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Abstract

We consider a telecommunications company expanding its network capacity to face an increasing

demand. The company can also invest in marketing to incentivize clients to shift to more recent

technologies, hopefully leading to cheaper overall costs. To model the effect of the marketing

campaigns, previous works have relied on the Bass model. Since that model only provides a rough

approximation of the actual shifting mechanism, the purpose of this work is to consider uncertainty

in the shifting mechanism through the lens of robust optimization. We thus assume that the

(discrete) shifting function can take any value in a given polytope and wish to optimize against

the worst-case realization. The resulting robust optimization problem possesses integer recourse

variables and non-linear dependencies on the uncertain parameters. We address these difficulties

as follows. First, the integer recourse is tackled heuristically through a piece-wise constant policy

dictated by a prior partition of the uncertainty polytope. Second, the non-linearities are handled

by a careful analysis of the dominating scenarios. The scalability and economical relevance of our

models are assessed through numerical experiments performed on real instances, underlining the

benefit of using robust optimization.

Keywords: OR in telecommunications, Capacity Expansion, Bass model, Mixed-Integer Linear

Programming, Robust Optimization

1. Introduction and problem description

New bandwidth-consuming usages and the increase in the number of users induce an exponential

growth of mobile traffic CISCO (2017). Facing this traffic growth, telecommunications companies
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are hence pushed to expand their network through important investments (several billion e to

improve the mobile network in the last six years, see Orange (2018)). This network design problem

has two specific features. First, a fast roll-out of mobile networks generations and a highly compet-

itive environment that encourages operators to invest in the newest technology available. Second,

telecommunications companies are often both infrastructure operators, planning their network ex-

pansion, and service providers, designing the offers proposed to the subscribers. These two features

impact the investment decisions of the operator.

Through marketing investments, the operator can control the demand on its different technolo-

gies and avoid over-dimensioning, hence reducing its investments in network design. Reversely, the

efficiency of such investments over a given year is also dependent on the network deployment per-

formed in the previous years: subscribers will easily accept to shift towards the newest technology

if it benefits from a high level of coverage, thanks to previous investments in the deployment of that

technology. Exploring the trade-off between network and subscribers dynamic can be financially

more interesting than a separate optimization of the two problems. Moreover, an operator fixes

strategical guidelines on its network to remain competitive. Some of these guidelines, for example

throughput, depend on both network and subscriber performances. Investments in subscribers and

networks should hence be jointly optimized over the whole time-horizon of strategical planning,

which is typically 5 years for a telecommunication operator.

This enlightens that subscriber and network dynamics are intertwined. To the best of our

knowledge, the authors in Cambier et al. (2019) are the first to consider jointly the two dynamics. To

represent the subscriber dynamic, they consider discrete subsidies that represent different possible

marketing savings on a new phone required to access the new service. To model how the subscribers

react to such subsidies, they rely on the well-known Bass model: see Bass (1969) for the original

paper, while Norton and Bass (1987) provide a model with the notion of generations, and Bass

(2004) considers applications to telecommunications context. The authors of Cambier et al. (2019)

tackle only the deterministic framework where the number of subscribers deciding to shift to the

newest generation is a fully determined function of the subsidy offered and of an indicator of the

network deployment. However, that function is only a naive approximation, since many internal

and external factors intervene in operator marketing. We hence consider in this article uncertainty

on the values of the shifting function, focusing on the two-periods case.
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We model the shifting function uncertainty via a known polyhedral set, leading to a robust

optimization problem. Robust optimization is an efficient framework to handle uncertainty in

(mixed-integer) linear optimization problems, see Ben-Tal et al. (2009) and Gabrel et al. (2014),

among others. The framework can, in theory, address a wide variety of optimization problems,

including discrete variables (Buchheim and Kurtz, 2018), non-linear constraints (Ben-Tal et al.,

2015), and the multi-stage setting where some of the decision variables can adjust their value to

the realization of the uncertain parameters (see Delage and Iancu (2015) and İhsan Yanıkoğlu et al.

(2019)). In practice, however, the dimensions of the problems one can expect to solve, and the

optimality guarantees of the resulting algorithms, strongly depend on each problem characteristics

and on the difficulty of the underlying nominal optimization problem. Here one must bear in mind

that the underlying model considered, which was studied in Cambier et al. (2019), is already a

difficult MILP that can be solved exactly only for moderate-size instances. This means that the

robust counterpart we seek should not be much harder than its nominal variant.

The specific application considered in this paper features two specific difficulties: some of the

integer variables are adjustable, and the constraints of the problem have non-linear dependencies

on the shifting function. While both specificities have been addressed in the recent robust opti-

mization literature, they are often addressed through heuristic solution procedures. On the one

hand, integer adjustable variables are typically tackled (approximately) by partitioning the uncer-

tainty polytope (Bertsimas and Caramanis, 2010; Bertsimas and Dunning, 2016; Postek and den

Hertog, 2016) or by introducing complex decision rules (Bertsimas and Georghiou, 2018). On the

other hand, robust optimization with non-linear dependency on the uncertainty parameters can,

in some cases, be reformulated efficiently, for instance, when these dependencies are concave func-

tions (Ben-Tal et al., 2015). The non-linear dependencies considered herein will be modeled by

(non-concave) bilinear functions for which reformulations exist only in very particular cases, e.g.,

when the uncertainty polytope is an ellipsoid (Ben-Tal et al., 2002) or if the function is the product

of two affine functions (Pessoa and Poss, 2015).

In this paper, we address the adjustable variables through uncertainty partitioning, while the

non-linearities are handled by underlining dominances of the uncertainty polytope. Specifically,

our contribution is three-fold. First, we provide two formulations for the two-period deterministic

problem: one comes directly from Cambier et al. (2019) and the other one is a reformulation for the
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two period-case which will be more amenable to the derivation of the robust counterpart. These

formulations are strengthened with RLT inequalities (see Sherali and Adams (1998)). Second,

we provide two robust counterparts (static and adjustable) of the previous model, as well as a

solving method. This method analyzes the structure of the problem to reformulate it as a linear

mixed-integer program with a finite number of constraints and variables. Third, through numerical

experiments on realistic instances, we provide insights for the operator on the effects of uncertainty,

and the importance to adapt her decisions to the shifting function outcome in the first-stage.

The remainder of this article is organized as follows. Section 2 presents the two mixed-integer

formulations for the deterministic framework. Section 3 introduces the static and adjustable robust

counterparts. Numerical experiments assess both models in Section 4. Concluding remarks are

given in Section 5.

2. Deterministic model and formulations

In this section, we present two formulations for the deterministic framework. Section 2.1 de-

scribes the problem and presents the formulation from Cambier et al. (2019). A reformulation

specific to the two period-case is provided in Section 2.2. This reformulation is linearized and

strengthened in Section 2.3.

2.1. Current formulation

In this work, we focus on a framework with two network technologies (denoted by g ∈ G =

{CG,NG}), the current one CG and the newest one NG that the telecommunication operator aims

to deploy. The time horizon is discretized in two equally-sized time periods, denoted by t ∈ T =

{1, 2}, adding “0” to denote the beginning of the time-horizon. We consider a set S = {1, . . . , NS}

of NS existing telecommunication sites. At the beginning of the time-horizon, all sites are equipped

with CG technology, while NG is deployed on some sites and can be deployed on the other ones.

Theses sites have an initial capacity (discretized in numbers of modules) which can be increased

by adding new modules. We also consider that we know an equivalent number of subscribers

associated with each site s ∈ S. A technical compatibility rule imposes that CG subscribers

can only be served by CG technology while NG subscribers can be served by both technologies.

Furthermore, the load-balancing rule decided by the operator states that NG subscribers have to

be served by NG technology if NG is deployed. The capacity of each site and each technology has
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to be sufficient for handling traffic 95% of the time. We also assume that the upgrade mechanism

modeling subscribers reaction for shifting to NG technology depends on two parameters:

• The value of the subsidy denoted by σ.

• A discrete indicator of the level of coverage of NG technology denoted by c.

The set of possible subsidy values is denoted by K. We model the level of coverage by partition-

ing the interval [0, 1] into C smaller intervals indexed by set C = {1, . . . , C}. Hence c ∈ C indicates

the interval (coverage range) to which belongs the sites coverage (percentage of sites equipped with

NG at the beginning of the time period).

We further consider two strategical guidelines that can be fixed by a telecommunication reg-

ulator or the operator: the quality of experience (percentage of NG subscribers served by NG

technology) and the sites coverage, both taken at the end of the time-horizon. All in all, the Mobile

Master Plan (MMP) problem for these two technologies consists in finding the subsidies decisions

(amount of subsidy given at each period) and networks decisions (installing NG technology and

adding modules for both technologies) for each site, while satisfying load-balancing and capacity

constraints at each time period, and the two strategical guidelines at the end of the time horizon.

Parameters and variables used throughout this paper are provided respectively in Tables 1

and 2.
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Parameters:

CANG cost of adding NG technology on each site

CMg cost of adding a module of technology g ∈ G on each site

M0
s,g initial number of modules of technology g ∈ G on site s ∈ S

Mg technical upper bound on the number of modules of technology g ∈ G

Z0
s,NG initial presence (yes/no) of NG technology on site s ∈ S

U0
s,g initial number of subscribers on site s ∈ S to technology g ∈ G

Dt
g unitary demand of a subscriber served by technology g ∈ G at time period t ∈ T

CAPg capacity of each additional module of technology g ∈ G

fσ,c reaction to the subsidy offered σ ∈ K under range of coverage interval c ∈ C

Lc lower bound of coverage range indexed by c ∈ C

Uc upper bound of coverage range indexed by c ∈ C

U
t
s,g upper bound on the total number of subscribers to technology g ∈ G on site s ∈ S

at the end of time period t ∈ T

α0 sites coverage at the beginning of the time horizon

α threshold for the coverage (strategic guideline)

QoE threshold for the quality of service (strategic guideline)

Table 1: Model parameters

6

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Variables:

zts,NG binary variable indicating whether NG technology is deployed on site s ∈ S

at the end of time-period t ∈ T ∪ {0}

mt
s,g total number of modules of technology g ∈ G deployed on site s ∈ S

at the end of time period t ∈ T ∪ {0}

uts,g total number of subscribers to technology g ∈ G on site s ∈ S

at the end of time period t ∈ T ∪ {0}

uts,o,g total number of subscribers to technology o ∈ G on site s ∈ S

served by technology g ∈ G at the end of time period t ∈ T ∪ {0}

αt redundant variable that denotes the NG sites coverage

(fraction of sites where NG technology is deployed) at the end of the time period t ∈ T ,

which is equal to

∑
s∈S

zts,NG

NS

γtc binary variable indicating whether αt−1 belongs to range c ∈ C

δtσ binary variable indicating whether subsidy offered at time period t ∈ T is σ ∈ K

Table 2: Model variables
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The MMP problem is modeled in Cambier et al. (2019) as follows:

min
∑
t∈T

∑
σ∈K

∑
c∈C

∑
s∈S

σfσ,cδ
t
σγ

t
cu
t−1
s,CG +

∑
s∈S

∑
g∈G

CMg(m
2
s,g −M0

s,g)

+
∑
s∈S

CANG(z2s,NG − Z0
s,NG) (1)

s.t. mt
s,CG ≤MCG ∀s ∈ S, ∀t ∈ T , (2)

mt
s,NG ≤MNGz

t
s,NG ∀s ∈ S, ∀t ∈ T , (3)

mt−1
s,g ≤ mt

s,g ∀s ∈ S, ∀t ∈ T , ∀g ∈ G, (4)

uts,NG = uts,NG,CG + uts,NG,NG ∀s ∈ S, ∀t ∈ T , (5)

uts,NG,CG ≤ U
t
s,NG(1− zts,NG) ∀s ∈ S, ∀t ∈ T , (6)

Dt
CG(uts,CG + uts,NG,CG) ≤ CAPCGmt

s,CG ∀s ∈ S, ∀t ∈ T , (7)

Dt
NGu

t
s,NG,NG ≤ CAPNGmt

s,NG ∀s ∈ S, ∀t ∈ T , (8)

uts,CG = ut−1s,CG −
∑
σ∈K

∑
c∈C

fσ,c δ
t
σγ

t
cu
t−1
s,CG ∀s ∈ S, ∀t ∈ T , (9)

uts,NG = ut−1s,NG +
∑
σ∈K

∑
c∈C

fσ,cδ
t
σγ

t
cu
t−1
s,CG ∀s ∈ S, ∀t ∈ T , (10)

∑
s∈S

u2s,NG,NG ≥ QoE(
∑
s∈S

U0
s,NG + U0

s,CG), (11)

α2 ≥ α, (12)∑
σ∈K

δtσ = 1 ∀t ∈ T , (13)

∑
c∈C

γtc = 1 ∀t ∈ T , (14)

γtc ≤ 1 + Uc − αt−1 ∀t ∈ T , ∀c ∈ C, (15)

γtc ≤ 1 + αt−1 − Lc ∀t ∈ T , ∀c ∈ C, (16)

u0s,g = U0
s,g ∀s ∈ S, ∀g ∈ G, (17)

m0
s,g = M0

s,g ∀s ∈ S, ∀g ∈ G, (18)

z0s,NG = Z0
s,NG ∀s ∈ S, (19)

αtNS =
∑
s∈S

zts,NG ∀t ∈ T ∪ {0}, (20)

mt
s,g ∈ N ∀s ∈ S, ∀t ∈ T ∪ {0}, ∀g ∈ G, (21)
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zts,NG ∈ {0, 1} ∀s ∈ S, ∀t ∈ T ∪ {0}, (22)

uts,o ≥ 0 ∀s ∈ S, ∀t ∈ T ∪ {0}, ∀o ∈ G, (23)

uts,o,g ≥ 0 ∀s ∈ S, ∀t ∈ T , ∀o, g ∈ G2, (24)

γtc ∈ {0, 1} ∀t ∈ T , ∀c ∈ C, (25)

δtσ ∈ {0, 1} ∀t ∈ T , ∀σ ∈ K . (26)

We denote this formulation by Mdet. The objective function (1) minimizes both subscribers’

migration costs and network investments. The first term stands for the cost of offering subsidies to

the subscriber, the second term for the network modules cost, and the third term for the deployment

of the newest technology NG.

Constraints (2)–(4) enforce the network dynamic rules ensuring the number of modules to be

non-decreasing and imposing technical upper bounds on numbers of modules. Constraints (5)–(8)

refer to the network dimensioning constraints, ensuring capacity constraints and load-balancing

rules, making hence the link between the network dynamic and the subscriber dynamic. Con-

straints (9) and (10) stand for the subscriber dynamic constraints. They compute the total number

of subscribers to CG and NG technologies at each site and each time period in terms of the num-

ber of subscribers to both technologies in the previous period and of the percentage of former CG

subscribers who decide to shift to NG technology. Constraints (11) and (12) ensure the model

strategic guidelines and refer to the end of the time horizon. Constraints (13) ensure that one

and only one subsidy from the set K is offered at each time period. Constraints (14)–(16) set the

range of coverage for each time period according to the coverage. Constraints (17)–(19) refer to

the initial conditions and constraints while constraints (20)–(26) define the domain of all variables

in the formulation.

To linearize this formulation, we introduce variables:

πtσ,c,s = δtσγ
t
cu
t−1
s,CG, ∀t ∈ T , ∀s ∈ S, ∀σ ∈ K, ∀c ∈ C

and use the classical linearization of the product of a binary variable by a continuous one. Details

on the linearization are given in Cambier et al. (2019).
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2.2. Reformulation

In this section, we will consider a reformulation of Mdet that avoids the recursive structure

defined by constraints (9) and (10) and expresses variables u directly in term of variables δ, γ

and function f . This reformulation will be more amenable to obtain a robust counterpart in our

two-periods framework.

Proposition 2.1. The following non-linear equalities are valid expressions for the number of sub-

scribers on each site s ∈ S and each time-period t ∈ T in Mdet

uts,CG = U0
s,CG

t∏
i=1

(
1−

∑
σ∈K

∑
c∈C

fσ,cδ
i
σγ

i
c

)
and

uts,NG = U0
s,CG + U0

s,NG − uts,CG = U0
s,NG + U0

s,CG

[
1−

t∏
i=1

(
1−

∑
σ∈K

∑
c∈C

fσ,cδ
i
σγ

i
c

)]

Proof. The expression for uts,CG is obtained by applying recursively over the time-horizon con-

straints (9) from Mdet. The expression for uts,NG is obtained by summing constraints (9) and (10)

which gives uts,CG+uts,NG = ut−1s,CG+ut−1s,NG and hence recursively uts,CG+uts,NG = U0
s,CG+U0

s,NG.

These expressions allow to replace continuous variables uts,NG and uts,CG by expressions that

depend only on variables δ and γ. When considering |T | > 2 periods, these new expressions contain

a high number of non-linearities (products of δ) which require each a linearization variable: hence

NV (|T |) =

|T |∑
l=2

|T |!
(|T | − l)!l!

|K|l = (|K|+ 1)|T | − 1− |T ||K|

additional variables are required. When focusing on a two periods framework (T = 2), the non-

linear terms are direct products of variables δ1 and δ2. We can hence linearize our formulation by

adding only |K|2 variables and 3|K|2 constraints (see (Fortet, 1960)). We observe that variables γ1

are not needed as the coverage range in the first period depends on the initial percentage of NG

sites, and is hence already known.

Proposition 2.2. Constraints (5) and (6) can be replaced with the following non-linear equations

in formulation Mdet, for each site s ∈ S and each time-period t ∈ T :

uts,NG,NG = uts,NGz
t
s,NG (27)
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uts,NG,CG = uts,NG(1− zts,NG) (28)

Proof. First, let us assume that equations (27) and (28) are satisfied. For each site s ∈ S, by

summing (27) and (28), we obtain that (5) is satisfied. Clearly, equation (6) is implied by (28).

Reciprocally, let us assume that constraints (5) and (6) are both satisfied. Two cases can

happen. If NG technology is installed (zts,NG = 1): constraints (6) induce uts,NG,CG = 0 and then

uts,NG = uts,NG,NG so that equations (27) and (28) are satisfied. If NG technology is not installed

(zts,NG = 0), we have mt
s,NG = 0 (see constraints (3)) and uts,NG,NG = 0 (see constraints (8)) so

that equations (27) and (28) are satisfied.

From Propositions 2.1 and 2.2, we obtain that continuous variables u can be expressed with the

following equations depending on δ, γ and f , for each site s ∈ S and each time-period t ∈ T :

uts,NG,NG =

(
U0
s,NG + U0

s,CG

[
1−

t∏
i=1

(
1−

∑
σ∈K

∑
c∈C

fσ,cδ
i
σγ

i
c

)])
zts,NG

uts,CG + uts,NG,CG = uts,NG + uts,CG = U0
s,NG + U0

s,CG if zts,NG = 0,

uts,CG + uts,NG,CG = uts,CG = U0
s,CG

t∏
i=1

(
1−

∑
σ∈K

∑
c∈C

fσ,cδ
i
σγ

i
c

)
if zts,NG = 1.

For simplifying the subsequent notations, we denote the total number of subscribers (
∑
s∈S

U0
s,CG+

U0
s,NG) by UTOT.

Consequently, formulation Mdet with two generations and two periods can be reformulated

without continuous variables, as follows:

min subcost+
∑
s∈S

∑
g∈G

CMg(m
2
s,g −M0

s,g) +
∑
s∈S

CANG(z2s,NG − Z0
s,NG) (29)

s.t.
∑
σ1∈K

σ1fσ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

σ2fσ2,c2δ
2
σ2γ2c2(1−

∑
σ1∈K

fσ1,c1δ
1
σ1) ≤ subcost∑

s∈S
U0
s,CG

, (30)

(2)− (4)

D1
CGCAPCG(U0

s,CG + U0
s,NG)(1− z1s,NG) ≤ m1

s,CG ∀s ∈ S, (31)

D1
CG

CAPCG
U0
s,CG(1−

∑
σ1∈K

fσ1,c1δ
1
σ1) ≤ m1

s,CG ∀s ∈ S, (32)
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D1
NG

CAPNG
(U0

s,NG + U0
s,CG

∑
σ1∈K

fσ1,c1δ
1
σ1)z1s,NG ≤ m1

s,NG ∀s ∈ S, (33)

D2
CG

CAPCG
(U0

s,CG + U0
s,NG)(1− z2s,NG) ≤ m2

s,CG ∀s ∈ S, (34)

D2
CGU

0
s,CG

CAPCG

[
1−

(∑
σ1∈K

fσ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

fσ2,c2δ
2
σ2γ2c2(1−

∑
σ1∈K

fσ1,c1δ
1
σ1)

)]
≤ m2

s,CG

∀s ∈ S, (35)

D2
NG

CAPNG

[
U0
s,NG + U0

s,CG

(∑
σ1∈K

fσ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

fσ2,c2δ
2
σ2γ2c2(1−

∑
σ1∈K

fσ1,c1δ
1
σ1)

)]
z2s,NG ≤ m2

s,NG

∀s ∈ S, (36)∑
s∈S

[
U0
s,NG + U0

s,CG

(∑
σ1∈K

fσ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

fσ2,c2δ
2
σ2γ2c2(1−

∑
σ1∈K

fσ1,c1δ
1
σ1)

)]
z2s,NG ≥ QoE, UTOT

(37)

(12)− (26)

subcost ≥ 0. (38)

Constraint (30) enables to compute the subsidies cost subcost by using the expression from Propo-

sition 2.1 for the number of CG subscribers (note that variable subcost will thanks to the mini-

mization exactly be equal to the subsidies cost, but formulating with a ≤ sign is more amenable for

writing the robust counterpart). Load-balancing constraints (5) and (6), capacity constraints (7)

and (8), subscriber dynamic constraints (9) and (10) and QoE threshold constraint (11) from for-

mulationMdet are replaced by set of constraints (31)–(37). Constraints (31) and (34) impose that

all subscribers on a site (which is a constant) have to be served by CG technology when NG is not

installed. Constraints (32) and (35) state that CG subscribers have to be served by CG, which is

dominated by previous constraints when NG is not installed. Constraints (33) and (36) impose that

when NG is installed NG subscribers have to be served by NG. The same formulas for obtaining

the number of NG subscribers are used in the QoE constraint (37).

2.3. Linearization and RLT cuts

We discuss next how the model presented in Section 2.2 is linearized. Notice that all products

appearing in this formulation are products of binary variables. We linearize the model presented
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in Section 2.2 by applying Fortet Linearizations (see Fortet (1960)). For each σ1, σ2 ∈ K2, s ∈ S,

t ∈ T , we introduce the following new binary variables:

• χσ,s for linearizing δ1σz
1
s,NG in constraints (33),

• πtσ,s for linearizing δtσz
2
s,NG in constraints (36) and (37),

• ησ1,σ2 for linearizing δ1σ1δ
2
σ2 in constraints (30) and (35)–(37),

• ζσ1,σ2,s for linearizing δ1σ1δ
2
σ2z

2
s,NG = π1σ1,sδ

2
σ2 = π2σ2,sδ

1
σ1 = z2s,NGησ1,σ2 in constraints (36)

and (37).

Remark 2.3. The variable δ2 and hence some of the variables above are also multiplied by γ2. As

in formulationMdet, these products are not handled with Fortet linearizations, but by introducing

variables δ2σ,c = γ2c δ
2
σ, for each σ ∈ K and each c ∈ C, and by replacing γ2c with

∑
σ∈K

δ2σ,c (term equal

to 1 if coverage range is c and 0 otherwise). We choose to keep γ2c δ
2
σ in the following for writing

simplification.

Now, we show how our formulation can be strengthened by applying Reformulation Lineariza-

tion Techniques (RLT). Multiplying constraints (13) for t = 2 by variable z1s,NG for each site s ∈ S,∑
σ∈K

χσ,s = z1s,NG ∀s ∈ S. (39)

Multiplying constraints (13) by variable z2s,NG for each site s ∈ S, we obtain:∑
σ∈K

πtσ,s = z2s,NG ∀t ∈ T ,∀s ∈ S. (40)

Multiplying constraints (13) for t = 2 by variable δ1σ1 for each subsidy σ1 ∈ K, we obtain:∑
σ2∈K

ησ1,σ2 = δ1σ1 ∀σ1 ∈ K. (41)

Multiplying constraints (13) for t = 1 by variable δ2σ2 for each subsidy σ2 ∈ K, we obtain:∑
σ1∈K

ησ1,σ2 = δ2σ2 ∀σ2 ∈ K. (42)

Summing constraints (41) (or (42)) on set K, and applying constraints (13), we obtain:∑
σ1∈K

∑
σ2∈K

ησ1,σ2 = 1. (43)
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Multiplying constraints (41) by variable z2s,NG for each site s ∈ S, we obtain:

∑
σ2∈K

ζσ1,σ2,s = π1σ1,s ∀s ∈ S, ∀σ
1 ∈ K. (44)

Multiplying constraints (42) by variable z2s,NG for each site s ∈ S, we obtain:

∑
σ1∈K

ζσ1,σ2,s = π2σ2,s ∀s ∈ S, ∀σ
2 ∈ K. (45)

Finally, multiplying constraints (43) by variable z2s,NG for each site s ∈ S, we obtain:

∑
σ1∈K

∑
σ2∈K

ζσ1,σ2 = z2s,NG ∀s ∈ S. (46)

Summarizing, the formulation presented in section (2.2) can be reinforced by adding constraints (40)–

(46). We denote the corresponding linearized and reinforced formulation by Mdet,2period.

3. Robust formulation

In this section, we detail the static and adjustable robust counterparts for formulationMdet,2period.

The static counterpart is presented in Section 3.1. We show in Section 3.2 that this formulation can

be formulated as a MILP that contains at most twice as many constraints as the nominal problem.

Section 3.3 presents the adjustable counterpart.

3.1. Static robust counterpart

We now consider that the shifting function is uncertain and belongs to the uncertainty polytope

F . Let us recall that the shifting function is a discrete function associating to each couple (σ, c) ∈

K × C a reaction fσ,c ∈ [0, 1]. Therefore, the polytope F is a subset of the finite dimension space

[0, 1]|K|·|C|. The realized shifting functions may be different in each period. We thus denote by

f1 ∈ F the shifting function realization in the first period and by f2 ∈ F the shifting function

realization in the second period.

In a static framework, the decisions cannot be adapted to mitigate the effects of the uncertainty.

Consequently, the static robust counterpart of formulationMdet,2period can be formulated as follows.

min subcost+
∑
s∈S

∑
g∈G

CMg(m
2
s,g −M0

s,g) +
∑
s∈S

CANG(z2s,NG − Z0
s,NG) (47)
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s.t. (2)− (4), (31), (34), (13)− (26)∑
σ1∈K

σ1f1σ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

σ2f2σ2,c2δ
2
σ2γ2c2(1−

∑
σ1∈K

f1σ1,c1δ
1
σ1) ≤ subcost∑

s∈S U
0
s,CG

∀f1 ∈ F , ∀f2 ∈ F , (48)

D1
CGU

0
s,CG(1−

∑
σ∈K

f1σ,c1δ
1
σ) ≤ CAPCGm1

s,CG ∀s ∈ S, ∀f1 ∈ F , (49)

D1
NG(U0

s,NG + U0
s,CG

∑
σ∈K

f1σ,c1δ
1
σ)z1s,NG ≤ CAPNGm1

s,NG ∀s ∈ S, ∀f1 ∈ F , (50)

D2
CGU

0
s,CG

CAPCG

[
1−

(∑
σ1∈K

f1σ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

f2σ2,c2δ
2
σ2γ2c2(1−

∑
σ1∈K

f1σ1,c1δ
1
σ1)

)]
≤ m2

s,CG

∀s ∈ S, ∀f1 ∈ F , ∀f2 ∈ F , (51)

D2
NG

CAPNG

[
U0
s,NG + U0

s,CG

(∑
σ1∈K

f1σ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

f2σ2,c2δ
2
σ2γ2c2(1−

∑
σ1∈K

f1σ1,c1δ
1
σ1)

)]
z2s,NG ≤ m2

s,NG

∀s ∈ S, ∀f1 ∈ F , ∀f2 ∈ F , (52)∑
s∈S

[
U0
s,NG + U0

s,CG

(∑
σ1∈K

f1σ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

f2σ2,c2δ
2
σ2γ2c2(1−

∑
σ1∈K

f1σ1,c1δ
1
σ1)

)]
z2s,NG ≥ QoE UTOT,

∀f1 ∈ F , ∀f2 ∈ F . (53)

Let us denote this formulation by Mstat. Being a robust mixed-integer linear programming with

polyhedral uncertainty, Mstat has an infinite number of constraints.

Remark 3.1. As for the deterministic model, formulation Mstat can be linearized and reinforced

by constraints (40)–(46).

3.2. Constraints dominance

We observe that the previous formulation contains constraints involving quadratic dependencies

on f . This is the case for each constraint that involves the numbers of subscribers to each offer

in the second period, i.e. constraints (48), (51), (52) and (53). Handling constraints with non-

linear dependencies of the uncertain parameters may not be easy in general. Fortunately, we show

in this section that the specific structure of our constraints is simple enough to lead to a direct

reformulation based on the dominance of set F by two vectors denoted by f and f .

In what follows, let δ̃ represent the value of δ in a feasible solution of Mstat and let σ̃ denote

the subsidy offered in that solution. Similarly, let γ̃2 represent the value of γ2 in a feasible solution

of Mstat and let c̃2 denote the range of coverage in the second period in that solution. Our
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reformulation is based on the following properties satisfied by any feasible solution of formulation

Mstat:

Proposition 3.2. The term
∑
σ∈K

f1σ,c1 δ̃
1
σ is equal to f1σ̃1,c1.

Proof. This comes directly from constraints (13), σ̃1 being the index of the only non-zero component

of δ̃1.

Proposition 3.3. The term
∑
σ∈K

∑
c∈C

f2σ,cδ̃
2
σγ̃

2
c is equal to f2σ̃2,c̃2 .

Proof. This result comes from constraints (13) and (14), σ̃2 being the index of the unique non-zero

component of δ̃2 and c̃2 being the index of the unique non-zero component of γ̃2 .

These two simple results enable us to replace all robust constraints by equivalent sets of con-

straints, involving at most the two aforementioned vectors f and f , which are defined as follows

for each subsidy offered σ ∈ K and each coverage range c ∈ C:

• the weakest possible reaction is f
σ,c

= min
f∈F

fσ,c,

• the strongest possible reaction is fσ,c = max
f∈F

fσ,c.

Next, we present reformulations for the constraints that are linear in the uncertainty f .

Proposition 3.4. Constraints (49) are satisfied if and only if the following constraints are satisfied:

D1
CGU

0
s,CG(1−

∑
σ∈K

f
σ,c1

δ1σ) ≤ CAPCGm1
s,CG, ∀s ∈ S. (54)

Proof. We see that constraints (49) are equivalent to

max
f1∈F

D1
CGU

0
s,CG(1−

∑
σ∈K

f1σ1,c1δ
1
σ) ≤ CAPCGm1

s,CG ∀s ∈ S,

⇔ D1
CGU

0
s,CG(1− min

f1∈F

∑
σ∈K

f1σ,c1δ
1
σ) ≤ CAPCGm1

s,CG ∀s ∈ S.

From Proposition 3.2 and the definition of f , we have∑
σ∈K

f
σ,c1

δ̃1σ = f
σ̃1,c1

= min
f1∈F

f1σ̃1,c1 = min
f1∈F

∑
σ∈K

f1σ,c1 δ̃
1
σ.

which means constraints (49) are equivalent to constraints (54).
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Proposition 3.5. Constraints (50) are satisfied if and only if the following constraints are satisfied:

D1
NG(U0

s,NG + U0
s,CG

∑
σ∈K

fσ,c1δ
1
σ) ≤ CAPCGm1

s,CG ∀s ∈ S. (55)

Proof. The proof relies on the definition of f and on arguments similar to those used in the proof

of Proposition 3.4.

Next, we focus on the constraints of Mstat that involve quadratic dependencies on f .

Proposition 3.6. Constraints (51) are satisfied if and only if the following constraints are satisfied:

D2
CGU

0
s,CG

CAPCG

[
1−

(∑
σ1∈K

f
σ1,c1

δ1σ1 +
∑
σ2∈K

∑
c2∈C

f
σ2,c2

δ̃2σ2γ2c2(1−
∑
σ1∈K

f
σ1,c1

δ1σ1)

)]
≤ m2

s,CG ∀s ∈ S. (56)

Proof. First, we see that if constraints (51) are satisfied, then constraints (56) are satisfied since

f ∈ F .

Reciprocally, let us assume that constraints (56) are satisfied. Due to Propositions 3.2 and 3.3,

we know that:∑
σ1∈K

f1σ1,c1 δ̃
1
σ +

∑
σ2∈K

∑
c2∈C

f2σ2,c2 δ̃
2
σ2 γ̃

2
c2(1−

∑
σ1∈K

f1σ1,c1 δ̃
1
σ) = f1σ̃1,c1 + f2σ̃2,c̃2(1− f1σ̃1,c1).

To simplify notations, let us denote f1σ̃1,c1 and f2σ̃2,c̃2 by x and y respectively. We also denote f
σ̃1,c1

by x, f σ̃1,c1 by x, f
σ̃2,c̃2

by y and f σ̃2,c̃2 by y.

Recalling that (x, y) ∈ [0, 1]2, we wish to find out where function g(x, y) = x+y(1−x) = x+y−xy

defined on (x, y) ∈ [x, x]× [y, y] ⊆ [0, 1]2 reaches its minimal value. First notice that

g(x, y) = x+ (1− x)y ≥ x+ (1− x)y = g(x, y) ∀x ∈ [x, x], ∀y ∈ [y, y],

and symmetrically g(x, y) ≥ g(x, y), ∀x ∈ [x, x], ∀y ∈ [y, y]. Consequently, g(x, y) ≥ g(x, y),∀x ∈

[x, x], ∀y ∈ [y, y], and we thus have:

max
f1∈F ,f2∈F

D2
CGU

0
s,CG

CAPCG

1−

∑
σ1∈K

f1σ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

f2σ2,c2δ
2
σ2γ

2
c2(1−

∑
σ1∈K

f1σ1,c1δ
1
σ1)


=

D2
CGU

0
s,CG

CAPCG

1− min
f1∈F ,f2∈F

∑
σ1∈K

f1σ1,c1δ
1
σ +

∑
σ2∈K

∑
c2∈C

f2σ2,c2δ
2
σ2γ

2
c2(1−

∑
σ1∈K

f1σ1,c1δ
1
σ)


≤

D2
CGU

0
s,CG

CAPCG

1−

∑
σ1∈K

f
σ1,c1

δ1σ +
∑
σ2∈K

∑
c2∈C

f
σ2,c2

δ2σ2γ
2
c2(1−

∑
σ1∈K

f
σ1,c1

δ1σ)

 ≤ m2
s,CG,
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which means that constraints (51) are satisfied.

Proposition 3.7. Constraints (53) are satisfied if and only if the following constraints are satisfied:

∑
s∈S

[
U0
s,NG + U0

s,CG

(∑
σ1∈K

f
σ1,c1

δ1σ1 +
∑
σ2∈K

∑
c2∈C

f
σ2,c2

δ2σ2γ2c2(1−
∑
σ1∈K

f
σ1,c1

δ1σ1)

)]
≥ QoE UTOT. (57)

Proof. The proof relies on arguments similar to those used in the proof of Proposition 3.6.

Proposition 3.8. Constraints (52) are satisfied if and only if the following constraints are satisfied:

D2
NG

CAPNG

[
U0
s,NG + U0

s,CG

(∑
σ1∈K

fσ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

fσ2,c2δ
2
σ2γ2c2(1−

∑
σ1∈K

fσ1,c1δ
1
σ1)

)]
≤ m2

s,NG

∀s ∈ S (58)

Proof. The proof relies on studying the maximum of function g and on arguments similar to those

used in the proof of Proposition 3.6.

We consider next constraints (48) which require an argument slightly more involved.

Proposition 3.9. Constraints (48) are satisfied if and only if the following constraints are satisfied:∑
σ1∈K

σ1fσ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

σ2fσ2,c2δ
2
σ2γ

2
c2(1−

∑
σ1∈K

fσ1,c1δ
1
σ) ≤ subcost∑

s∈S
U0
s,CG

(59)

∑
σ1∈K

σ1f
σ1,c1

δ1σ1 +
∑
σ2∈K

∑
c2∈C

σ2fσ2,c2δ
2
σ2γ

2
c2(1−

∑
σ1∈K

f
σ1,c1

δ1σ1) ≤ subcost∑
s∈S

U0
s,CG

(60)

Proof. First, we see that if constraints (48) are satisfied, constraints (59) and (60) are satisfied

since f ∈ F and f ∈ F .

Reciprocally, let us assume that constraints (59) and (60) are both satisfied: due to Proposi-

tions 3.2 and 3.3, we know that∑
σ1∈K

σ1f1σ1,c1 δ̃
1
σ1 +

∑
σ2∈K

∑
c2∈C

σ2f2σ2,c2 δ̃
2
σ2 γ̃

2
c2(1−

∑
σ1∈K

f1σ1,c1 δ̃
1
σ1) = σ̃1f1σ̃1,c1 + σ̃2f2σ̃2,c̃2(1− f1σ̃1,c1).

We use the same notations as those introduced in the proof of Proposition 3.6. In addition, we

denote σ̃1 by a and σ̃2 by b. We wish to find out where function h(x, y) = ax+ by(1− x) defined

on x ∈ [x, x] × [y, y] ⊆ [0, 1]2 reaches its maximal value with a and b positive reals. First notice

that we have:

h(x, y) = ax+ by(1− x) ≤ ax+ by(1− x) = h(x, y) ∀x ∈ [x, x], ∀y ∈ [y, y].
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Hence, our function is maximal for y = y. With y fixed to y, h(x, y) becomes a linear function of

x defined on [x, x]. Therefore,

h(x, y) ≤ max {h(x, y), h(x, y)} ∀x ∈ [x, x]

and

h(x, y) ≤ max {h(x, y), h(x, y)} ∀x ∈ [x, x],∀y ∈ [y, y].

We thus have for each f1 ∈ F , f2 ∈ F :

∑
σ1∈K

σ1f1σ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

σ2f2σ2,c2δ
2
σ2γ

2
c2(1−

∑
σ1∈K

f1σ1,c1δ
1
σ1)

≤max

∑
σ1∈K

∑
c1∈C

σ1fσ1,c1δ
1
σ1 +

∑
σ2∈K

∑
c2∈C

σ2fσ2,c2δ
2
σ2γ

2
c2(1−

∑
σ1∈K

∑
c1∈C

fσ1,c1δ
1
σ1),

∑
σ1∈K

∑
c1∈C

σ1f
σ1,c1

δ1σ +
∑
σ2∈K

∑
c2∈C

σ2fσ2,c2δ
2
σ2γ

2
c2(1−

∑
σ1∈K

∑
c1∈C

f
σ1,c1

δ1σ1)

 ≤ subcost∑
s∈S

U0
s,CG

,

which means that constraints (48) are satisfied.

Summarizing the above results, we have shown that formulation Mstat is equivalent to the

following mixed-integer linear programming, with a finite number of constraints:

min {(47) s.t. (2)− (4), (31), (34), (54)− (60), (13)− (26)}

3.3. Adjustable robust counterpart

In this section, we consider the framework where the operator can take benefit from the knowl-

edge of the uncertainty realization in the first period when deciding the subsidy offered in the second

period. We obtain a two-stage model where the operator can adapt to the uncertainty through a

second-stage decision: the amount of subsidy offered in the second period. We model this decision

by variables δ2σ(f1) defined for each f1 ∈ F . Let us recall that all decisions concerning network

investments are taken as planning decisions and considered to be taken in the first-stage, which

means that δ2σ(f1) is the only second-stage decision. This decision is often called the recourse in

the robust optimization literature.

Plugging the recourse variables into the robust model leads to a mixed-integer formulation with

an infinite number of variables since one variable δ(f
′
) arises for each f ′ ∈ F . Therefore, we propose
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an adjustable robust partition method in the line of Bertsimas et al. (2015), splitting our uncertainty

set F into a finite number L of parts. Notice that, unlike Bertsimas et al. (2015), we partition the

uncertainty set from the start. We denote the index set of the partition by L = {1, . . . , L}. We

hence have F = ∪Ll=0F(l) with ∀l ∈ L, l′ ∈ L \ {l},F(l) ∩ F(l′) = ∅ and consider the piecewise

constant recourse defined by:

δ2(f) = δ2(f ′) ∀f, f ′ ∈ F(l),∀l ∈ L

Thus, we replace δ2σ(f) by δ2σ,l which indicates the recourse decision taken when f ∈ F(l) for each

l ∈ L. Consequently, the robust adjustable counterpart of formulation Mdet,2period can be written

as follows:

min subcost+
∑
s∈S

∑
g∈G

CMg(m
2
s,g −M0

s,g) +
∑
s∈S

CANG(z2s,NG − Z0
s,NG) (61)

s.t. (2)− (4), (31), (34), (49)− (50), (14)− (25)∑
σ1∈K

σ1f1σ1,c1δ
1
σ +

∑
σ2∈K

∑
c2∈C

σ2f2σ2,c2δ
2
σ2,lγ

2
c2(1−

∑
σ1∈K

f1σ1,c1δ
1
σ) ≤ subcost∑

s∈S U
0
s,CG

∀l ∈ L, ∀f1 ∈ F(l), ∀f2 ∈ F , (62)

D2
CGU

0
s,CG

CAPCG

[
1−

(∑
σ1∈K

f1σ1,c1δ
1
σ +

∑
σ2∈K

∑
c2∈C

f2σ2,c2δ
2
σ2,lγ

2
c2(1−

∑
σ1∈K

f1σ1,c1δ
1
σ)

)]
≤ m2

s,CG

∀s ∈ S, ∀l ∈ L, ∀f1 ∈ F(l), ∀f2 ∈ F ,

(63)

D2
NG

CAPNG

[
U0
s,NG + U0

s,CG

(∑
σ1∈K

f1σ1,c1δ
1
σ +

∑
σ2∈K

∑
c2∈C

f2σ2,c2δ
2
σ2,lγ

2
c2(1−

∑
σ1∈K

f1σ1,c1δ
1
σ)

)]
z2s,NG ≤ m2

s,NG

∀s ∈ S, ∀l ∈ L, ∀f1 ∈ F(l), ∀f2 ∈ F ,

(64)∑
s∈S

[
U0
s,NG + U0

s,CG

(∑
σ1∈K

f1σ1,c1δ
1
σ +

∑
σ2∈K

∑
c2∈C

f2σ2,c2δ
2
σ2,lγ

2
c2(1−

∑
σ1∈K

f1σ1,c1δ
1
σ1)

)]
z2s,NG ≥ QoE UTOT,

∀l ∈ L, ∀f1 ∈ F(l), ∀f2 ∈ F , (65)∑
σ∈K

δ1σ = 1, (66)

∑
σ∈K

δ2σ,l = 1 ∀l ∈ L, (67)

δ1σ ∈ {0, 1} ∀σ ∈ K, (68)

δ2σ,l ∈ {0, 1} ∀σ ∈ K, ∀l ∈ L . (69)
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Let us denote this formulation by Madj,L where L is the number of parts. Formulation Madj,L

is obtained by replacing each set of constraints involving the second period in formulation Mstat

(constraints (48),(51)–(53),(13)) with L sets of constraints - one for each part. We observe that in

each part F(l), l ∈ L, constraints (62)–(65) can be reformulated in the same way as for the static

model, with in the first period f and f replaced by f(l) and f(l) defined by f
σ,c

(l) = min
f∈F(l)

fσ,c and

fσ,c(l) = max
f∈F(l)

fσ,c, for each l ∈ L. We notice that formulation Madj,1 is equivalent to formulation

Mstat.

Remark 3.10. As for the deterministic and static models, formulations Madj,L can be linearized

and reinforced by RLT equalities. The only slight difference is that for each linearization or equality

implying variables δ2σ in the deterministic model, we have now L constraints corresponding to each

part.

4. Numerical experiments

In this section, we assess numerically our static and adjustable models. We first describe the

uncertainty set used in the experiments in Section 4.1. The instances used and computational

settings are described in Section 4.2. Then, scalability and economical results are presented in

Section 4.3.

In particular, we will assess the relevance of the adjustable models compared to the deterministic

and static ones. For the adjustable models, we consider three different values for L, {2, 4, 8}, to

assess the scalability and economic relevance of refining the number of parts in the partition. For

each model, we asses both model solution cost and simulated cost of the first-stage. The simulated

cost of the first-stage is obtained by discretizing the uncertainty set in 200 values and solving 200

optimization problem, each of which considers the first-stage decisions fixed, the shifting function

realization of the first period equal to the corresponding value and using the static model for finding

the best second-stage decision.

4.1. Design of the uncertainty set

Let f̃σ,c denote the nominal value of fσ,c. We define an uncertainty set that allows for a controlled

variation around this value. Letting Γ denote the amplitude of the variation, we define

F =
{
f ∈ [0, 1]|C|·|K||(1− Γ)f̃σ,c ≤ fσ,c ≤ (1− Γ)f̃σ,c + Γ, c ∈ C, σ ∈ K

}
.
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An illustration of F for a nominal function corresponding to the reference example from Cambier

et al. (2019) and Γ = 0.25 is providing in Figure 1. We see that the uncertainty set is not symmetric

around the nominal value f̃σ,c as the downward deviation from f̃σ,c can be as large as Γf̃σ,c while the

upward deviation is bounded by Γ(1− f̃σ,c) for σ ∈ K and c ∈ C, with these deviations depending

on the nominal value. This definition of the uncertainty set enables us to control that each possible

reaction belongs to [0, 1].

For the adjustable model, we need to split F into L parts. We choose to define for each l in

{1, · · · , L}

F(l) =

{
f ∈ [0, 1]|C|·|K||(1− Γ)f̃σ,c +

l − 1

L
Γ ≤ fσ,c ≤ (1− Γ)f̃σ,c +

l

L
Γ, c ∈ C, σ ∈ K

}
⊆ F .

An illustration of the partition for L = 3 and the example from Figure 1 is provided in Figure 2.

Offered subsidy (e)
0

100 150 200 250 300 350 400 450 500

% upgrade

20

40

60

80

100

Figure 1: Example of uncertainty set with reference

function from Cambier et al. (2019) and Γ = 0.25

(projected on a given range c = [0.75, 1]).

Offered subsidy (e)
0

100 150 200 250 300 350 400 450 500

% upgrade

20

40

60

80

100

Figure 2: Example of partitioned (L = 3) uncertainty set

with reference function from Cambier et al. (2019) and

Γ = 0.25 (projected on a given range c = [0.75, 1]).

4.2. Instances parameters

We aim to assess the different models presented in Section 2 on a realistic instance for three

different amplitude values Γ. We use the 3G/4G suburban instance of 100 sites from Cambier et al.

(2019), adapted for a two period framework. At the beginning of the time-horizon, 34 sites are

equipped with both 3G and 4G technologies while 66 are 3G-only sites. The network parameter

values are realistic values taken from telecommunication equipment sellers. The strategic guideline

for quality of experience (QoE) is fixed to 0.8. Regarding the subscriber dynamic, values for f̃σ,c

are given in Table 3. We use the uncertainty set for f defined by these nominal values and an

amplitude Γ ∈ {0.25, 0.30, 0.35}.

The computations have been made on a server of 32 processors Intel Xeon of CPU 5110 clocked

at 1.6 GHz each. The code is written in Julia 1.1.0, with the package JuMP developed for discrete
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Coverage level \Subsidies (in e ) 0 100 150 200 250 300 350 400 450 500

low 0 0 0 0 0 0 0 0 0 0

medium low 0.5 5 12 21 30 40 42 43 44 45

medium high 5 10 20 30 40 50 60 62 64 65

high 10 20 33 45 58 70 80 83 87 90

Table 3: Reaction of the subscribers (in %) on reference markets for given subsidies and coverage levels.

optimization (see Dunning et al. (2017) for details) and the solver used is CPLEX 12.8 (default

branch-and-bound algorithm). The time limit for MILP solving is set to 7200 seconds.

4.3. Results

Table 4: Solutions for 0.25, 0.3 and 0.35 deviations

Γ model sol time first-stage (σ1) second-stage (σ2)

deterministic 6999 19 200 250

0.25 static 9691 18 250 350

adj (2 parts) 9643 78 350 300 250

adj(4 parts) 9643 347 350 300 250 250 200

adj(8 parts) 9580 7200 350 300 300 300 250 250 250 200 200

0.30 static 10097 10 300 350

adj (2 parts) 10066 36 350 300 250

adj(4 parts) 10066 274 350 300 300 250 150

adj(8 parts) 9965 3095 350 300 300 300 250 250 250 150 250

0.35 static 10957 8 350 350

adj (2 parts) 10767 28 350 350 250

adj(4 parts) 10671 130 350 350 300 250 200

adj(8 parts) 10671 1105 350 350 350 300 300 300 200 150 100

Results obtained with each formulation are presented in Table 4. The value of the best solution

found and the solving time in seconds are provided respectively in columns “sol” and “time” of

Table 4. Column “first-stage” stands for the value of the subsidy offered in the first period and

multi-column “second-stage” for the value of the subsidy offered in the second period. For the

adjustable models, each line presents second-stage values ordered from lowest to highest reaction

case.
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On a scalability viewpoint, we observe that the convergence of the branch-and-bound procedure

is obtained in less than 2 minutes for the deterministic, static and adjustable (2 parts) models for

each amplitude value. For each model, the larger the amplitude is, the faster the convergence is.

We also observe that whatever the amplitude is, the static model is not harder to solve than the

deterministic model. Refining the number of parts considerably increases the model size (in terms

of constraints and variables). Our results enlighten the lack of scalability of such refinements. For

Γ = 0.25 and 8 parts, the solver does not converge within the two-hours time limit.

Next, we observe that the deterministic decision for the first-level (200 e) is never taken by any

of the robust frameworks. We see that for an amplitude Γ = 0.25, the first-stage decision for the

subsidy proposal is different between the static and adjustable models: static (250 e) and adjustable

(350 e for all values of L). For Γ = 0.30 deviation, the first-stage decisions for the subsidy proposal

are 300 e for the static model and 350 e for all adjustable models. These differences are explained

by an impact on network installations (fewer installations) in the adjustable cases. For Γ = 0.35

deviation, the decision for the static and all adjustable models is the same: 350 e. From our results,

we conclude that using the 2 parts model is sufficient since it converges a lot faster than using 4 or

8 parts and provides the same first-stage solution in each case.

To estimate the costs, we use the first-stage decisions given by the three different models,

deterministic, static, and adjustable (using a 2-partition), and generate 200 scenarios for the cor-

responding uncertainty realization by dividing the uncertainty set into intervals of equal length.

We then solve one optimization problem for each of the 200 scenarios to compute the best second-

period decision. Each of these problems thus amounts to solve a nominal variant of the problem

where the first-stage decisions are fixed to the values provided by the model and f1 depends on the

considered scenario.

The simulations costs (curve formed by all generated scenarios) are plotted for each value of Γ

on Figures 3, 4 and 5. The worst-cases cost are given under column “worst-case cost” in Table 5.

The curves show that these worst-case costs are obtained for the scenarios where the uncertainty

is the lower, as these functions are mostly decreasing. We see that for each amplitude value, in the

worst-case, the first-stage decision of the adjustable model is the best one.

On an economic viewpoint, we first notice from Table 4 that the optimal cost from the deter-

ministic framework (6999 ke) is around 30% lower than the best solution found (obtained with
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the adjustable model) in the worst-case (for Γ = 0.25). This can be explained by computing the

worst-case for the QoE threshold when Γ = 0.25 and the decisions taken by the deterministic

model are imposed. This value is equal to 0.71 while the demanded threshold is 0.8. Deterministic

decisions lead hence to infeasibility in the robust context, which requires higher subsidies for robust

decisions. The impact on the cost in a robust context is three-fold. It increases,

• since the subsidy proposal is higher,

• since these subsidies have a higher nominal effect (more reactions due to decisions),

• if the subscribers react better than expected (more reactions due to uncertainty).

Furthermore, we observe that for Γ = 0.35, the deterministic first-stage decision is infeasible

(see Table 5 and Figure 5) when the uncertainty realization is lower than 20% (first 40 scenarios).

Indeed, the maximal nominal reaction for the second period is 90% which means the worst-case is

58.5%. With an initial 4G subscribers percentage of 40%, this is not enough for reaching 80% of

subscribers being 4G and hence the QoE threshold of 80% of subscribers being 4G served by 4G

is infeasible (even when all sites are equipped).

Table 5: Simulated cost for 0.25, 0.3 and 0.35 deviations

Γ model for first-stage first-stage (σ1) worst-case cost

0.25 deterministic 200 10671

0.25 static 250 9659

0.25 adj 350 9270

0.30 deterministic 200 13074

0.30 static 300 10081

0.30 adj 350 9636

0.35 deterministic 200 infeasible

0.35 static 350 10565

0.35 adj 350 10565
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Figure 3: Simulations with first-stages imposed for Γ = 0.25 deviation
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Figure 4: Simulations with first-stages imposed for Γ = 0.30
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Figure 5: Simulations with first-stages imposed for Γ = 0.35

5. Conclusion

In this paper, we have introduced and strengthened a new formulation for the two periods and

two generations mobile master plan problem using only integer variables. Assuming that the dis-

crete shifting function can take any value in a given polytope, and optimizing against the worst-case

outcome, we have proposed a robust counterpart for the problem. We have handled integer recourse

variables by partitioning the uncertainty set while the non-linear dependencies on the uncertain

parameters have been tackled by a careful analysis of dominating scenarios. Numerical experiments

have been performed for static and adjustable robust frameworks on a 100 sites instance, with an

uncertainty set controlling variation around the nominal value and parametrized by an amplitude

Γ. Our results have illustrated the scalability of the different robust models for 100 sites as well as

the economical relevance of the static and adjustable first-stage decisions over the deterministic one.

These decisions can lead to saving costs as high as 30% of the total costs in the case Γ = 0.3, while

the deterministic solution can become infeasible for Γ = 0.35. Our results have also underlined the

impact of the quality of experience threshold, which is responsible for the higher subsidies decisions

and the higher costs it involves.
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