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Abstract While the nuclear deformation in the region around Z = 40 and N = 60
has been studied in great detail, the possible onset of nuclear deformation in
the isotopic chain of krypton (Z = 36) is still a subject of controversy. Here,
we present a high-precision mass measurement of the neutron-rich nuclide 96Kr,15

as measured by the Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-
TOF-MS) at TRIUMF’s Ion Trap for Atomic and Nuclear Science (TITAN). A
statistical method, based on a hyper-exponentially modified Gaussian, has been
employed to model the data. As such, the uncertainty introduced by overlapping
peaks from beam contaminants was reduced and the mass excess of 96Kr deter-20

mined to be -53 097(57) keV. The capability of the method has been confirmed
with measurements of the stable isotopic pair 40Ar / 40Ca, in which a relative ac-
curacy ∆m/m of 3.5 · 10−8 and a mass resolving power of more than 400 000 were
achieved.

Keywords Atomic masses, Binding energy, Exotic nuclei, Time-of-flight mass25

spectrometer, Multiple reflection, hyper-exponentially modified Gaussian, HEMG

1 Introduction

High-precision mass spectrometry, providing direct information on the nuclear
binding energy, has grown over the previous years to become a pivotal tool in
nuclear physics. By revealing trends in the two-neutron separation energy, for30

instance, it facilitates the study of nuclear features such as magic numbers, midshell
effects, and nuclear deformation [1].

The region of the nuclear chart around mass number A = 100, between the
isotopic chains of krypton (Z = 36) and molybdenum (Z = 42), exhibits at N = 60
a remarkable change of shape. Since its discovery [2], considerable efforts have been35

made to understand the properties of the nuclides in this region [3,4,5,6,7]. In the
krypton isotopic chain, the potential low-Z border of this region, charge radii
[8] and excitation energies of low-lying states [9,10] suggest there is no sudden
onset of deformation at N = 60. Rather, data indicate a smooth shape evolution
between N = 60 and N = 64. This observation is in agreement with theoretical40

predictions, which suggest a transition from weakly to strongly deformed shapes
around N = 62, 63 [11,12]. Indeed, ground-state binding energies of 94−97Kr (N =
58 − 61) provide no evidence of a shape transition [13,14]. Thus, high-precision
mass spectrometry of the nuclei 98−100Kr is required to clarify if the krypton chain
is the critical boundary of the A = 100 region of deformation.45

To approach these neutron-rich nuclei, multiple-reflection time-of-flight mass
spectrometry of 96Kr has been performed. In the analysis of the data, peak shapes
in the spectra were modeled with hyper-exponentially modified Gaussians (HEMG)
[15], which helped to significantly reduce the uncertainty caused by contaminants
in the radioactive ion beam.50

2 Experimental Description

The experiment has been performed at TRIUMF’s Ion Trap for Atomic and Nu-
clear science (TITAN) [16,17] located at TRIUMF’s Isotope Separator and ACcel-
erator (ISAC) facility in Vancouver, Canada [18]. Radioactive nuclides for this ex-
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Fig. 1 Sample of the MR-TOF mass spectrum for mass 96 u. Prominent features besides
96Kr+ are the doublet of 96Mo+ and 96Zr+, which has been used as a mass calibrant, and

the molecule 1H2
12C2

35Cl+2 , which has been used as a peak-shape calibrant for the HEMG
distribution H22.

periment have been produced by a primary 480 MeV proton beam of 10µA imping-55

ing on a UCx target. The reaction products diffused out of the target and through
a water-cooled transfer line, impeding the diffusion of less volatile species, before
being ionized by a Forced Electron Beam Induced Arc Discharge (FEBIAD) ion
source [19]. The continuous radioactive ion beam (RIB) was transferred through a
dipole magnet mass separator with a mass resolving power of approximately 200060

to reduce the beam to a single A/Q. The beam was then transported with an
energy of 20 keV to the TITAN experiment, where it was trapped and cooled in
a He-gas-filled radio-frequency quadrupole (RFQ) cooler-buncher [20]. Bunches of
cooled ions were subsequently distributed to the MR-TOF-MS. The cycle time of
10 ms used in this experiment allowed for a maximum resolving power R = m/∆m65

of about 200 000. The design of the TITAN MR-TOF-MS has been described in
Ref. [21,22] and a more detailed description of the system can be found in Ref. [23,
24].

3 Method of Data Analysis and Results

While the cold transfer line effectively impeded the diffusion of less volatile ra-70

dioactive isotopes, the delivered beam still contained stable contaminant molecules
formed in the FEBIAD ion source from residual gas. Next to the signal of 96Kr+,
two close-by molecular contaminants were observed with much higher intensities,
whose long-range tails partially overlap with the ion of interest (IoI) peak (Fig. 1).
Hence, for an accurate determination of the mass of 96Kr, the data peak had to75

be fitted with a model that was capable of describing the non-Gaussian tails of
these peaks.

An established statistical method for MR-TOF-MS peak-shape modeling be-
yond the simplistic Gaussian approach is the hyper-exponentially modified Gaus-
sian (HEMG). Following the description in Ref. [15], a HEMG distribution Hnm80
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was defined by the convolution of a Gaussian with n left-hand sided and m right-
handed sided exponential functions. The free parameters of the distribution are
the center and width of the Gaussian, the decay constants and weights of the
exponential functions, and the total area of the distribution. In a first step, the
parameters of Hnm are determined using the method of least squares in a fit85

of a selected peak, the so-called peak-shape calibrant. In this case, the molecule
1H2

12C2
35Cl2

+ has been chosen for this purpose because it has sufficiently high
statistics and almost no overlap with other peaks. This step of fitting the molecule
peak was repeated using various combinations of integer values for n and m. Of
the tested distributions, a HEMG model H22 with n = m = 2 yielded the lowest90

reduced χ-squared of χ = 1.02.
Since all isobaric species in a MR-TOF spectrum experience the same electric

field, they share common peak features. In a second step, the obtained H22 from
the 1H2

12C2
35Cl2

+ peak can serve as a fitting model for any other data peak in
the spectrum. For the remaining data, only the center position and the area of H2295

were used as free parameters, while all other parameters were held constant. In this
way, the group containing 96Mo+ and 96Zr+ and the group consisting of the IoI
and two other molecules were fitted to determine the mass of 96Kr+. The resulting
reduced χ-squared of the fits for the doublet peak and the triplet peak were 6.85
and 1.88, respectively. The reduction of the goodness of fit when compared to100

that of the peak shape calibrant could be contributed to the significantly higher
statistics of these peaks. This resulted in the emergence of peak-shape features not
present in the original peak-shape calibrant and consequently not reflected by the
applied H22 model.

The mass excess of 96Kr was determined to be -53 097(57) keV, which is in
excellent agreement with the previously reported value of -53 080(20) keV [14].
The total error budget was dominated by three contributions: the peak-shape
uncertainty of the fitting model, the systematic uncertainty of the MR-TOF-MS,
and the statistical uncertainty. For the peak-shape uncertainty, each fit parameter
was individually varied by its uncertainty, while the other parameters were kept
unchanged [25]. Subsequently, the peak center deviations of all parameters were
quadratically added. This procedure was performed for both 96Kr+ and the mass
calibrant, 96Mo+, to yield a total peak-shape uncertainty of 48 keV. The systematic
uncertainty of the MR-TOF mass spectrometer had been accounted for with a
relative uncertainty of ∆m/m = 3.0 · 10−7 [26], which amounts to 27 keV. A
typical statistical uncertainty for a HEMG distribution with full width at half
maximum (FWHM) and number of counts Ncounts [25] is given by

σstat = Astat
FWHM√
Ncounts

≈ 0.53
FWHM√
Ncounts

. (1)

In this case the statistical uncertainty amounted to 15 keV. Since this was only a105

minor contribution to the total error budget, possible deviations of Astat from the
value given in Ref. [25], which could be caused by the specifics of the peak shape,
were not considered.

The peak-shape uncertainty was the single largest contribution to the error
budget, and its influence on the fitting model was further investigated. In particu-110

lar, due to the large amount of contaminants in the spectrum, it was not possible
to select a peak-shape calibrant without impairment from neighboring peaks. As
a consequence, the domain over which the model was fitted to the peak-shape
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Fig. 2 A spectrum of three isobaric species 40Ar+, 40Ca+, and 40K+ recorded with 750
isochronous turns T (top panel) and 250 isochronous turns (bottom panel), respectively. The
relative intensities in the Ar-Ca doublet are 1:1.4 and 1:0.24 in the top and bottom panel,
respectively.

Fig. 3 The deviation of the measured 40Ca mass excess from the AME2016 value. The number
below each data point indicates the intensity of 40Ca+ relative to 40Ar+. T describes the
number of isochronous turns and R the mass resolving power. See the text for more details.

calibrant affected the obtained parameters of the distribution H22 and in turn
the 96Kr mass value and its uncertainty. However, by systematically changing the115

domain and comparing the mass values obtained from different distributions, it
proved that the relative uncertainty ∆m/m introduced by this arbitrary choice
was only 2 · 10−8, which stresses the robustness of the approach.

In order to further investigate the HEMG peak-shape uncertainty in a well-
controlled test-case, masses obtained for three isobaric species, 40Ar+, 40Ca+, and120

40K+ were compared when either a HEMG model or a conventional Gaussian was
used (Fig. 2). Both K and Ca ions were produced by a thermal ion source, while
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argon ions were independently created from residual Ar in the MR-TOF-MS beam-
preparation region. This permitted a controllable intensity of 40Ca+ while keeping
the amount of 40Ar+ approximately constant. Furthermore, the peak separation125

within the doublet was varied by selecting different isochronous turn numbers,
and consequently different mass resolving powers. Three isochronous turn num-
bers, 250, 500, and 750, were used with resolving powers ranging between 200 000
and 400 000, which corresponded to a peak separation of 1 and 2 FWHM, respec-
tively. With 40Ar+ as a mass calibrant, the mass of 40Ca+ was determined from130

either a H22 model or the Gaussian fit. The deviation from the mass value reported
in the Atomic Mass Evaluation 2016 (AME2016) is shown in Fig. 3, with error bars
displaying the combined peak-shape and statistical uncertainty. In general, the un-
certainties obtained from the HEMG model are comparable or significantly smaller
than those from the Gaussian model. That was especially true for the measure-135

ments with 250 isochronous turns, where peaks overlapped more due to the lower
resolving power. The 40Ca mass excess, determined from the weighted average of
the individual HEMG results, was found to be -34 846.0 keV with an uncertainty
of 1.3 keV, which is equivalent to a 0.4 keV deviation from the AME2016. The ex-
cellent agreement with AME16 demonstrates the accuracy of the HEMG method140

to determine the centroid of overlapping peaks and therefore the mass.

4 Summary and Outlook

In this publication, we present the high-precision mass measurement of 96Kr, fit-
ting MR-TOF-MS spectra with a statistical method using HEMG distributions.
Despite a spectrum rich in contaminant species, this approach allowed a total145

uncertainty of 57 keV and a relative uncertainty of 6.4 · 10−7, respectively. The
validity of the employed method was confirmed in a measurement of the three
isobaric species 40Ar, 40Ca, and 40K to a relative uncertainty of 3.5 · 10−8. The
HEMG method is requisite in MR-TOF-MS spectra with overlapping peaks, com-
mon for highly contaminated beams. Such is our expectation for beams produced150

at ISOL facilities with a FEBIAD ion source. If the contamination is not over-
whelming relative to the ion of interest, these measurements allow us to pursue
heavier neutron-rich krypton isotopes to probe the possible onset of nuclear defor-
mation.
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Bernards, C., Bettermann, L., Bildstein, V., Butterworth, J., Cappellazzo, M., Cederkäll,195

J., Cline, D., Darby, I., Das Gupta, S., Daugas, J.M., Davinson, T., De Witte, H., Diriken,
J., Filipescu, D., Fiori, E., Fransen, C., Gaffney, L.P., Georgiev, G., Gernhäuser, R., Hack-
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D., Reiter, P., Rigby, S., Robledo, L.M., Rodŕıguez-Guzmán, R., Rudigier, M., Sarriguren,
P., Scheck, M., Seidlitz, M., Siebeck, B., Simpson, G., Thöle, P., Thomas, T., Van de Walle,
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