWQα

n y is also Gaussian
and centered, thus

E
“

exp
`

2prn`1ImpxΦτ punq, δWQα
n yq

˘

| Fn

‰

ď exp
`

2p2r2n`1VarrxΦτ punq, δWQα
n ys

˘

ď exp
´

2p2λrn`1τTrpQαq ∥un∥2L2

¯

.

Gathering these estimates and taking expectation yield

E
”

exp
´

rn`1 ∥un`1∥2L2

¯ı

ď E
”

exp
´

rn`1p1 ` 2pλτTrpQαqq ∥un∥2L2

¯ı

p1 ´ 2qλτTrpQαqq
´ 1

2q .

Having chosen λ “ 1
2pTTrpQαq

, one then gets rn`1p1 ` 2pλτTrpQαqq “ rne
´ τ

T p1 ` τ
T q ď rn.

A recursion on n then gives the following estimate

sup
0ďnτďT

E
”

exp
´

rn ∥un∥2L2

¯ı

ď exppλ ∥u0∥2L2qp1 ´ 2qλτTrpQαqq
´ N

2q ď Cpλ, u0q ă 8,

for τ ă τ‹, where the quantity Cpλ, u0q does not depend on τ .
We are now in position to conclude the proof of exponential moments estimates for the

numerical solution. Let µ such that µ ă e´1

2TTrpQαq
. Note that rN “ λe´1, thus there exists

p ą 1 such that µ ď rN ď rn for all n P t0, . . . , Nu. This then implies that

sup
0ďnτďT

E
”

exp
´

µ ∥un∥2L2

¯ı

ď Cpµ, T,Q, u0q ă 8,

for all τ P p0, τ‹q.
This concludes the proof of Theorem 10. □
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5.2. Proofs of Propositions 12 and 13. Before we start with these proofs, it is convenient
to introduce some auxiliary notation and provide the steps that are common for both proofs.

Define wptq “ ´αi

ż t

0
Spt ´ sqdWQpsq for all t ě 0 and wn “ ´αi

n´1
ÿ

k“0

Spτqn´kδWQ
k for all

n ě 0. Introduce also vptq “ uptq ´ wptq and vn “ un ´ wn. Let tk “ kτ . Recall that

Sn “ τ
n´1
ÿ

k“0

´

∥upkτq∥2L2 ` ∥uk∥2L2

¯

.

Define ϵn “ ∥vptnq ´ vn∥L2 and en “ ∥uptnq ´ un∥L2 . Then the error between the numerical
and exact solution reads en ď ϵn ` ∥wn ´ wptnq∥L2 .

Let us first deal with the error term ∥wn ´ wptnq∥L2 for the stochastic convolution: employ-
ing the Itô isometry formula, with σ “ 1 (resp. σ “ 2) if Assumption 1 (resp. Assumption 2)
is satisfied, one has

E
”

∥wn ´ wptnq∥2L2

ı

“ α2E

»

–

∥∥∥∥∥n´1
ÿ

k“0

ż tk`1

tk

´

Spτqn´k ´ Sptn ´ tq
¯

dWQptq

∥∥∥∥∥
2

L2

fi

fl

“ α2
n´1
ÿ

k“0

ż tk`1

tk

∥∥∥´

Spτqn´k ´ Sptn ´ tq
¯

Q
1
2

∥∥∥2
L0
2

dt

ď α2
n´1
ÿ

k“0

ż tk`1

tk

|t´ tk|
σ dt

∥∥∥Q 1
2

∥∥∥2
Lσ
2

ď CpT, α,Qqτσ,

using properties of the semigroup S. Since the distribution of wn ´ wptnq is Gaussian, for
every q P r1,8q, there exists CqpT,Qq P p0,8q such that one has

(13) Er∥wn ´ wptnq∥q
L2s ď CqpT, α,Qqτ

qσ
2 .

It remains to treat the error term ϵn “ ∥vn ´ vptnq∥L2 .
Using the mild formulation (2) of the solution uptnq and the definition of the splitting

scheme (8) for un, one obtains
(14)

vn`1 ´ vptn`1q “

ˆ

Spτqvn ´ i

ż tn`1

tn

SpτqF pΦt´tnpunqqdt

˙

´

ˆ

Spτqvptnq ´ i

ż tn`1

tn

Sptn`1 ´ tqF puptqqds

˙

“ Spτq pvn ´ vptnqq ´ i

ż tn`1

tn

pSpτqF pΦt´tnpunqq ´ Sptn`1 ´ tqF puptqqq dt

“ Spτq pvn ´ vptnqq ` E1
n ` E2

n ` E3
n ` E4

n,

where

E1
n “ i

ż tn`1

tn

pSptn`1 ´ tq ´ SpτqqF puptqqdt

E2
n “ i

ż tn`1

tn

Spτq pF puptqq ´ F puptnqqq dt

E3
n “ iτSpτq pF puptnqq ´ F punqq

E4
n “ i

ż tn`1

tn

Spτq pF punq ´ F pΦt´tnpunqqq dt.
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For the first term, using properties of the semigroup S (see Lemma 1), for σ P t1, 2u, one
has ∥∥E1

n

∥∥
L2 ď Cτ

σ
2

ż tn`1

tn

∥F puptqq∥Hσ dt.

The treatment of the second term E2
n is different for the two propositions, details are provided

below.
For the third term, recall that ∥un ´ uptnq∥L2 ď ϵn ` ∥wn ´ wptnq∥L2 . Using (3), one

obtains∥∥E3
n

∥∥
L2 ď τ

´

CF `KF p∥uptnq∥2L2 ` ∥un∥2L2q

¯

∥un ´ uptnq∥L2

ď τ
´

CF `KF p∥uptnq∥2L2 ` ∥un∥2L2q

¯

ϵn ` τ
´

CF `KF p∥uptnq∥2L2 ` ∥un∥2L2q

¯

∥wn ´ wptnq∥L2 .

For the fourth term, using (3), the equality ∥Φt´tnpunq∥L2 “ ∥un∥L2 , and Assumption 3, one
obtains ∥∥E4

n

∥∥
L2 ď C

ż tn`1

tn

´

1 ` ∥un∥2L2 ` ∥Φt´tnpunq∥2L2

¯

∥un ´ Φt´tnpunq∥L2 dt

ď C
´

1 ` 2 ∥un∥5L2

¯

ż tn`1

tn

|t´ tn| dt

ď Cτ2
´

1 ` ∥un∥5L2

¯

.

At this stage, it is necessary to treat separately the proofs for Proposition 12 and 13.

Proof of Proposition 12. Assume that σ “ 1. For the second error term E2
n, using the as-

sumption on F and Cauchy–Schwarz inequality, one has∥∥E2
n

∥∥2
L2 ď C

ż tn`1

tn

´

1 ` ∥uptq∥2L2 ` ∥uptnq∥2L2

¯2
dt

ż tn`1

tn

∥uptq ´ uptnq∥2L2 dt.

Gathering all the estimates, and using the isometry property ∥Spτq pvn ´ vptnqq∥L2 “

∥vn ´ vptnq∥L2 “ ϵn, from (14) one obtains
ϵn`1 ď

`

1 ` CF τ `KF τΓnqϵn `Rn,

where we define Γn “ ∥uptnq∥2L2`∥un∥2L2 andRn “
∥∥E1

n

∥∥
L2`

∥∥E2
n

∥∥
L2`

∥∥E4
n

∥∥
L2`KF τΓn ∥wn ´ wptnq∥L2 .

Using a discrete Gronwall inequality and the equality ϵ0 “ 0, one gets for all n P t0, . . . , Nu

exp

˜

´CFnτ ´KF τ
n´1
ÿ

k“0

Γk

¸

ϵn ď

n´1
ÿ

k“0

Rk.

Rewriting τ
n´1
ÿ

k“0

Γk “ Sn and ∥un ´ uptnq∥L2 ď ϵn ` ∥wn ´ wptnq∥L2 , applying Minkowskii’s

inequality yields for q P r1,8q

E
“

exp p´qKFSnq ∥un ´ uptnq∥q
L2

‰
1
q ď eCFT

n´1
ÿ

k“0

`

E
“

Rq
k

‰˘
1
q ` eCFT

`

E
“

∥wn ´ wptnq∥q
L2

‰˘
1
q .

We now estimate each of the terms above. Let us first recall that Rk “
∥∥E1

k

∥∥
L2 `

∥∥E2
k

∥∥
L2 `∥∥E4

k

∥∥
L2`KF τΓk ∥wk ´ wptkq∥L2 . Using the triangle inequality, followed by Cauchy–Schwarz’s
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inequality, the assumption on the nonlinearity F as well as moment estimates in the L2 and
H1 norms for the exact solution (Corollary 11 and Proposition 3), one obtains

E
“∥∥E1

k

∥∥q
L2

‰1{q
ď Cτ1{2

ż tk`1

tk

E
“

∥F puptqq∥q
H1

‰1{q
dt

ď Cτ1{2

ż tk`1

tk

E
”

∥uptq∥2q
H1

ı1{p2qq

E
”

p1 ` ∥uptq∥2L2q2q
ı1{p2qq

dt

ď Cτ1{2

ż tk`1

tk

dt ď Cτ3{2.

For the second term, we use Cauchy–Schwarz’s inequality and moment bounds and regularity
properties of the exact solution from Proposition 3 to get

E
“∥∥E2

k

∥∥q
L2

‰1{q
ď C

˜

ż tk`1

tk

E
„

´

1 ` ∥uptq∥2L2 ` ∥uptkq∥2L2

¯2q
ȷ1{q

dt

¸1{2
ˆ

ż tk`1

tk

E
”

∥uptq ´ uptkq∥2q
L2

ı1{q
dt

˙1{2

ď Cτ1{2

ˆ
ż tk`1

tk

|t´ tk|dt

˙1{2

ď Cτ3{2.

Similarly, using the Cauchy–Schwarz’s inequality and the moment estimates in the L2 norm
for the numerical solution (Corollary 11), we obtain

E
“∥∥E4

k

∥∥q
L2

‰1{q
ď Cτ2E

„

´

1 ` 2 ∥un∥2L2

¯2q
ȷ1{p2qq

E
”

∥un∥10qL2

ı1{p2qq

ď Cτ2.

Thanks to the bounds for the moments in the L2 norm given by Corollary 11, as well as to
the error estimate (13) for the stochastic convolution proved above, we obtain the estimate

E
“

pKF τΓk ∥wk ´ wptkq∥q
q
L2

‰1{q
ď CτE

”

Γ2q
k

ı1{p2qq

E
”

∥wk ´ wptkq∥2q
L2

ı1{p2qq

ď CτE
”

∥wk ´ wptkq∥2q
L2

ı1{p2qq

ď Cττ1{2 ď Cτ3{2.

With all these estimates at hand, we arrive at
n´1
ÿ

k“0

`

E
“

Rq
k

‰˘
1
q ď CqpT, u0, α,Qqτ

1
2 .

Finally, we obtain

E
“

exp p´qKFSnq ∥un ´ uptnq∥q
L2

‰
1
q ď eCFT

n´1
ÿ

k“0

`

E
“

Rq
k

‰˘
1
q ` eCFT

`

E
“

∥wn ´ wptnq∥q
L2

‰˘
1
q

ď CqpT, u0, α,Qqτ
1
2 ` CqpT, α,Qqτ

1
2 ,

using (13) in the last step.
This concludes the proof of Proposition 12. □

We now turn to the proof of the second auxiliary result.
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Proof of Proposition 13. Assume that σ “ 2. As explained above, one requires to substan-
tially modify the treatment of the error term E2

n. As will be clear below, some changes in the
analysis of the error ϵn are required too.

Using a second-order Taylor expansion of the nonlinearity F and equation (5) (assumption
on F 2), one obtains the decomposition E2

n “ E2,1
n ` E2,2

n where

E2,1
n “ i

ż tn`1

tn

SpτqF 1puptnqq.
`

uptq ´ uptnq
˘

dt

∥∥E2,2
n

∥∥
L2 ď C

ż tn`1

tn

p1 ` ∥uptnq∥L2 ` ∥uptq∥L2q ∥uptq ´ uptnq∥2L2 dt.

In addition, using the mild formulation of the exact solution (2), one has the decomposition
E2,1

n “ E2,1,1
n ` E2,1,2

n ` E2,1,3
n , where

E2,1,1
n “ i

ż tn`1

tn

SpτqF 1puptnqq. pSpt´ tnq ´ Iqquptnq dt

E2,1,2
n “ i

ż tn`1

tn

SpτqF 1puptnqq.

ˆ
ż t

tn

Spt´ sqF pupsqqds

˙

dt

E2,1,3
n “ iα

ż tn`1

tn

SpτqF 1puptnqq.

ˆ
ż t

tn

Spt´ sqdWQpsq

˙

dt.

Owing to Lemma 1 and to equation (5) in Assumption 2, the first and second terms above
are treated as follows: one has∥∥E2,1,1

n

∥∥
L2 ď Cτ2

´

1 ` ∥uptnq∥2L2

¯

∥uptnq∥H2 ,

and ∥∥E2,1,2
n

∥∥
L2 ď C

´

1 ` ∥uptnq∥2L2

¯

τ

ż tn`1

tn

∥F pupsqq∥L2 ds.

Using the stochastic Fubini Theorem, the third term is written as

E2,1,3
n “ iα

ż tn`1

tn

SpτqF 1puptnqq.
`

ż t

tn

Spt´ sq dWQpsq
˘

dt

“ iα

ż tn`1

tn

ˆ

SpτqF 1puptnqq.

ż tn`1

s
Spt´ sq dt

˙

dWQpsq

“ iα

ż tn`1

tn

Θnpsq dWQpsq,

where we have defined the quantity Θnpsq “ SpτqF 1puptnqq.

ż tn`1

s
Spt´ sq dt.

Applying Itô’s formula, one gets

(15) E
”∥∥E2,1,3

n

∥∥2
L2

ı

“ α2

ż tn`1

tn

E
„∥∥∥ΘnpsqQ

1
2

∥∥∥2
L0
2

ȷ

ds ď Cτ3

using again (5) from Assumption 2 and the moment estimates in the L2 norm of the exact
solution from Corollary 11.

However the estimate (15) is not sufficient to directly obtain the required error estimate
for ϵn as in the proof of Proposition 12. Improving this estimate requires to exploit the



20

orthogonality property E
”

xE2,1,3
n , E2,1,3

m y

ı

“ 0 if n ‰ m, and to modify the approach used
above to deal with the error.

Starting from (14), one obtains for all n ě 0

vn ´ vptnq “

n´1
ÿ

k“0

Spτqn´k´1
`

E1
k ` E2

k ` E3
k ` E4

k

˘

.

Recalling the decomposition E2,1
k “ E2,1,1

k ` E2,1,2
k ` E2,1,3

k and using the above bounds for
the term E3

k then yields

ϵn ď τ
n´1
ÿ

k“0

pCF `KFΓkq ϵk

` τ
n´1
ÿ

k“0

pCF `KFΓkq ∥wptkq ´ wk∥L2

`

n´1
ÿ

k“0

`∥∥E1
k

∥∥
L2 `

∥∥E4
k

∥∥
L2

˘

`

n´1
ÿ

k“0

∥∥∥E2
k ´ E2,1,3

k

∥∥∥
L2

`

∥∥∥∥∥n´1
ÿ

k“0

Spτqn´1´kE2,1,3
k

∥∥∥∥∥
L2

.

Applying the Gronwall inequality to get an almost sure inequality, then using the Cauchy–
Schwarz and Minkowskii’s inequalities, one obtains for all n ě 0 and all q P r1,8q

e´CFnτ
`

Ere´qKFSnϵqns
˘1{q

ď τ
n´1
ÿ

k“0

´

E
”

pCF `KFΓkq
2q

ı¯1{p2qq ´

E
”

∥wptkq ´ wk∥2qL2

ı¯1{p2qq

`

n´1
ÿ

k“0

´

`

E
“∥∥E1

k

∥∥q
L2

‰˘1{q
`

`

E
“∥∥E4

k

∥∥q
L2

‰˘1{q
¯

`

n´1
ÿ

k“0

´

E
”∥∥∥E2

k ´ E2,1,3
k

∥∥∥q
L2

ı¯1{q
`

¨

˝E

»

–

∥∥∥∥∥n´1
ÿ

k“0

Spτqn´1´kE2,1,3
k

∥∥∥∥∥
2q

L2

fi

fl

˛

‚

1{p2qq

,

where in the last term, we have used the inclusion L2qpΩq Ă LqpΩq. Using the same argu-
ments as in the proof of Proposition 12 (in particular moment estimates of Proposition 3 and
Corollary 11, and the error estimate (13) for the stochastic convolution), the treatment of the
error terms in the right-hand side is straightforward, except for the last one which requires
more details that we now present.

First, note that using the Burkholder–Davis–Gundy inequality one has
¨

˝E

»

–

∥∥∥∥∥n´1
ÿ

k“0

Spτqn´1´kE2,1,3
k

∥∥∥∥∥
2q

L2

fi

fl

˛

‚

1{p2qq

ď Cq

¨

˝E

»

–

∥∥∥∥∥n´1
ÿ

k“0

Spτqn´1´kE2,1,3
k

∥∥∥∥∥
2

L2

fi

fl

˛

‚

1{2

,

thus it is sufficient to deal with the case q “ 1. Second, one has

E

»

–

∥∥∥∥∥n´1
ÿ

k“0

Spτqn´1´kE2,1,3
k

∥∥∥∥∥
2

L2

fi

fl “

n´1
ÿ

k“0

E
„∥∥∥E2,1,3

k

∥∥∥2
L2

ȷ

ď Cτ2,
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using the orthogonality property E
”

xE2,1,3
n , E2,1,3

m y

ı

“ 0 if n ‰ m mentioned above, and the
estimate (15).

Finally, recalling that ∥un ´ uptnq∥L2 ď ϵn ` ∥wn ´ wptnq∥L2 , gathering all these estimates
and using the bounds on the error in the stochastic convolution (13), we obtain

E
“

exp p´qKFSnq ∥un ´ uptnq∥q
L2

‰
1
q ď CqpT, u0, Qqτ.

This concludes the proof of Proposition 13.
□

6. Numerical experiments

We present some numerical experiments in order to support and illustrate the above theo-
retical results. In addition, we shall compare the behavior of the splitting scheme (8) (denoted
by Split below) with the following time integrators

‚ the classical Euler–Maruyama scheme (denoted EM)

un`1 “ un ´ iτ∆un ´ iτF punq ´ iαδWQ
n .

‚ the classical semi-implicit Euler–Maruyama scheme (denoted sEM)

un`1 “ un ´ iτ∆un`1 ´ iτF punq ´ iαδWQ
n .

‚ the stochastic exponential integrator from [3] (denoted sEXP)

un`1 “ Spτq
`

un ´ iτF punq ´ iαδWQ
n

˘

.

‚ the Crank–Nicolson–Euler–Maruyama (denoted CN)

un`1 “ un ´ iτ∆un`1{2 ´ iτF punq ´ iαδWQ
n ,

where un`1{2 “ 1
2 pun ` un`1q. This is a slight modification of the Crank–Nicolson

from [23].

6.1. Trace formulas for the mass. We consider the stochastic Schrödinger equation (1) on
the interval r0, 2πs with periodic boundary condition, the coefficient α “ 1, and a covariance
operator with pγkqkPZ “

´

1
1`k2

¯

kPZ
and pekpxqqkPZ “

´

1?
2π
eikx

¯

kPZ
. We consider the initial

value u0 “ 2
2´cospxq

and the following nonlinearities: V pxqu “ 3
5´4 cospxq

u (external potential),
`

V ‹ |u|2
˘

u with V pxq “ cospxq (nonlocal interaction), F puq “ `|u|2u (cubic). We refer to
[22, Theorem 3.4] for a result on global existence of solutions to the cubic case. We use a
pseudo-spectral method with Nx “ 28 modes and the above time integrators with time-step
size τ “ 0.1.

Figure 1 displays the evolution of the expected value of the mass on the time intervals
r0, 1s (external potential) and r0, 25s (other cases). The expected values are approximated
using M “ 75000 samples. The exact trace formulas for the splitting scheme, shown in
Proposition 5, can be observed. The growth rates of the other schemes are qualitatively
different than this linear rate of the exact solution: observe for instance the exponential drift
of EM in the first plot, the fact that sEXP seems to overestimate the linear drift and the fact
that sEM underestimates it. The CN scheme performs relatively well, except in the cubic
case (not displayed), where it should use a much smaller step-size in order not to explode.
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Figure 1. Trace formulas for mass of the splitting scheme (Split), the Euler–
Maruyama scheme (EM), the semi-implicit Euler–Maruyama scheme (sEM),
the exponential integrator (sEXP), and the Crank–Nicolson (CN) schemes.

6.2. Strong convergence. In this subsection, we illustrate the strong convergence of the
splitting scheme (8) as stated in Theorem 14.

To do this, we consider the stochastic Schrödinger equation (1) on the interval r0, 2πs

with periodic boundary condition, and a covariance operator with pγkqkPZ “

´

1
1`k2

¯

kPZ
.

We consider the external potential V pxq “ 3
5´4 cospxq

and nonlocal interaction given by the
potential V pxq “ cospxq. We take the initial value u0 “ 2

2´cospxq
(external potential) and

u0 “ 1
1`sinpxq2

(nonlocal interaction). Additional parameters are: coefficient in front of the
noise α “ 1.5, time interval r0, 1s, 250 samples used to approximate the expectations. We
use a pseudo-spectral method with Nx “ 210 modes and the above time integrators. Strong
errors, measured with r “ 1 at the end point, are presented in Figure 2. or this numerical
experiment, the splitting and exponential integrators give very close results. For clarity, only
some of the values for the exponential integrator are displayed. An order 1{2 of convergence
for the splitting scheme is observed. Note that, the strong order of convergence of the other
time integrators are not known in the case of the nonlocal interaction potential.

In order to illustrate the higher order of convergence for the splitting scheme, we consider
a smoother noise with covariance operator with pγkqkPZ “

´

1
1`k4

¯

kPZ
(the other parameters

for the simulation are as above). Results are presented in Figure 3, where a strong order of
convergence 1 is observed for the proposed time integrator, in agreement with Theorem 14.
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Figure 2. Strong errors for the stochastic Schrödinger equations.
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Figure 3. Strong errors for the stochastic Schrödinger equations with a
smoother noise.

6.3. Convergence in probability. In this subsection we numerically demonstrate the order
of convergence in probability for the splitting scheme (8). This order has been shown to be
1{2 in Corollary 16 above.

Numerically, we investigate the order in probability by using the equation
(16) max

nPt1,2,...,Nu
∥un ´ uref ptnq∥L2 ě Cτ δ,

where uref denotes a reference solution computed using the splitting scheme with step-size
τref “ 2´16. We then study the proportion of samples, P , fulfilling equation (16) for given C
and δ and observe whether P Ñ 0 for the given δ as τ Ñ 0 and C increases.

We simulate 50 samples of the splitting scheme applied to the SPDE (1) with the initial
value u0 “ 2

2´cospxq
, the nonlocal interaction and the same noise as in the previous subsection
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(non-smooth case). In addition, we take the following parameters: t P r0, 1s, Nx “ 28 Fourier
modes and τ “ 2n where n “ ´6,´7, . . . ,´14. We then estimate the proportion P of samples
fulfilling (16) for each given τ , δ “ 0.4, 0.5, 0.6, and C “ 10c for c “ 1, 2, 3. The results are
presented in Figure 4.
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Figure 4. Proportion of samples fulfilling (16) for the splitting scheme (N
denotes the number of step-sizes).

In this figure, one sees how the proportion of samples P quickly goes to zero for δ ď 1{2
and an increasing C. Furthermore, this property does not hold for δ ą 1{2. This numerical
experiment thus confirms that the order of convergence in probability of the splitting scheme
is 1{2, as stated in Corollary 16.

6.4. Computational times. In this numerical experiment, we compare the computational
costs of the above time integrators (expect the classical Euler–Maruyama scheme). To do this,
we consider the SPDE (1) with the above nonlocal interaction potential for times t P r0, 2s.
We discretize this SPDE using Nx “ 210 Fourier modes in space. We run 100 samples for each
numerical scheme. For each scheme and each sample, we run several time steps and compare
the L2 error at the final time with a reference solution provided for the same sample by the
same scheme for a very small time-step τ “ 2´13. Figure 5 displays the total computational
time for all the samples, for each numerical scheme and each time-step, as a function of the
averaged final error. One observes better performance for the splitting scheme.
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Appendix A. Proof of Proposition 3

This appendix provides the proofs of properties of the exact solution to (1).
Global well-posedness. Let Assumption 1 be satisfied. Since the nonlinearity F is only

locally Lipschitz continuous, a truncation argument is used to prove global well-posedness.
Let us stress that the key property of (1) used in the argument below is the fact that V rus is
real-valued.

Let θ : r0,8q Ñ r0, 1s be a compactly supported Lipschitz continuous function, such that
θpxq “ 1 for x P r0, 1s. For any R P p0,8q, set V Rpuq “ θpR´1 ∥u∥L2qV rus and FRpuq “

V Rpuqu. The mapping FR is globally Lipschitz continuous, and the SPDE

iduRptq “ ∆uRptq dt` FRpuRptqqdt` αdWQptq,

with initial condition uRp0q “ u0, thus admits a unique global solution
`

uRptq
˘

tPr0,T s
. Since

the mapping V R is real-valued, the trace formula holds, see (10): indeed, one obtains

d
∥∥uRptq

∥∥2
L2 “ α2TrpQq ` 2αImpxuRptq, dWQptqyq.

Taking expectation, one obtains the trace formula E
”∥∥uRptq

∥∥2
L2

ı

“ ∥u0∥2L2 ` 2tα2TrpQq,
where the right-hand side does not depend on truncation index R. Using the Burkholder–
Davis–Gundy inequality, one obtains

Er sup
0ďtďT

∥∥uRptq
∥∥2
L2s ď 3

´

∥u0∥2L2 ` α2TTrpQq

¯

` 3α2

ż T

0

ÿ

kPN
|γk|2Er|xuRpsq, eky|2sds

ď 3
´

∥u0∥2L2 ` α2TTrpQq

¯

` 3α2
∥∥∥Q 1

2

∥∥∥2
L0
2

ż T

0
Er

∥∥uRpsq
∥∥2
L2sds

ď CpT,Q, u0q,

where one observes that CpT,Q, u0q does not depend on R, using the trace formula above for
the term in the integral

∥∥uRpsq
∥∥2
L2 .

Setting the truncation argument is then straightforward. Let τR “ inftt ě 0;
∥∥uRptq

∥∥
L2 ą

Ru. If R1, R2 ě R, then uR1ptq “ uR2ptq for all t ď τR, by construction of FR. This allows us



26

to define uptq solving (1) for all t P r0, τq, where τ “ lim
RÑ8

τR. Finally, τ “ 8 almost surely,
indeed for every T P p0,8q,

Ppτ ď T q “ lim
RÑ8

PpτR ď T q “ lim
RÑ8

Pp sup
0ďtďT

∥∥uRptq
∥∥2
L2 ě R2q ď lim

RÑ8

CpT,Q, u0q

R2
“ 0,

using the moment estimate above. This concludes the proof of the global well-posedness
of (1).

Moment estimates in H1. Next, let us prove the moment bounds for the exact solution to
(1). We provide details only for the moment estimates in the H1 norm (under Assumption 1)

sup
0ďtďT

Er∥∇uptq∥2p
L2s ď CppT,Q, u0q.

Indeed, the moment estimates for the L2 norm, namely

sup
0ďtďT

Er∥uptq∥2p
L2s ď CppT,Q, u0q,

can either be obtained using similar arguments, or be deduced from the exponential mo-
ment estimates for which a detailed proof is provided above. Likewise, the proof of moment
estimates

sup
0ďtďT

Er∥∇uptq∥2p
H2s ď CppT,Q, u0q

under Assumption 2 would follow from similar arguments.
Let us first consider ψpuq “ ∥∇u∥2L2 for all u P H1. Its first and second order derivatives

are given by

ψ1puq.h “ 2Repx∇u,∇hyq

ψ2puq.ph, kq “ 2Repx∇h,∇kyq

for h, k P H1. Using Itô’s formula, one gets

d ∥∇uptq∥2L2 “ dψpuptqq

“ ψ1puptqq.duptq `
α2

2

ÿ

kPN
ψ2puptqq.pγkek, γkekq dt

“ 2Impx∇uptq,∇∆uptqyqdt` 2Impx∇uptq,∇F puptqqyqdt

` 2αImpx∇uptq,∇dWQptqyq ` α2
ÿ

kPN
|γk|2 ∥∇ek∥2L2 .

The first term in the last equality vanishes, and when taking expectation the third term also
vanishes. Using the condition (4) to deal with the second term, one obtains

dEr∥∇uptq∥2L2s

dt
ď C

´

1 ` Er∥∇uptq∥2L2s ` ErP1p∥uptq∥2L2qs

¯

,

where P1 is a polynomial mapping. Note that sup
0ďtďT

ErP1p∥uptq∥2L2qs ď CpT,Q, u0q due to

moment bounds in the L2 norm. Using the Gronwall Lemma then yields

sup
0ďtďT

Er∥∇uptq∥2L2s ď CpT,Q, u0q.
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Let p ě 1, then applying Itô’s formula for ψppuq “ ψpuqp yields

dEr∥∇uptq∥2p
L2s

dt
ď Cp ∥∇uptq∥2pp´1q

L2 Impx∇uptq,∇F puptqqyq ` Cpα
2

ÿ

kPN
|γk|2 ∥∇ek∥2L2 Er∥∇uptq∥2pp´1q

L2 s

ď C
´

1 ` Er∥∇uptq∥2p
L2s ` CErP1p∥uptq∥2L2qps

¯

using (4) and Young’s inequality. Using Gronwall’s lemma then concludes the proof of the
moment bounds in the H1 norm.

Temporal regularity. It remains to deal with the temporal regularity estimate. Using
the mild formulation (2), for any 0 ď t1 ă t2 ď T , one has

upt2q ´ upt1q “ Spt1q
`

Spt2 ´ t1q ´ I
˘

u0

´ i

ż t1

0
Spt1 ´ sq

`

Spt2 ´ t1q ´ I
˘

F pupsqqds´ i

ż t2

t1

Spt2 ´ sqF pupsqqds

´ iα

ż t1

0
Spt1 ´ sq

`

Spt2 ´ t1q ´ I
˘

dWQpsq ´ iα

ż t2

t1

Spt2 ´ sqdWQpsq.

Using Lemma 1, the first estimate of (4) and the moment bounds in the L2 and H1 norms,
one obtains ∥∥Spt1q

`

Spt2 ´ t1q ´ I
˘

u0
∥∥
L2 ď C|t2 ´ t1|

1
2 ∥u0∥H1

E

«∥∥∥∥ż t1

0
Spt1 ´ sq

`

Spt2 ´ t1q ´ I
˘

F pupsqqds

∥∥∥∥2p
L2

ff

ď T 2p´1|t2 ´ t1|p
ż T

0
E

”

∥F pupsqq∥2p
H1

ı

ds ď C|t2 ´ t1|
2p
2

E

«∥∥∥∥ż t2

t1

Spt2 ´ sqF pupsqqds

∥∥∥∥2p
L2

ff

ď |t2 ´ t1|2p
ż T

0
E

”

∥F pupsqq∥2p
L2

ı

ds ď C|t2 ´ t1|2p.

Using Itô’s isometry formula and Lemma 1, one has

E

«∥∥∥∥ż t1

0
Spt1 ´ sq

`

Spt2 ´ t1q ´ I
˘

dWQpsq

∥∥∥∥2
L2

ff

“ t1

∥∥∥`

Spt2 ´ t1q ´ I
˘

Q
1
2

∥∥∥2
L0
2

ď Ct1|t2 ´ t1|

∥∥∥Q 1
2

∥∥∥2
L1
2

E

«∥∥∥∥ż t2

t1

Spt2 ´ sq dWQpsq

∥∥∥∥2
ff

“ |t2 ´ t1|

∥∥∥Q 1
2

∥∥∥
L0
2

.

Since the stochastic integrals have Gaussian distribution, gathering the estimates above yields

E
”

∥upt2q ´ upt1q∥2p
L2

ı

ď CppT,Q, u0q|t2 ´ t1|p,

for all p ě 1 and t1, t2 P r0, T s. This concludes the proof of Proposition 3.
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