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Abstract

We study the Neumann-Laplacian eigenvalue problem in domains with multiple cracks. We
derive a mixed variational formulation which holds on the whole geometric domain (including the
cracks) and implement efficient finite element discretizations for the computation of eigenvalues.
Optimal error estimates are given and several numerical examples are presented, confirming the
efficiency of the method. As applications, we numerically investigate the behavior of the low
eigenvalues in domains with a high number of cracks.

1 Introduction

The study of eigenvalues and eigenfunctions of partial differential operators both in theoretical
and approximation grounds is very important in many branches of sciences: quantum mechanics,
structural mechanics, acoustic, economy, biology, etc. In most applications, the knowledge of the
eigenvalues allows, for example, to deduce stability of the physical system in neighborhoods of
the equilibrium states. For mathematicians, the spectral theory is also a source of fascinating and
“challenging” problems. Number of them is still unsolved, in particular several questions concerning
the behavior of the spectrum for the geometric domain variations (see [8]).

The dependence of the eigenvalues on the geometric domain is usually a complex question in
shape optimization. This dependence, which consists in properties such as stability, monotonicity
or sensitivity, is linked both to the operator itself and to the geometry. In the case of the Dirichlet-
Laplacian for example, several of the above properties are well understood, while for the Neumann-
Laplacian this is not the case. We refer to [8, 9, 17] for a detailed description of this topic.

Specific difficulties arise in the study and approximation of eigenvalues in nonsmooth domains
such as those with cracks. Typical examples are the comb domains or domains with rooms and
passages like in [16]. In this article, we present an efficient method for approximating the eigenvalues
of the Neumann-Laplacian in a plane domain with many cracks. This approximation method is
based on a mixed formulation obtained by extending admissible solutions to the entire domain, while
the conditions prescribed on the cracks are considered as functional constraints and are included in
the functional spaces. Since this approach reduces greatly the dependence of the computations with
respect to the geometric constraints (the cracks), it allows us to build efficient discretizations by
finite element method preserving good approximation properties: high accuracy, free from spurious
modes and low cost. As application of the method, we look for numerical evidences on the behavior
of the spectrum in a cracked domain when the number of the cracks increases. This behavior is, in
general, not well understood and plays an important role in shape optimization [4].
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The outline of the paper is as follows: In Section 2, we describe the variational formulation of
the eigenvalue problem and the principle of our method. Section 3 is devoted to the finite element
discretizations and the discrete eigenvalue problem. In Section 4, we perform the convergence
analysis and we give precise approximation results. In Section 5, we give the details of the im-
plementation and we present several numerical results to confirm the efficiency of our approach.
Further numerical experiments and applications are given in the last section.

2 Variational formulation and regularity

Let Ω be a bounded domain of R
2 with smooth boundary Γ, and (γi)i, 1 ≤ i ≤ I a given number

of disjoint Lipschitz continuous curves in Ω without selfintersections. We assume that each γi can
be extended up to a closed smooth curve Σi ⊂ Ω and that the subdomains Ωi with boundaries Σi,
1 ≤ i ≤ I form a partition of the entire domain Ω, i.e.

Ω =

I
⋃

i=1

Ωi, Ωi ∩ Ωj = ∅, 1 ≤ i < j ≤ I. (1)

When some γi touches the boundary, we assume that the angle between γi and Γ is not obtuse (to
avoid cusps in subdomains).

Remark 2.1 Assumption (1) covers exactly the case of interest in this paper and it allows us to
avoid additional technicalities. Let Ωγ be the domain Ω \ (

⋃I
i γi), then under these assumptions

the embedding of H1(Ωγ) into L2(Ωγ) is compact.

The Neumann eigenvalue problem for Laplace operator in Ωγ reads: Find λ ∈ R, and u 6= 0, such
that

−∆u = λu in Ωγ , (2)

∂u

∂n
= 0 on Γ, (3)

(
∂u

∂ni
)± = 0 on γ±i , 1 ≤ i ≤ I, (4)

where ( ∂u
∂ni

)± denote the normal derivatives of the function u on the crack faces γ±
i , 1 ≤ i ≤ I.

In the case of Lipschitz domains, it is well known from the spectral theory of compact operators
[11] that solutions (λ, u) of (2)-(3) are eigenpairs of the Neumann-Laplacian and the nonzero
eigenvalues λ are isolated and of finite multiplicity (recall that the multiplicity of an eigenvalue λ
for a compact operator T is the dimension of

⋃∞
n=1 ker(λI − T )n where kerA denotes the kernel of

A). Therefore, the spectrum consists only of eigenvalues which can be ordered into an increasing
sequence

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn ≤ . . . ,

each λi, except zero, being isolated and of finite multiplicity. Moreover, there exists an orthonormal
basis of L2(Ω) made of the associated eigenfunctions.

In fact, the compactness of the injection H1(Ωγ) ⊂ L2(Ωγ) is the key property for having
a spectrum of eigenvalues. It is readily checked that problem (2) to (4) admits the following
variational formulation: Find λ ∈ R, such that there exists a solution u 6= 0, u ∈ H 1(Ωγ) of

a(u, v) = λ(u, v), v ∈ H1(Ωγ), (5)
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Figure 1: Example of multi-cracked domain

where a(u, v) =
∫

Ωγ
gradu · grad v dx and (u, v) =

∫

Ωγ
u v dx. The equivalence of problem (2)-(4)

and problem(5) is a consequence of the density of C∞(Ωγ)∩H1(Ωγ) in H1(Ωγ). Moreover, denoting
by T : L2(Ωγ) −→ H1(Ωγ), the linear operator such that

a(Tf, v) = (f, v), v ∈ H1(Ωγ), (6)

it follows from the compactness of the embedding H 1(Ωγ) ⊂ L2(Ωγ) that T is compact. Therefore,
classical existence results and properties of eigenpairs of compact operators in smooth domains
extend to problem (2)-(4).

The method for approximating solutions of problem (2)-(4) developed in this article is based
on a mixed variational formulation that we introduce here. We set in D

′
(Ωγ)

p = gradu, in Ωγ . (7)

Next, we consider the space

X(Ωγ) =
{

q ∈ L2(Ωγ)2, divq ∈ L2(Ωγ), q · ν = 0, onΓ
}

,

equipped with the norm

‖q‖X(Ωγ ) =
(

‖q‖2
(L2(Ωγ))2 + ‖div q‖2

L2(Ωγ )

)
1
2
,

and the subspace
X�(Ωγ) =

{

q ∈ X(Ωγ), q · ν±i = 0, on γi, 1 ≤ i ≤ I
}

.

For each Σi, 1 ≤ i ≤ I, we also introduce the space H
1
2 (Σi) equipped with the norm

‖ϕ‖2

H
1
2 (Σi)

= ‖ϕ‖2
L2(Σi)

+

∫

Σi

∫

Σi

|ϕ(x) − ϕ(y)|2

|x− y|2
dx dy,

and we denote by H− 1
2 (Σi) its dual. For q ∈ X(Ωγ) the traces (q.νi)

± can be defined as elements

of H− 1
2 (Σi) and the trace operator is continuous from X(Ωγ) to H− 1

2 (Σi), [14]. Moreover, denoting

by H
1
2
00(γi) the subspace of H

1
2 (γi) made of functions (formally) vanishing at the endpoints of γi
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(see [20]), we can also define (q.νi)
± ∈ (H

1
2
00(γi))

′ and the constraints in the definition of X�(Ωγ)
are to be understood in the following weak sense

< (q.νi)
±, ϕ > 1

2
,γi

= 0 ∀ϕ ∈ H
1
2
00(γi), 1 ≤ i ≤ I,

< (q.ν), ϕ >− 1
2
, 1
2
,Γ= 0 ∀ϕ ∈ H

1
2 (Γ),

where < ., . > 1
2
,γi

stands for the duality pairing between H
1
2
00(γi) and its dual (H

1
2
00(γi))

′ and

< ., . >− 1
2
, 1
2
,Γ is the usual duality product of H

1
2 (Γ) and H− 1

2 (Γ).

The mixed variational formulation of problem (2)-(4) reads: Find (p, u) ∈ X�(Ωγ) × L2(Ωγ)
such that











∫

Ωγ
pq dx+

∫

Ωγ
udivq dx = 0, ∀q ∈ X�(Ωγ),

∫

Ωγ
divp v dx+ λ

∫

Ωγ
u v dx = 0, ∀v ∈ L2(Ωγ).

(8)

The study of such problems fits under the general theory of variationally posed spectral problems
(see [1, 2, 12, 19, 21, 22]). Note that if λ and u is an eigenpair of (2)-(4) and p = gradu, then λ
and (u,p) is an eigenpair of problem (8) and conversely.

In order to perform the computation for problem (2)-(4), and since we intend to work with
many cracks, we will derive a new variational formulation which will allow us to work in the entire
domain Ω = Ωγ ∪ γ. This formulation, introduced in [18] for some elasticity problems (see also
[3]), consists in extending the admissible solutions (the admissible displacement and its gradient in
the case of the elastic membrane) to the crack faces. Therefore the new admissible solutions are
defined in the entire domain Ω and the restrictions imposed on the cracks are expressed as internal
constraints prescribed on the given subset

⋃

i γi of Ω while the cracks γi, 1 ≤ i ≤ I are removed
from the formulation (8). Therefore, for numerical computations, only one global mesh is necessary
in Ω which is a crucial for problem (2)-(4) from both practical and approximation points of view.

We still denote

X� = {q ∈ X(Ω), q · νi = 0, on γi, 1 ≤ i ≤ I, q · ν = 0, onΓ} ,

then, the new formulation consists in rewriting problem (8) by replacing Ωγ with Ω (with obvious
modifications of the spaces and integrals). For brevity, we will label the new problem also (8). Note
that, if λ, (u,p) is an eigenpair for the latest problem then λ, and the restrictions of (u,p) to the
domain Ωγ is an eigenpair of the initial problem. The converse statement is obviously true under
additional regularity assumptions on γ and solutions (u,p).

In that follows, we denote

s(u, v) =

∫

Ω
u v dx, a(p,q) =

∫

Ω
pq dx, b(v,q) =

∫

Ω
v divq dx.

Let us introduce the bilinear forms A and B defined on the product space X� × L2(Ω) by

A((u,p), (v,q)) = a(u, v) + b(v,p) + b(u,q),

B((u,p), (v,q)) = −s(u, v).

We define the space
Y =

{

q ∈ X�, b(v,q) = 0, ∀v ∈ L2(Ω)
}

.
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Problem (8) takes the form: Find λ ∈ R, 0 6= U ∈ X� × L2(Ω) such that

A(U, V ) = λB(U, V ), ∀V ∈ X� × L2(Ω). (9)

It is readily checked that the two following conditions hold

a(p,p) ≥ α‖p‖2
X, ∀p ∈ Y, α > 0, (10)

sup
q∈X�

|b(v,q)|

‖q‖X
≥ β‖u‖L2(Ω), β > 0. (11)

Thus, it is well known ([7], [24]) that under conditions (10) and (11), the following positivity
properties are satisfied

inf
U ∈ X� × L2(Ω)
‖U‖

X�×L2(Ω)
= 1

sup
V ∈ X� × L2(Ω)
‖V ‖

X�×L2(Ω)
= 1

|A(U, V )|

‖U‖X×L2(Ω)‖V ‖X×L2(Ω)
≥ β > 0, (12)

and
sup

U∈X�×L2(Ω)
|A(U, V )| > 0, ∀0 6= V ∈ X� × L2(Ω). (13)

We also have that the operator T : L2(Ω) −→ L2(Ω), defined by

A((p, T f), V ) = B((p,−f), V ), V = (q, v) ∈ X� × L2(Ω),

is self-adjoint and compact. Therefore, we have (see for instance [1])

Theorem 2.2 The triplet (p, u, λ) is an eigensolution of problem (8) if and only if λTu = u,
p = gradu.

To achieve our aim of constructing a general framework for an efficient approximation method
to problem (8), we now derive an unconstrained formulation where the zero Neumann conditions on
γi, 1 ≤ i ≤ I are expressed via Lagrange multipliers. This yields the following hybrid formulation.

Notation Let γ be one of the cracks γi, and c1, c2 its endpoints. Let us denote by H1
0 (γ, {c`})

the subspace of functions of H1(γ) vanishing at {c`}), ` = 1, 2.

We define the space H
1
2
∗ (γ) as

H
1
2
00(γ) if c1 and c2 ∈ ∂Ω,

H
1
2
00(γ, {ci}) if ci ∈ ∂Ω, i = 1, 2,

H
1
2 (γ) if γ ∩ ∂Ω = ∅,

whereH
1
2
00(γ, {ci}) stands for the space obtained by Hilbertian interpolation of index 1

2 :
[

H1
0 (γ, {ci}), L

2(γ)
]

1
2

(see [20]).

We introduce the Lagrange multiplier space

M =

{

µ = (µi)1≤i≤I ∈
I

∏

i=1

H
1
2
∗ (γi)

}

,
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and we define the bilinear form d(., .) on the space X� × (L2(Ω) ×M) such that

c(q, (v, µ)) = b(v,q) +

I
∑

i=1

< µi,q · νi > 1
2
,γi
. (14)

We are now in position to define the (hybrid) variational formulation which reads:






a(p,q) + c(q, (u,Λ)) = 0, ∀q ∈ X�,

c(p, (v, µ)) + λs(u, v) = 0, ∀(v, µ) ∈ L2(Ω) ×M.
(15)

This problem fits under the general theory of mixed variational formulation of spectral problems.
Moreover, replacing the previous bilinear forms A and B by the similar ones defined on X� ×
(L2(Ω) ×M) as

A1((p, (u,Λ)), (q, (v, µ))) = a(p,q) + c(p, (v, µ)) + c(q, (u,Λ)),

B((p, (u,Λ)), (q, (v, µ))) = −s(u, v),

properties (10), (11), and (12) hold for the new bilinear forms. Note that the inf-sup condition for
c(., (., .)) between the space X� and the space L2(Ω)×M equipped with the norm ‖.‖L2(Ω) + ‖.‖M

follows easily from the separate inf-sup conditions on b(., .) and the form defined by

d(q, µ) =< µ,q · ν > 1
2
,γ=

I
∑

i=1

< µi,q · νi > 1
2
,γi
. (16)

Therefore the operator T defined by

∀(q, (v, µ)) ∈ X� × L2(Ω) ×M,

A1(p, (Tf,Λ), (q, (v, µ))) = B1((p, (f,Λ)), (q, (v, µ))), (17)

is also self-adjoint and compact, consequently the result of Theorem 2.2 holds.

3 Discrete variational formulation and approximation results

We will assume that Ω is a polygonal domain and the cracks γi, 1 ≤ i ≤ I are polygonal lines with
vertices which are also nodes of the triangulations. We denote by (Th)h a family of triangulations of
Ω made of elements which are triangles (the extension to quadrilaterals is standard). The maximal
size of elements is the parameter of discretization denoted by h > 0. In addition, we assume that
each triangulation satisfies the usual admissibility assumptions, i.e., the intersection of two different
elements is either empty, a vertex, or a whole edge, and Th is assumed to be “regular”, i.e., the ratio
of the diameter of any element K ∈ Th to the diameter of its largest inscribed ball is bounded by a
constant σ independent of K and h. Note that the trace of the triangulation Th on each γi define a
1D mesh T γi

h , and we assume that the endpoints ci1, c
i
2 of γi are vertices of T γi

h , 1 ≤ i ≤ I. Thus, the
mesh on each γi is defined by the lattice ci1 = xi

0, x
i
1, . . . , x

i
Li−1, x

i
Li

= ci2, and we set ti` =
]

xi
`−1, x

i
`

[

,
1 ≤ ` ≤ Li. We will assume for simplicity that the triangulation Th is quasi-uniform, i.e., there is
a constant τ > 0, such that

maxK hK

minK hK
≤ τ.

We also assume for technical reasons that no triangle has all its vertices on the boundary.
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Remark 3.1 Since the spectral problem of the Neumann-Laplacian is highly depending on the
geometry, one should be careful to the way of how to approach an arbitrary Lipschitz domain by
a polygonal one. Indeed, in order to prevent pollution by spurious eigenmodes the approximation
by polygonal domains should preserve a uniform cone condition. However, for arbitrary Lipschitz
cracks the use of isoparametric finite elements seems more appropriate.

To approximate solutions of (15) we will consider a discretization based on the piecewise con-
stant element for the approximation of the displacement u while for approximating the pressure
p = gradu, we will consider two discretizations based on the so called Raviart-Thomas element.
The two discretizations are close and they correspond to the two known ways for the implemen-
tation of the Raviart-Thomas element. The discrete Lagrange multiplier spaces Mh are built with
affine, respectively piecewise constants, functions on the triangulations T γi

h defined on the cracks
γi, 1 ≤ i ≤ I.

For K ∈ Th, let RT0(K) be the space

P 2
0 + P0x, for x ∈ K,

where P0 stands for the space of constant functions. Let EK denote the edges of K ∈ Th, E =
⋃

K EK

and EΩ = E \ Γ. We define the following finite dimensional space

Vh =
{

vh ∈ L2(Ω), vh|K ∈ P0(K),K ∈ Th

}

.

Next we consider the following spaces

1. First discretization

X0
h =

{

qh ∈ L2(Ω)2, qh ∈ RT0(K), K ∈ Th, qh.ν = 0 onΓ
}

,

M int
h =

{

ηh, µh|e ∈ P0(e), ∀e ∈ EΩ

}

,

and
M0

h(γi) =
{

µh, µh|ti
`
∈ P0(t`), t

i
` ∈ T γi

h , 0 ≤ ` ≤ Li − 1
}

.

We set

M0
h =

I
∏

i=1

M0
h(γi).

The discrete variational problem reads: Find λh ∈ R and (uh,ph, ϕh,Λh) ∈ X0
h×Vh×M

int
h ×

M0
h, such that







a(ph,qh) + c0(qh, (uh, ϕh,Λh)) = 0, ∀qh ∈ X0
h,

c0(ph, (vh, ηh, µh)) + λhs(uh, vh) = 0, ∀(vh, ηh, µh) ∈ Vh ×M int
h ×M0

h.

(18)

The bilinear form c0(., .) is defined as

c0(qh, (vh, ηh, µh)) = c(qh, (vh, µh)) +
∑

e∈EΩ

∫

e

(qh · νe)ηh de.
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2. Second discretization

X1
h = {qh ∈ X�, qh ∈ RT0(K), K ∈ Th} ,

for each γi, 1 ≤ i ≤ I, we associate the space

M1
h(γi) =

{

µh, µh|t` ∈ P1(t`), 0 ≤ ` ≤ Li − 1,

µh|ti∗
∈ P0(ti∗), if ci∗ ∈ Γ, i∗ = 0, Li−1

}

,

where P1 stands for the space of affine functions, and we set

M1
h =

I
∏

i=1

M1
h(γi).

The discrete variational problem reads: Find λh ∈ R and (uh,ph,Λh) ∈ X1
h × Vh ×M1

h, such
that







a(ph,qh) + c1(qh, (uh,Λh)) = 0, ∀qh ∈ X1
h,

c1(ph, (vh, µh)) + λhs(uh, vh) = 0, ∀(vh, µh) ∈ Vh ×M1
h.

(19)

The bilinear form c1(., .) is defined as

c1(qh, (vh, µh)) = c(qh, (vh, µh)).

Let Th : L2(Ω) −→ L2(Ω) denote the discrete counterpart of T , defined for ` = 0, 1 by:







a(ph,qh) + c`(qh, (Thf,Λh)) = 0, ∀qh ∈ X`
h,

c`(ph, (vh,Ψh)) + λhs(f, vh) = 0, ∀(vh,Ψh) ∈ Vh ×M`
h,

(20)

where M1
h = M1

h and M0
h = M int

h ×M0
h.

Then (Th) is a family of self-adjoint compact operators in L2(Ω). It is standard that (ph, uh, λh)
is an eigensolution of problems (18) or (19) if and only if

λhThuh = uh, ph = gradh uh,

where gradh is a discrete counterpart of grad.
Relying to the spectral approximation theory of variationally posed eigenvalue problems we can

give abstract error estimates. Indeed, assume that properties (10), (11), and (12) still hold for the
two discretization. Assume also that

lim
h→0

‖T − Th‖L(L2(Ω)) = 0. (21)

Then, let λ be an eigenvalue of problem (15), with algebraic multiplicity m, there exists exactly
m eigenvalues λh1, λh2,. . . , λhm of problem (19) (counted according to the multiplicity m) which
converge to λ when h goes to zero. Let λ̂h = 1

m

∑m
i=1 λih, we also denote by E the eigenspace

corresponding to λ and by Eh the direct sum of the eigenspace corresponding to λ1h,. . . , λmh.
Then, the following estimate holds for ` = 0, 1

|λ− λjh| ≤ Cε2h, j = 1, . . . ,m, (22)
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|λ− λ̂h| ≤ Cε2h, (23)

and for eigenfunctions
|uj − ujh| ≤ Cεh, j = 1, . . . ,m, (24)

where

εh =

sup
(p, u, Λ) ∈ E

‖p‖X + ‖u‖
L2(Ω)

+ ‖Λ‖M = 1

inf
qh ∈ X`

h
,

vh ∈ Vh,

Ψh ∈ M`

h

(

‖p − qh‖L2(Ω)2 + ‖u− vh‖L2(Ω) + ‖Λ − Ψh‖M
)

.

4 Error estimates

Both discretizations are close and their analysis is essentially similar and fits under the general
theory of approximation of eigenvalue problems by mixed finite element method (see [1, 2, 6, 10, 21]).
We only give a bridged analysis.

The main differences between the two discretization comes from the construction of the Lagrange
multiplier spaces. In fact, problem (19) is a hybrid formulation in the usual sense ([24]), i.e. M1

h

is a subspace of M, while M0
h is not. Therefore, the discrete inf-sup condition, with respect to the

natural norms, is uniform in h, in the first case, and not uniform in the second. The proof of these
inf-sup conditions is standard (see [14], [23]). We have for a constant β, independent of h,

∀µh ∈ M1
h, sup

qh∈X1
h

d(qh, µh)

‖qh‖X
≥ β‖µh‖M, (25)

and

∀µh ∈ M0
h, sup

qh∈X0
h

d(qh, µh)

‖qh‖L2(Ω)2
≥ βh−

1
2 ‖µh‖L2(γ). (26)

Recall also from [24] the usual discrete inf-sup conditions on the bilinear form b(., .)

∀vh ∈ Vh, sup
qh∈X`

h

b(vh,qh)

‖qh‖L2(Ω)2
≥ β‖vh‖L2(Ω). (27)

It is natural to ask whether the constants in the inf-sup conditions (26) and (25) depend on the
number of cracks which could deteriorate the conditioning of the matrices of the discrete problems.
It is readily checked by resorting to the proof of both inf-sup conditions in the framework of domain
decomposition, that the constants are independent of the number of the subdomains Ωi, thus of
the number of the cracks γi. This is also confirmed by the numerical experiments.

In what follows, we need some approximation tools. For K ∈ Th, e will denote an edge of
the triangle K. For q ∈ X sufficiently regular, the interpolation operator for the Raviart-Thomas
elements Jh is defined by

{

Jhq ∈ Xh,
∫

e
µJhqh · ν d e =

∫

e
µq · ν d e, ∀e ∈ EΩ, ∀µ ∈ P0.

(28)

It is well known that Jh satisfies the approximation properties (see. [23], [24])

‖q− Jhq‖(L2(Ω)2 ≤ Ch|q|H1(Ω)2 ,

‖div (q − Jhq)‖(L2(Ω) ≤ Ch|divq|H1(Ω).
(29)
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Similarly, the L2-orthogonal projection Ph from L2(Ω) onto Vh, satisfies (see [13])

‖u− Phu‖L2(Ω) ≤ Ch|u|H1(Ω). (30)

We also denote by π0
h the L2-projection operator L2(γ) −→ M0

h, defined as follows: For each γi,
1 ≤ i ≤ I,

∫

γi

vψh dσ =

∫

γi

π0
h(v)ψh dσ, ψh ∈M0

h(γi). (31)

π0
h satisfies the following estimates (see [24]). Namely, for the functions ϕ ∈ H ν(γi), 1 ≤ i ≤ I,

with ν = 1
2 , or with ν = 1, there exists a constant c > 0 independent of h such that

‖ϕ− π0
hϕ‖L2(γi) ≤ chν‖ϕ‖Hν (γi). (32)

Moreover, if ϕ ∈ L2(γi), then

‖ϕ− π0
hϕ‖H

− 1
2 (γi)

≤ ch
1
2 ‖ϕ− π0

hϕ‖L2(γi). (33)

Finally, we define the projection operator π1
h : L2(γi) 7→ M1

h(γi), 1 ≤ i ≤ I, with respect to
the scalar product in L2(γi), which satisfies the following properties (see [5]). Given µ ∈ [0, 1] and
ν ∈

]

1
2 , 2

]

, there exists a constant c > 0 which is independent of h, such that for all functions
ϕ ∈ Hν(γi),

‖ϕ− π1
hϕ‖H−µ(γi) + hµ+ 1

2 ‖ϕ− π1
hϕ‖H

1
2 (γi)

≤ chµ+ν‖ϕ‖Hν (γi). (34)

4.1 The case of the second discretization

Since the space X1
h × Vh ×M1

h is a subspace of X� ×L2(Ω)×M, it can be checked that properties
(10), (11), and (12) still hold in the discrete case.

We consider the source problem (20) and derive from the saddle-point approximation theory
([14, 7]) the following error estimates.

Proposition 4.1 For every f ∈ L2(Ω) the following estimates hold

‖p − ph‖L2(Ω)2 ≤

C
(

inf
qh∈Xh

‖p − qh‖L2(Ω)2 + inf
(vh,Ψh)∈Vh×Mh

(‖u− vh‖L2(Ω) + ‖Λ − Ψh‖M)
)

, (35)

and

‖Tf − Thf‖L2(Ω) + ‖Λ − Λh‖M ≤

C
(

‖p − ph‖L2(Ω)2 + inf
(vh,Ψh)∈Vh×Mh

(‖u− vh‖L2(Ω) + ‖Λ − Ψh‖M)
)

. (36)

Remark 4.2 We also have in the case of the second discretization the estimate

‖p − ph‖X ≤ C
(

inf
qh∈Xh

‖p − qh‖X + inf
(vh,Ψh)∈Vh×Mh

(‖u− vh‖L2(Ω) + ‖Λ − Ψh‖M)
)

. (37)
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Proof The way to obtain these error estimates is standard. For the convenience of the reader we
just point out the streamline of the proof. Using the inf-sup conditions (25) - (27) and the error
equations for the source problems, we derive

‖Thf − Ph(Tf)‖L2(Ω) + ‖Λh − π1
h(Λ)‖M ≤ C

1

‖qh‖L2(Ω)2

(

b(Thf − Tf,qh)

+ b(Tf − Ph(Tf),qh) + d(Λh − Λ,qh) + d(Λ − π1
h(Λ),qh)

)

≤ C
1

‖qh‖L2(Ω)2

(

a(ph − p,qh) + b(Tf − Ph(Tf),qh) + d(Λ − π1
h(Λ),qh)

)

(38)

The triangle inequality yields (36).
Using again the error equations for the source problems and the definitions of the projection

operators Jh and π1
h, we obtain

‖Jhp− ph‖
2
L2(Ω)2 = a(Jhp− p,ph − Jhp) + a(p − ph,ph − Jhp)

= a(Jhp− p,ph − Jhp) − c1(Jhp− ph, (Tf − Thf,Λ − Λh))

= a(Jhp− p,ph − Jhp) + b(ph − Jhp, T f − Ph(Tf))

+ d(ph − Jhp,Λ − π1
h(Λ))

≤ C‖ph − Jhp‖L2(Ω)2
(

‖p − ph‖L2(Ω)2 + ‖Tf −Ph(Tf)‖L2(Ω)

+ ‖Λ − π1
h(Λ)‖M

)

.

(39)

Thus, the triangle inequality leads to (35) 2

It follows immediately from (36) and (29) that

lim
h→0

‖T − Th‖L(L2(Ω)) = 0. (40)

Since, when Λ ∈ H
1
2
+µ(γ) =

∏I
i=1H

1
2
+µ(γi), 0 < µ ≤ 1, we have

‖Λ − π1
h(Λ)‖M ≤ Chµ‖Λ‖

H
1
2 +µ(γ). (41)

Assembling estimates (29), (30), (43) together with (35) and (36) and inserting in (22), we get the
following error estimates

Theorem 4.3 Assume that λ, (u,p,Λ) is an eigensolution of problem (15), with the algebraic

multiplicity m for λ and assume that u ∈
∏I

i=1H
1(Ωi), p ∈ (H1(Ω))2 and Λ ∈ H

1
2
+µ(γ), 0 < µ < 1.

Let λih, i = 1, . . . ,m be the eigenvalues associated to λ and obtained from problem (19). Then, the

following error estimate holds

|λ− λih| ≤ Ch2µ, i = 1, . . . ,m, (42)

where the constant C depends linearly on (‖u‖H1(Ωi), 1 ≤ i ≤ I, ‖p‖H1(Ω)2).

Remark 4.4 Recall that Λ|γi
= [u]|γi

; thus in the case of high regularity, that is Λ ∈ H
3
2 , (which

is the case for smooth problems) we retrieve the well known O(h2) order of convergence for the
eigenvalues.
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4.2 The case of the first discretization

The same analysis as in the second discretization is valid. The only change is the use of a mesh-
dependent norm for the Lagrange multiplier. More precisely, we will consider that M int

h × M0
h is

equipped with the norm: For Ψh ∈M int
h ×M0

h

h−
1
2 ‖Ψh‖L2(E0).

Observing that when Λ ∈ H
1
2
+µ(γ) =

∏I
i=1H

1
2
+µ(γi), 0 < µ ≤ 1

2 , we have for each i

h−
1
2 ‖Λ − π0

h(Λ)‖L2(γi) ≤ Chµ‖Λ‖Hµ(γi). (43)

As in the previous case, we get the following.

Theorem 4.5 Assume that λ, (u,p,Λ) is an eigensolution of problem (15), with the algebraic

multiplicity m for λ and assume that u ∈
∏I

i=1H
1(Ωi), p ∈ (H1(Ω))2 and Λ ∈ H

1
2
+µ(γ), 0 < µ <

1
2 . Let λih, i = 1, . . . ,m be the eigenvalues associated to λ and obtained from problem (19). Then,

the following error estimate holds

|λ− λih| ≤ Ch2µ, i = 1, . . . ,m, (44)

where the constant C depends linearly on (‖u‖H1(Ωi), 1 ≤ i ≤ I, ‖p‖H1(Ω)2).

Note that in this last case we obtain the convergence rate O(h) when Λ ∈ H 1(γ) (which is a
reasonable regularity assumption). So the result is identical to the one of the previous discretization,
however, here we cannot improve this convergence rate, even if Λ is more regular. In some sense,
we are limited by the approximation of M by L2(γ) functions.

To finish this section, we point out the fact that the use of continuous finite elements for u or
p do not give satisfactory results. In fact, such elements give rise to spurious modes because they
do not satisfy the assumption (40) as the Raviart-Thomas type elements (see also [2], [6]).

5 Implementation details

In order to perform the computations, we derive the matrix formulation of discrete problems (18)
and (19). Let us denote by EC , EI and EN the set of edges on the cracks, in the interior and
on the boundary, respectively. We denote by xp the components of ph and xu is related to the
elementwise constant function uh. The unknowns xλC

are the Lagrange multipliers corresponding
to the Neumann condition on ∂Ω ∪ γ and the unknowns xλI

are the Lagrange multipliers used to
ensure the continuity of the normal components of p across interior edges in the first discretization.

5.1 The first discretization

The matrix formulation of discrete problem (18) reads:









B C D F
Ct 0 0 0
Dt 0 0 0
F t 0 0 0

















xp

xu

xλI

xλC









= λ









0 0 0 0
0 -S 0 0
0 0 0 0
0 0 0 0

















xp

xu

xλI

xλC









(45)
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The matrices are built locally and then assembled in a usual way. For all K ∈ Th, we define the
three functions

ω1(x, y) = (1, 0), ω2(x, y) = (0, 1), ω3(x, y) = (x− x, y − y) ∀(x, y) ∈ K, (46)

where (x, y) is the center of gravity of the triangle K. With these notations, the local matrices BK

and CK are defined by

(BK)ij =

∫

K

ωiωjdx ∀i, j = 1, 2, 3, (CK)i =

∫

K

div(ωi)dx ∀i = 1, 2, 3.

Denoting zj = (xj , yj) the vertices of K, it is readily checked that

BK = |K|diag (1, 1,
s

36
) and CK = diag (0, 0, 2|K|),

where s = |z2 − z1|
2 + |z3 − z2|

2 + |z3 − z1|
2 and |K| denotes the area of K.

Each interior edge ei is shared by two triangles K+ and K−. The corresponding local matrix
Ei (of R

6,1) is

Eij = −

∫

ei

ωj .νids ∀j = 1, . . . , 6,

where the ωi (i = 1, . . . , 3) are the three functions of (4) defined for K+ while ωi (i = 4, . . . , 6) are
related to K−.

For each edge ek ∈ EN , define

Fj =

∫

ek

ωj · νk ds for j = 1, 2, 3.

Finally, the matrix SK is given by

SK = |K|diag (1, 1, 1).

Next, assembling all these local matrices yield the global system (47).

5.2 The second discretization

The matrix formulation of the discrete problem (18) reads with similar notations:





B C F
Ct 0 0
F t 0 0









xp

xu

xλC



 = λ





0 0 0
0 -S 0
0 0 0









xp

xu

xλC



 (47)

Since functions of Xh have their divergence in L2(Ω), we use now the edge-basis functions to derive
the matrix form of (19). We recall the definition of these functions which form a basis of Xh. For
e ∈ E , let K± = conv(K±, P±) for the vertex P± opposite to e of K±. Let νe denote the unit
normal vector which points outward from K+ to K−. If e is an exterior edge then ν = νe. We set

ψe(x) =







±
|e|

2|K±|
(x− P±) for x ∈ K±,

0 elsewhere.
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Then the local stiffness matrices are given by:

(BK)ij =

∫

K

ψj · ψi dx for j, i = 1, 2, 3,

and

(CK) = diag (

∫

K

divψ1 dx,

∫

K

divψ2 dx,

∫

K

divψ3 dx).

For each γi, 1 ≤ i ≤ I, we denote by w`, 0 ≤ ` ≤ Li −1 the basis functions of M 1
h(γi), then we have

(F i)`j =

∫

γi

w` (ψj .ν) ds, 0 ≤ ` ≤ Li − 1, 1 ≤ j ≤ NT ,

and F = (F i), 1 ≤ i ≤ I. Assembling matrices B and C and computing S as before yield the
global system for this discretization.

6 Numerical examples

We present some numerical results, first to underline the efficiency of the proposed discretizations,
next to show the asymptotic behavior of the spectrum when the number of cracks increases (for a
given geometry).

To verify the efficiency of the approach, we consider three examples: We set Ω = [−1, 1]2 and
we solve the eigenvalue problems corresponding to the domain without cracks, the domain with 7
cracks, the domain with 15 cracks and finally with 31 cracks. In all these examples, the cracks are
horizontal segments [−1, 0] × {yi} for some values yi on the y-axis. Table 1, Table 2, Table 3 and
Table 4 summarize the results we obtain. For each example, we have reported the values of the
first and the second (non-zero) eigenvalues and the error |λref − λh| in the log scale. λref stands
for the reference value computed on the finest mesh. These results confirm the rate of convergence
O(hα), α = 1.96 for Table 1, and α equal 0.93, 0.96, 0.95 respectively, for Table 2, Table 3 and
Table 4.

λ1 e1 λ2 e2

h1 = 0.372678 (160 elts) 2.46762745 -8.3934293 4.93919511 -5.4277635

h2 = 0.3292694 (246 elts) 2.46537865 -6.2034455 4.93241818 -6.0389669

h3 = 0.1303899 (1350 elts) 2.46732800 -9.5236785 4.93456371 -8.341180

h4 = 0.0937725 (3116 elts) 2.46743449 -10.307262 4.93454894 -8.281091

π2/4 π2/2

Table 1:
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λ1 e1 λ2 e2

h1 = 0.3609942 (336 elts) 0.80319711 -3.0013691 1.39193385 -2.1181228

h2 = 0.1786276 (1368 elts) 0.82571782 -3.604603 1.44907129 -2.762722

h3 = 0.1219679 (3248 elts) 0.83430518 -3.9840089 1.46969180 -3.158269

h4 = 0.0939467 (6008 elts) 0.83880861 -4.261052 1.48020938 -3.4425936

href = 0.0130860 (137960 elts) 0.85291606 1.51219101

Table 2:

λ1 e1 λ2 e2

h1 = 0.259579 (1054 elts) 0.79196817 -3.4479164 1.37203684 -2.524477

h2 = 0.1786276 (1292 elts) 0.79990106 -3.734757 1.39594167 -2.878921

h3 = 0.125 (1968 elts) 0.80707215 -4.0918754 1.41584428 -3.3161376

h4 = 0.088849 (5388 elts) 0.81244789 -4.480113 1.42640026 -3.659835

href = 0.0131982 (136446 elts) 0.82378002 1.45213702

Table 3:

For the second discretization, we give only the convergence results in the case of the domain
with 7 cracks. All other results agree with the theoretical ones, in particular we have the rate of
convergence O(hα), α = 1.91 as shown in Table 5. For the second non zero eigenvalue we have
α = 1.49 but it increases for more finer meshes. Note that the number of cracks do not affect the
expected precision of the method, since the inf-sup conditions (26) and (25) do not depend on that
number.

Another example, Table 6, shows that when the crack breaks the simple connectivity of the
initial domain (topological change), the resulting spectrum is the union of the spectra of each
subdomain.

We investigate now numerically the asymptotic behavior of the spectrum if the number of cracks
increases. The first example that we consider consists in a square domain Ω = [−1, 1]2 with the fol-
lowing number of cracks L = 0, 7, 15, 31, 63, 127. The cracks are still horizontal equispaced straight
segments [−1, 0] × {yi}. Let us recall that no a priori knowledge on the asymptotic behavior is
available for the Neumann eigenvalue problem. In Table 7, we have reported the 20 first eigenvalues
for each case. We observe that the first values of the spectrum decrease but remain bounded by a
given value 0.8096075353. This asymptotic value is stable when L increases. The value π2

4 which
is the first non zero eigenvalue with no crack becomes a larger eigenvalue with L cracks, and this
is explained by the choice of parallel cracks. In the example of the cracks of length equal to 1, π2

4
becomes the L + 1 non zero eigenvalue. This fact seems to be a coincidence and it does not hold
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λ1 e1 λ2 e2

h1 = 0.1456065 (1552 elts) 0.79553444 -4.263488 1.38726351 -3.342662

h2 = 0.1017412 (3932 elts) 0.79707064 -4.3790766 1.39391769 -3.5512572

h3 = 0.0888499 (4794 elts) 0.79962331 -4.6067454 1.39908678 -3.7499271

h4 = 0.0577491 (6976 elts) 0.80289115 -4.9420593 1.40606327 -4.1017940

href = 0.0129046 (147496 elts) 0.80960757 1.42260624

Table 4:

λ1 e1 λ2 e2

h1 = 0.1814387 (1450 elts) 0.84091988 -4.4231653 1.47029416 -3.1725446

h2 = 0.0900933 (3656 elts) 0.84766675 -5.249654 1.49261209 -3.933301

h3 = 0.0642886 (7008 elts) 0.85049332 -6.0228438 1.50123763 -4.514107

h4 = 0.0501623 (12244 elts) 0.85202546 -7.0235927 1.50648883 -5.1669067

href = 0.0130860 (137960 elts) 0.85291606 1.51219101

Table 5:

when the length of the cracks changes and we think also that it does not hold for very large number
of cracks.

In Table 8, we have reported the smallest non zero eigenvalue as a function of the number of
the cracks (rows) and their length L (columns). This value changes with this two parameters as it
could be expected from the monotonicity property.

The example of the disk below Table 9, without cracks, with 15 and 24 cracks shows a similar
asymptotic behavior. This can be explained by the fact that the cracks are chosen on the rays and
are equispaced.

The last example is a rooms and passages domain (see Figure 2). In Table 10 we have written
the low eigenvalues in the case without cracks and in the case with 17 cracks.
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no cracks 15 cracks 24 cracks

λ1 0.000 0.000 0.000

λ2 3.390 1.967 1.916
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λ14 41.163 6.182 5.885

λ15 6.199 5.885

λ16 6.152 5.954

λ17 14.682 6.387

λ18 27.805 6.408

λ19 27.805 6.409

λ20 40.763 6.434

λ21 41.316 6.489

λ22 49.217 6.503

λ23 51.930 6.504

λ24 51.930 6.512

λ25 56.092 14.682

Table 9:
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λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

No crack 0.0 0.052 0.287 0.384 0.698 0.721 0.915 1.098 1.425 1.966

17 0.0 0.016 0.129 0.274 0.341 0.516 0.627 0.681 0.736 0.788

Table 10:
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