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Highlights 
• In the context of complex rare disease, both diagnoses and subtyping are challenging 

tasks. 
• Patient similarity with deep phenotyping from various data sources, including EHRs and 

research data, can help precise diagnosis and better subtyping. 
• Combination of multiple modalities of clinical data (narratives and quantitative data) can 

achieve better performance of phenotyping.  

Abstract 
Rare diseases are often hard and long to be diagnosed precisely, and most of them lack 
approved treatment. For some complex rare diseases, precision medicine approach is further 
required to stratify patients into homogeneous subgroups based on the clinical, biological or 
molecular features. In such situation, deep phenotyping of these patients and comparing 
their profiles based on subjacent similarities are thus essential to help fast and precise 
diagnoses and better understanding of pathophysiological processes in order to develop 
therapeutic solutions. In this article, we developed a new pipeline of using deep phenotyping 



to define patient similarity and applied it to ciliopathies, a group of rare and severe diseases 
caused by ciliary dysfunction. As a French national reference center for rare and 
undiagnosed diseases, the Necker-Enfants Malades Hospital (Necker Children's Hospital) 
hosts the Imagine Institute, a research institute focusing on genetic diseases. The clinical 
data warehouse contains on one hand EHR data, and on the other hand, clinical research 
data. The similarity metrics were computed on both data sources, and were evaluated with 
two tasks: diagnoses with EHRs and subtyping with ciliopathy specific research data. We 
obtained a precision of 0.767 in the top 30 most similar patients with diagnosed ciliopathies. 
Subtyping ciliopathy patients with phenotypic similarity showed concordances with expert 
knowledge. Similarity metrics applied to rare disease offer new perspectives in a translational 
context that may help to recruit patients for research, reduce the length of the diagnostic 
journey, and better understand the mechanisms of the disease.  

1.  Introduction 

There are about 7000 types of rare diseases. Although individual rare diseases by definition 
affect few people, e.g. in Europe, a disease is defined as rare when it affects less than 1 in 
2000 citizens, and in the United Stated, it is defined as rare when it affects fewer than 
200,000 American people, cumulatively rare diseases have a major impact on public health 
(Franco, 2013; Dharssi et al., 2017). Meanwhile, the majority of the clinicians lack knowledge 
of these diseases, resulting in delayed diagnosis for many patients (Blöß et al., 2017; Global 
rare disease commission, 2018) (SHIRE, 2016). In such situation, a promising solution 
consists in precise and comprehensive phenotyping for the patient suspected to suffering 
from a rare and undiagnosed disease (Robinson, 2012), and comparing the patient’s profile 
with similar cases recorded in the clinical data warehouses developed in the specialized rare 
disease centers (Garcelon et al., 2018). Patient similarity with deep phenotyping is therefore 
essential to help fast and precise diagnoses of rare diseases.   
  
Patient similarity is also crucial to achieve precision medicine and stratify patients into 
clinically meaningful subgroups (Parimbelli et al., 2018). The similarity can be defined based 
on patients’ molecular (genomics, transcriptomics or metabolomics) or clinical characteristics. 
For some complex rare diseases, precision medicine approach is required as well for 
subtyping objective. Our particular interest lies on such a group of rare and severe diseases, 
called ciliopathies, which are caused by ciliary dysfunction. As cilia are important in guiding 
the process of development, their dysfunction can lead to diseases with a large spectrum of 
clinical features ranging from embryofetal lethality, through “classic” individual organ 
malformation to multisystemic defects (Powles-Glover, 2014). More precisely, ciliopathies 
can affect nearly all organs, mainly kidneys, eyes, brain, bones and liver; and the 
associations of these clinical features define about 30 rare syndromes, including 



nephronophthisis, Joubert syndrome, Bardet-Biedl syndrome etc., affecting in total about one 
per 2000 people. Over 200 ciliopathy-associated genes have been determined as mutated in 
ciliopathy patients. Genetic analyses of ciliopathies revealed a vast clinical variability and a 
broad genetic heterogeneity as: (i) mutations of the same disease-causing gene can result in 
distinct clinical entities and, conversely, (ii) mutations in several independent genes can lead 
to similar clinical features, implying both phenotypic and genetic overlaps (Reiter and Leroux, 
2017). Although various observational studies and case series have been published before, 
most of them focused on the genetic rather than the phenotypic presentation (König et al., 
2017). It is thus indispensable to have subgroups of patients identified by similar phenotypes, 
and combine with genetic subgroups to achieve better stratification.

With the large volume of clinical data being collected, phenotyping from these data, including 
Electronic Health Records (EHRs) and clinical research data, has been recognized as the 
basic staple to enable precise diagnoses, subtyping, and treatment (Weng et al., 2018). 
EHRs are a rich source of phenotype information that can be in various formats, including 
coded data (e.g. ICD codes), numerical measurements (e.g. laboratory test results), images, 
and more importantly, unstructured narrative/textual data (Frey et al., 2014; Sharafoddini et 
al., 2017), which contain less standardized information like early and unexplained signs and 
symptoms, history of the disease, diagnostic hypotheses, and so forth. Although combination 
of multiple modalities of EHRs can achieve better performance (Zeng et al., 2019), EHR data 
are collected during patients’ healthcare for the purpose of delivering medical treatment 
rather than phenotyping. Consequently, they do not have the same consistency and 
precision of data collected for experiments (Frey et al., 2014). Another main source of 
phenotyping is clinical and scientific research data, which are collected toward specific goals. 
Research data thus provide standardized and in-depth information of targeted cohort of 
patients for deep phenotyping, especially in the situation of rare disease, where the 
knowledge about the disease is limited and keeps evolving.  

In this article, we describe the approaches that we have developed for (1) deep phenotyping 
from different modalities of EHR data (narratives and quantitative data) and also from 
research data, (2) defining patient phenotypic similarity from clinical data warehouse with the 
objective of helping fast and precise diagnosis and subtyping in the context of complex rare 
disease. The methods were applied to overcome the medical challenge of identifying patients 
with ciliopathies, and stratifying them into subgroups with respect to their phenotypic 
characteristics. This study was conducted as part of the C’IL-LICO program, which aims at 
developing transformative diagnostic, prognostic, and therapeutic approaches for patients 
suffering from ciliopathies. 

2.  Materials and methods 



  
2.1. Material  

As a French national reference center for rare and undiagnosed diseases, the Necker-
Enfants Malades Hospital (Necker Children's Hospital) hosts the Imagine Institute, a 
research institute focusing on genetic diseases. The clinical data warehouse (Dr. 
Warehouse®) contains on one hand clinical and scientific research data, and on the other 
hand, EHR data, which makes a total of 696 401 patients and 5 832 165 documents 
(Supplementary Appendix 1). Such data warehouse is to our knowledge the biggest data 
repository of rare disease France. The high throughput phenotyping within the Dr. 
Warehouse® system is based on the extraction of Unified Medical Language System 
(UMLS) concepts (Supplementary Appendix 1). 

The data repository of Necker/Imagine contains more than 1300 patients with known 
classified diseases or syndrome associated with ciliopathy. Among them, the 
nephronophthisis (NPH) cohort is one of the major ciliopathy cohorts (Supplementary 
Appendix 2). The objectives of the C’IL-LICO project include (i) detection of undiagnosed 
cases of ciliopathy that would benefit from genetic testing (Figure 1A), and (ii) stratification of 
diagnosed ciliopathy patients (Figure 1B). More details about the two tasks and the 
evaluation schema will be presented later in section 2.4. Our approach is based on firstly, 
deep phenotyping of ciliopathies and, secondly, computing subjacent similarities between 
patients followed up at Necker/ Imagine.  

2.2. Deep phenotyping of ciliopathies 

2.2.1. Phenotyping from research data (NPH dataset) 

As a reference center in France, patients diagnosed or suspected to suffering from a NPH-
related ciliopathy are referred to Necker/Imagine for research and follow up. A 
comprehensive questionnaire is completed for all index patients and their family members. 
This questionnaire has been designed by experts to reflect all the current knowledge on 
ciliopathy and support precise and standardized phenotyping. We will refer the questionnaire 
data of NPH-related ciliopathies as NPH dataset in the rest of this article. The data were 
processed as following: 

• Each term in the questionnaire was mapped to the UMLS.  
• The free-text comments in the questionnaire were processed as for the EHR, using 

the method developed in Dr. Warehouse®, i.e. all the phenotype concepts are 
extracted from text as UMLS concepts.  



2.2.2. Phenotyping from EHRs with disambiguation  
  
For those patients followed up at Necker Children’s Hospital, their EHRs are available in Dr. 
Warehouse®. As described in (Garcelon et al., 2018), the concept extraction module in Dr. 
Warehouse® extracts all phenotype information from the EHR and distinguishes between (i) 
the phenotypes of the index patient and their family history, (ii) the different modalities of a 
term, like negation. In this study, we considered only patient’s own “positive” concepts to 
build the data matrix for computing the similarity.  

Besides negation and family history, we identified two additional sources of false positives 
that required developing disambiguation algorithms. The first category occurs when the 
terms used for a laboratory test and its results may be identical, for example, “proteinuria” as 
lab test and “proteinuria” as phenotype. To address this issue, we used the corresponding 
quantitative laboratory test results to distinguish between the annotation by one semantic 
type or the other. The normal threshold of related lab tests with all possible measurements 
and units have been defined. As for proteinuria, possible measurements include: proteins in 
urine (g/l), proteins in 24-hour urine collection (g/24H), and protein-creatinine ratio on spot 
urine sample (mg/mmol). Patient’s phenotype is defined as presence of sign (e.g., 
proteinuria), if at least one lab test result is abnormal. Based on this method, all false positive 
extractions were removed from the database.  

Another source of false positives was the list of short terms for vaccines, e.g., hepatitis B, 
measles. This was addressed by defining a pattern of vaccination as the presence of at least 
two concepts together of such list of diseases, like {measles, rubella, mumps}. All related 
extractions were excluded from the patient’s phenotypes. 
  
The result of the whole phenotyping step is a set of UMLS concepts and their provenance 
metadata: (1) ciliopathy questionnaire or (2) regular EHR.  

2.3. Methods of similarity  

In order to compute the similarity metrics, we considered patient representation as the set of 
all his/her phenotype UMLS concepts, thus extractions from family history and negative 

extractions were excluded. For patient , we considered two formats of representation, (i) 

binary data,  if patient  has phenotype , and  if patient  doesn’t have 

phenotype ; (ii) frequence data,  is the number of occurrences of phenotype  in all 

documents of patient . For each format, three normalizations were computed: by column 

(distribution of phenotypes over patients), by row (distribution of patients over phenotypes), 

i
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and by term frequency–inverse document frequency (tf-idf). The normalization by column will 
penalize the presence of a common phenotype in the similarity measure. For example, 
concepts like “fever”, “pain” and “asthenia” can be very frequent in EHR, but providing less 
interesting information. By dividing the column sum (the number of patients with the 
phenotype), the contribution of such common concept in the similarity measure is reduced. 
The normalization by row will adjust the imbalance of number of phenotypes between 
different patients. Actually, some patients in our database have a long-term follow-up (max 
28.6 years); moreover if the diseases are complicated affecting multiple organs, one patient 
may have more than 500 distinct concepts in EHR. With a dot product similarity metric, these 
patients have more chance to be similar with everyone else. By dividing the row sum (the 
number of phenotypes that a patient has), such issue can be addressed. The tf-idf is largely 
used in information retrieval to reflect how important a word is to a document in a collection 

or corpus. In our case, the tf-idf of patient  for phenotype , reflecting how important 

phenotype  is to patient  in the cohort, was obtained with the formula 

, where  is the total number of patients, and the sum in the 

log is the number of patients with the concept . It takes into account both aspects discussed 

above.  

Cosine similarity, which is defined as for two vector  and 

, is largely used in the context of text/document. In our case, the number of phenotypes 

per patient can vary greatly, depending on many factors, including large spectrum of clinical 
features from one affected organ to multisystemic defects, as well as the time of follow-up, 
the doctors’ habit, etc. Two patients with very different number of phenotypes can be still 
considered as similar if they share very few but characteristic phenotypes. Therefore, here 

we consider the dot product similarity between patient  and patient , , which is 

based only on the phenotypes in common.  

2.4. Evaluation and application 

In order to evaluate the computed similarity metrics, we removed from the set of each 
patient’s UMLS concepts: 

• all the concepts also belonging to the UMLS semantic type ‘Gene or Genome’  
• the concepts corresponding to the diagnosis of the patient, e.g., nephronophthisis. 
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We considered two tasks: (1) identifying NPH-related ciliopathies from other nephropathies, 
(2) subtyping diagnosed NPH-related ciliopathies. The evaluation schema is shown in Figure 
1. For the first task, we considered on one hand the EHRs of the NPH patients, and, on the 
other hand the EHRs of the patients with ‘other nephropathy’, i.e. any kidney disease (CUI 
C0022658 and all its descendants) excluding ciliopathy. As renal involvement is one of the 
most frequent manifestations in ciliopathies, the hypothesis is that the cohort of patients with 
any symptom related with kidney disease may contain new patients suspected to suffer from 
a ciliopathy. The EHR datasets were pooled to compute similarities. The ranking list of 
patients will be provided with the average similarity with diagnosed ciliopathy patients, where 
the top ranking patients are those most similar with ciliopathies. By moving downward the 
similarity threshold, the precision (percentage of relevant patients out of all predicted 
p a t i e n t s ) , d e f i n e d a s 

 decreases, 

while the recall (percentage of predicted relevant patients of all relevant patients), defined as 

 increases. 

When making a predictive decision with a fixed threshold , i.e. predicting the top  patients 

in the ranking list (most similar with ciliopathies) as patients suspected to suffer from a 

ciliopathy, the precision@k, defined as  can be 

considered for the performance of this predictive decision. The area under the precision-
recall curve (AUPR) will be also considered, as it summarizes the trade-off between true 
positive rate and the positive predictive value for our model with different thresholds.  

For the second task (subtyping), as more published studies focused on the genetic rather 
then phenotypic presentation, we aim at stratifying patients into subgroups with respect to 
their phenotypic characteristics extracted from the NPH dataset. As presented above in the 
introduction, ciliopathies are pleiotropic, i.e. mutations of the same disease-causing gene can 
result in distinct clinical entities, and, conversely, mutations in several independent genes 
can lead to similar clinical features, we considered a comparison between phenotypic and 
genotypic information. We thus evaluate the internal and external phenotypic similarities of 
each mutated gene group. A spectral clustering of patients with similarity matrix will be 
performed and compared to the gene labels.  

|{diagnosed patients} ∩ {predicted patients} | / |{predicted patients} | ,

|{diagnosed patients} ∩ {predicted patients} | / |{diagnosed patients} | ,

k k

{diagnosed patients in the top k}/k ,  



 

Figure 1 Schema of evaluation 

3. Results 
  
3.1. Dataset 
  

We obtained 1,031 diagnosed patients in the NPH dataset，all with questionnaire phenotypic 

data. Among them, 633 patients were found with at least one mutation homozygous of 
screened ciliopathy related genes. These diagnosed patients have in average 5.9 
phenotypes (sd=3.8) described in the questionnaire. The most frequent semantic type is 
‘Disease or Syndrome’, followed by ‘Finding’, ‘Congenital Abnormality’ and ‘Sign or Symptom’ 
(Table 1). The most frequent concepts include Nephropathy, Renal insufficiency, End-stage 



renal disease, Polyuria-Polydipsia, Congenital anomaly of eye, Morphological abnormality of 
the central nervous system, Abnormality of the liver, Reduced visual acuity, Hypertension, 
Intellectual disability (Figure 2). 
  
Based on Dr. Warehouse®, 77 of the diagnosed patients in NPH database were followed up 
at Necker Children’s Hospital with their EHR data available, which contained in average 47.7 
phenotypes (sd=46.3) per patient. The most present semantic type is ‘Disease or Syndrome’, 
followed by ‘Finding’, ‘Pathologic Function’ and ‘Sign or Symptom’ (Table 1). The ten most 
frequent concepts are: Nephropathy, End-stage renal disease, Renal insufficiency, Systemic 
blood pressure, Proteinuria, Cyst, Hypertension, Anastomosis, Pulse, Fever and Anemia. 
These patients have an average follow-up of 6.5 years (range [0.7, 28.6]).  

Noticeably, the granularity and the coverage of the data vary from one data source to the 
other (Table 1 and Figure 2). There are more concepts in EHRs than in questionnaire for all 
semantic categories, but the distribution is slightly different, i.e. congenital abnormalities are 
more addressed in questionnaire. The information is more concise, refined and targeted to 
ciliopathy in NPH dataset, while EHRs contain more general symptoms like Fever, Anemia 
and Fatigue, which may be the symptoms that motivated the consultation or appeared during 
follow-up. The concepts corresponding to Anastomosis and Pulse are present in the EHR 
when patients are treated by dialysis, which are related to renal insufficiency.  

 
Table 1 Category of UMLS concepts extracted from questionnaire of NPH dataset and EHRs 
(EHRs of patients with diagnosed ciliopathies and EHRs of patients with other nephropathies 
are shown separately). The number and percentage of concepts in each of ten semantic 
categories are shown for three data sources, as well as the number of concepts per patient 
in each semantic category.  



 
Figure 2 Frequent concepts distributions of NPH dataset, EHR of ciliopathies and EHR of 
other nephropathies.  

Regarding the first task (identification), we extracted 10,539 patients from Dr. Warehouse® 
with any symptom related to kidney diseases, including the 77 diagnosed ciliopathies 
patients, and 10,462 patients with ‘other nephropathy’.  EHRs of ‘other nephropathy’ patients 
exhibited no significant difference with the EHRs of the 77 NPH patients in terms of average 
number of concepts per patient, semantic types of the concepts and the distribution of the 
most common concepts (Table 1 and Figure 2). We refer this dataset as Evaluation Set 1. 
The diagnostic terms corresponding to Ciliopathies (C4277690), Nephronophthisis 
(C0687120), Jeune thoracic dystrophy (C0265275), Alstrom syndrome (C0268425), Joubert 
syndrome (C0431399) and Bardet-Biedl syndrome (C0752166) were removed for the 77 
NPH patients. The terms belonging to the UMLS semantic type ‘Gene or Genome’ were 
removed as well. The resulting Evaluation Set 1 consists thus 10,539 patients, presenting 
8,738 phenotypes with distinct UMLS code.  
  
For the second task (subtyping), we considered the 1,031 patients in NPH dataset, 
presenting 333 phenotypes with distinct UMLS code. We integrated genetic data with 
phenotypic data for all 1,031 patients, and refer this dataset as Evaluation Set 2. Predictive 
damaging variants were found in 62 different genes. NPHP1 homozygous deletion was the 
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most represented group, with 313 patients, followed by NPHP12/TTC21B, NPHP4, NPHP3, 
NPHP5/IQCB1, NPHP6/CEP290, NPHP2/INVS, NPHP13/WDR19-IFT144, NPHP8/MKS3/
RPGRIP1L, IFT140 and NPHP11/MKS3/TMEM67, with 10 to 35 patients (Figure 1B). For the 
remaining groups, most of them contain less than two patients. We thus focus on these 11 
gene groups with more than 10 patients mutated.   

3.2. Results for task 1: identifying ciliopathies from other nephropathies 

Both binary data and frequency data were tested with three normalizations: by column 
(distribution of phenotypes over patients), by row (distribution of patients over phenotypes), 
and by tf-idf. Table 1 and Figure 3A summarized the results of task 1. In general, the 
frequency data outperformed binary data in terms of precision@k and AUPR. The 
normalization by column returned the best precision@k for k=30, k=50 and k=100. For k=30, 
we obtained a precision of 0.767, which means that in the top 30 ranking patients, 23 of them 
are diagnosed patients. When increasing k to 50, the best result returned 0.56 of precision, 
corresponding to 28 diagnosed ciliopathies; while in the top 100 ranking patients, 35 of them 
are diagnosed patients, corresponding to nearly half of all ciliopathy patients in Evaluation 
Set 1.  

Table 2 Performance of task 1 (identification). Similarities are computed for both binary and 
frequency data with three normalizations. bi_norm1: binary data normalized by column; 
bi_norm2 : binary data normalized by row; bi_tfidf : binary data normalized by tf-idf; 
freq_norm1 : frequency data normalized by column; freq_norm2: frequency data normalized 
by row; freq_tfidf: frequency data normalized by tf-idf.  

In order to better understand the EHR data, we investigated whether the results can be 
improved by using only characteristic phenotypes and ignoring noisy phenotypes for 
similarity. We further applied three variable selection algorithms (linear support vector 

selection with  penalty, tree-based selection and random forest selection), and took only 

the selected relevant variables (phenotypes) to compute similarity. The three selection 

l2



models returned respectively 1201, 704 and 601 relevant variables out of 8738 phenotypes 
with default settings. However, the improvement was not significant (Figure 3B).  

Our result showed that the ranking list of similarity could provide reliable diagnosis when we 
restrict to the very top. This can be partially explained by the phenotypic variability of the 
ciliopathies, i.e. patients presenting with multisystemic symptoms are easier to identify from 
other nephropathies than patients presenting with isolated renal symptoms.   

 



Figure 3 Precision-Recall curves for identification of NPH patients. A: Binary data and 
frequency data with three normalizations: by column, by row and by tfidf. B: Three variable 
selection models. bi_norm1: binary data normalized by column; bi_norm2 : binary data 
normalized by row; bi_tfidf : binary data normalized by tf-idf; freq_norm1 : frequency data 
normalized by column; freq_norm2: frequency data normalized by row; freq_tfidf: frequency 
data normalized by tf-idf; linearSV: linear support vector.  

3.3. Results for task 2: subtyping diagnosed ciliopathies 

Although EHR data may contain early signs helpful for diagnosis, once the patient is 
diagnosed, the specific questionnaire data suits better for the subtyping task. Therefore, we 
focused on questionnaire data for this task. Similarities based on binary data were used for 
spectral clustering, where the number of clusters was fixed to 11, which equals to the number 
of genes mutated in more than 10 patients in our NPH dataset. Meanwhile it is also a 
reasonable number for qualitative comparison between clinical clusters and mutated gene 
groups. Various evaluation metrics, including silhouette score, homogeneity, completeness 
and V-measure are considered for the comparison. The binary data normalized by tf-idf (with 

all non-zero ) provided the best result (Table 2).  

We further computed the internal-external similarities for the most common mutated gene 
groups. Figure 4A showed the results with a heatmap, where the red color presented higher 
similarity while the yellow color presented lower similarity. We observed on the diagonal 
internal similarities: most of the mutated gene groups showed a high internal similarity except 
NPHP1 and NPHP4, the latter could be explained by the large phenotypic variability in these 
groups of patients. In these two cases, the majority of the patients presented with isolated 
renal symptoms (with less number of phenotypes), whereas the other patients presented 
additionally retinal degeneration or neurologic defects (Senior-Løken syndrome, Cogan 
syndrome, Joubert syndrome). On the off diagonal, we observed external similarities: several 
regions of strong associations were marked, which were consistent with expert knowledge 
(Figure 4B). We provided here short explanations for each discussion point marked on the 
heatmap. (1) High similarity was observed between NPHP5 and NPHP6 groups. The protein 
products of these two genes are known to form a specific functional complex at the 
connecting cilium of photoreceptors (Sang et al., 2011). All patients with either NPHP5 or 
NPHP6 mutations present with eye abnormalities, always associated with progressive 
blindness (Senior-Loken syndrome, SLS) (Mitchison and Valente, 2017), explaining the high 
similarity. (2) NPHP6 patient group was also similar to NPHP8 patient group, as mutations in 
these two genes, encoding both transition zone proteins, can be associated with a 
multisystemic disease with brain stem malformation  (Joubert syndrome, JBTS) and 
extensive embryonal defects (Meckel-Guber syndrome, MKS) (Wolf et al., 2007). (3) Strong 

xij = 1



external similarities were also observed between NPHP12, NPHP13 and IFT140 groups, 
which are in fact components of the intraflagellar transport complex A (IFT-A) that drives 
retrograde ciliary transport required for ciliary signaling and maintenance. Mutations of IFT-A 
genes generally cause cilia-related bone phenotypes (Jeune (JATD), Sensenbrenner (CED), 
Saldino-Mainzer (SDMZ) syndromes), renal defects (nephronopthisis type), as well as liver 
and retinal anomalies. (4) The NPHP3 and NPHP11 patient groups presented high intrinsic 
similarities, and also showed high external similarities with the IFT-A groups, which can be 
partly explained by the strong associated phenotypes: liver, kidney and retinal affections. 
Accordingly, functional interaction has been reported between IFT-A and transition zone 
proteins.  

Table 3 Performance of task 2 (subtyping). Similarities are computed for binary data with 
three normalizations. bi: binary data without normalization; bi_norm1: binary data normalized 
by column; bi_norm2 : binary data normalized by row; bi_tfidf : binary data normalized by tf-
idf. 

 
Figure 4 Association of main mutated genes. A: Internal-external similarities of main patient 
groups. In the heatmap, the red color presents higher similarity while the yellow color 
presents lower similarity. Four regions of strong associations are marked. B: Ciliary signaling 
mechanism. NPH-related genes encode proteins present at the primary cilium and forming 



functional networks. The transition zone, inversin compartment and IFT proteins are involved 
in intra-flagellar transport. The corresponding genes are marked in the left panel A with the 
same colors. 

4. Discussion 

We introduced in this paper a new pipeline of using deep phenotyping for defining patient 
similarity in order to help fast and precise diagnoses and subtyping. Our study pursues the 
previously published method for identifying rare disease patients with EHR data, which was 
developed in Necker Children’s Hospital (Garcelon et al., 2017). This method used for deep 
phenotyping consists in extracting comprehensive and fine-grained descriptions of patients’ 
clinical phenotypes, and mapping them to UMLS. It was evaluated for simple rare diseases. 
Here we improved the phenotyping with disambiguation by combining multiple modalities of 
clinical data (narratives and quantitative data) for complex pleiotropic rare diseases. This 
type of complex rare disease requires as well precision medicine approach to identify clinical 
meaningful subtypes. We therefore extended the method of similarity for subtyping purpose 
by using multiple data sources (clinical research data and EHRs). Our preliminary results in 
ciliopathies can be summarized as (1) the ranking list of patients similar with ciliopathies 
could provide reliable diagnosis predictions; (2) the phenotypic similarity among ciliopathy 
patients showed strong concordance with expert knowledge, thus, together with in-depth 
genomic similarity, it is promising to define better subtyping of ciliopathy.  

4.1. Comparison to other work 

According to a recent systematic review of 279 articles published between 2012 and 2017 
(Parimbelli et al., 2018), the most represented category of data type used for patient 
similarity is molecular data, followed by clinical data and imaging/biosignals data, and the 
most frequently considered clinical domain is cancer, followed by nervous system, 
integumentary system,  respiratory system and digestive system. Ow et al. used Euclidean 
distance and Kendall’s Tau rank correlation on expression data of predefined mRNA 
predictors to stratify patients of high-grade serous ovarian cancer into prognostic subgroups 
(Ow et al., 2016). Wang et al. proposed a semi-supervised recursive tree partitioning 
approach by using radial basis function (RBF) kernel as similarity metric, which is 
exponential of negative squared Euclidean distances, and evaluated on breast cancer 
datasets, where each patient is represented by 30 features of breast mass image (Wang, 
2015). Regarding patients’ phenotype, secondary use of EHR data has been considered a 
key solution for phenotyping. However, in clinical settings, EHR data are collected for the 
purpose of delivering medical treatment at the point of care rather than phenotyping, they do 
not have the same consistency and precision of data collected for experiments (Frey et al., 



2014). The challenges such as incompleteness, inaccuracy and complexity have been much 
discussed (Hripcsak and Albers, 2013). Many studies of deep phenotyping focused on a set 
of phenotypic features defined based on expert knowledge of specific diseases or medical 
issues (Kopf et al., 2018; Peron et al., 2018; Radley et al., 2019), therefore, data were 
collected for a specific scientific and clinical research purpose to ensure the precision and 
comprehensiveness of phenotyping.  Recently, Zhang et al. presented their method for 
mapping LOINC-encoded laboratory test results transmitted in Fast Healthcare 
Interoperability Resource (FHIR) standards to Human Phenotype Ontology (HPO) terms 
(Zhang et al., 2019), which shared the same idea as we have for ciliopathy, i.e. using 
thresholds on quantitative lab test to transform them into phenotypes. The advantage of our 
method is that we have gathered all phenotypes from all data sources of all patients, and we 
have defined more appropriate categories instead of using standard thresholds to confirm or 
reject related phenotype extraction. For example, as low level of proteinuria is observed in 
patients with mutations in NPH genes, we defined with nephrologists more adapted 
categories to distinguish nephrotic syndromes and "mild proteinuria" in order to achieve 
precise phenotyping. With phenotype data, Zhang et al. used Jaccard index to compute 
similarities between patient vectors, where each patient is a binary vector of ICD9 diagnosis 
categories, and the Jaccard index is in fact the number of ICD9 codes in intersection divided 
by the number of ICD9 codes in union of two patients (Zhang et al., 2014). There are few 
works in the context of rare disease, Greene et al. used semantic similarity (Lin’s similarity 
function) to compare two different HPO terms, then aggregated for a set of HPO terms 
(representation of a patient) by averaging Lin’s similarities with best match term (Greene et 
al., 2016). In our study, the EHRs are in French language, thus the annotation is achieved 
with UMLS French (SAP=FRE) in our data warehouse. We did not use HPO because it does 
not exist yet a reliable French version. We considered only patient’s own “positive” concepts 
to define similarity; therefore, “negative” concepts (like “patient doesn’t have fever”) and 
concepts extracted from family history were excluded. As similarity is defined on the 
presence of clinical phenotype feature, Euclidean based metrics is less suitable than vector 
space model, and our experiences have also confirmed this statement. As mentioned 
previously, the number of phenotypes per patient can vary greatly, depending on many 
factors, including large spectrum of clinical features from one affected organ to multisystemic 
defects, as well as the time of follow-up, the doctors’ habit, etc., thus two patients with very 
different number of phenotypes can be still considered as similar if they share very few but 
characteristic phenotypes. Therefore, here we focused on the phenotypes in common, and 
didn’t use any denominator as for Jaccard index or cosine similarity. In this work, we didn’t 
use a semantic similarity, because UMLS network is less formally structured than HPO 
network, thus the semantic similarity between two concepts based on the number of 
descendant of the lowest common ancestor gave less reliable results.  



4.2. Strengths and limitations 

We integrated both dedicated questionnaire data and EHR using the UMLS as a core 
thesaurus for phenotyping. The UMLS provides a set of terms, concepts, and semantic types 
that was used for information extraction, semantic integration, and categorization. Moreover, 
we integrated several data types, including phenotypes extracted from narrative reports and 
structured data like lab test results. We showed that multi-source phenotyping could be used 
in disambiguation tasks to reduce false positives and improve precision. More precisely, 
integration of quantitative lab test results enabled identification of several false positives 
(e.g., proteinuria) generated by the NLP module. In fact phenotyping was performed in two 
steps: first, all the phenotypes were extracted without removing such false positives, then the 
false positives were removed by comparing with the quantitative lab test results. We tested 
the similarity metrics before and after removing such false positives, and demonstrated that 
in task 1 (identification), the precision@30 improved from 0.73 to 0.77. Our conclusion is that 
data preprocessing, cleaning, and phenotyping approaches are crucial steps in any study re-
using EHR data, and that all phenotyping steps must be validated to guarantee that the 
models learned from the data are unbiased. This conclusion is shared by other authors 
(Denaxas et al., 2017) (Williams et al., 2017) (Yu et al., 2015).  

The extraction module of Dr. Warehouse® may produce false negatives because of its exact 
match strategy. However we did not perform an extensive review of the data to estimate the 
recall performance (absence of false negatives) of the phenotype extraction step in 
ciliopathies. Moreover, phenotype concepts have many features (e.g., the anatomical site) 
that can be modeled in formal ontologies and used to establish their dependencies with other 
concepts. For example, an extraction of ‘cyst’ can be related more accurately to ‘renal cyst’ 
or ‘hepatic cyst’. However in this work we did not explore further this issue.  

The longitudinality of phenotype has not been taken into account for computing similarity in 
this work, which raises an important issue for ciliopathy, i.e. a patient presenting with eye 
abnormalities in infancy then renal affection can be very different with a patient showing renal 

disorders first and progressive eye abnormality in adulthood.  

4.3. Conclusion 

Most research on similarity in the medical domain aim at clustering patients in more 
homogeneous subgroups that could explain different outcomes for what was considered 
before the “same” disease, for example in oncology. Interestingly, in 2011, Frankovich et al. 
reported on the use of their clinical data warehouse to make therapeutic decision about a 
young patient with systemic lupus erythematosus (Frankovich et al., 2011). More precisely, 



since there were neither guidelines nor consensus on the decision, they decided to query 
their clinical data warehouse to review similar cases and made decision on the basis of the 
results. This example illustrates new scenarios based on searching for similar patients in a 
data warehouse that may be of great help in the domain of rare diseases. The objective of 
C’IL-LICO includes both a better classification of ciliary dysfunction and providing a similarity-
based mechanism to detect patients that “look similar to” ciliopathy patients. Similarity 
metrics applied to rare disease offer new perspectives in a translational context that may 
help to recruit patients for research and reduce the length of the diagnostic journey. In our 
case of rare complex disease - ciliopathy, similarity metrics based on deep phenotyping 
enable better subtyping from both clinical and genetic characteristics to achieve precision 
medicine.   
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