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INTRODUCTION

The need for equations of state (EOS) capable of accurate representation of thermodynamic properties for cryogenic mixtures increases as more complex and more efficient cryogenic systems are being investigated and developed. Mixtures are presently considered as working fluids not only for large cryogenic systems but also for smaller, space-ready refrigerators. The potential applications of equations of state for noble gases include cooling cycles for fusion reactors or particle accelerators such as the Future Circular Collider, 1 (FCC) space refrigerators, and modeling of welding processes with inert gases.

No accurate model has been developed so far for binary mixtures of helium-4, neon, and argon. 2 Until now, either linear or Lorentz-Berthelot 3,[START_REF] Berthelot | Sur le mélange des gaz[END_REF] classical rules for combining fluids have been used. [START_REF] Cullimore | Preliminary equation of state for neonargon mixture[END_REF][START_REF] Lemmon | Preliminary equation of state for helium-neon mixture[END_REF] Neither of them, however, represents quantum gas behavior correctly. [START_REF] Bondarenko | Private communication with[END_REF] Following the best practices from the domain of the equations of state, the quantum effects were included in the empirical model development with no special treatment.

The mixture models presented in this paper are explicit in the Helmholtz energy and use reducing parameters dependent on the mole fractions of mixture constituents and the critical parameters of the pure fluids. The Helmholtz energy a is defined as follows

a = u -T s, ( 1 
)
where u is internal energy, T is temperature and s is entropy. Since it is a fundamental value, all other thermodynamic properties can be calculated from analytical derivatives. The Helmholtz energy formulation takes advantage of the consistent description of all fluid states because temperature and density are the independent variables. The pure fluid contributions, and the contribution from mixing for each binary mixture use an empirical formulation, which is temperature, density, and molar composition-dependent. The pure fluid contributions take advantage of the highly accurate EOS of pure fluids. In this work, each mixture-specific departure function consists of three exponential terms and four to five Gaussian terms. Comparisons to available experimental data are given to validate the accuracy of thermodynamic properties calculated with each equation of state.

The accuracy of mixture models is dependent on the pure fluid models. The equation of state for the considered mixture constituents, helium-4, neon, and argon have state-of-theart accuracy. This important starting point allows for the development of mixture models that will become the industrial standard. The critical parameters of the pure fluids, used in Helmholtz energy equations of state (HEOS) are presented in Table 1. Additionally, the equations, in the form presented in this paper, can be implemented in fluid property modeling software, such as REFPROP, [START_REF] Lemmon | NIST Standard Reference Database: Reference Fluid Thermodynamic and Transport Properties-REFPROP[END_REF] CoolProp, [START_REF] Bell | [END_REF] or TREND. 10 
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FUNDAMENTAL EQUATION OF STATE

Among the available formulations of equations of state, the Helmholtz energy a (T, ρ) has two important advantages. Unlike internal energy u (v, s) and enthalpy h (p, s), it is a function of measurable properties -temperature T and density ρ. Moreover, unlike the Gibbs energy g (T, p), it is continuous within the phase boundary, where v is specific volume, s is specific entropy, and p is pressure.

The equation of state is used in a reduced form and is a function of non-dimensional quantities -reduced density and reciprocal reduced temperature 14,15 

τ = T r T and δ = ρ ρ r , (2) 
where T r and ρ r are the reducing temperature and density. The most recent formulation 15,16 allows for the use of a common form for reducing parameters for the mixture (T r and

v r = 1/ρ r ) Y r ( x) = N ∑ i=1 x 2 i Y c,i + N ∑ i=1 N ∑ j=i+1 2x i x j x i + x j β 2 Y,i j x i + x j Y i j , (3) 
where Y is the parameter of interest, temperature T or molar specific volume v given in Table 2. T c,i , ρ c,i are critical temperature and density of the pure constituents. β T,i j , γ T,i j , β v,i j , and γ v,i j are the fitted parameters with both β parameters being asymmetric, that is β T,i j = β -1 T, ji , and β v,i j = β -1 v, ji . The total reduced Helmholtz energy α can be divided into an ideal gas part α o and a residual part α r

α (δ , τ, x) = a (ρ, T, x) RT = α o (ρ, T, x) + α r (δ , τ, x) , ( 4 
)
where x is the mole fraction vector, and R is the mole fractionweighted average of the pure component values of the gas This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 
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α o (ρ, T, x) = N ∑ i=1 x i [α o oi (ρ, T ) + ln x i ] , (5) 
α r (δ , τ, x) = N ∑ i=1 x i α r oi (δ , τ) + N-1 ∑ i=1 N ∑ j=i+1 x i x j F i j α r i j (δ , τ) , (6) 
where x i is the molar fraction of component i, α o oi is the pure fluid ideal Helmholtz energy, and α r oi is the pure fluid residual Helmholtz energy, both taken from the pure fluid EOS. F i j is the scaling parameter applied to the departure function, and here is set to unity because the departure functions have been fitted in this work for each binary mixture. α r i j (δ , τ) is a pairwise departure function, dependent only on reduced variables δ and τ.

The definition of the Helmholtz energy for mixtures allows to keep the pure fluid ideal α o oi and residual α r oi contributions unchanged as defined for the pure constituents. The mixture models presented in this paper are valid only with the pure fluid EOS used for their development. If new, and more accurate EOS for one of the constituents is developed, the equations for mixtures presented here may lose their validity and most probably must be refitted according to the updated pure fluid equations of state.

The last, previously undefined part of the Helmholtz energy for mixtures is the departure function, which depends on the reduced variables, and the adjustable parameters. Unlike in the GERG-2008 definition, 15 the departure function used in this work is temperature dependent

α r i j (δ , τ) = 8 ∑ k=1 n i j,k δ d i j,k τ t i j,k × exp -η i j,k δ -ε i j,k 2 -β i j,k τ -γ i j,k 2 , (7) 
where

d i j,k , n i j,k , t i j,k , β i j,k , γ i j,k , ε i j,k
, and η i j,k are fitted parameters. Although they are empirical and arbitrary, constraints on their values were used during the fitting process in order to obtain physically correct EOS behavior (see Supplemental materials). The summation comprises the polynomial terms, and the Gaussian bell-shaped terms.

Optimization algorithm

The algorithm used for the equations of state development is based on non-linear regression analysis and the Levenberg-Marquardt method. 17,18 It was used to minimize the sum of squares of weighted data points, and constraints with applied limits on derivatives of the Helmholtz energy in Eq. ( 4). The expression for residual sum of squares is given as

SSQ = N ρ ∑ i=1 W ρ,i F 2 ρ,i + N w ∑ i=1 W w,i F 2 w,i + N cv ∑ i=1 W c v ,i F 2 c v ,i + ..., (8) 
where W x is the weight assigned to each data point of the thermodynamic property x, and F x is the function used to minimize the relative deviation between the data points and the equation of state. 19 Deviations do not have to be evaluated as the sum of squares. During the fitting process, the method for calculating the contribution to the total sum of deviations was changed periodically to use the sum of squares, cubes, fourthor sixth-powers to find the best possible solution.

Phase equilibrium data is first fitted with the algorithm, and later, when satisfactory agreement between the data and the model is reached at the phase boundary, the single-phase data points are used to improve the model (e.g., ρ pT , speed of sound, etc.). The functional behavior is constantly constrained by applying weights on limits for the coefficients. All data points and applied constraints are provided in the supplemental materials.

The quality of the equation of state is determined through comparison of calculated deviations of data points and values from the equation of state. The errors for single-phase properties were evaluated numerically and deviations between the calculated values and available data points are discussed in section 3 3.1. The deviations at the phase equilibria, vaporliquid equilibrium (VLE) and gas-gas equilibrium (GGE) if it exists, were evaluated not only numerically but also visually by comparing the available data points with the isotherms calculated with the equation of state as shown in Fig. 1. A new approach, useful for the phase boundary uncertainty discussion, is presented in section 3 3.2.

The experimental data on thermophysical properties available in the literature were collected and are presented in Tables 3,4, and 5, along with the number of data points in every data set and the number of points used in the EOS development process. When the experimental points were omitted (available vs. used data points for single entry from literature), it is because of either incomplete information needed for the EOS development or questionable accuracy.

Average absolute deviations in Tables 3,4, and 5 were calculated as follows AAD = 100

N N ∑ i x d,i -x EOS,i x d,i , (9) 
where x d,i is a data point, x EOS,i is a respective value calculated from the equation of state, and N is the number of points in data set. If the data set was not used in the fitting process, the AAD is printed in bold.
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When compared to the pure fluids, the region of existing state points is always broader for mixtures, since it is also composition-dependent. It is therefore more difficult to cover a comparable number of states for mixtures as for pure fluids.

The equilibrium data available for the mixture of helium-neon are limited in pressure up to 20 MPa. Therefore, the shape of the phase envelope at higher pressures is unknown. However, a pressure of 20 MPa is higher than most engineering applications, and the model shows satisfactory accuracy at lower pressures with the extrapolation behavior being acceptable. Both the equilibrium data, and ρ pT data for helium-argon and neon-argon mixtures reach higher pressures up to 1 GPa for helium-argon, and 100 MPa for neon-argon. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. Depending on the mixture, the phase envelope varies in shape; it can be either closed or open, it can either have the GGE locus or just the VLE dome. The name gas-gas equilibrium implies that a phase separation occurs beyond the critical temperature of the heavier component. [START_REF] Deiters | High-pressure fluid phase equilibria: phenomenology and computation[END_REF] For the heliumargon mixture, the gas-gas coexistence region detaches from the vapor-liquid region with increasing temperature. When temperature further increases, the regions separate completely (see two 148 K isotherms in Fig. 1d -VLE closing at 27 MPa, and GGE opening at 57 MPa). The vapor-liquid coexistence terminates at 150 K and for higher temperatures only the gasgas equilibria exist. Helium often shows this type of behavior when mixed with other substances. [START_REF] Deiters | High-pressure fluid phase equilibria: phenomenology and computation[END_REF][START_REF] Deerenberg | [END_REF] It is therefore probable that two other mixtures considered in this paper behave similarly but this question is not further investigated due to the lack of high-pressure data for [START_REF] Berthelot | Sur le mélange des gaz[END_REF] He -Ne and Ne -Ar. Scaling the properties of helium-4 and neon with any physical theory in the regions of missing data can be challenging because of the quantum phenomena influencing the fluid's behavior. Classical or quantum effects will dominate depending on the length scale of interactions vs. the thermal de Broglie wavelength
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λ th = h 2 2πmk B T , ( 10 
)
where T is the temperature at which λ th is calculated, h = 6.626 070 15 × 10 -34 J s is the Planck constant, 61 m = M/N A is the particle mass with molar mass M given in Table 1, N A = 6.022 140 76 × 10 23 mol -1 is the Avogadro constant, [START_REF] Tiesinga | The 2018 CODATA recommended values of the fundamental physical constants[END_REF] and k B = 1.380 649 × 10 -23 J K -1 is the Boltzmann constant. [START_REF] Tiesinga | The 2018 CODATA recommended values of the fundamental physical constants[END_REF] Quantum effects are important in determining the thermodynamics of helium, and to a lesser extent neon; argon can be considered classical for most practical purposes. Despite dealing with the fluids that show high and moderate quantum effects, the discussion on the quantum physics is secondary, since the presented equations are empirical and the question about the origins of the intermolecular forces is irrelevant.

RESULTS

In addition to the four reducing parameters from Table 6, the model optimization and development included deriving the departure functions according to Eq. ( 7). The temperature and density dependent parts of the departure functions for three binary fluid mixtures are presented in Table 7. The phase behavior of the EOS is presented in Fig. 1 and is analyzed further in this section. To illustrate the accuracy of the equations, deviations of thermodynamic properties calculated with the EOS are compared against the experimental values.

Along with the errors discussed below, each data set has a measurement uncertainty. The uncertainties claimed by the authors should be viewed skeptically, especially in light of reporting standards for uncertainty that have evolved over time. With this in mind, the uncertainties specified by the authors in their publications are listed in Tables 3, 4, and5. The largest uncertainty for the equilibria measurements is attributed to composition and varies from 0.1% to 3% in mole fraction for bubble points x and dew points y. Regarding the density measurements, the uncertainty is often claimed to be on the order of 0.1%, except for 1% for Ne-Ar densities.

3.1. Uncertainty discussion for single-phase Fig. 4 presents the EOS deviations from the data used in the development of each equation. The density deviations for the helium-neon equation are smaller than for the other two pairs: 0.5% dropping the lower accuracy data at 30 -40 K. However, similarly as with the equilibrium data, the pressure range for this binary pair is also more narrow for ρ pT when compared to the other two mixtures. For neon-argon, the density measurements reach 55 MPa and for helium-argon, they go up to 1 GPa. When comparing the equation error for similar low-pressure data (0 -10 MPa), the helium-argon EOS has errors of 0.5% -2.5% for 95% of data points used in the EOS development; and neon-argon has errors of 3% for 90% of density data.

The deviations in density at lower pressures for each EOS are comparable with the measurement uncertainties presented in Tables 3,4, and 5. However, for pressures above 20 MPa, the equations deviate from data more than the specified uncertainties.

At the same time, the temperature regions of data availability has to be taken into consideration. For the helium-argon mixture the data set is broad, not only in pressure but also in temperature (starts close to the two-phase region and reaches 573 K). It is not the case for helium-neon, which is missing accurate low-temperature data, nor for neon-argon, where density measurements are narrow in temperature range. The exact pressure and temperature ranges are presented in Tables 3,4, and 5 and Fig. 4.

Uncertainty discussion at phase boundary

When applying the isothermal error calculations based on the comparison of the bubble or dew pressures for a given mixture composition, very large calculated deviations can be obtained when the isotherm in the log px plane is vertical or very steep, although the data point may be still very close to the phase envelope. This is simply a degeneracy in the means of error quantification. This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 2: Schematic representation of the orthogonal error calculations for the phase envelopes. Two experimental compositions for liquid and vapor from one measurement are marked with circles (the same pressure and temperature) and the respective isotherm evaluated with the EOS is plotted in two-dimensional space of reduced pressure p = p/p r and mole fraction in liquid x and vapor y.
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In order to evaluate the phase equilibria errors, the orthogonal length scale for data versus the EOS was defined. The error is calculated by finding the smallest distance between the experimental data point ((x d , pd ), T d ) and the respective isotherm evaluated with given EOS ((x c , pc ), T c ), where T d = T c , and p = p/p r . The orthogonal error itself should be dimen-sionless, therefore its evaluation in the pressure-mole fraction plane requires the pressure to also be dimensionless, therefore reduced. After comparing the impact of the reducing scales on the error representation, the logarithmic reducing scale has been selected among the linear, and density-temperature reducing scale (p r = p (ρ r , T r ))

p r,x = exp (x 1 ln (p c1 ) + x 2 ln (p c2 )) p r,y = exp (y 1 ln (p c1 ) + y 2 ln (p c2 )) , (11) 
where p r,x reduces the pressure for the bubble points and p r,y reduces the pressure for the dew points.

The error itself is defined as a sum of distances between the data point x d and the closest point from the respective isotherm in the earlier defined px plane chosen so the positive error represents the EOS calculating too large a pressure when compared to data, and negative when calculating too small a pressure. It is important to highlight that the compositions at the minimum point and experimental point can be different. Results for described error calculations are presented in Fig. 6 and 7. To our knowledge, this is the first time that an error metric like this has been used to quantify error from mixture equations of state.

While the composition for the phase equilibrium calculations is always in the range of [0, 1], the logarithm of reduced pressure ln( p) can reach values up to 7 for the absolute pressure of 1 GPa and defined pressure metric. Therefore, the error definition from Eq. ( 12), and the chosen pressure metric emphasize the pressure error more than the composition error. Even though all the data were fitted to the 4 He -Ar EOS, it largely deviates from the experimental points at very This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. the specified value of the VLE orthogonal error for each EOS. [START_REF] Berthelot | Sur le mélange des gaz[END_REF] He -Ar errors are considered for two pressure ranges: complete data availability pressure range and up to 100 MPa with smaller orthogonal error high pressures. Those high deviations are visible in Fig. 6c as the dark blue circles and in Fig. 7b as the faint hexagons with large orthogonal error. Additional error comparison for helium-argon at pressures below 100 MPa is given in Fig. 8, where it shows very satisfactory agreement between the data and the EOS in limited pressure range, and worse EOS behavior for high pressure.
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Ternary mixture

With the three binary fluid mixture equations developed, the model for ternary mixture of all constituents is valid from the theoretical point of view for the Helmholtz energy EOS. Even though it is mathematically valid, no experimental data for the ternary mixture were found to compare against the equation. The accuracy of the EOS for the ternary mixture of heliumneon-argon remains unknown.

Validation data

When implementing new equations of state in any software, the EOS should be validated against the data points provided to verify if their implementation was successful. If the software uses the same pure fluid equations as given in this work (helium-4, 11 neon, 12 and argon 13 ), the implementation of mixture equations should return the same results in pressure calculations up to the last significant digit. A script in the Python language is provided in the supporting information in which calculations with CoolProp (version 6.3.0) reproduce exactly the values in Table 8. The fluid files used are also provided in text form and loaded at runtime. The calculated values in REFPROP 10.0 will be slightly different due to truncation of the reducing density for argon after the conversion from kg m -3 to mol dm -3 . Three equations of state explicit in the Helmholtz energy for mixtures of noble gases with high potential of application at cryogenic temperatures were developed. The equations are not limited to the cryogenic temperatures and can be successfully used at ambient and above ambient temperatures calculations at the phase equilibrium, as well as in the single phase. The EOS performances vary for each equation depending on the pressure. The 4 He -Ne EOS shows errors in range of uncertainties of the experimental data points for both single phase and the phase envelope. [START_REF] Berthelot | Sur le mélange des gaz[END_REF] He -Ar shows satisfactory performance at pressures up to 100 MPa, and increasing errors above. The Ne -Ar EOS errors are low at the equilibrium conditions and degenerate in the single phase. Small artifacts might occur immediately above the critical points of the heavier components for given equations.

The necessary improvements introduced to the fitter let us think that development of the Helmholtz energy equations of state for further challenging mixtures should be successful.

SUPPLEMENTARY MATERIALS

The supplementary material contains files with data, constraints, and limits applied on the fitted function for every binary mixture. It also contains the hmx.bnc text file with developed equations, which can be implemented in REFPROP in the given form. The included python 3 script, together with the pure fluid files allow to validate the equations with Cool-Prop (version 6.3.0). This is the author's peer reviewed, accepted manuscript. However, the online version of record will be different from this version once it has been copyedited and typeset. 
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TABLE 1 :

 1 Molar mass and critical parameters for pure fluids. a M / kg mol -1T c / K p c / MPa ρ c / mol dm -3 4 He 11 4.0026 × 10 -3

	5.195	0.22832	17.384

TABLE 2 :

 2 Reducing temperature and density parameters

TABLE 3 :

 3 Available and used data for the development of the equations of state for[START_REF] Berthelot | Sur le mélange des gaz[END_REF] He -Ne

	authors	data points available used T / K p / MPa	x He	author claimed uncertainty AAD a / %
			VLE data			
	Heck, Barrick 20 Knorn 21	76 22	36 27 -42 0.3 -20 22 25 -27 0.6 -5.1	0.01 -0.36 0.002 -0.03	±3% in p ±0.02 K in T ±0.02% in x	15.0 4.3
					±0.1% in y
			ρpT data			
	Holborn, Otto 22	39	39 273 -673 2.5 -10	0.28		N/A b	0.26
	Kestin et al. 23 Kestin, Nagashima 24 Richardson, Leachman 25	97 90 8	97 73 293 -303 0.1 -6.3 298 0.2 -12.2 6 32 -41 0.5 -2.1	0.23, 0.80 0.26 -0.95 0.02 -0.03	±0.1% in ρ ±0.1% in ρ N/A b	0.20 0.24 2.0
	Vogl, Hall 26	51	51 233 -313 0.1 -3.6	0.49	±0.04% in Z c	0.081
			Speed of sound -w		
	Pashkov et al. 27	41	36 26 -38 0.1 -15	0.01 -0.29	±0.1% in w	9.6
			Second virial coefficient -B		
	Berman et al. 28 Brewer, Vaughn 29 Holborn, Otto 22	3 8 5	0 0 148 -323 15 -20 0 273 -673		±5% in B ±5% in B	N/A b	55.3 3.9 8.8
	Iomtev et al. 30 Knobler et al. 31 Vogl, Hall 26	6 1 3	0 0 0 233 -313 15 -20 90		±6% in B ±3% in B ±4% in B		57.6 5.9 3.6
	a average absolute deviation (AAD) of the data set from values calculated with EOS given in Eq. (9)		
	b undefined or poor uncertainty analysis c compressibility factor			

TABLE 4 :

 4 Available and used data for the development of the equations of state for[START_REF] Berthelot | Sur le mélange des gaz[END_REF] He -Ar

	authors	data points available used T / K	p / MPa		x He	author claimed uncertainty AAD a / %
				VLE / GGE data	
							 	±0.03 K in T
	Mullins 32	354	0 68 -108 2.0 -12		0.001 -0.02	  	±0.5% in p ±2% in x	24.0
							 	±3% in y
							 	±0.03 K in T
	Mullins 33	187	187 85 -140 0.5 -12	0.00006 -0.02	  	±0.5% in p ±2% in x	3.4
							 	±3% in y
	Mullins, Ziegler 34	50	0 86 -108 2.0 -12		0.002 -0.02		±0.03 K in T ±0.5% in p	3.6
	Sinor, Kurata 35 Skripka, Lobanova 36 Streett 37 Streett, Hill 38	29 77 56 202	0 93 -148 1.7 -14 64 90 -115 2.9 -22 48 91 -148 1.4 -69 176 91 -160 0.6 -422	0.0005 -0.002 0.002 -0.44 0.02 -0.60	±1 -2% in x, y ±0.5% in p ±1% in x, y ±0.02 vol. % in x, y ±0.02 K in T ±2 mol % in x, y ±0.1% in p ±0.01 K in T	12.0 3.5 15.0 15.0
	Streett, Erickson 39	81	74 150 -199 386 -1048		0.27 -0.72		±0.1 mol % in x, y N/A b	7.7
	Blancett et al. 40 Kanishev, Pitaevskaya 41 Kosov, Brovanov 42 Maslennikova et al. 43	288 41 59 116	288 223 -323 0.3 -73 41 373, 473 50 -180 59 293 -353 29 -59 116 293 -423 180 -800	ρpT data	0.21 -0.80 0.66, 0.95 0.24 -0.79 0.31, 0.74	±0.03 K in T ±0.06% in Z N/A b ±0.05 K in T ±0.3% in ρ ±0.5% in ρ	0.72 1.8 2.2 2.4

a average absolute deviation (AAD) of the data set from values calculated with EOS given in Eq. (

TABLE 4 -

 4 continued from previous page average absolute deviation (AAD) of the data set from values calculated with EOS given in Eq.(9) 

	Popov et al. 44	45	45 293 -673 5.0 -40	0.11 -0.98	±0.05 K in T ±0.05% in p	1.3
	Provine, Canfield 45	212	212 143 -183 0.2 -68	0.22 -0.80	±0.02% in x He N/A b	1.2
	Vidal et al. 46 Vidal et al. 47	31 13	31 13	298 298	0.1 -800 80 -800	0.50 0.50	±0.2% in ρ ±0.2% in ρ	1.5 1.9
					Speed of sound -w		
	Hanayama 48 Kachanov et al. 49 Nishitake, Hanayama 50 Vidal et al. 47	51 22 47 13	27 20 298 -422 100 -700 298 109 -1972 47 298 201 -1696 13 298 80 -800	0.50 -0.90 0.21 0.50 -0.90 0.50	±0.5% in w ±0.4% -0.63% in w ±0.5% in w ±0.2% in w	5.1 1.3 11.0 2.4
	Blancett et al. 40 Brewer, Vaughn 29 Kalfoglou 51 Knobler et al. 31 Martin 52	15 8 60 1 3	0 223 -323 0 148 -323 0 303 -773 0 90 0 290 -320	Second virial coefficient -B	±0.03 K in T ±0.3% in B ±5% in B ±0.86% -1.31% in B ±2 -3% in B greater than 1.2%	21.0 11.0 16.9 6.1 5.9
	Tanner 53	14	0	298			N/A b	18.9

a b undefined or poor uncertainty analysis

TABLE 5 :

 5 Available and used data for the development of the equations of state for Ne -Ar

	authors	data points available used T / K p / MPa	x Ne	author claimed uncertainty AAD a / %
					VLE data		
	Skripka, Lobanova 36 Streett 54 Streett 55 Streett, Hill 56	84 54 37 58	54 91 -120 2.9 -20 53 84 -130 0.4 -7.3 36 95 -130 7.5 -62 58 87 -93 6.4 -103	0.03 -0.31 0.05 -0.73 0.09 -0.57 0.002 -0.09	±0.02 vol. % in x, y ±0.01 K in T ±0.01 MPa in p N/A b ±0.1% in p ±0.02 K in T	8.0 11.0 12.0 6.7
	Trappeniers, Schouten 57	67	59 93 -138 0.5 -101	0.002 -0.57	±0.1 mol % in x, y ±0.1 mol % in x, y	13.0
					ρpT data			
	Kestin et al. 23 Streett 55 Vidal et al. 46 Vidal et al. 47	21 109 31 13	21 107 102 -121 3.0 -55.2 298 0.4 -13.7 31 298 0.1 -800 13 298 80 -800	0.23, 0.73 0.04 -0.50 0.50 0.50	±0.1% in ρ ±1% in ρ ±0.2% in ρ ±0.2% in ρ	0.43 2.5 1.6 2.8
					Speed of sound -w		
	Konovodchenko et al. 58	10	0 102, 121 1.3 -15	0.22	N/A b	60.0
	Vidal et al. 47	13	13	298	80 -800	0.50	±0.2% in w	1.2
					Second virial coefficient -B		
	Brewer, Vaughn 29	9	0 123 -323			±5% in B	9.7
	Knobler et al.							

TABLE 6 :

 6 Binary specific parameters obtained in this work

	i -j 4 He -Ne 4 He -Ar	β T,i j 0.793 1.031	γ T,i j 0.728 1.113	β v,i j 1.142 1.048	γ v,i j 0.750 0.862	F i j 1.0 1.0
	Ne -Ar	1.033	0.967	0.919	1.035	1.0
	2.3. Fluid properties scaling			

TABLE 7 :

 7 Departure function coefficients

	4 He -Ne

TABLE 8 :

 8 Data points at equimolar (0.5/0.5) composition for EOS validation T / K ρ / mol dm-3 

	p / Pa

2.2. Available data used for the equation of state development
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