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Significant land greening in the northern-extratropical latitudes (NEL) has been 48	
  
documented through satellite observations during the past three decades1-5. This enhanced 49	
  
vegetation growth has broad implications for surface energy, water and carbon budgets, 50	
  
and ecosystem services across multiple scales6-8. Discernable human impacts on the Earth’s 51	
  
climate system have been revealed by using statistical frameworks of detection-attribution9-52	
  
11. These impacts, however, were not previously identified on the NEL greening signal, due 53	
  
to the lack of long-term observational records, possible bias of satellite data, different 54	
  
algorithms used to calculate vegetation greenness, and the lack of suitable simulations from 55	
  
coupled earth system models (ESMs). Here we have overcome these challenges in order to 56	
  
attribute recent changes in NEL vegetation activity. We used two 30-year-long remote-57	
  
sensing-based Leaf Area Index (LAI) datasets12, 13, simulations from 19 coupled ESMs with 58	
  
interactive vegetation, and a formal detection and attribution algorithm14, 15. Our findings 59	
  
reveal that the observed greening record is consistent with an assumption of anthropogenic 60	
  
forcings, where greenhouse gases play a dominant role, but is not consistent with 61	
  
simulations that include only natural forcings and internal climate variability. These results 62	
  
provide the first clear evidence of a discernible human fingerprint on physiological 63	
  
vegetation changes other than phenology and range shifts11. 64	
  
 65	
  
This study examines the growing season (GS) LAI over NEL (30°–75°N). The LAI is a 66	
  
measurable biophysical parameter using satellite observation, an archived prognostic variable of 67	
  
the Coupled Model Intercomparison Project Phase 5 (CMIP5) ESMs, and a direct indicator of the 68	
  
leaf surface per unit ground area that exchanges energy, water, carbon dioxide and momentum 69	
  
with the planetary boundary layer. We employed the recently published LAI3g dataset12 and the 70	
  
GEOLAND2 LAI data13, both of which were quality-controlled over the NEL region for the 71	
  
1982–2011 period (Supplementary Information [SI] 1). We compared the observed changes of 72	
  
LAI to simulated variations from multi-model results obtained from the CMIP5 archive (SI2 and 73	
  
Table S1). These ensemble simulations comprise ALL, with historical anthropogenic and natural 74	
  
forcings, GHG, with greenhouse gases forcing only, NAT, with natural forcing only, CTL, with 75	
  
internal variability (IV) only, esmFixClim2, with CO2 physiological effects, and esmFdbk2, with 76	
  
greenhouse gases radiative effects. Beyond the standard comparison of time series and patterns of 77	
  
trends, two methods were applied to detect and attribute changes in observed LAI, including a 78	
  
formal “optimal fingerprint” analysis (Methods). 79	
  
 80	
  
From 1982 to 2011, LAI3g, GEOLAND2 and their mean exhibited greening trends over NEL 81	
  
vegetated area (85.3%, 69.5% and 80.6%, respectively), except across a narrow latitudinal band 82	
  
over Canada and Alaska, and in a few spots over Eurasia (Figs. 1a–c). The largest positive 83	
  
increase is observed in western Europe and eastern North America (NA) for both LAI products, 84	
  
consistent with previous results1-5. The multi-model ensemble-mean LAI changes under NAT 85	
  
forcing had negative trends (browning) across vast areas of NA (51.9% of NA vegetated area) 86	
  
and smaller positive trends over Eurasia (80.8% of Eurasia vegetated area) than in the averaged 87	
  
satellite observations (86.8% of Eurasia vegetated area) (Fig. 1d). By contrast, the trend from the 88	
  
ALL ensemble mean is closer to observations (Fig. 1e). The spatial distribution of observed LAI 89	
  
trends was also well captured by the ensemble-mean GHG-only simulations (Fig. 1f). This 90	
  
indicates that the combined anthropogenic effects, particularly the well-mixed greenhouse gases, 91	
  
have contributed largely to widespread greening trends of NEL for the past three decades. Similar 92	
  
results are obtained for the 1982–2011 period when different definitions of GS are chosen (Fig. 93	
  
S1). 94	
  

 95	
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In NEL, the two remotely sensed LAI anomalies showed a large interannual variability 96	
  
superimposed on an overall increasing trend (Fig. 2). These observed trends agree with those 97	
  
found in the ALL and GHG ensembles, but were much larger than those simulated in the NAT 98	
  
ensemble (Figs. 2, S2, and S3). Many observed values fall well outside the simulated 5th–95th 99	
  
percentiles associated with individual NAT realizations, suggesting a clear inconsistency between 100	
  
observations and this ensemble. The observations, however, are much more consistent with the 101	
  
multi-model ensembles that are forced by the human-caused increases of greenhouse gases. The 102	
  
comparison of the 1982–2011 observed trends (+0.143, +0.163 and +0.153 m²/m²/30yr for 103	
  
LAI3g, GEOLAND2, and their average) with a set of 30-year segments from preindustrial control 104	
  
simulations (Fig. 3a) confirms that the observed trends significantly exceed the range of values 105	
  
expected from IV only under a stationary climate (±0.066 m²/m²/30yr, p-value < 10-4) (SI3). 106	
  
These observed trends also do not agree with trends in the NAT ensemble (Fig. 3b, p-value < 10-107	
  
4), which, on average, is positive but much smaller (+0.017±0.054 m²/m²/30yr, or +0.017±0.066 108	
  
m²/m²/30yr if the broadest IV estimate is used). In contrast, the observed trends are consistent 109	
  
with those in the ALL ensemble (Fig. 3a, +0.133±0.089 m²/m²/30yr, p-value=0.64) as well as 110	
  
GHG ensemble (Fig. 3b, +0.129±0.120 m²/m²/30yr, p-value=0.67). Similar results can be found 111	
  
with different definitions of the GS (Fig. S4). According to the definitions used in IPCC AR49, 112	
  
this analysis allows us to attribute at least part of the observed LAI changes to human influence 113	
  
because the trends are detectable, consistent with the expected response to all forcings, and 114	
  
inconsistent with the expected response to natural forcings only (i.e., alternative, physically 115	
  
plausible causes). 116	
  

 117	
  
A more comprehensive and formal method used in IPCC AR510 for attributing observed changes 118	
  
involves an optimized regression of observations onto the expected response from models to one 119	
  
or several external forcings (Methods). The main output from this type of analysis is the scaling 120	
  
factor β, which scales the model’s responses to best fit the observations. Assessing whether the 121	
  
unexplained signal (i.e., the residuals of the regression) is consistent with IV is also a key 122	
  
diagnosis in this method. This diagnosis is usually achieved using a residual consistency test 123	
  
(RCT). We applied the detection and attribution (D&A) algorithm of refs. 14 and 15, 124	
  
respectively, to the ALL and GHG-only temporal response patterns of 3-year mean LAI (as in 125	
  
Fig. 2). We considered the average of all CMIP5 models in Multi1 (only one simulation from 126	
  
each model) and the average of the models with larger ensembles in Multi3 (i.e., models with at 127	
  
least three members) (Table S1). The observed LAI change over 1982–2011 is found to be 128	
  
significant, as β scaling factors are significantly larger than 0 (Fig. 4). The 90% confidence 129	
  
intervals of β include 1, which means that the observations are consistent with models, in terms of 130	
  
the magnitude of the forced ALL and GHG-only responses. These two results are quite robust if 131	
  
response patterns from individual models or individual observed datasets are considered. 132	
  
However, the RCT is strongly rejected in most cases, even if all forcings are included, indicating 133	
  
that the residuals of the fit are much larger than those expected from the simulated IV. In order to 134	
  
deal with a possible underestimation of IV by ESMs, we tested the robustness of those key results 135	
  
to several inflated IV assumptions (SI4). Detection was found to occur with all values of IV 136	
  
variance that are consistent with observations, and even IV multiplied by a factor as large as 8, 137	
  
which strongly reinforces confidence in our results. 138	
  
 139	
  
With the human influence on recent evolution of NEL vegetation activity established, we are now 140	
  
in a position to discuss the possible mechanisms behind those human influences (e.g., the impacts 141	
  
of nitrogen deposition, land use/land cover change (LULCC), and the CO2-induced physiological 142	
  
vs. the GHG-induced climate effects) on LAI changes. We analyzed a smaller subset of CMIP5 143	
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ensemble models representing mechanisms of interest without using the D&A methodology 144	
  
(Table S1). D&A techniques are not useful for discriminating between these forcings, as the 145	
  
corresponding signals are usually too collinear over time, leading to a signal-to-noise ratio that is 146	
  
too small. For the ALL simulations, models including the nitrogen cycle exhibited higher LAI 147	
  
trends than those lacking explicit nitrogen cycles, reflecting in part a human influence from 148	
  
increased nitrogen deposition (Figs. S7a and b). Consistent with the results of offline land surface 149	
  
models including carbon-nitrogen dynamics (e.g., Fig. 4c in ref. 5), the difference seen in the 150	
  
ESMs is particularly strong over eastern NA and eastern Asia, areas of known high levels of 151	
  
human-caused nitrogen deposition16. The nitrogen-enabled models appear to capture observed 152	
  
LAI trends in these regions (Fig. 1c). Slightly negative LAI trends observed over southwest NA, 153	
  
western Canada, and spots of Eurasia seemed to correspond to the LULCC-induced vegetation 154	
  
browning at the same locations (Figs.1c and S7e). Nonetheless, the net LULCC-induced LAI 155	
  
changes from CanESM2, the only model providing LULCC-only simulations, were quite small 156	
  
(Fig. S9). CO2 fertilization stimulated the vegetation growth over large areas of the NEL (83.8% 157	
  
vegetated area) except in central NA (Fig. S7f). The response of modeled LAI to GHG-forced 158	
  
climate change shows regions of decrease that coincide mainly with reduced precipitation and 159	
  
regions of increase that coincide with regions of higher precipitation and warmer temperatures 160	
  
(Figs. S7g and S8).  161	
  
 162	
  
Previous work assessing modeled and observed LAI has focused on phenological variation, 163	
  
interannual variability, and multiyear trends; spatiotemporal changes in LAI were attributed to 164	
  
variation in climate drivers (mainly temperature and precipitation)17-21. This study adds to an 165	
  
increasing body of evidence that NEL has experienced an enhancement of vegetation activity, as 166	
  
reflected by increased trends in vegetation indices1-5, aboveground vegetation biomass6, 7, and 167	
  
terrestrial carbon fluxes22 during the satellite era. Our analysis goes beyond previous studies by 168	
  
using D&A methods to establish that the trend of strengthened northern vegetation greening is 169	
  
clearly distinguishable from both IV and the response to natural forcings alone. It can be 170	
  
rigorously attributed, with high statistical confidence, to anthropogenic forcings, particularly to 171	
  
rising atmospheric concentrations of greenhouse gases. As an attempt to decipher which 172	
  
mechanisms are behind those trends, we further analyzed the contribution of nitrogen deposition, 173	
  
LULCC, CO2 fertilization and GHG-induced climate change to the NEL vegetation growth. This 174	
  
provides potential leads to understanding the geographic structure of the vegetation response to 175	
  
selected anthropogenic forcing agents.  176	
  
 177	
  
An accurate quantification of the responses to individual human and natural drivers, however, 178	
  
needs more research efforts, due to uncertainties associated with the ESMs, weaknesses of the 179	
  
CMIP5 experimental design, and limitations in the observations. Relative to the observations, the 180	
  
simulations with ALL and GHG forcings illustrated relatively weaker interannual variability of 181	
  
vegetation growth (Figs. 2, S2 and S3). This discrepancy may arise from structural errors of the 182	
  
land component in the ESMs (e.g., weak or no representation of vegetation mortality, disturbance 183	
  
and successional dynamics)23-25. Since spatial and temporal patterns of vegetation growth are 184	
  
tightly coupled with precipitation variability4, 17, 18, the underestimation could also arise from the 185	
  
reported underestimation of interannual precipitation variability in CMIP models over Northern 186	
  
Hemisphere (NH) land26, 27. Multi-model ensemble means can have persistent biases, such as 187	
  
overprediction of growing season length due to advanced spring growth and delayed autumn 188	
  
senescence in NH temperate ecosystems17, 28. If such a phenological bias were changing steadily 189	
  
over time, it could influence estimation of LAI trends reported here. We mitigate against this type 190	
  
of bias by comparing our results for different seasonal periods. Since our results are consistent for 191	
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different definitions of GS (Figs. S1-S3), early and late season model biases, to the extent it is 192	
  
present in our multi-model dataset, seem to be stationary in time. Understanding and ranking the 193	
  
multiple reasons for deficiencies in CMIP5 simulations, however, remain extremely difficult, 194	
  
given the lack of global LAI simulations with land surface models driven by common observed 195	
  
environmental forcings. Such an obstacle should be overcome in the next phase of CMIP, which 196	
  
will include an international intercomparison of the land surface components from the 197	
  
participating ESMs29. Long-term remote-sensing data are often contaminated by clouds and snow 198	
  
cover and are impacted by the change of satellites30. For example, the LAI3g dataset was likely 199	
  
influenced in 1991 by the eruption of Mount Pinatubo and subsequent loss of orbit by NOAA 11, 200	
  
seen particularly in the world’s forests12; the merging of reflectance information from different 201	
  
satellites during the pre- and post-2000 periods for both LAI3g and GEOLAND2 products has the 202	
  
potential to cause inhomogeneity in the data12, 13. These observational uncertainties, which are not 203	
  
considered here, might artificially increase the observed interannual variability. Our sensitivity 204	
  
tests, however, show that our key findings are robust to these issues, and the fingerprint patterns 205	
  
assessed by the ALL and GHG ensembles can still be identified quantitatively in the relatively 206	
  
short instrumental record.  207	
  
 208	
  
Given the strong evidence provided here of historical human-induced greening in the northern 209	
  
extratropics, society should consider both intended and unintended consequences of its 210	
  
interactions with terrestrial ecosystems and the climate system.  211	
  
  212	
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Figure 1: Spatial distribution of LAI trends for 1982–2011. Spatial distribution of the linear 317	
  
trends in the growing season (April–October) LAI (m2/m2/30yr) in (a) LAI3g product, (b) 318	
  
GEOLAND2 product, (c) mean of LAI3g and GEOLAND2, (d) CMIP5 simulations with natural 319	
  
forcings alone (NAT), (e) CMIP5 simulations with anthropogenic and natural forcings (ALL), 320	
  
and (f) CMIP5 simulations with greenhouse gas forcings (GHG). The hatched area in (c) 321	
  
indicates that both satellite-based LAI datasets agree on the increasing trend of LAI, and the area 322	
  
with black crosses indicates that both satellite-based LAI datasets agree on the decreasing trend 323	
  
of LAI. The hatched area in (d)-(f) indicates that at least 90% of the simulation members agree 324	
  
on the increasing trend of LAI; the area with black crosses indicates that at least 90% of the 325	
  
simulation members agree on the decreasing trend of LAI. 326	
  
	
  327	
  
	
  328	
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 330	
  
Figure 2: Observed and simulated 1982–2011 time series of LAI anomalies. The 3-year mean 331	
  
growing season (April–October) LAI anomalies (m2/m2) over land of the northern-extratropical 332	
  
latitudes for both LAI3g and GEOLAND2 satellite-derived observations and CMIP5 simulations 333	
  
accounting for solely natural forcings (NAT) and greenhouse gas forcings (GHG) as well as 334	
  
CMIP5 simulations accounting for both anthropogenic and natural forcings (ALL). The ensemble 335	
  
mean for each set of forcings is given in blue, yellow, and red solid lines for NAT, GHG, and 336	
  
ALL, respectively. Individual satellite-derived observations are indicated with dashed black lines; 337	
  
the observational average is given with a bold solid black line. Blue, yellow, and red shading 338	
  
represent the 5%–95% confidence interval for NAT, GHG, and ALL ensembles, respectively 339	
  
(computed assuming a Gaussian distribution). The grey-hatched area represents the 5%–95% 340	
  
confidence interval for the range of variability for the centennial-long preindustrial unforced 341	
  
control simulations (CTL). 342	
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 373	
  
Figure 3: Parameterized frequency distributions of LAI 1982–2011 30-year-long trends. 374	
  
Comparison of the observed trends (m2/m2/30yr) over land of the northern-extratropical latitudes 375	
  
from both LAI3g and GEOLAND2 satellite-derived observations, against the Gaussian-fitted 376	
  
probability density function (pdf) of simulated trends from CMIP5 simulations accounting for 377	
  
unforced preindustrial control variability (CTL, in grey), solely natural forcings (NAT, in blue) 378	
  
and greenhouse gas forcings (GHG, in green) as well as CMIP5 simulations accounting for both 379	
  
anthropogenic and natural forcings (ALL, in red). Individual satellite-derived observations are 380	
  
indicated with long and short vertical dashed black lines for LAI3g and GEOLAND2, 381	
  
respectively; the observational average is given with a bold solid black line. (a) Comparison 382	
  
between trends as estimated from satellite-derived products and as simulated from both individual 383	
  
30-year segments taken from the CTL simulations and historical ALL simulations. (b) 384	
  
Comparison between trends as estimated from satellite-derived products and as simulated from 385	
  
NAT and GHG simulations. The dotted blue line, representing the pdf, corresponds to the NAT 386	
  
pdf but using a variance equal to that diagnosed from the CTL ensemble. 387	
  
 388	
  

(a)	
   (b)	
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Figure 4: Results from optimal D&A for 1982–2011 time series of LAI anomalies.  390	
  
The D&A analysis was performed over land of the northern-extratropical latitudes on ensemble-391	
  
mean 1982–2011 time series of LAI anomalies. Response patterns were derived from CMIP5 392	
  
simulations accounting for both anthropogenic and natural forcings (ALL, in red), or greenhouse 393	
  
gas forcings only (GHG, in green), in a one-signal detection analysis. Observational average of 394	
  
LAI3g and GEOLAND2 was used as reference in the analysis. (a) Scaling factors (β—see text) 395	
  
best estimates and their 90% confidence intervals, (b) attributable trends over the 30-year-long 396	
  
time series, and (c) p-value of the residual consistency test (RCT). Results were obtained from a 397	
  
total least square (TLS) analysis using the multi-model mean or selected individual model 398	
  
responses. “Multi1” and “Multi3” refer to two different CMIP5 ensemble means (see text). 399	
  
Observational uncertainty was assessed using individual satellite-derived observations (LAI3g or 400	
  
GEOLAND2) regressed onto the “Multi1” response pattern.  401	
  
 402	
  
Methods	
  403	
  
Detection and attribution. Two distinct statistical approaches were used to detect and attribute 404	
  
the LAI changes in this study. The simple comparison of observed and simulated LAI trends (Fig. 405	
  
3) is based on a simple T-test, which is further discussed in the SI3. Then a more conventional 406	
  
D&A analysis is based on an optimal regression technique in which observations Y are regressed 407	
  
onto the expected response to historical forcing changes 𝑋∗ (i.e., 𝑌	
   = 	
  𝑋∗	
  𝛽	
   + 	
  𝜀, where ε 408	
  

(a)	
  

(b)	
  

(c)	
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denotes IV)14, 15, 31. The scaling factors 𝛽 are fitted using a total least square (TLS) approach, 409	
  
where the expected response 𝑋∗ is estimated from model-simulated responses 𝑋, which are also 410	
  
contaminated by IV within the model simulation, 𝑋	
   = 	
  𝑋∗ 	
  + 	
  𝜀𝑥. The model is fitted following 411	
  
the method in ref. 15. The scaling factor β describes how the expected response has to be scaled 412	
  
to best match observations. Conclusions in terms of the D&A are based on the best-estimate and 413	
  
confidence interval on β. Attributable trends (i.e., the trends explained by the external forcing 414	
  
under scrutiny)32 are derived by multiplying the model-simulated trend and the estimated scaling 415	
  
factor 𝛽. Similarly, upper and lower bounds of attributable trends are derived from the 416	
  
corresponding upper and lower bounds of β. We applied these statistical methods to the NEL 417	
  
average of 3-year mean LAI, as shown in Fig. 2. Natural internal variability is evaluated from 418	
  
unforced control simulations from several CMIP5 climate models, and expected response patterns 419	
  
are also taken from CMIP5 models (Table S1). 420	
  
 421	
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