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Finite Element Approximation of the Neumann Eigenvalue Problem in Domains with Multiple Cracks

We study the Neumann-Laplacian eigenvalue problem in domains with multiple cracks. We derive a mixed variational formulation which holds on the whole geometric domain (including the cracks) and implement efficient finite element discretizations for the computation of eigenvalues. Optimal error estimates are given and several numerical examples are presented, confirming the efficiency of the method. As applications, we numerically investigate the behavior of the low eigenvalues in domains with a high number of cracks.

Introduction

The study of eigenvalues and eigenfunctions of partial differential operators both in theoretical and approximation grounds is very important in many branches of sciences: quantum mechanics, structural mechanics, acoustic, economy, biology, etc. In most applications, the knowledge of the eigenvalues allows, for example, to deduce stability of the physical system in neighborhoods of the equilibrium states. For mathematicians, the spectral theory is also a source of fascinating and "challenging" problems. Number of them is still unsolved, in particular several questions concerning the behavior of the spectrum for the geometric domain variations (see [8]).

The dependence of the eigenvalues on the geometric domain is usually a complex question in shape optimization. This dependence, which consists in properties such as stability, monotonicity or sensitivity, is linked both to the operator itself and to the geometry. In the case of the Dirichlet-Laplacian for example, several of the above properties are well understood, while for the Neumann-Laplacian this is not the case. We refer to [8, [START_REF] Burenkov | Davies-Spectral stability of the Neumann Laplacian[END_REF][START_REF] Henrot | Minimization problems for eigenvalues of the Laplacian. Dedicated to Philippe Bénilan[END_REF] for a detailed description of this topic.

Specific difficulties arise in the study and approximation of eigenvalues in nonsmooth domains such as those with cracks. Typical examples are the comb domains or domains with rooms and passages like in [START_REF] Hempel | Simon-The essential spectrum of Neumann Laplacians on some bounded singular domains[END_REF]. In this article, we present an efficient method for approximating the eigenvalues of the Neumann-Laplacian in a plane domain with many cracks. This approximation method is based on a mixed formulation obtained by extending admissible solutions to the entire domain, while the conditions prescribed on the cracks are considered as functional constraints and are included in the functional spaces. Since this approach reduces greatly the dependence of the computations with respect to the geometric constraints (the cracks), it allows us to build efficient discretizations by finite element method preserving good approximation properties: high accuracy, free from spurious modes and low cost. As application of the method, we look for numerical evidences on the behavior of the spectrum in a cracked domain when the number of the cracks increases. This behavior is, in general, not well understood and plays an important role in shape optimization [START_REF] Belhachmi | Sac-Epee-Behavior of Neumann-Laplacian eigenvalue problem in multiply-cracked domains[END_REF].
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The outline of the paper is as follows: In Section 2, we describe the variational formulation of the eigenvalue problem and the principle of our method. Section 3 is devoted to the finite element discretizations and the discrete eigenvalue problem. In Section 4, we perform the convergence analysis and we give precise approximation results. In Section 5, we give the details of the implementation and we present several numerical results to confirm the efficiency of our approach. Further numerical experiments and applications are given in the last section.

Variational formulation and regularity

Let Ω be a bounded domain of R 2 with smooth boundary Γ, and (γ i ) i , 1 ≤ i ≤ I a given number of disjoint Lipschitz continuous curves in Ω without selfintersections. We assume that each γ i can be extended up to a closed smooth curve Σ i ⊂ Ω and that the subdomains Ω i with boundaries Σ i , 1 ≤ i ≤ I form a partition of the entire domain Ω, i.e.

Ω =

I i=1 Ω i , Ω i ∩ Ω j = ∅, 1 ≤ i < j ≤ I. (1) 
When some γ i touches the boundary, we assume that the angle between γ i and Γ is not obtuse (to avoid cusps in subdomains).

Remark 2.1 Assumption (1) covers exactly the case of interest in this paper and it allows us to avoid additional technicalities. Let Ω γ be the domain Ω \ ( I i γ i ), then under these assumptions the embedding of

H 1 (Ω γ ) into L 2 (Ω γ ) is compact.
The Neumann eigenvalue problem for Laplace operator in Ω γ reads: Find λ ∈ R, and u = 0, such that

-∆u = λu in Ω γ , (2) 
∂u ∂n = 0 on Γ, (3) 
( ∂u ∂n i ) ± = 0 on γ ± i , 1 ≤ i ≤ I, (4) 
where ( ∂u ∂n i ) ± denote the normal derivatives of the function u on the crack faces γ ± i , 1 ≤ i ≤ I. In the case of Lipschitz domains, it is well known from the spectral theory of compact operators [START_REF] Davies | Spectral theory and differential operators[END_REF] that solutions (λ, u) of ( 2)-(3) are eigenpairs of the Neumann-Laplacian and the nonzero eigenvalues λ are isolated and of finite multiplicity (recall that the multiplicity of an eigenvalue λ for a compact operator T is the dimension of ∞ n=1 ker(λI -T ) n where kerA denotes the kernel of A). Therefore, the spectrum consists only of eigenvalues which can be ordered into an increasing sequence 0

≤ λ 1 ≤ λ 2 ≤ • • • ≤ λ n ≤ . . . ,
each λ i , except zero, being isolated and of finite multiplicity. Moreover, there exists an orthonormal basis of L 2 (Ω) made of the associated eigenfunctions.

In fact, the compactness of the injection H 1 (Ω γ ) ⊂ L 2 (Ω γ ) is the key property for having a spectrum of eigenvalues. It is readily checked that problem (2) to (4) admits the following variational formulation: Find λ ∈ R, such that there exists a solution u = 0, u ∈ H 2)-( 4) and problem( 5) is a consequence of the density of

1 (Ω γ ) of a(u, v) = λ(u, v), v ∈ H 1 (Ω γ ), (5) 
C ∞ (Ω γ )∩H 1 (Ω γ ) in H 1 (Ω γ ). Moreover, denoting by T : L 2 (Ω γ ) -→ H 1 (Ω γ ), the linear operator such that a(T f, v) = (f, v), v ∈ H 1 (Ω γ ), (6) 
it follows from the compactness of the embedding H 1 (Ω γ ) ⊂ L 2 (Ω γ ) that T is compact. Therefore, classical existence results and properties of eigenpairs of compact operators in smooth domains extend to problem (2)-( 4). The method for approximating solutions of problem ( 2)-( 4) developed in this article is based on a mixed variational formulation that we introduce here. We set in D (Ω γ )

p = grad u, in Ω γ . (7) 
Next, we consider the space

X(Ω γ ) = q ∈ L 2 (Ω γ ) 2 , div q ∈ L 2 (Ω γ ), q • ν = 0, on Γ , equipped with the norm q X(Ωγ ) = q 2 (L 2 (Ωγ )) 2 + div q 2 L 2 (Ωγ ) 1 2 ,
and the subspace

X (Ω γ ) = q ∈ X(Ω γ ), q • ν ± i = 0, on γ i , 1 ≤ i ≤ I .
For each Σ i , 1 ≤ i ≤ I, we also introduce the space H 1 2 (Σ i ) equipped with the norm

ϕ 2 H 1 2 (Σ i ) = ϕ 2 L 2 (Σ i ) + Σ i Σ i |ϕ(x) -ϕ(y)| 2 |x -y| 2 dx dy,
and we denote by H -1 2 (Σ i ) its dual. For q ∈ X(Ω γ ) the traces (q.ν i ) ± can be defined as elements of H -1 2 (Σ i ) and the trace operator is continuous from X(Ω γ ) to H -1 2 (Σ i ), [START_REF] Girault | Raviart-Finite Element Methods for the Navier-Stokes Equations[END_REF]. Moreover, denoting by H 1 2 00 (γ i ) the subspace of H 1 2 (γ i ) made of functions (formally) vanishing at the endpoints of γ i (see [START_REF] Lions | Magenes-Non-Homogeneous Boundary Value Problems and Applications[END_REF]), we can also define (q.ν i ) ± ∈ (H 1 2 00 (γ i )) and the constraints in the definition of X (Ω γ ) are to be understood in the following weak sense

< (q.ν i ) ± , ϕ > 1 2 ,γ i = 0 ∀ϕ ∈ H 1 2 00 (γ i ), 1 ≤ i ≤ I, < (q.ν), ϕ > -1 2 , 1 2 ,Γ = 0 ∀ϕ ∈ H 1 2 (Γ),
where < ., . > 1 2 ,γ i stands for the duality pairing between H 1 2 00 (γ i ) and its dual (H

1 2
00 (γ i )) and < ., . > -1 2 , 1 2 ,Γ is the usual duality product of H 1 2 (Γ) and H -1 2 (Γ). The mixed variational formulation of problem ( 2)-(4) reads:

Find (p, u) ∈ X (Ω γ ) × L 2 (Ω γ ) such that      Ωγ p q dx + Ωγ u div q dx = 0, ∀q ∈ X (Ω γ ), Ωγ div p v dx + λ Ωγ u v dx = 0, ∀v ∈ L 2 (Ω γ ). ( 8 
)
The study of such problems fits under the general theory of variationally posed spectral problems (see [START_REF] Babuska | Osborn-Eigenvalue problems[END_REF][START_REF] Babuska | Osborn-Numerical treatement of eigenvalue problems for differential equations with discontinuous coefficients[END_REF][START_REF] Descloux | Rappaz-On spectral approximation, Part2: Error estimates for the Galerkin method[END_REF][START_REF] Kolata | Approximation of variationally posed eigenvalue problems[END_REF][START_REF] Mercier | Raviart-Eigenvalue approximation by mixed and hybrid methods[END_REF][START_REF] Osborn | Spectral approximation for compact operators[END_REF]). Note that if λ and u is an eigenpair of ( 2)-( 4) and p = grad u, then λ and (u, p) is an eigenpair of problem (8) and conversely.

In order to perform the computation for problem (2)-( 4), and since we intend to work with many cracks, we will derive a new variational formulation which will allow us to work in the entire domain Ω = Ω γ ∪ γ. This formulation, introduced in [START_REF] Khludnev | Sokolowski-Smooth domain method for crack problems[END_REF] for some elasticity problems (see also [START_REF] Belhachmi | Mixed finite element methods for a smooth domain formulation of a crack problem[END_REF]), consists in extending the admissible solutions (the admissible displacement and its gradient in the case of the elastic membrane) to the crack faces. Therefore the new admissible solutions are defined in the entire domain Ω and the restrictions imposed on the cracks are expressed as internal constraints prescribed on the given subset i γ i of Ω while the cracks γ i , 1 ≤ i ≤ I are removed from the formulation (8). Therefore, for numerical computations, only one global mesh is necessary in Ω which is a crucial for problem (2)-( 4) from both practical and approximation points of view.

We still denote X = {q ∈ X(Ω), q • ν i = 0, on γ i , 1 ≤ i ≤ I, q • ν = 0, on Γ} , then, the new formulation consists in rewriting problem (8) by replacing Ω γ with Ω (with obvious modifications of the spaces and integrals). For brevity, we will label the new problem also (8). Note that, if λ, (u, p) is an eigenpair for the latest problem then λ, and the restrictions of (u, p) to the domain Ω γ is an eigenpair of the initial problem. The converse statement is obviously true under additional regularity assumptions on γ and solutions (u, p).

In that follows, we denote

s(u, v) = Ω u v dx, a(p, q) = Ω p q dx, b(v, q) = Ω v div q dx.
Let us introduce the bilinear forms A and B defined on the product space X × L 2 (Ω) by

A((u, p), (v, q)) = a(u, v) + b(v, p) + b(u, q), B((u, p), (v, q)) = -s(u, v).
We define the space

Y = q ∈ X , b(v, q) = 0, ∀v ∈ L 2 (Ω) .
Problem (8) takes the form:

Find λ ∈ R, 0 = U ∈ X × L 2 (Ω) such that A(U, V ) = λB(U, V ), ∀V ∈ X × L 2 (Ω). (9) 
It is readily checked that the two following conditions hold

a(p, p) ≥ α p 2 X , ∀p ∈ Y, α > 0, ( 10 
) sup q∈X |b(v, q)| q X ≥ β u L 2 (Ω) , β > 0. (11) 
Thus, it is well known ( [START_REF] Brezzi | Fortin-Mixed and Hybrid finite element methods[END_REF], [START_REF] Roberts | Thomas-Mixed and Hybrid methods[END_REF]) that under conditions ( 10) and ( 11), the following positivity properties are satisfied inf

U ∈ X × L 2 (Ω) U X ×L 2 (Ω) = 1 sup V ∈ X × L 2 (Ω) V X ×L 2 (Ω) = 1 |A(U, V )| U X×L 2 (Ω) V X×L 2 (Ω) ≥ β > 0, (12) 
and sup

U ∈X ×L 2 (Ω) |A(U, V )| > 0, ∀0 = V ∈ X × L 2 (Ω). ( 13 
)
We also have that the operator T :

L 2 (Ω) -→ L 2 (Ω), defined by A((p, T f ), V ) = B((p, -f ), V ), V = (q, v) ∈ X × L 2 (Ω),
is self-adjoint and compact. Therefore, we have (see for instance [START_REF] Babuska | Osborn-Eigenvalue problems[END_REF])

Theorem 2.2 The triplet (p, u, λ) is an eigensolution of problem (8) if and only if λT u = u, p = grad u.
To achieve our aim of constructing a general framework for an efficient approximation method to problem (8), we now derive an unconstrained formulation where the zero Neumann conditions on γ i , 1 ≤ i ≤ I are expressed via Lagrange multipliers. This yields the following hybrid formulation.

Notation Let γ be one of the cracks γ i , and c 1 , c 2 its endpoints. Let us denote by H 1 0 (γ, {c }) the subspace of functions of H 1 (γ) vanishing at {c }), = 1, 2.

We define the space H

1 2 * (γ) as H 1 2 00 (γ) if c 1 and c 2 ∈ ∂Ω, H 1 2 00 (γ, {c i }) if c i ∈ ∂Ω, i = 1, 2, H 1 2 (γ) if γ ∩ ∂Ω = ∅,
where H 1 2 00 (γ, {c i }) stands for the space obtained by Hilbertian interpolation of index 1 2 :

H 1 0 (γ, {c i }), L 2 (γ) 1 2
(see [START_REF] Lions | Magenes-Non-Homogeneous Boundary Value Problems and Applications[END_REF]).

We introduce the Lagrange multiplier space

M = µ = (µ i ) 1≤i≤I ∈ I i=1 H 1 2 * (γ i ) ,
and we define the bilinear form d(., .) on the space

X × (L 2 (Ω) × M) such that c(q, (v, µ)) = b(v, q) + I i=1 < µ i , q • ν i > 1 2 ,γ i . (14) 
We are now in position to define the (hybrid) variational formulation which reads:

   a(p, q) + c(q, (u, Λ)) = 0, ∀q ∈ X , c(p, (v, µ)) + λs(u, v) = 0, ∀(v, µ) ∈ L 2 (Ω) × M. (15) 
This problem fits under the general theory of mixed variational formulation of spectral problems. Moreover, replacing the previous bilinear forms A and B by the similar ones defined on X × (L 2 (Ω) × M) as

A 1 ((p, (u, Λ)), (q, (v, µ))) = a(p, q) + c(p, (v, µ)) + c(q, (u, Λ)), B((p, (u, Λ)), (q, (v, µ))) = -s(u, v),
properties [START_REF] Canuto | Eigenvalue approximations by mixed methods[END_REF], [START_REF] Davies | Spectral theory and differential operators[END_REF], and ( 12) hold for the new bilinear forms. Note that the inf-sup condition for c(., (., .)) between the space X and the space L 2 (Ω) × M equipped with the norm . L 2 (Ω) + . M follows easily from the separate inf-sup conditions on b(., .) and the form defined by

d(q, µ) =< µ, q • ν > 1 2 ,γ = I i=1 < µ i , q • ν i > 1 2 ,γ i . ( 16 
)
Therefore the operator T defined by

∀(q, (v, µ)) ∈ X × L 2 (Ω) × M, A 1 (p, (T f, Λ), (q, (v, µ))) = B 1 ((p, (f, Λ)), (q, (v, µ))), (17) 
is also self-adjoint and compact, consequently the result of Theorem 2.2 holds.

Discrete variational formulation and approximation results

We will assume that Ω is a polygonal domain and the cracks γ i , 1 ≤ i ≤ I are polygonal lines with vertices which are also nodes of the triangulations. We denote by (T h ) h a family of triangulations of Ω made of elements which are triangles (the extension to quadrilaterals is standard). The maximal size of elements is the parameter of discretization denoted by h > 0. In addition, we assume that each triangulation satisfies the usual admissibility assumptions, i.e., the intersection of two different elements is either empty, a vertex, or a whole edge, and T h is assumed to be "regular", i.e., the ratio of the diameter of any element K ∈ T h to the diameter of its largest inscribed ball is bounded by a constant σ independent of K and h. Note that the trace of the triangulation T h on each γ i define a 1D mesh T γ i h , and we assume that the endpoints

c i 1 , c i 2 of γ i are vertices of T γ i h , 1 ≤ i ≤ I.
Thus, the mesh on each γ i is defined by the lattice

c i 1 = x i 0 , x i 1 , . . . , x i L i -1 , x i L i = c i 2 ,
and we set t i = x i -1 , x i , 1 ≤ ≤ L i . We will assume for simplicity that the triangulation T h is quasi-uniform, i.e., there is a constant τ > 0, such that max

K h K min K h K ≤ τ.
We also assume for technical reasons that no triangle has all its vertices on the boundary.

Remark 3.1 Since the spectral problem of the Neumann-Laplacian is highly depending on the geometry, one should be careful to the way of how to approach an arbitrary Lipschitz domain by a polygonal one. Indeed, in order to prevent pollution by spurious eigenmodes the approximation by polygonal domains should preserve a uniform cone condition. However, for arbitrary Lipschitz cracks the use of isoparametric finite elements seems more appropriate.

To approximate solutions of (15) we will consider a discretization based on the piecewise constant element for the approximation of the displacement u while for approximating the pressure p = grad u, we will consider two discretizations based on the so called Raviart-Thomas element. The two discretizations are close and they correspond to the two known ways for the implementation of the Raviart-Thomas element. The discrete Lagrange multiplier spaces M h are built with affine, respectively piecewise constants, functions on the triangulations T γ i h defined on the cracks γ i , 1 ≤ i ≤ I.

For K ∈ T h , let RT 0 (K) be the space

P 2 0 + P 0 x, for x ∈ K,
where P 0 stands for the space of constant functions. Let E K denote the edges of

K ∈ T h , E = K E K and E Ω = E \ Γ.
We define the following finite dimensional space

V h = v h ∈ L 2 (Ω), v h|K ∈ P 0 (K), K ∈ T h .
Next we consider the following spaces 1. First discretization

X 0 h = q h ∈ L 2 (Ω) 2 , q h ∈ RT 0 (K), K ∈ T h , q h .ν = 0 on Γ , M int h = η h , µ h|e ∈ P 0 (e), ∀e ∈ E Ω , and 
M 0 h (γ i ) = µ h , µ h|t i ∈ P 0 (t ), t i ∈ T γ i h , 0 ≤ ≤ L i -1 . We set M 0 h = I i=1 M 0 h (γ i ).
The discrete variational problem reads: Find

λ h ∈ R and (u h , p h , ϕ h , Λ h ) ∈ X 0 h × V h × M int h × M 0 h , such that    a(p h , q h ) + c 0 (q h , (u h , ϕ h , Λ h )) = 0, ∀q h ∈ X 0 h , c 0 (p h , (v h , η h , µ h )) + λ h s(u h , v h ) = 0, ∀(v h , η h , µ h ) ∈ V h × M int h × M 0 h . (18) 
The bilinear form c 0 (., .) is defined as

c 0 (q h , (v h , η h , µ h )) = c(q h , (v h , µ h )) +
e∈E Ω e (q h • ν e )η h de.

Second discretization

X 1 h = {q h ∈ X , q h ∈ RT 0 (K), K ∈ T h } ,
for each γ i , 1 ≤ i ≤ I, we associate the space

M 1 h (γ i ) = µ h , µ h|t ∈ P 1 (t ), 0 ≤ ≤ L i -1, µ h|t i * ∈ P 0 (t i * ), if c i * ∈ Γ, i * = 0, L i-1 ,
where P 1 stands for the space of affine functions, and we set

M 1 h = I i=1 M 1 h (γ i ).
The discrete variational problem reads: Find

λ h ∈ R and (u h , p h , Λ h ) ∈ X 1 h × V h × M 1 h , such that    a(p h , q h ) + c 1 (q h , (u h , Λ h )) = 0, ∀q h ∈ X 1 h , c 1 (p h , (v h , µ h )) + λ h s(u h , v h ) = 0, ∀(v h , µ h ) ∈ V h × M 1 h . (19) 
The bilinear form c 1 (., .) is defined as

c 1 (q h , (v h , µ h )) = c(q h , (v h , µ h )).
Let T h : L 2 (Ω) -→ L 2 (Ω) denote the discrete counterpart of T , defined for = 0, 1 by:

   a(p h , q h ) + c (q h , (T h f, Λ h )) = 0, ∀q h ∈ X h , c (p h , (v h , Ψ h )) + λ h s(f, v h ) = 0, ∀(v h , Ψ h ) ∈ V h × M h , (20) 
where

M 1 h = M 1 h and M 0 h = M int h × M 0 h . Then (T h ) is a family of self-adjoint compact operators in L 2 (Ω). It is standard that (p h , u h , λ h )
is an eigensolution of problems [START_REF] Khludnev | Sokolowski-Smooth domain method for crack problems[END_REF] or [START_REF] Kolata | Approximation of variationally posed eigenvalue problems[END_REF] if and only if

λ h T h u h = u h , p h = grad h u h ,
where grad h is a discrete counterpart of grad.

Relying to the spectral approximation theory of variationally posed eigenvalue problems we can give abstract error estimates. Indeed, assume that properties [START_REF] Canuto | Eigenvalue approximations by mixed methods[END_REF], [START_REF] Davies | Spectral theory and differential operators[END_REF], and (12) still hold for the two discretization. Assume also that

lim h→0 T -T h L(L 2 (Ω)) = 0. ( 21 
)
Then, let λ be an eigenvalue of problem [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF], with algebraic multiplicity m, there exists exactly m eigenvalues λ h1 , λ h2 ,. . . , λ hm of problem [START_REF] Kolata | Approximation of variationally posed eigenvalue problems[END_REF] (counted according to the multiplicity m) which converge to λ when h goes to zero. Let λh = 1 m m i=1 λ ih , we also denote by E the eigenspace corresponding to λ and by E h the direct sum of the eigenspace corresponding to λ 1h ,. . . , λ mh . Then, the following estimate holds for = 0, 1

|λ -λ jh | ≤ Cε 2 h , j = 1, . . . , m, (22) 
|λ -λh | ≤ Cε 2 h , (23) 
and for eigenfunctions

|u j -u jh | ≤ Cε h , j = 1, . . . , m, (24) 
where

ε h = sup (p, u, Λ) ∈ E p X + u L 2 (Ω) + Λ M = 1 inf q h ∈ X h , v h ∈ V h , Ψ h ∈ M h p -q h L 2 (Ω) 2 + u -v h L 2 (Ω) + Λ -Ψ h M .

Error estimates

Both discretizations are close and their analysis is essentially similar and fits under the general theory of approximation of eigenvalue problems by mixed finite element method (see [START_REF] Babuska | Osborn-Eigenvalue problems[END_REF][START_REF] Babuska | Osborn-Numerical treatement of eigenvalue problems for differential equations with discontinuous coefficients[END_REF][START_REF] Boffi | On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form[END_REF][START_REF] Canuto | Eigenvalue approximations by mixed methods[END_REF][START_REF] Mercier | Raviart-Eigenvalue approximation by mixed and hybrid methods[END_REF]). We only give a bridged analysis.

The main differences between the two discretization comes from the construction of the Lagrange multiplier spaces. In fact, problem ( 19) is a hybrid formulation in the usual sense ( [START_REF] Roberts | Thomas-Mixed and Hybrid methods[END_REF]), i.e. M 1 h is a subspace of M, while M 0 h is not. Therefore, the discrete inf-sup condition, with respect to the natural norms, is uniform in h, in the first case, and not uniform in the second. The proof of these inf-sup conditions is standard (see [START_REF] Girault | Raviart-Finite Element Methods for the Navier-Stokes Equations[END_REF], [START_REF] Raviart | Primal hybrid finite element method for 2nd order elliptic equations[END_REF]). We have for a constant β, independent of h,

∀µ h ∈ M 1 h , sup q h ∈X 1 h d(q h , µ h ) q h X ≥ β µ h M , (25) 
and

∀µ h ∈ M 0 h , sup q h ∈X 0 h d(q h , µ h ) q h L 2 (Ω) 2 ≥ βh -1 2 µ h L 2 (γ) . (26) 
Recall also from [START_REF] Roberts | Thomas-Mixed and Hybrid methods[END_REF] the usual discrete inf-sup conditions on the bilinear form b(., .)

∀v h ∈ V h , sup q h ∈X h b(v h , q h ) q h L 2 (Ω) 2 ≥ β v h L 2 (Ω) . (27) 
It is natural to ask whether the constants in the inf-sup conditions (26) and ( 25) depend on the number of cracks which could deteriorate the conditioning of the matrices of the discrete problems. It is readily checked by resorting to the proof of both inf-sup conditions in the framework of domain decomposition, that the constants are independent of the number of the subdomains Ω i , thus of the number of the cracks γ i . This is also confirmed by the numerical experiments.

In what follows, we need some approximation tools. For K ∈ T h , e will denote an edge of the triangle K. For q ∈ X sufficiently regular, the interpolation operator for the Raviart-Thomas elements J h is defined by

J h q ∈ X h , e µJ h q h • ν d e = e µq • ν d e, ∀e ∈ E Ω , ∀µ ∈ P 0 . (28)
It is well known that J h satisfies the approximation properties (see. [START_REF] Raviart | Primal hybrid finite element method for 2nd order elliptic equations[END_REF], [START_REF] Roberts | Thomas-Mixed and Hybrid methods[END_REF])

q -J h q (L 2 (Ω) 2 ≤ Ch|q| H 1 (Ω) 2 , div (q -J h q) (L 2 (Ω) ≤ Ch|div q| H 1 (Ω) . (29) 
Similarly, the L 2 -orthogonal projection P h from L 2 (Ω) onto V h , satisfies (see [START_REF]Ciarlet-Basic Error Estimates for Elliptic Problems[END_REF])

u -P h u L 2 (Ω) ≤ Ch|u| H 1 (Ω) . (30) 
We also denote by π 0 h the L 2 -projection operator L 2 (γ) -→ M 0 h , defined as follows: For each γ i , 1 ≤ i ≤ I,

γ i vψ h dσ = γ i π 0 h (v)ψ h dσ, ψ h ∈ M 0 h (γ i ). ( 31 
)
π 0 h satisfies the following estimates (see [START_REF] Roberts | Thomas-Mixed and Hybrid methods[END_REF]). Namely, for the functions ϕ ∈ H ν (γ i ), 1 ≤ i ≤ I, with ν = 1 2 , or with ν = 1, there exists a constant c > 0 independent of h such that

ϕ -π 0 h ϕ L 2 (γ i ) ≤ ch ν ϕ H ν (γ i ) . (32) Moreover, if ϕ ∈ L 2 (γ i ), then ϕ -π 0 h ϕ H -1 2 (γ i ) ≤ ch 1 2 ϕ -π 0 h ϕ L 2 (γ i ) . (33) 
Finally, we define the projection operator π

1 h : L 2 (γ i ) → M 1 h (γ i ), 1 ≤ i ≤ I,
with respect to the scalar product in L 2 (γ i ), which satisfies the following properties (see [START_REF] Bernardi | A New Non Conforming Approach to Domain Decomposition: The Mortar Element Method[END_REF]). Given µ ∈ [0, 1] and ν ∈ 1 2 , 2 , there exists a constant c > 0 which is independent of h, such that for all functions

ϕ ∈ H ν (γ i ), ϕ -π 1 h ϕ H -µ (γ i ) + h µ+ 1 2 ϕ -π 1 h ϕ H 1 2 (γ i ) ≤ ch µ+ν ϕ H ν (γ i ) . ( 34 
)

The case of the second discretization

Since the space

X 1 h × V h × M 1 h is a subspace of X × L 2 (Ω) × M,
it can be checked that properties [START_REF] Canuto | Eigenvalue approximations by mixed methods[END_REF], [START_REF] Davies | Spectral theory and differential operators[END_REF], and ( 12) still hold in the discrete case.

We consider the source problem [START_REF] Lions | Magenes-Non-Homogeneous Boundary Value Problems and Applications[END_REF] and derive from the saddle-point approximation theory ( [START_REF] Girault | Raviart-Finite Element Methods for the Navier-Stokes Equations[END_REF][START_REF] Brezzi | Fortin-Mixed and Hybrid finite element methods[END_REF]) the following error estimates. Proposition 4.1 For every f ∈ L 2 (Ω) the following estimates hold

p -p h L 2 (Ω) 2 ≤ C inf q h ∈X h p -q h L 2 (Ω) 2 + inf (v h ,Ψ h )∈V h ×M h ( u -v h L 2 (Ω) + Λ -Ψ h M ) , (35) 
and

T f -T h f L 2 (Ω) + Λ -Λ h M ≤ C p -p h L 2 (Ω) 2 + inf (v h ,Ψ h )∈V h ×M h ( u -v h L 2 (Ω) + Λ -Ψ h M ) . ( 36 
)
Remark 4.2 We also have in the case of the second discretization the estimate

p -p h X ≤ C inf q h ∈X h p -q h X + inf (v h ,Ψ h )∈V h ×M h ( u -v h L 2 (Ω) + Λ -Ψ h M ) . ( 37 
)
Proof The way to obtain these error estimates is standard. For the convenience of the reader we just point out the streamline of the proof. Using the inf-sup conditions ( 25) -( 27) and the error equations for the source problems, we derive

T h f -P h (T f ) L 2 (Ω) + Λ h -π 1 h (Λ) M ≤ C 1 q h L 2 (Ω) 2 b(T h f -T f, q h ) + b(T f -P h (T f ), q h ) + d(Λ h -Λ, q h ) + d(Λ -π 1 h (Λ), q h ) ≤ C 1 q h L 2 (Ω) 2 a(p h -p, q h ) + b(T f -P h (T f ), q h ) + d(Λ -π 1 h (Λ), q h ) (38)
The triangle inequality yields (36). Using again the error equations for the source problems and the definitions of the projection operators J h and π 1 h , we obtain

J h p -p h 2 L 2 (Ω) 2 = a(J h p -p, p h -J h p) + a(p -p h , p h -J h p) = a(J h p -p, p h -J h p) -c 1 (J h p -p h , (T f -T h f, Λ -Λ h )) = a(J h p -p, p h -J h p) + b(p h -J h p, T f -P h (T f )) + d(p h -J h p, Λ -π 1 h (Λ)) ≤ C p h -J h p L 2 (Ω) 2 p -p h L 2 (Ω) 2 + T f -P h (T f ) L 2 (Ω) + Λ -π 1 h (Λ) M . (39) 
Thus, the triangle inequality leads to (35) 2

It follows immediately from ( 36) and ( 29) that

lim h→0 T -T h L(L 2 (Ω)) = 0. ( 40 
)
Since, when Λ ∈ H

1 2 +µ (γ) = I i=1 H 1 2 +µ (γ i ), 0 < µ ≤ 1, we have Λ -π 1 h (Λ) M ≤ Ch µ Λ H 1 2 +µ (γ). ( 41 
)
Assembling estimates (29), (30), (43) together with (35) and (36) and inserting in [START_REF] Osborn | Spectral approximation for compact operators[END_REF], we get the following error estimates Theorem 4.3 Assume that λ, (u, p, Λ) is an eigensolution of problem [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF], with the algebraic multiplicity m for λ and assume that u

∈ I i=1 H 1 (Ω i ), p ∈ (H 1 (Ω)) 2 and Λ ∈ H 1 2 +µ (γ), 0 < µ < 1. Let λ ih , i = 1, .
. . , m be the eigenvalues associated to λ and obtained from problem [START_REF] Kolata | Approximation of variationally posed eigenvalue problems[END_REF]. Then, the following error estimate holds

|λ -λ ih | ≤ Ch 2µ , i = 1, . . . , m, (42) 
where the constant C depends linearly on ( u

H 1 (Ω i ) , 1 ≤ i ≤ I, p H 1 (Ω) 2 ).
Remark 4.4 Recall that Λ |γ i = [u] |γ i ; thus in the case of high regularity, that is Λ ∈ H

The case of the first discretization

The same analysis as in the second discretization is valid. The only change is the use of a meshdependent norm for the Lagrange multiplier. More precisely, we will consider that M int

h × M 0 h is equipped with the norm: For Ψ h ∈ M int h × M 0 h h -1 2 Ψ h L 2 (E 0 ) .
Observing that when Λ ∈ H

1 2 +µ (γ) = I i=1 H 1 2 +µ (γ i ), 0 < µ ≤ 1 2 , we have for each i h -1 2 Λ -π 0 h (Λ) L 2 (γ i ) ≤ Ch µ Λ H µ (γ i ) . (43) 
As in the previous case, we get the following.

Theorem 4.5 Assume that λ, (u, p, Λ) is an eigensolution of problem [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF], with the algebraic multiplicity m for λ and assume that u

∈ I i=1 H 1 (Ω i ), p ∈ (H 1 (Ω)) 2 and Λ ∈ H 1 2 +µ (γ), 0 < µ < 1 2 . Let λ ih , i = 1, .
. . , m be the eigenvalues associated to λ and obtained from problem [START_REF] Kolata | Approximation of variationally posed eigenvalue problems[END_REF]. Then, the following error estimate holds

|λ -λ ih | ≤ Ch 2µ , i = 1, . . . , m, (44) 
where the constant C depends linearly on ( u

H 1 (Ω i ) , 1 ≤ i ≤ I, p H 1 (Ω) 2 ).
Note that in this last case we obtain the convergence rate O(h) when Λ ∈ H 1 (γ) (which is a reasonable regularity assumption). So the result is identical to the one of the previous discretization, however, here we cannot improve this convergence rate, even if Λ is more regular. In some sense, we are limited by the approximation of M by L 2 (γ) functions.

To finish this section, we point out the fact that the use of continuous finite elements for u or p do not give satisfactory results. In fact, such elements give rise to spurious modes because they do not satisfy the assumption (40) as the Raviart-Thomas type elements (see also [START_REF] Babuska | Osborn-Numerical treatement of eigenvalue problems for differential equations with discontinuous coefficients[END_REF], [START_REF] Boffi | On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form[END_REF]).

Implementation details

In order to perform the computations, we derive the matrix formulation of discrete problems [START_REF] Khludnev | Sokolowski-Smooth domain method for crack problems[END_REF] and [START_REF] Kolata | Approximation of variationally posed eigenvalue problems[END_REF]. Let us denote by E C , E I and E N the set of edges on the cracks, in the interior and on the boundary, respectively. We denote by x p the components of p h and x u is related to the elementwise constant function u h . The unknowns x λ C are the Lagrange multipliers corresponding to the Neumann condition on ∂Ω ∪ γ and the unknowns x λ I are the Lagrange multipliers used to ensure the continuity of the normal components of p across interior edges in the first discretization.

The first discretization

The matrix formulation of discrete problem (18) reads:

    B C D F C t 0 0 0 D t 0 0 0 F t 0 0 0         x p x u x λ I x λ C     = λ     0 0 0 0 0 -S 0 0 0 0 0 0 0 0 0 0         x p x u x λ I x λ C     (45)
The matrices are built locally and then assembled in a usual way. For all K ∈ T h , we define the three functions

ω 1 (x, y) = (1, 0), ω 2 (x, y) = (0, 1), ω 3 (x, y) = (x -x, y -y) ∀(x, y) ∈ K, (46) 
where (x, y) is the center of gravity of the triangle K. With these notations, the local matrices B K and C K are defined by

(B K ) ij = K ω i ω j dx ∀i, j = 1, 2, 3, (C K ) i = K div(ω i )dx ∀i = 1, 2, 3.
Denoting z j = (x j , y j ) the vertices of K, it is readily checked that

B K = |K| diag (1, 1, s 36 
) and C K = diag (0, 0, 2|K|),

where s = |z 2 -z 1 | 2 + |z 3 -z 2 | 2 + |z 3 -z 1 | 2
and |K| denotes the area of K.

Each interior edge e i is shared by two triangles K + and K -. The corresponding local matrix E i (of R 6,1 ) is

E ij = - e i ω j .ν i ds ∀j = 1, . . . , 6,
where the ω i (i = 1, . . . , 3) are the three functions of (4) defined for K + while ω i (i = 4, . . . , 6) are related to K -.

For each edge e k ∈ E N , define

F j = e k ω j • ν k ds for j = 1, 2 , 3. 
Finally, the matrix S K is given by

S K = |K|diag (1, 1, 1).
Next, assembling all these local matrices yield the global system (47).

The second discretization

The matrix formulation of the discrete problem (18) reads with similar notations:

  B C F C t 0 0 F t 0 0     x p x u x λ C   = λ   0 0 0 0 -S 0 0 0 0     x p x u x λ C   (47) 
Since functions of X h have their divergence in L 2 (Ω), we use now the edge-basis functions to derive the matrix form of [START_REF] Kolata | Approximation of variationally posed eigenvalue problems[END_REF]. We recall the definition of these functions which form a basis of X h . For e ∈ E, let K ± = conv(K ± , P ± ) for the vertex P ± opposite to e of K ± . Let ν e denote the unit normal vector which points outward from K + to K -. If e is an exterior edge then ν = ν e . We set

ψ e (x) =    ± |e| 2|K ± | (x -P ± ) for x ∈ K ± , 0 elsewhere. 
Then the local stiffness matrices are given by:

(B K ) ij = K ψ j • ψ i dx for j, i = 1, 2 , 3, and ( 
C K ) = diag ( K div ψ 1 dx, K div ψ 2 dx, K div ψ 3 dx).
For each γ i , 1 ≤ i ≤ I, we denote by w , 0 ≤ ≤ L i -1 the basis functions of M 1 h (γ i ), then we have

(F i ) j = γ i w (ψ j .ν) ds, 0 ≤ ≤ L i -1, 1 ≤ j ≤ N T ,
and F = (F i ), 1 ≤ i ≤ I. Assembling matrices B and C and computing S as before yield the global system for this discretization.

Numerical examples

We present some numerical results, first to underline the efficiency of the proposed discretizations, next to show the asymptotic behavior of the spectrum when the number of cracks increases (for a given geometry).

To verify the efficiency of the approach, we consider three examples: We set Ω = [-1, 1] 2 and we solve the eigenvalue problems corresponding to the domain without cracks, the domain with 7 cracks, the domain with 15 cracks and finally with 31 cracks. In all these examples, the cracks are horizontal segments [-1, 0] × {y i } for some values y i on the y-axis. Table 1, Table 2, Table 3 and Table 4 summarize the results we obtain. For each example, we have reported the values of the first and the second (non-zero) eigenvalues and the error |λ refλ h | in the log scale. λ ref stands for the reference value computed on the finest mesh. These results confirm the rate of convergence O(h α ), α = 1.96 for Table 1, and α equal 0.93, 0.96, 0.95 respectively, for Table 2, Table 3 For the second discretization, we give only the convergence results in the case of the domain with 7 cracks. All other results agree with the theoretical ones, in particular we have the rate of convergence O(h α ), α = 1.91 as shown in Table 5. For the second non zero eigenvalue we have α = 1.49 but it increases for more finer meshes. Note that the number of cracks do not affect the expected precision of the method, since the inf-sup conditions (26) and ( 25) do not depend on that number.

Another example, Table 6, shows that when the crack breaks the simple connectivity of the initial domain (topological change), the resulting spectrum is the union of the spectra of each subdomain.

We investigate now numerically the asymptotic behavior of the spectrum if the number of cracks increases. The first example that we consider consists in a square domain Ω = [-1, 1] 2 with the following number of cracks L = 0, 7, 15, 31, 63, 127. The cracks are still horizontal equispaced straight segments [-1, 0] × {y i }. Let us recall that no a priori knowledge on the asymptotic behavior is available for the Neumann eigenvalue problem. In Table 7, we have reported the 20 first eigenvalues for each case. We observe that the first values of the spectrum decrease but remain bounded by a given value 0.8096075353. This asymptotic value is stable when L increases. The value π 2 4 which is the first non zero eigenvalue with no crack becomes a larger eigenvalue with L cracks, and this is explained by the choice of parallel cracks. In the example of the cracks of length equal to when the length of the cracks changes and we think also that it does not hold for very large number of cracks.

In Table 8, we have reported the smallest non zero eigenvalue as a function of the number of the cracks (rows) and their length L (columns). This value changes with this two parameters as it could be expected from the monotonicity property.

The example of the disk below Table 9, without cracks, with 15 and 24 cracks shows a similar asymptotic behavior. This can be explained by the fact that the cracks are chosen on the rays and are equispaced.

The last example is a rooms and passages domain (see Figure 2). In Table 10 we have written the low eigenvalues in the case without cracks and in the case with 17 cracks. 
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 1 Figure 1: Example of multi-cracked domain
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 6 .741 22.192 22.193 32.074 32.074 39.438 39.444 39.444 39.447

	1	λ 2		λ 3	λ 4	λ 5	λ 6	λ 7	λ 8	λ 9	λ 10
	0.000	0.000	2.467	2.467	9.867	9.867	9.867	9.867 12.337 12.337
	19.740 19λ 1	λ 2	λ 3	λ 4	λ 5	λ 6	λ 7	λ 8	λ 9	λ 10
	0	0.0 2.467 2.467 4.935 9.869 9.869 12.337 12.337 19.740 22.204
	7	0.0 0.850 1.506 1.806 1.977 2.082 2.146	2.181 2.467 4.101
	15 0.0 0.824 1.446 1.732 1.902 2.013 2.091	2.149	2.192	2.225
	31 0.0 0.810 1.421 1.700 1.865 1.974 2.052	2.110	2.155	2.191
	63 0.0 0.802 1.407 1.681 1.844 1.951 2.028	2.085	2.130	2.165
	127 0.0 0.799 1.401 1.675 1.836 1.943 2.019	2.076	2.121	2.156
		λ 11	λ 12	λ 13	λ 14	λ 15	λ 16	λ 17	λ 18	λ 19	λ 20
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 8 Figure 2: Rooms and passage [8] D. Bucur, G. Buttazzo-Variational methods in shape optimization problems, Birkhauser, to appear.

		no cracks 15 cracks 24 cracks
	λ 1	0.000	0.000	0.000
	λ 2	3.390	1.967	1.916
	λ 3	3.390	2.012	1.916
	λ 4	9.329	3.356	3.256
	λ 5	9.329	3.651	3.351
	λ 6	14.682	4.409	4.237
	λ 7	17.651	4.614	4.237
	λ 8	17.651	5.207	4.817
	λ 9	28.278	5.212	4.945
	λ 10	28.278	5.528	5.328
	λ 11	28.425	5.626	5.328
	λ 12	28.425	6.111	5.562
	λ 13	41.163	6.147	5.763
	λ 14	41.163	6.182	5.885
	λ 15		6.199	5.885
	λ 16		6.152	5.954
	λ 17		14.682	6.387
	λ 18		27.805	6.408
	λ 19		27.805	6.409
	λ 20		40.763	6.434
	λ 21		41.316	6.489
	λ 22		49.217	6.503
	λ 23		51.930	6.504
	λ 24		51.930	6.512
	λ 25		56.092	14.682
				Table 9:
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, (which is the case for smooth problems) we retrieve the well known O(h 2 ) order of convergence for the eigenvalues.

becomes the L + 1 non zero eigenvalue. This fact seems to be a coincidence and it does not hold