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ABSTRACT
We present the weak-lensing mass calibration of the stellar-mass-based μ� mass proxy for redMaPPer galaxy clusters in the Dark
Energy Survey Year 1. For the first time, we are able to perform a calibration of μ� at high redshifts, z > 0.33. In a blinded analysis,
we use ∼6000 clusters split into 12 subsets spanning the ranges 0.1 ≤ z < 0.65 and μ� up to ∼5.5 × 1013 M�, and infer the average
masses of these subsets through modelling of their stacked weak-lensing signal. In our model, we account for the following sources
of systematic uncertainty: shear measurement and photometric redshift errors, miscentring, cluster-member contamination of the
source sample, deviations from the Navarro–Frenk–White halo profile, halo triaxiality, and projection effects. We use the inferred
masses to estimate the joint mass–μ�–z scaling relation given by 〈M200c|μ�, z〉 = M0(μ�/5.16 × 1012 M�)Fμ� ((1 + z)/1.35)Gz .
We find M0 = (1.14 ± 0.07) × 1014 M� with Fμ�

= 0.76 ± 0.06 and Gz = −1.14 ± 0.37. We discuss the use of μ� as a
complementary mass proxy to the well-studied richness λ for: (i) exploring the regimes of low z, λ < 20 and high λ, z ∼ 1; and
(ii) testing systematics such as projection effects for applications in cluster cosmology.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology: observations.

1 IN T RO D U C T I O N

Galaxy clusters are an important tool for studying the formation and
evolution of structure in the Universe, the distribution of matter, and
for testing modified gravity models. The count of galaxy clusters as a
function of mass and redshift is potentially one of the most powerful
cosmological probes (Haiman, Mohr & Holder 2001; Voit 2005;
Allen, Evrard & Mantz 2011; Kravtsov & Borgani 2012; Ettori &
Meneghetti 2013; Penna-Lima, Makler & Wuensche 2014; Harvey
et al. 2015; Dodelson et al. 2016). In order to achieve this potential,
it is necessary to understand and correct for the systematics involved

� E-mail: elidaiana.sp@gmail.com (MESP); palmese@fnal.gov (AP)

in the cluster mass calibration, which is currently the dominating
source of uncertainties for using clusters to probe cosmology (Rozo
et al. 2010; Mantz et al. 2015; Planck Collaboration XXIV 2016;
Costanzi et al. 2019a; Murata et al. 2019; DES Collaboration
2020).

Galaxy clusters act as powerful gravitational lenses because their
large gravitational fields produce distortions in the shape of the
background galaxies. This effect does not depend on the dynamical
state of the cluster (as does the X-ray luminosity) and is sensitive to
all of its matter content (both baryonic and dark matter). Therefore,
using this effect we can assess their matter content and perform very
precise mass measurements. Only the most massive clusters have
weak-lensing signals sufficiently strong to be individually measured
in the current generation of wide-field surveys. Thus, we combine the
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lensing signal of a large number of clusters with similar properties
(i.e. stacking) to obtain measurements of higher signal-to-noise.

In practice, we can rank the clusters by some proxy for the mass
and, then, use the weak-lensing effect to have an estimate of the
total halo mass. Thus, a mass–observable relation (MOR) must be
calibrated to connect the observable and the total halo mass. The
technique of stacking the weak-lensing signal of many systems in a
given observable interval provides one of the most direct and model-
independent methods to calibrate the MORs. The community has
made a concerted effort to determine the scaling relations empirically
(Sheldon et al. 2001; Johnston et al. 2007; Applegate et al. 2014;
Oguri 2014; von der Linden et al. 2014a, b; Ford et al. 2015; Hoekstra
et al. 2015; Mantz et al. 2015; Wen & Han 2015; Wiesner, Lin &
Soares-Santos 2015; Okabe & Smith 2016; Melchior et al. 2017;
Simet et al. 2017; Medezinski et al. 2018; Murata et al. 2018, 2019;
Pereira et al. 2018; Bellagamba et al. 2019; Dietrich et al. 2019;
McClintock et al. 2019; Miyatake et al. 2019). The MORs are not
the same for these cluster samples and mass proxies. However, one
should expect the cosmological constraints from using these different
MORs to be consistent.

Currently, the state-of-the-art mass calibration of optically selected
clusters is performed by the Dark Energy Survey (DES) with cluster
catalogues from the redMaPPer cluster finder (Rykoff et al. 2014,
2016), using the optical count of red galaxies, λ, as the mass proxy,
and DES shear catalogues for the weak-lensing mass calibration. The
red galaxy count λ (aka ‘richness’) is computed as the sum of the
membership probabilities of red galaxies within a cluster-scale radius
and brighter than some luminosity threshold, where the membership
probabilities are assigned based on a model for the red sequence as a
function of the redshifts (z) and on a radial filter. In the most recent
result from McClintock et al. (2019) with the DES Year 1 (Y1) data,
the mass calibration was performed in the range of 0.2 < z < 0.65
and λ > 20. For the last analysis with the DES Y1 through Year 6
(Y6) data, we expect to have a cluster sample going to z ∼ 1.

The key assumption that redMaPPer uses to identify clusters is
that each cluster has a well-defined red-sequence population. At low
redshifts, this is a powerful assumption and allows efficient cluster
finding. It is unclear at what redshift all clusters gain a red sequence.
The evolution of the red sequence is still a topic of considerable
debate (Brammer et al. 2009; Sommariva et al. 2014; Feldmann et al.
2016; Cecchi et al. 2019; Girelli, Bolzonella & Cimatti 2019). Several
competing or complementary processes are responsible for driving
or ceasing the star formation in the member galaxies. The dominant
processes are expected to differ across redshifts, stellar masses, halo
masses, and environments (e.g. Overzier 2016). For this reason, it is
still a challenge to model the red-sequence population, in particular,
at high redshifts (e.g. Sommariva et al. 2014; Darvish et al. 2016;
Davé, Rafieferantsoa & Thompson 2017; Chauke et al. 2019).

The redMaPPer cluster catalogues contain clusters at λ > 5,
but the DES does not use clusters at 5 < λ < 20 for cosmology
as this low richness sample is unreliable as many of the lowest
richness clusters are subject to strong projection effects in the line
of sight. However, these low mass samples are very interesting for
astrophysical studies (e.g. Conroy & Wechsler 2009; Wechsler &
Tinker 2018). By definition, these systems have few members and
problems with Poisson statistical noise become important. However,
even a modest shift towards lower λ values could potentially have a
significant impact on cosmology. This is a challenging regime but the
potential impact makes it worth exploring alternative mass proxies
that might be more robust against projection effects. Alternative
optical mass proxies are possible (Andreon 2012; Mulroy et al. 2017;
Pereira et al. 2018; Bellagamba et al. 2019; Palmese et al. 2020;

Sampaio-Santos et al. 2020). For example, one could incorporate the
count of star-forming galaxies into the richness. This would be of
particular interest at low masses and high redshifts.

In Pereira et al. (2018) and Palmese et al. (2020), we introduced
and studied a physically motivated mass proxy named μ�, which is
based on the total stellar mass and therefore accounts for the red and
blue members of the clusters. Andreon (2012) was the first to propose
a stellar-mass-based mass proxy for clusters, but since then such kind
of proxy has mostly been studied in simulations (Ascaso et al. 2016,
2017; Farahi et al. 2018; Kravtsov, Vikhlinin & Meshcheryakov
2018; Bradshaw et al. 2020).

In particular, Bradshaw et al. (2020) showed that a stellar mass
proxy similar to μ� has less intrinsic scatter with halo mass than a
richness proxy and is less affected by projection effects. They used a
set of simulations for this comparison, in which they identify haloes
and compute the intrinsic scatter in the virial mass at fixed proxy by:
(i) using the true redshifts, i.e. no projection effects; (ii) simulating
a spectroscopic survey with precise redshift measurements; and (iii)
simulating a photometric survey with a redshift uncertainty of σ z/(1
+ z) = 0.01. In all these cases, they showed that the proxy based in
the total stellar mass presented lower intrinsic scatter than the λ-like
proxy (see their fig. 3).

In Pereira et al. (2018), we provided a first calibration of the mass–
μ� relation at low z using the Sloan Digital Sky Survey (SDSS) Stripe
82 data. In this work, we use stacked weak-lensing signal to measure
the mean galaxy cluster mass of redMaPPer clusters identified in
the DES Y1 data using μ� as a mass proxy. For the first time, we
calibrate the mass–μ�–redshift relation of these clusters at moderate
redshifts (z ≤ 0.7). We also incorporate a variety of improvements
to the weak-lensing modelling and perform a blinded analysis.

This paper is organized as follows. In Section 2, we describe the
cluster and the lensing shear catalogues. In Section 3, we present the
methodology for the measurement and modelling of the stacked
cluster masses. We present the modelling and the derived mass
calibration in Sections 4 and 5, respectively. Finally, in Section 6,
we present our concluding remarks and we summarize our results in
Section 7.

In this paper, the distances are expressed in physical coordinates,
magnitudes are in the AB system (unless otherwise noted), and
we denote logarithm base 10 as log and logarithm base e as ln.
We assume a flat Lambda cold dark matter (�CDM) cosmology
with a matter density �m = 0.3 and a Hubble parameter h =
H0/100 km s−1 Mpc−1 = 1.

2 TH E D E S Y 1 C ATA L O G U E S

The DES (The Dark Energy Survey Collaboration 2005, 2016) is an
optical imaging survey that observed 5000 square deg of the celestial
Southern hemisphere using the 4-m Blanco Telescope and the Dark
Energy Camera (Flaugher et al. 2015) at the Cerro Tololo Inter-
American Observatory (CTIO) in Chile. The main goal of the survey
is to constrain the distribution of dark matter in the Universe, and
the amount and properties of dark energy, including its equation of
state. DES used the grizY bands to obtain photometric redshifts and
reaching limiting magnitudes of i ∼ 24. Due to the large area, depth,
and image quality of DES, we expect to have an optical identification
of a large number of galaxy clusters and groups (∼100 000) up to a
redshift of z ∼ 1.

The DES observations were carried out during roughly one
semester per year, and the first full operating season took place
from 2013 August to 2014 February, DES Y1 (Diehl et al. 2014;
Drlica-Wagner et al. 2018). Before this, a small Science Verification
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(SV) survey was conducted from 2012 November to 2013 February.
The SV data covered 250 square deg, reaching almost the depth of
the complete survey.

During the DES Y1 observations, 1839 square deg of the southern
sky were observed in three to four tilings in the griz bands as well as
1800 square deg in the Y band. The resulting imaging is shallower
than the SV data but covers a significantly larger area. In the DES Y1
we have ∼1500 square deg of the main survey, divided into two large
non-contiguous areas. The reduction in the area is due to a series of
survey masks. These masks are applied to avoid bright stars, satellite
tracks, and the Large Magellanic Cloud, among others. The two
non-contiguous areas are the ‘SPT’ area (1321 square deg), which
overlaps the footprint of the 2500 square deg South Pole Telescope
Sunyaev-Zel

′
dovich Survey (Carlstrom et al. 2011), and the ‘S82’

area (116 square deg), which overlaps the Stripe-82 deep field of the
SDSS (Annis et al. 2014). In this study, we utilize data from the SPT
region.

The data from the first three seasons were the basis for the first
DES public data release1 (Abbott et al. 2018b). The data processing
for Y5 has already been completed and the final observing season,
Y6, was finalized on 2019 January 9.

In the following, we briefly describe the catalogues used in this
analysis and refer the reader to the corresponding papers for more
details. The photometric redshift and weak-lensing shape catalogues
were used in the main DES cosmological analysis combining galaxy
clustering and weak lensing (Abbott et al. 2018a).

2.1 redMaPPer cluster catalogue

In this work, we use the ‘volume-limited’ catalogue of photo-
metrically selected clusters identified in the DES Y1 data by the
redMaPPer cluster-finding algorithm v6.4.17 (Rykoff et al. 2014,
2016). In this catalogue,2 a galaxy cluster is included in the sample
only if all cluster member galaxies brighter than the luminosity
threshold used to define cluster richness in redMaPPer are above
3σ limiting magnitude in g, 5σ in r and i, and 10σ in z according to
depth maps of the survey (Drlica-Wagner et al. 2018).

As previously mentioned, redMaPPer uses multiband colours
to find overdensities of red-sequence galaxies around candidate
central galaxies. In the DES Y1 data, redMaPPer uses the four
band magnitudes (griz) and their errors to spatially group the red-
sequence galaxies at similar redshifts into cluster candidates. Starting
from an initial set of spectroscopic seed galaxies, the algorithm
iteratively fits a model for the local red sequence, and for each
red galaxy, redMaPPer estimates its membership probability (pmem)
following an iteratively self-trained matched-filter technique. At
the end, for each identified cluster, redMaPPer returns an optical
richness estimate λ [the sum over the membership probabilities of
all red galaxies within a pre-defined, richness-dependent projected
radius Rλ = (λ/100)0.2h−1 Mpc], a photo-z estimate zλ (obtained
by maximizing the probability that the observed colour distribution
of likely members matches the self-calibrated red-sequence model
of redMaPPer), the positions (RA, Dec), and a vector with the
probabilities of the five most likely central galaxies (Pcen).

This catalogue contains more than 76 000 clusters down to λ > 5
and out to zλ ∼ 0.8, of which more than 6000 are above λ ≥ 20. For
each cluster in this catalogue, we computed the value of the mass
proxy μ�, which will be described in the next section. In Fig. 1,

1https://www.darkenergysurvey.org/
2https://des.ncsa.illinois.edu/releases/y1a1/key-catalogs/key-redmapper

Figure 1. Redshift–μ� distribution of the redMaPPer clusters in the volume-
limited DES Y1 cluster catalogue with λ > 5 (blue dots) overlapped
with density contours to highlight the densest regions and the redshift–μ�

distribution of the clusters (λ > 20, 0.1 ≤ z < 0.65) used in this analysis (grey
dots). At the top and on the right are normalized histograms of the projected
quantities, zλ and μ�, respectively, for the full catalogue (in blue) and for the
subsample used in this work (in grey).

Figure 2. Normalized redshift distribution: 230 clusters in the SDSS Stripe
82 sample (purple) and 6124 clusters in DES Y1 sample (orange). In both
histograms, the catalogue used corresponds to the λ> 20 samples. The vertical
dotted line shows the z limit (z = 0.33) in which the previous calibration of
μ� has been performed.

we show the cluster μ� and redshift distributions for the volume-
limited catalogue (λ > 5) in blue. Because the spectroscopic training
sample goes only to z ∼ 0.65, the catalogue should be robust just
within this range. To avoid complications with selection functions
and unreliable detections due to projection effects, in this work we
just use the sample with λ > 20, which is the sample used in the
main cosmology analysis of DES. Thus, in grey we show the cluster
sample we use: 0.1 < z < 0.65 and μ� < 5.5 × 1013 M� with a total
of 6124 galaxy clusters.

In Pereira et al. (2018), we performed the first mass calibration of
μ� for the SDSS Stripe 82 redMaPPer catalogue of λ > 20 and 0.1
< z < 0.33 with a total of 230 clusters and using shear data from the
Canada–France–Hawaii Telescope Stripe 82 Survey (CS82; Moraes
et al. 2014). In Fig. 2, we show the comparison of the normalized
redshift distribution of the SDSS Stripe 82 sample (purple) with
the DES Y1 sample (orange) of λ > 20 and 0.1 < z < 0.65. It
illustrates the increase towards higher redshifts and the statistical
gain compared to the previous work, which allows us to study the
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redshift evolution of our MOR and reduce the statistical errors in our
mass measurements.

2.2 Photometric redshift catalogue

To estimate physical quantities such as μ� and the mass from the
lensing signal, we need to know the redshift of the member galaxies
and the source galaxies being lensed, respectively. We also need
the information about the individual P(z) of source galaxies for
computing the boost-factors profiles.

We use the photometric redshift catalogue3 of DES Y1 produced
and validated by Hoyle et al. (2018) using the template-based BPZ4

algorithm (Benı́tez 2000; Coe et al. 2006). Hoyle et al. (2018) found
that these photo-z estimates were biased and needed an overall
multiplicative systematic correction in the recovered weak-lensing
profiles. Following McClintock et al. (2019), we determine this
correction and present it in Section 3. We also use two separate BPZ

catalogues: one generated from the single-epoch METACALIBRATION-
measured photometry for selecting and weighting sources, and
one from a multi-epoch, multiobject fitting (MOF) photometry for
determining the resulting source redshift distributions.

2.3 Assigning μ� for redMaPPer clusters

The μ� mass proxy relies on the clear physical meaning of the total
stellar mass of a cluster and, in particular, Palmese et al. (2020)
showed that the scatter in the μ�-to-X-ray temperature relation is
comparable to other mass proxies (in particular, to the redMaPPer
λ), for an X-ray sample.

In Pereira et al. (2018) and Palmese et al. (2020), we describe in
detail how the mass proxy μ� is computed. The assignment of μ� is
the last step in the modular pipeline VT-CLUSTERTOOLS that we
are developing and which consists of: (i) cluster finding (optional,
since any cluster catalogue can be given as input); (ii) probabilistic
membership assignment; (iii) total stellar-mass measurements and
μ� estimation.

We use DES Y1 redMaPPer catalogue as input and performed the
membership assignment and stellar mass measurements. First, we
compute the membership probability Pmem for each cluster galaxy
as

Pmem = PzPr, (1)

where the two components represent the probability of the galaxy
to be a member given its redshift (Pz) and its distance from the
cluster centre (Pr). In practice, Pz is the integrated photometric
redshift probability distribution of each galaxy within a �z =
0.1 window around the cluster redshift. Pr is computed assuming
a projected Navarro–Frenk–White (NFW) profile from Wright &
Brainerd (2000), where r200 is defined as the radius at which the mass
density of the cluster is 200 times greater than the critical density of
the Universe ρcrit = 3H2(z)/8πG, where H(z) is the respective Hubble
parameter. For the concentration parameter we assume a fixed value
of c = 3.

After computing the membership probabilities for each galaxy
i within 3 Mpc of each cluster j, we compute their stellar masses
assuming that every member galaxy is at the redshift of its host,
M�, i(zj). Since the cluster redshifts have smaller uncertainties than
individual galaxies’ redshifts, this minimizes the uncertainties on

3https://des.ncsa.illinois.edu/releases/y1a1/key-catalogs/key-photoz
4http://www.stsci.edu/∼dcoe/BPZ/

M�, i measurements. The stellar masses are computed using the
code presented in Palmese et al. (2020), based on Bayesian Model
Averaging (Hoeting et al. 1999). Our method takes into account the
uncertainty on model selection by averaging over a robust sample of
stellar population synthesis models, and by marginalizing over the
model uncertainty. Similarly to Palmese et al. (2020), we generate
these models using the flexible stellar population synthesis code
from Conroy & Gunn (2010). The computation assumes Padova
(Girardi et al. 2000, Marigo & Girardi 2007, Marigo et al. 2008)
isochrones and Miles (Sánchez-Blázquez et al. 2006) stellar libraries
with four different metallicities (Z = 0.03, 0.019, 0.0096, and
0.0031). We use a Salpeter initial mass function (Salpeter 1955)
and the Simha et al. (2014) four-parameter star formation history
(SFH):

SFR(t) =
{

A(t − ti)e(t−ti )/τ if t < tt

SFR(tt ) + tanθ (t − tt ) otherwise,
(2)

where A is a normalization factor, ti is the time at which star formation
starts, τ is the exponential time-scale at t < tt, with tt being the time
of transitions from exponential to linear fall off, and tanθ is the slope
of the SFH after tt. In our models, we let the four model parameters
vary over the following ranges: τ ∈ [0.3, 13] Gyr, ti ∈ [0.7, 2] Gyr,
tt ∈ [7, 13] Gyr, and θ ∈ [−10, −80] deg.

Once the stellar masses are computed, we define the mass proxy
μ� as the sum of the individual galaxy stellar masses weighted by
their membership probability

μ� =
∑

i

Pmem,iM�,i . (3)

The membership assignment and μ� computation were performed
in the full DES Y1 volume-limited catalogue with λ > 5, but
throughout this work we only use the clusters with λ > 20 to make
sure that our analysis is done in the same regime as the current
λ-sample to facilitate comparisons between the two mass proxies.

2.4 Weak-lensing shear catalogue

We use the shape measurements from the METACALIBRATION (Huff
& Mandelbaum 2017; Sheldon & Huff 2017) shape catalogue5 of
DES Y1 presented in Zuntz et al. (2018). The METACALIBRATION

code utilizes images taken in the riz bands to measure the
ellipticities of the galaxies. The algorithm works by distorting the
image with a small known shear and calculating the response of a
shear estimator to that applied shear. In this method, there is no need
for prior information about galaxy properties or a calibration from
simulations. The fiducial shear estimates are obtained from a single
Gaussian fit by using the NGMIX model-fitting algorithm (Sheldon
2015). The produced DES Y1 METACALIBRATION catalogue has an
effective source density of 6.28 arcmin−2.

The main systematic effect in this shape estimation is a multiplica-
tive bias, i.e. an over- or underestimation of the gravitational shear
inferred from the mean tangential ellipticity of the lensed galaxies.
To characterize and correct for this bias, METACALIBRATION uses the
galaxy images themselves to ‘de-bias’ the shear estimates.

The METACALIBRATION shear catalogue and the associated cali-
bration of the source redshift distributions (Hoyle et al. 2018) were
extensively tested and validated by Zuntz et al. (2018) and Prat
et al. (2018), making this lensing catalogue well tested for different
applications.

5https://des.ncsa.illinois.edu/releases/y1a1/key-catalogs/key-shape
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Table 1. Binning scheme and properties of the DES Y1 redMaPPer cluster
sample. We split the clusters into three redshift bins and choose the μ� bins
to have a similar number of clusters in each of the four bins. Here μ� is in
units of 1012 M�.

z range Mean z μ� range Mean μ� No. of clusters

[0.1, 0.33) 0.232 [0, 3.3) 2.38 318
0.233 [3.3, 5.0) 4.10 317
0.243 [5.0, 7.5) 6.15 313
0.259 [7.5, 60) 12.6 402

[0.33, 0.5) 0.424 [0, 4.04) 3.06 571
0.420 [4.04, 5.65) 4.83 567
0.420 [5.65, 8.05) 6.73 567
0.427 [8.05, 60) 12.98 744

[0.5, 0.65) 0.572 [0, 3.88) 2.96 554
0.574 [3.88, 5.42) 4.67 555
0.573 [5.42, 7.68) 6.46 556
0.570 [7.68, 60) 11.71 660

3 THE STAC KED C LUSTER PROFILES

We measure the mass of the DES Y1 redMaPPer clusters from
their stacked weak-lensing signal using the METACALIBRATION shear
catalogue and BPZ photo-z’s. For the stacking of the lenses, we define
bins of redshift and μ�. The redshift bins are defined as zlow (0.1 ≤ z

< 0.33), zmid (0.33 ≤ z < 0.5), and zhigh (0.5 ≤ z < 0.65). To remove
the few outlier cases in which the stellar-mass-fitting code generated
non-physical values for one or more of the member galaxies, we
apply an upper limit cut in the μ� range such that the clusters in these
three redshift bins lie within the range μ� < 5.5 × 1013 M�. In each
redshift bin, we separate the samples into four μ� bins, in such a way
that we have a similar number of clusters in each bin. In Table 1, we
summarize the binning scheme for our stacking measurements.

3.1 Projected surface mass density profiles

In the weak-lensing regime, a non-linear combination of the grav-
itational shear γ and convergence κ defines an estimator for the
‘reduced shear’ (Bartelmann & Schneider 2001)

g ≡ γ

1 − κ
. (4)

In practice, we assume 〈g〉 ≈ 〈γ 〉 ≈ 〈R〉−1〈e〉. Here R is a joint
response matrix computed as R ≈ Rγ + Rsel, where the terms on
the right are the responses of the ellipticity measurement and the
selection effects to the gravitational shear, respectively (see Sheldon
& Huff 2017 and McClintock et al. 2019, for details).

The gravitational field from a foreground mass distribution induces
correlations in the shapes of source galaxies, such that, on average,
galaxy images are stretched and aligned tangentially to the centre
of mass. Miralda-Escude (1991) found that, for any distribution of
projected mass, it is possible to show that the azimuthally averaged
tangential shear γ T at a projected radius R from the centre of the
mass distribution is given by

γ T(R) = ��

�crit
≡ �(< R) − �(R)

�crit
, (5)

where �(R) is the projected surface mass density at radius R, �(< R)
is the mean value of � within a disc of radius R given by

�(< R) = 2

R2

∫ R

0
dR′ R′�(R′), (6)

and �(R) is the azimuthally averaged �(R) within a ring of radius
R computed as

�(R) =
∫ +∞

−∞
dχ �ρ

(√
R2 + χ2

)
, (7)

where χ is the separation along the line of sight and �ρ is an average
excess of a given three-dimensional matter density. Finally, �crit is
the critical surface mass density expressed in physical coordinates
as

�crit = c2Ds

4πGDlDls
, (8)

where Dl and Ds are angular diameter distances from the observer
to the lens and to the source, respectively, and Dls is the angular
diameter distance between lens and source.

To perform precise measurements of the surface density contrast
��, we need to estimate the redshifts of the lens (i.e. galaxy clusters)
and the source galaxies robustly. We use the photometric redshift
estimates from the redMaPPer algorithm as the lens redshifts. Due
to a negligible statistical uncertainty on these estimates (�zl ≈ 0.01;
Rykoff et al. 2016), compared to other sources of error in the lensing
measurement, we can treat these redshifts as exact. The redshift of
source galaxies is also photometric, and is described by a probability
distribution pphot(zs) for each source galaxy. Thus, we estimate an
effective critical surface density as〈
�−1

crit

〉
j,i

=
∫

dzs,ipphot(zs,i)�
−1
crit(zs,i , zl,j ), (9)

where i is the source and j is the lens index in a lens–source pair. We
note that here we express the inverse critical surface density, which is
in practice the amplitude of the lensing signal (see equation 5). This
quantity is consistently defined as zero if zs ≤ zl. To speed up the
calculations, equation (9) is performed via Monte Carlo integration
where each source at that radial range contributes with a single Monte
Carlo-draw redshift value drawn from its own pphot(zs).

From equation (5), we can compute �� over several lenses with
similar physical properties (e.g. redshift and stellar mass) to increase
the signal-to-noise and average over the effect of substructures,
uncorrelated structures in the line of sight, shape noise, and variations
in the shape of individual haloes. However, in practice, using the
shear and selection responses (Rγ and Rsel, respectively) provided
in METACALIBRATION’s catalogue we define a minimum variance
estimator for the weak-lensing signal as

�̃� ≡

∑
j,i

ωi,j eT; i,j

∑
j,i

ωi,j �
′−1
crit;i,j RT

γ,i +
(∑

j,i

ωi,j �
′−1
crit;i,j

)〈
RT

sel

〉 , (10)

where the summation goes over all source–lens pair in a given radial
bin and eT; i, j is the tangential component of source i relative to the
lens j. The quantities RT

γ,i and 〈RT
sel〉 are proportional to the trace of the

shear and selection response matrices, respectively, and their detailed
definitions can be found in Zuntz et al. (2018) and McClintock et al.
(2019), but it is important to note that these selection responses
were defined by the photometric redshift estimates derived from the
sheared METACALIBRATION photometry.

To speed up the computation of equation (10), we use two
simplifications: (i) replace the expectation value of the normalization
�

′−1
crit by a Monte Carlo estimate

�
′−1
crit;i,j = �

′−1
crit

(
zlj , z

MC
si

)
, (11)
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Figure 3. The mean �� for cluster subsets separated in zl (increasing from top to bottom) and μ� (increasing from left to right) with errors from jackknife
resampling (see Section 3.2). The best-fitting model (red curve) includes the corrections in equation (32); see Section 3 for details. In the legend, μ� is in units
of 1012 M�.

where zMC
si

is a random sample from the pphot(zs) distribution
estimated with BPZ using MOF photometry; (ii) choose the weights
as

ωi,j ≡ �−1
crit

(
zlj ,

〈
zMCAL

si

〉)
if

〈
zMCAL

si

〉
> zlj + �z, (12)

where 〈zMCAL
si

〉 is the mean redshift of the source galaxy estimated
from METACALIBRATION photometry. We use separation of �z =
0.1 from the lens redshift for source selection. McClintock et al.
(2019) found that including the source weights provided by META-
CALIBRATION does not introduce a significant improvement in the
signal-to-noise of the measurement. They also argue that the use
of two different photometric estimators is necessary because when
calculating the selection response, the internal photometry of the
METACALIBRATION must be used for all selections and weightings of
sources.

In addition to that, Hoyle et al. (2018) found that photo-z
estimates from METACALIBRATION have a greater scatter than the ones
estimated with MOF photometry. Therefore, we follow the approach
of McClintock et al. (2019) expressed in equation (10), where we use
the METACALIBRATION photo-z estimates for selecting and weighting
the source–lens pairs and we use the MOF-based photo-z estimates
for computing the normalization of the shear signal to find ��.

To estimate the weak-lensing signal �� from equation (10), we
use a modified version of the XSHEAR code implemented in the
XPIPE PYTHON package. The clusters are grouped into three bins
in redshift: z ∈ [0.1, 0.33), [0.33, 0.5), and [0.5, 0.65), as well as
four bins in μ� as described in Table 1. We measure the �� profiles
in 20 logarithmic radial bins in the range (0.1–10) h−1 Mpc. The
measured �� profiles are shown in Fig. 3. We computed the cross-
component of the lensing signal (��×) and found no evidence of
spurious correlations in the weak-lensing signals, i.e. the measured
��× are consistent with zero. McClintock et al. (2019) described a
series of tests and validation for systematics of the source catalogue

such as shear and photometric redshift bias and cluster-members
contamination. Since we rely on the same catalogue, the treatment
of this systematics could be applied to our work and is described in
detail in the next sections.

3.2 Covariance matrices for ��

In Pereira et al. (2018), the measurements were shape-noise dom-
inated such that the covariance between adjacent radial bins was
not noticeable and the �� measurements in each bin were treated
as independent. However, for the DES Y1 sample, this assumption
does not hold anymore. Besides the shape noise, the uncertainty
in the �� measurements has contributions from the uncertainty in
the photometric redshift estimations, and the intrinsic variations of
cluster profiles. Furthermore, in a stacked cluster lensing analysis in
a given survey area, source galaxies are paired with multiple clusters,
possibly generating covariance between different radial bins as well
as different cluster bins in μ� and redshift. Therefore, the cluster ��

measurements are not fully independent, and we need to estimate the
covariance matrix C

˜�� that will have significant off-diagonal terms,
in particular, on large scales.

Following McClintock et al. (2019), to estimate C
˜�� we use a

spatial jackknife (JK) scheme designed to account for the covariance
of the measurements. We use a JK resampling with K = 100 simply
connected spatial regions Rk selected by running a K-MEANS

algorithm on the sphere. The JK covariance is defined as in Efron
(1982) by

C
˜�� = K − 1

K

K∑
k

(
�̃�(k) − �̃�(·)

)T

·
(
�̃�(k) − �̃�(·)

)
, (13)

where �̃�(·) = 1
K

∑
k �̃�(k), and �̃�(k) is the lensing signal esti-

mated through equation (10), using all lenses except those in the
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Figure 4. Correlation matrix of ˜�� of a single profile with z ∈ [0.1, 0.33)
and μ� ∈ [0; 3.3) × 1012 M�, estimated from 100 jackknife regions (upper
left panel). The off-diagonal blocks show the correlation matrix between
the reference profile and the neighbouring bin, μ� ∈ [3.3; 5.0) × 1012 M�
(upper right panel), and the neighbouring redshift bin z ∈ [0.33, 0.5) (lower
left panel).

region Rk . In Fig. 4, we present an example of the estimated JK
correlation matrix for the bin z ∈ [0.1, 0.33) and μ� ∈ [0, 3.3) ×
1012 M�. We can see that on smaller scales the diagonal is dominant,
but off-diagonal terms are present for the largest scales, as expected.
We check the cross-correlations between the profiles measured in
different z and μ� subsets, and find them to be small (cf. upper right
and lower left panel of Fig. 4). Therefore, we will assume no cross-
correlation between different cluster subsets in our likelihood for
fitting ��.

3.3 Projected surface mass density model

To infer the average masses from the weak-lensing signal around
each lens, we use a two-components model given by a perfectly
centred dark matter halo profile and an offsetted profile where the
assumed centre does not correspond to the dynamical centre of the
dark matter halo (‘miscentring term’), such that our �� model is
given by

��model = pcc��cen + (1 − pcc)��misc, (14)

where pcc is the fraction of correctly centred clusters. For the centred
profile, we could also consider the contribution of neighbouring
haloes through the ‘two-halo’ term for the outer regions of the halo.
However, for computational reasons, we choose to apply a radial cut
(R < 2.5 Mpc) while performing the profile fitting of �� to minimize
the effects of the two-halo term. We have tested in simulations that
this approach has negligible effects in the amplitude of the recovered
�� (i.e. changes of 1–3 per cent).

We model the centred term as a NFW (Navarro, Frenk & White
1996) three-dimensional density profile given by

ρ(r) = δcρcrit

r
rs

(
1 + r

rs

)2 , (15)

where rs is the cluster scale radius, δc is the characteristic halo
overdensity, and ρcrit is the critical density of the Universe at the lens
redshift.

In this paper, we use the mass M200 contained within a radius r200

where the mean mass density is 200 times the critical density of the
Universe. The scale radius is given by rs = r200/c200, where c200 is
the concentration parameter. In our fitting procedure, we fix c200 by
assuming the semi-analytic concentration model of Diemer & Joyce
(2019) available in the COLOSSUS (Diemer 2015) PYTHON package.

Bartelmann (1996) and Wright & Brainerd (2000) provide an
analytical expression for the projected NFW profile, ��NFW, and
we use the PYTHON code NFW (Dietrich 2016) that implements
these results for our profile-fitting procedure. Thus, the centred term
in equation (14) is given by this ��NFW. In the next section, we
describe our model for the miscentring term, i.e. the ��misc for
NFW density profiles.

3.3.1 Miscentring modelling

Miscentring can be caused by a simple failure in the centre as-
signment by the cluster finder algorithm. Also, many cluster finders
assume as centre the position of the brightest cluster galaxy (BCG).
Zitrin et al. (2012) show that some BCGs present an offset from the
centre of their host dark matter halo. This offset was also studied in
simulations (Kim, Peter & Wittman 2017; Harvey et al. 2019). The
redMaPPer code does not assume, necessarily, the position of the
BCG as the cluster centre. Instead, redMaPPer uses a probabilistic
approach to identify the top five most likely central candidates.
Thus, the cluster position is given by the highest likelihood central
galaxy. However, Rykoff et al. (2016) found that ∼80–85 per cent
of the redMaPPer central galaxies are BCGs and then subject to
miscentring. In fact, Zhang et al. (2019a) using high-quality X-ray
data found that 75 ± 8 per cent of redMaPPer clusters are well
centred. The miscentring affects the observed shear profile (Yang
et al. 2006; Johnston et al. 2007; Ford et al. 2014) and should be
corrected. Therefore, we should estimate the miscentred differential
mass density profiles as

��misc(R) = �misc(< R) − �misc(R). (16)

We follow the modelling scheme presented in Johnston et al.
(2007), George et al. (2012), Ford et al. (2015), Simet et al. (2017),
and Pereira et al. (2018) to compute the terms in equation (16). For
a two-dimensional offset in the lens plane Rs, the azimuthal average
of the profile is

�misc(R) =
∫ ∞

0
dRsP (Rs)�(R|Rs), (17)

where

�(R|Rs) = 1

2π

∫ 2π

0
dθ�

(√
R2 + R2

s + 2RRs cos θ

)
. (18)

That is, the angular integral of the profile �(R) is shifted by Rs from
the centre. The probability distribution of Rs is given by

P (Rs) = Rs

σ 2
off

exp

(
−1

2

R2
s

σ 2
off

)
, (19)

which is an ansatz assuming that the mismatching between the centre
and Rs follows a Rayleigh distribution. The mean surface density
inside the radius R is

�misc(< R) = 2

R2

∫ R

0
dR′R′�misc(R′). (20)
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We use the PYTHON code CLUSTER-LENSING (Ford 2016; Ford
& VanderPlas 2016) that implements the equations (15)–(19) to
compute the miscentring term ��misc(R) for NFW profiles. For
this miscentring profile, we only have one free parameter, the
width of the offset distribution σ off. Together with the param-
eter pcc in equation (14), i.e. the fraction of correctly centred
clusters, we would have two free parameters in our miscentring
modelling.

We decided to fix σ off with the typical value derived by Zhang et al.
(2019a) for the DES Y1 redMaPPer clusters. In that work, they use a
Gaussian instead of a Rayleigh distribution to model the distribution
of offsets. However, our miscentring parameter σ off is connected to
their parameter τ as

σoff = τ × Rλ. (21)

Zhang et al. (2019a) found that τ = 0.17 and in our sample, the
average value of Rλ is 0.78 h−1 Mpc. Therefore, we fix σoff =
0.133h−1 Mpc and keep pcc as a free parameter when performing
the profile fitting.

3.3.2 Boost-factor model

The lensing signal can be diluted due to errors in the photometric
redshift estimates that can cause some of our background sources to
be either in the foreground (zs < zl) or to be physically associated
with the lens (zs = zl). To alleviate this effect, we can try to
exclude all galaxies that are likely cluster members from the shape
catalogue. However, due to intrinsic imperfections in the cuts, some
of these galaxies leak into the source catalogue used in the weak-
lensing measurement. Since foreground and physically associated
galaxies are unlensed, the inclusion of these galaxies will cause
�� to be underestimated (the dilution effect). Therefore, the ��

measurements must be boosted to recover the true lensing signal, the
so-called boost-factor correction (Kneib et al. 2003; Sheldon et al.
2004; Applegate et al. 2014; Hoekstra et al. 2015; Leauthaud et al.
2017; Melchior et al. 2017; Simet et al. 2017; McClintock et al. 2019;
Varga et al. 2019).

We determine the boost-factor correction by following Gruen &
Brimioulle (2017), Melchior et al. (2017), McClintock et al. (2019),
and Varga et al. (2019), who make use of the estimated p(z) of the
source galaxy sample to calculate the cluster contamination fraction
fcl and the corresponding covariance matrix Cfcl estimated from
jackknife resampling. Then, fcl is used to recover the lensing profile
corrected from contamination as

�̃�corr(R) = �̃�(R)

1 − fcl(R)
. (22)

The p(z) decomposition method for obtaining the boost factor fcl

is described in detail and validated on simulated DES-like mock
catalogues in Varga et al. (2019). In Fig. 5, we show an example of
the measured boost-factor profile for the stack with z ∈ [0.1, 0.33)
and μ� ∈ [0; 3.3) × 1012 M�.

Following McClintock et al. (2019), we do not apply equation
(22) directly to our data but instead we dilute the amplitude of our
model for the predicted profiles. By parametrizing the boost factor as
B ≡ (1 − fcl)−1, we model the cluster-member contamination by a
NFW-like profile, with two free parameters (B0 and Rs), in the form

B(R) = 1 + B0
1 − F (x)

x2 − 1
, (23)

Figure 5. Boost-factor measurement of a single profile with z ∈ [0.1, 0.33)
and μ� ∈ [0; 3.3) × 1012 M� (black dots). The blue curve is the best fit for
fitting the boost-factor data alone and the red curve is the best fit for the
joint fit of the lensing and boost-factor data as described in Section 3.4. The
vertical dashed line shows the inner radial limit in which we performed our
boost-factor fits.

where x = R/Rs, and

F (x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
tan−1

√
x2−1√

x2−1
: x > 1

1 : x = 1

tanh−1
√

1−x2√
1−x2

: x < 1

. (24)

The implementation of this model is available in the PYTHON library
CLUSTER TOOLKIT .

For each stack, we fit the measured boost factors along with
the respective lensing profile, which introduces two additional
parameters in our �� model, namely the normalization B0 and the
scaling radius Rs. When performing this joint fit of the lensing and
boost-factor profiles, we try to follow McClintock et al. (2019) and
use their flat priors for the boost-factor parameters. However, this
choice leads to ‘unrealistic’ values for B0 and Rs. For instance, we
expect a small value for the scaling radius (Rs < <1 h−1 Mpc), since
we have a peak in the contamination fraction at low radii (see section
4.1 of Varga et al. 2019). However, in the joint fit, we find large values
for Rs, dominated by the upper limits of our priors. McClintock et al.
(2019) also have shown that B0 and Rs are highly degenerate (see
their fig. 10), and this might have an impact on our ability to constrain
these parameters when performing the joint fit with lensing using flat
priors. Therefore, we decide to perform a separated fit of the boost-
factor profiles alone and use the derived values for the parameters
(see Table 2) as input in a Gaussian prior when performing the joint
fit with the lensing profiles (see Section 3.4).

3.3.3 Reduced shear

In practice, we measure the reduced shear g instead of the true shear
γ (see equation (4)). To account for this approximation, we multiply
our �� model by the factor

G(R) = 1

1 − κ
= 1

1 − �(R)�−1
crit

, (25)

where �−1
crit is defined in equation (8) and �(R) is

�(R) = pcc�cen + (1 − pcc)�mis, (26)
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Table 2. Best-fitting parameters from fitting the boost factors without the
lensing profiles. We use the following flat priors: Rs = [0, 10] and B0 = [0,
1].

μ� [1012 M�] z B0 Rs [Mpc]

[0.0, 3.3) [0.1, 0.33) 0.57 ± 0.23 0.19 ± 0.06
[3.3, 5.0) 0.26 ± 0.12 0.46 ± 0.21
[5.0, 7.5) 0.30 ± 0.10 0.49 ± 0.15
[7.5, 60.0) 0.20 ± 0.03 1.01 ± 0.17

[0.0, 4.04) [0.33, 0.5) 0.23 ± 0.34 0.01 ± 0.03
[0.04, 5.65) 0.22 ± 0.26 0.14 ± 0.11
[5.65, 8.05) 0.15 ± 0.10 0.23 ± 0.09
[8.05, 60.0) 0.07 ± 0.02 0.84 ± 0.24

[0.0, 3.88) [0.5, 0.65) 0.22 ± 0.34 0.02 ± 0.03
[3.88, 5.42) 0.23 ± 0.34 0.13 ± 0.34
[5.42, 7.68) 0.08 ± 0.23 0.34 ± 0.65
[7.68, 60.0) 0.29 ± 0.26 0.16 ± 0.09

where �cen comes from equation (7) and �mis from equation (17).
However, this correction is expected to have a negligible effect in
our results.

3.3.4 Shear and photo-z bias

In the weak-lensing analysis, two major sources of systematics are
the shape measurements and photo-z uncertainties. The former can
lead to wrong shear estimates and the latter can bias the distance
measurements leading to a biased �crit, consequently affecting our
�� estimates. Zuntz et al. (2018) have tested for several sources
of bias in the shear measurements; in particular, self-calibration of
the images allowed them to determine the multiplicative m and the
additive c biases. They found no evidence of a significant additive bias
term but estimated the multiplicative bias to be m = 0.012 ± 0.013.

Hoyle et al. (2018) and McClintock et al. (2019) present a method
to calibrate the photo-z estimates with precise measurements from
COSMOS bands to determine the bias and its uncertainties. Briefly,
they match the DES lensing source galaxies and the COSMOS
galaxies according to their flux in each band and their intrinsic
size. Following the same selection and weight as in Section 3.1,
we compute the true weighted mean �′ −1

crit,TRUE from the matched
COSMOS sample. The MOF griz BPZ redshift distribution sam-
ples provide a mean �′ −1

crit,MEAS that connects the weighted mean
tangential shear to the �� profile. Since the source selection
for these measurements depends on the lens redshift, we need to
repeat them in the cluster redshift range sampled in our analysis
zl = 0.1–0.65.

Following McClintock et al. (2019), the model for the bias
takes into account four sources of uncertainty in the calibration of
photometric redshift distributions: (i) cosmic variance; (ii) photo-
metric zero-point offsets; (iii) morphology matching; (iv) systematic
uncertainty of the matching algorithm, and it is given by

�
′−1
crit,MEAS

�
′−1
crit,TRUE

≡ 1 + δ, (27)

where the quantity δ is the offset between the true mean inverse
critical surface density from COSMOS and �

′−1
crit from our photo-z

estimates. We show in Fig. 6 the dependence of this ratio on lens
redshift in the range of our analysis.

Figure 6. The photo-z correction factor to �−1
crit as described in Section 3.3.4.

The grey hatched region indicates the 1σ range of the correction factor. Red
points with error bars show the correction factors applied in each redshift bin.

We incorporate δ in our analysis as a prior that varies between
each stack. The variations across the cluster redshift bins are

δ =

⎧⎪⎪⎨⎪⎪⎩
0.009 ± 0.021 for z ∈ [0.1, 0.33)

0.002 ± 0.020 for z ∈ [0.33, 0.5)

0.004 ± 0.022 for z ∈ [0.5, 0.65).

(28)

We combine the shear and photo-z bias (m and δ) to define the
factor Am = 1 + m + δ, which is included in the final likelihood as
the prior

Am =

⎧⎪⎪⎨⎪⎪⎩
1.021 ± 0.024 for z ∈ [0.1, 0.33)

1.014 ± 0.024 for z ∈ [0.33, 0.5)

1.016 ± 0.025 for z ∈ [0.5, 0.65).

(29)

3.3.5 Triaxiality and projection effects

Cluster finders that rely on photometric data to identify galaxy
clusters typically select systems that are aligned along the line of
sight with higher probability. The photometric cluster selection can
also be affected by the presence of other objects along the line of
sight. We refer to these two effects as triaxiality and projection
effects, which both affect the measured cluster MOR (White et al.
2011; Angulo et al. 2012; Noh & Cohn 2012; Dietrich et al. 2014).

Melchior et al. (2017) determined the projection effect correction
factor by modelling the ratio between the average cluster stack mass
not affected by projections 〈M〉0 and the average mass 〈M〉 of the
cluster affected by projections. They model the projected cluster as a
sum of a primary halo that must have at least a mass of 0.5〈M〉0 and
an excess mass of ε〈M〉0, where ε ∈ [0.0, 0.5]. Then, for a fraction
p of clusters affected by projections, they write the average mass of
the cluster stack as

〈M〉 = (1 − p)〈M〉0 + p(0.5 + ε)〈M〉0. (30)

To recover the mass in the absence of projections, i.e. 〈M〉0, we
should multiply the recovered weak-lensing masses by

〈M〉0

〈M〉 = 1

1 + p(ε − 0.5)
= 1.02 ± 0.02, (31)

where the numerical value above was estimated from 104 Monte
Carlo realizations of p and ε. They adopted a Gaussian prior for ε

of ε = 0.25 ± 0.15 such that ε = 0 and 0.5 are within 2σ of the
central value, and p = 10 ± 4 per cent as estimated from Simet et al.
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(2017). In our analysis, we are using the same clusters as McClintock
et al. (2019), i.e. a richness-selected sample; therefore, we believe
that it is reasonable to apply the same correction for the projection
effects.

Using simulation of richness-selected clusters, Dietrich et al.
(2014) estimated that triaxiality can overestimate cluster masses by
4.5 ± 1.5 per cent. Melchior et al. (2017) argued that this estimate
can be understood as correlated scatter between richness and weak-
lensing masses leading weak-lensing masses to overestimate cluster
masses by an amount of exp(−βrσln M|λσln M|MWL ), where β is the
slope of the halo mass function, r is the correlation coefficient
between richness and weak-lensing mass, and σ ’s are the intrinsic
scatters in the correspondent scaling relations. Melchior et al. (2017)
adopted r ∈ [0, 0.5] (Noh & Cohn 2012), σ ln M|λ = 0.25 ± 0.05 (Rozo
& Rykoff 2014), σln M|MWL = 0.25 ± 0.05, and β ∼ 3 to arrive at a
correction factor of 0.96 ± 0.02. Palmese et al. (2020) found that
σln M|μ�

= 0.26+0.15
−0.10, then we could argue that we would arrive at a

similar correction factor for triaxiality as in Melchior et al. (2017)
for our μ� sample.

Therefore, we follow Melchior et al. (2017) and McClintock et al.
(2019) and apply their corrections to triaxiality and projection effects.
For triaxiality, we use a multiplicative factor given by the Gaussian
G(0.96, 0.02) and for projection effects a factor G(1.02, 0.02). In
both cases, we use a random draw to determine the multiplicative
factors to be applied in the masses together with the model bias
correction, which will be described in Section 3.5.

While this analysis was in internal review by the collaboration,
the cluster cosmology results from DES Y1 were released (DES
Collaboration 2020) and they found that the σ 8 − �m posteriors
are in 2.4σ tension with DES Y1 3×2pt analysis, and in 5.6σ with
Planck CMB results. They argue that this tension is most likely
driven by systematics in the weak-lensing mass calibration that
were not fully modelled. Currently, photometric redshifts together
with triaxiality and projection effects are the systematics with the
largest contributions to the error budget in the mass calibration
with richness (McClintock et al. 2019). However, none of these
systematics alone were found to explain the tension in the DES Y1
cluster cosmology result. However, it was shown that the proposed
projections and triaxiality corrections applied in Melchior et al.
(2017) and McClintock et al. (2019) are probably not enough (see
fig. 12 in DES Collaboration 2020) for our current measurements,
in particular, for clusters with λ ∈ (20, 30]. Therefore, we need
to improve our understanding of the low-richness cluster sample
to find a better model for projections and triaxiality, both in a
mass-richness and in a mass-μ� calibration analysis. Since this is
beyond the scope of this paper, then, we present our results with the
corrections described in this section, acknowledging that we may not
be fully accounting for the projection and triaxiality effects in our
mass estimates.

3.4 The full model

The multiplicative corrections described in the previous sections are
combined with our full model of the weak-lensing profile in the form

�� = AmG(R)

B(r)
[pcc��NFW + (1 − pcc)��misc] . (32)

This model includes the multiplicative bias Am, the boost factor B(r),
the reduced shear correction G(R), and the miscentring parameter
pcc. The log-likelihood of the kth �� profile is

ln L(��k | Mk, pcc, Am, B0, Rs) ∝ −1

2
DT

k C−1
��Dk, (33)

Table 3. Parameters in the lensing likelihood L(��) (equation 33) and
boost-factor likelihood L(B) (equation 34). Flat priors are specified with
limits in square brackets, and Gaussian priors with means ± standard
deviations.

Parameter Description Prior

M200c Halo mass [1011, 1018]
pcc Correctly centred fraction 0.75 ± 0.08
Am Shape and photo-z bias equation (29)
B0 Boost magnitude Table 2
Rs Boost-factor scale radius Table 2

where D = (�̃� − ��)k with �̃� computed from equation (10) and
C�� is the jackknife covariance matrix of ��. The corresponding
log-likelihood of the measured fcl, k in the kth cluster subset given the
parameters in equation (23) is

ln L(fcl,k | B0, Rs) ∝ −1

2
BT

k C−1
fcl

Bk, (34)

where Bk = (B − Bmodel)k and Cfcl is the covariance matrix of the
boost factor, also obtained from jackknife.

The weak-lensing and boost-factor profiles are fitted simulta-
neously with the total log-likelihood for a single cluster subset
computed as

ln Lk = ln L(��k | Mk, pcc, Am, B0, Rs)

+ ln L(fcl,k | B0, Rs). (35)

Note that while the fit of �� and boost factor is performed in
conjunction, each cluster subset is fitted independently of the other
subsets. Also, note that in our approach, the constraints on the boost-
factor parameters are informed by both their dilution effect on the
�� profile (as shown in equation 32) and independent measurements
of fcl (see an example of such measurement in Fig. 5).

A list of the model parameters describing each cluster stack and
their corresponding priors is summarized in Table 3. We use the
Bayesian formalism and the Markov chain Monte Carlo (MCMC)
method through the package EMCEE (Foreman-Mackey et al. 2013)
to perform the likelihood sampling. We use 64 walkers with 10 000
steps each, discarding the first 2000 steps of each walker as burn-in.
We also verify the autocorrelation time of the chains to check their
convergence. To avoid confirmation bias, we blind the chains before
applying the corrections of triaxiality and projections effects and
model bias, which we will describe in the next section. Our blinding
procedure relies on randomly shifting the peak of the posterior
distribution of M200c in the chains.

3.5 Modelling systematics

The analytical model for the centred term, ��NFW (Bartelmann
1996; Wright & Brainerd 2000), can present differences from the
true �� profiles of the cluster haloes of mean mass M. These
deviations are due to the mismatch of density profiles in simulations
(Melchior et al. 2017; Murata et al. 2018; McClintock et al. 2019), in
particular, in the transition between the one- and two-halo regimes,
which can bias the recovered weak-lensing masses. Therefore, we
need to calibrate our model with simulations.

In order to achieve that, we measure the weak-lensing masses of
dark matter haloes in N-body simulations using the same formalism
we employ to the DES data. The haloes are drawn from a N-
body simulation of a flat �CDM cosmology run with GADGET

(Springel 2005). The simulation uses 14003 particles in a box with
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5460 M. E. S. Pereira et al.

Figure 7. The mass bias calibration C = Mtrue/Mobs caused by the adopted
analytical form of the �� profile, as a function of μ� for each simulated
redshift bin. The solid line and shaded region are the best-fitting bias model
from equation (36) and 1σ uncertainty of the calibration, respectively. Error
bars on the measured calibrations are the fitted intrinsic scatter σC . Here we
multiply the error bars by a factor of 3 for a better visualization.

1050 h−1 Mpc on a side with periodic boundary conditions. The force
softening is 20 h−1 kpc. The simulation was run with the cosmology
�m = 0.318, h = 0.6704, �b = 0.049, τ = 0.08, ns = 0.962,
and σ 8 = 0.835. Haloes of mass 1013 h−1 M� are resolved with
100 particles. Haloes are defined using a spherical overdensity mass
definition of 200 times the background density and are identified
with the ROCKSTAR halo finder (Behroozi, Wechsler & Wu 2013).

The simulation is used to construct the synthetic �� profiles of
haloes at four different snapshots: z ∈ [0, 0.25, 0.5, 1]. We assigned
a μ� to each halo by inverting the mass–μ� relation of Pereira et al.
(2018) and adding 25 per cent scatter. Then, we grouped our haloes
into (z, μ�) subsets identical to how we grouped our real clusters. For
each of these halo subsets, we measured the halo–matter correlation
function with the Landy & Szalay (1993) estimator implemented in
the CORRFUNC code (Sinha & Garrison 2017). We numerically
integrate the halo–matter correlation function to obtain the ��

profile. The resulting simulated �� profile is a combination of the
��NFW and a two-halo term.

Note that this �� profile does not contain any of the systematics
that exists in the real data. To incorporate the systematics, we modify
the simulated �� profiles by applying the corrections in equation
(32). The miscentring profile ��misc is computed by providing
as input the true mass from the simulation and the miscentring
distribution discussed in Section 3.3.1. The values of pcc and Am

are the central values described in Table 3. For the boost-factor
correction B(R) described in Section 3.3.2, the values for B0 and Rs

are obtained from modelling the boost-factors data independently. To
apply the reduced shear correction G(R) described in Section 3.3.3
in the simulation we use the same �−1

crit of the real data. Note that
in the real data we just have three bins of redshifts; therefore, we
repeat the values of the third z-bin for the snapshot with z = 1 in the
simulations.

We obtain the observed mass Mobs for this simulated profile
by using the same pipeline we apply on the real data, restricting
ourselves to the same radial scales employed in the weak-lensing
analysis, and utilizing the covariance matrices recovered from the
data to ensure that the simulated data are weighted in the same way
as the observed data.

Table 4. Parameters in the model bias fit. Flat priors are specified with limits
in square brackets.

Parameter Description Prior

C0 Normalization [0, ∞]
α Slope in μ� [−10, 10]
β Slope in z [−10, 10]
ln (σ 2

C ) Intrinsic scatter [−10, 10]

Figure 8. Parameters of the C(μ�, z) relation in equation (36). Contours are
the 1σ , 2σ , and 3σ confidence areas.

Defining Mtrue as the mean mass of the haloes in the simulated
stack, the calibration for each simulated profile is shown in Fig. 7. The
model bias calibration C = Mtrue/Mobs was modelled as a function
of the mean μ� and redshift snapshot z of the simulated stack as

C(μ�, z) = C0

(
μ�

5.16 × 1012 M�

)α ( 1 + z

1 + z0

)β

, (36)

with z0 = 0.5 as pivot redshift. The free parameters in the fit are
C0, α, β, and the intrinsic scatter σC of the calibration, and they are
determined via a Bayesian fit using flat priors for the parameters (see
Table 4).

The mean model bias for our simulated stacks is ∼5 per cent with
C0 = 0.978 ± 0.029, α = 0.042 ± 0.055, β = −0.231 ± 0.090, and
intrinsic scatter σC = 0.016. In Fig. 8 we show the contour plots for
these parameters.

We repeated this analysis for profiles assuming different amounts
of intrinsic scatter in the M–μ� relation from 10 up to 45 per cent. We
found that the amount of model bias does not present a significant
change with scatter in the M–μ� relation. We also have checked
that the model bias has negligible changes when we consider the
effect of selecting in λ but binning in μ�. To mimic this effect in the
simulations, we populated the haloes with λ and μ�, by inverting the
M–λ relation from Melchior et al. (2017) and the M–μ� relation from
Pereira et al. (2018), with scatters σ M|λ and σM|μ�

. Then, we selected
haloes with λ > 20 and stacked them in bins of z and μ�, verifying
the change in the model bias with the different scatters in the M–μ�
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Table 5. Best-fitting results for redMaPPer clusters in Fig. 3. In the fitting, we use a concentration–mass relation from Diemer & Joyce (2019) to fix c200c and
we also fix the width of miscentring distribution as σoff = 0.133 h−1 Mpc. Our final model has five free parameters, namely the mass M200c, the fraction of
clusters that is correctly centred pcc, the shear+photo-z bias Am, and the boost-factor parameters B0 and Rs. The weak-lensing and boost-factor profiles were
fitted simultaneously, but each cluster subset is fitted independently of each other. We note that the posteriors of pcc are dominated by the priors and one could
say that the measurement is non-informative. However, since we are using the values determined by a previous measurement of the corrected centred redMaPPer
cluster in comparison to an X-ray sample (Zhang et al. 2019a; von der Linden et al., in preparation), we believe that it is reasonable to assume that the used
informative prior in pcc will not bias the recovered masses. For convenience, we also present here the estimated masses converted to the definition M200m by
using the COLOSSUS code.

μ� [1012M�] z M200c [1014 h−1 M�] M200m [1014 h−1 M�] pcc Am B0 Rs [Mpc]

[0.0, 3.3) [0.1, 0.33) 0.70 ± 0.06 0.90 ± 0.08 0.73 ± 0.08 1.019 ± 0.024 0.59 ± 0.21 0.20 ± 0.06
[3.3, 5.0) – 1.18 ± 0.11 1.52 ± 0.14 0.72 ± 0.08 1.017 ± 0.023 0.36 ± 0.11 0.61 ± 0.18
[5.0, 7.5) – 1.38 ± 0.12 1.77 ± 0.15 0.69 ± 0.08 1.016 ± 0.024 0.40 ± 0.08 0.63 ± 0.13
[7.5, 60.0) – 2.46 ± 0.16 3.16 ± 0.20 0.64 ± 0.07 1.009 ± 0.024 0.24 ± 0.03 1.21 ± 0.16

[0.0, 4.04) [0.33, 0.5) 0.81 ± 0.09 0.98 ± 0.11 0.77 ± 0.08 1.015 ± 0.023 0.33 ± 0.25 0.02 ± 0.02
[0.04, 5.65) – 0.89 ± 0.10 1.07 ± 0.12 0.76 ± 0.08 1.015 ± 0.023 0.26 ± 0.20 0.14 ± 0.09
[5.65, 8.05) – 1.34 ± 0.12 1.64 ± 0.14 0.69 ± 0.07 1.011 ± 0.023 0.21 ± 0.09 0.27 ± 0.09
[8.05, 60.0) – 2.24 ± 0.14 2.73 ± 0.17 0.74 ± 0.07 1.012 ± 0.023 0.07 ± 0.02 0.86 ± 0.23

[0.0, 3.88) [0.5, 0.65) 0.66 ± 0.12 0.77 ± 0.14 0.75 ± 0.08 1.015 ± 0.025 0.33 ± 0.25 0.03 ± 0.02
[3.88, 5.42) – 0.83 ± 0.12 0.97 ± 0.14 0.74 ± 0.08 1.016 ± 0.025 0.26 ± 0.22 0.12 ± 0.09
[5.42, 7.68) – 1.09 ± 0.14 1.28 ± 0.16 0.74 ± 0.08 1.016 ± 0.025 0.09 ± 0.10 0.33 ± 0.25
[7.68, 60.0) – 1.91 ± 0.17 2.24 ± 0.19 0.73 ± 0.08 1.014 ± 0.025 0.29 ± 0.15 0.16 ± 0.05

relation. No relevant changes were found. So, we concluded that
neither the selection effect of selecting in λ but ranking in μ� nor the
different amount of scatters has significant impact in our model bias
correction.

In our analysis, we focus on the modelling of the centred term by
choosing a radial cut, R = (0.2–2.5) Mpc, to avoid the two-halo term
and we use an analytical expression for the NFW profile. However,
the simulated profiles were generated by an integration of the halo–
matter correlation function that accounts both for the centred and
two-halo contributions. This might be causing a significant model
bias between our model and the simulated profiles, in particular, at
the high redshifts snapshots z = 1 as seen in Fig. 7. Besides that,
we are not considering the effect of baryonic physics that might
have some impact, especially in the central regions of the halo.
Once we apply a radial cut in the inner profile before performing
the fit, we expect to minimize the impact of baryonic effects as
argued in McClintock et al. (2019). However, this will not be true for
haloes that are miscentred by a large amount. The impact of baryonic
effects could also be ‘absorbed’ by the concentration parameter c200.
However, in this work, we are fixing c200 by a Diemer & Joyce
(2019) concentration. We have tested in some stacks this choice and
found a change of ∼7 per cent of the recovered weak-lensing mass
compared to varying c200. Due to the computational time needed for
the fitting code to converge, we then decided to keep our choice of
a fixed c200 for this work. Thus, we note that our model calibration
might be limited by this choice and further investigations are needed
to properly account for the impact of baryonic physics, e.g. by using
hydrodynamic simulations. We plan to investigate such effects in a
forthcoming work, but for the current analysis we apply the model
calibration as described in this section.

After this model calibration, the correction for the mean weak-
lensing mass of a cluster stack in a given bin of μ� at redshift z

should be

M ′ = C(μ�, z)MWL, (37)

where MWL is the uncalibrated mass estimate and the calibration
factor C(μ�, z) is determined by randomly picking one value from
the simulation posteriors.

The final posteriors for our weak-lensing masses are properly
marginalized over the uncertainty in the calibration factor C as well
as triaxiality and projection effects such that

M = G(0.96, 0.02) × G(1.02, 0.02) × M ′ (38)

after fitting the lensing and boost-factor data but before modelling
the mass–μ�–z relation. The final unblinded and corrected masses
are shown in Table 5.

4 THE MASS–μ�– REDSHI FT R ELATI ON

We obtain a mass calibration for the galaxy cluster stacks using
their weak-lensing masses shown in Table 5. We characterize the
mass–μ�–redshift relation of these clusters as

〈M|μ�, z〉 = M0

(
μ�

μ0
�

)Fμ�
(

1 + z

1 + z0

)Gz

, (39)

where M0, Fμ�
, and Gz are the free parameters of our model with

pivot values μ0
� = 5.16 × 1012 M� and z0 = 0.35. We model the

likelihood for our model as

ln L(Mobs |M0, Fμ�
, Gz) ∝ −1

2
(�M)T C−1

M (�M), (40)

where �M = M − 〈M|μ�, z〉. Here, the mass M is the value after
unblinding and applying the correction in equation (38). CM is
the covariance matrix between the mass bins obtained following
section 6.2 of McClintock et al. (2019).

Briefly, to construct the mass covariance, we combine the errors
in the mass obtained by performing the profile fitting in three
configurations: (i) our fiducial run calledFull, where we vary all the
five parameters of our lensing likelihood using the priors in Table 3,
and for which the posteriors are reported in Table 5; (ii) FixAm,
where the shear+photo-z parameter Am is fixed to 1 and the other
four parameters are free; (iii) OnlyM, where the only free parameter
is the mass. We do not report the posteriors for FixAm or OnlyM
configurations.

Besides being used for constructing the full mass covariance, we
can perform the mass calibration for each of these configurations and
use the estimated uncertainties in each parameter to determine the
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Table 6. Parameters of the M–μ�–z relation from equation (40) with their
posteriors. The mass is defined as M200c in units of h−1 M�. The pivot μ�

and pivot redshift correspond to the median values of the cluster sample.
Flat priors are specified with limits in square brackets. Uncertainties are the
1σ confidence intervals and are split into statistical (first) and systematic
(second). The posterior of M0 is in units of h−1 M�.

Parameter Description Prior Posterior

M0 Mass pivot [1011, 1018] 1.14 ± 0.05 ± 0.05
Fμ� Mass proxy scaling [−10, 10] 0.76 ± 0.01 ± 0.06
Gz Redshift scaling [−10, 10] − 1.14 ± 0.04 ± 0.38

Figure 9. Parameters of the M200c–μ�–z relation. Contours show the 1σ ,
2σ , and 3σ confidence areas from the fiducial FULL run. At the top label,
we show the 1σ total uncertainties. For easy comparison with other results
in the literature, we are plotting log10M0 converted from M0, in which we
performed the fit.

statistical and systematic uncertainties in our final mass calibration.
The statistical error is computed by the difference in the variance of
the parameters obtained with the masses from Full and FixAm
configurations. The systematic uncertainties are obtained by the
difference in the parameter’s variance between theFull andOnlyM.

Our final mass calibration is performed using the masses from
our fiducial Full configuration together with the mass covariance
described in this section. The posteriors of the fitted parameters
are summarized in Table 6. The corresponding confidence contours
are shown in Fig. 9. This result shows that a galaxy cluster with
μ� = 5.16 × 1012 M� at z = 0.35 has a mean mass of log10M200c =
14.06 ± 0.03.

For a direct comparison with our previous work (Pereira et al.
2018), we show in Fig. 10 our estimated M200m–μ�–z relation (blue,
grey, and red solid lines) and the corresponding 1σ confidence
intervals (blue, grey, and red shaded regions) for redMaPPer clusters
in DES Y1 overlapped with the 2σ confidence intervals (orange
shaded regions) for the mass calibration of CS82’s redMaPPer
clusters.

Figure 10. The mass calibration in three redshift bins for the mass definition
M200m in units of h−1 M�. The solid lines are the result of our best fit with the
corresponding 1σ confidence intervals as shaded regions. For comparison,
we also present the 2σ confidence intervals of the previous mass calibration
of Pereira et al. (2018) as the orange shaded region.

5 R ESULTS

We perform a weak-lensing mass calibration of the total stellar-mass-
based mass proxy μ� using DES Y1 redMaPPer clusters. We divide
our sample into 12 stacks binned by redshift and μ� in the range 0.1
≤ z < 0.65, μ� < 5.5 × 1013 M�, using the sample with λ > 20.
Therefore, we use the same redMaPPer-selected cluster sample as in
McClintock et al. (2019), but compute μ� for each of the identified
clusters and perform the weak-lensing analysis binning in this new
proxy.

We model the weak-lensing signal by taking into account: cluster
miscentring (Section 3.3.1); model calibration systematics (Sec-
tion 3.5); source sample dilution by cluster members (Section 3.3.2);
shear measurement systematics and source photometric redshift
uncertainties (Section 3.3.3, Section 3.3.4); and triaxiality and
projection effects (Section 3.3.5). We perform the modelling of
the weak-lensing signal and apply a blinding factor in the derived
posterior of the masses to avoid confirmation bias in our estimates.

We performed the unblinding after reaching the final version of our
modelling pipeline , which was validated by an internal review from
members of the DES collaboration prior to unblinding. No changes
to the analysis and modelling pipeline were made post-unblinding.

We use the derived average masses to determine the cluster mass
calibration of M200c as a function of μ� and redshift according to
equation (39). The summary of our constraints on the scaling relation
for clusters at pivots μ0

� = 5.16 × 1012 M� and z0 = 0.35 is a mean
cluster mass of

M0 = [1.14 ± 0.05 ± 0.05] · 1014 h−1M�, (41)

with the slope Fμ�
for the mass proxy’s term of

Fμ�
= 0.76 ± 0.01 ± 0.06, (42)

and the slope Gz for the redshift’s term of

Gz = −1.14 ± 0.04 ± 0.38, (43)

where the first and second terms in the errors correspond to statistical
and systematic, respectively.

6 D ISCUSSION

Here we present a detailed discussion of the relationship between
μ� and λ to check the impact on the MOR of our λ-selected
sample binned in μ�. We also discuss our findings in the context

MNRAS 498, 5450–5467 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/4/5450/5902393 by guest on 25 M
ay 2024



μ� mass calibration on DES Y1 5463

of our previous work and present some possible ways to use μ� for
applications in cluster cosmology.

6.1 The relationship between λ and μ� and implications for the
slope Fμ�

In this section, we describe how to build a model for the relationship
between λ and μ� from simulations to check for potential selection
effects. We start with a dark matter halo catalogue from a simulation
of sufficient scale to contain rare massive haloes. As our work uses
a λ ≥ 20 catalogue to bin in μ�, we will need to assign each halo μ�

and λ.
Following Rozo et al. (2014), Evrard et al. (2014), Simet et al.

(2017), and Oguri et al. (2018), we assume that the relationship of
mass and an observable s follows a power-law form. For λ, this
〈log M|s〉 is

〈log M|λ〉 = a log

(
λ

40

)
+ b, (44)

where from McClintock et al. (2019) we have a = 1.36 ± 0.05, b =
14.49 ± 0.02 (we will assume that redshift evolution is zero), and
from Farahi et al. (2019) we have σ log M|λ = 0.13. For μ�, the relation
is

〈log M|μ�〉 = a log

(
μ�

5.2 × 1012

)
+ b, (45)

where from this paper we have a = 0.77 ± 0.06, b = 14.30 ± 0.02, and
by converting the scatter from Palmese et al. (2020) to logarithmic
base 10, we have σlog M|μ�

= 0.11. Note that we have made the proper
conversions of these results to work with masses from simulations
that are in units of M200m[M�].

To assign properties to our dark matter haloes, we will need
p(log s|M), where s is our vector of observables, i.e. s = {λ, μ�}.
Following Evrard et al. (2014) and Oguri et al. (2018), through the
Bayes theorem p(log M|s) can be converted to p(log s|M) by

p(log s|M) = p(log M|s)p(log s)∫
d(log s)p(log M|s)p(log s)

. (46)

Using the locally power-law model of Rozo et al. (2014) and Evrard
et al. (2014), we find that this has a lognormal distribution with mean

〈log s|M〉 = [
αT C−1(μ − π ) − β ln (10)

]
σ 2

log s|M, (47)

and variance

σ 2
log s|M = (

αT C−1α
)−1

, (48)

where α = {aλ, aμ�
}, μ = log M, π = {bλ, bμ�

}, and β is the slope
of the observable’s function. For λ, this is p(log λ)∝λ−β . Working
iteratively, we find that βλ = 3.5 and βμ�

= 1.67 for mocks near
thresholds of interest. The elements of the covariance matrix C are
computed by Cij = rijσ iσ j, where r is the correlation coefficient
between λ and μ�. The scatters σ are given by the components
{σlog λ|M, σlog μ�|M}.

We took the halo catalogue from the DES Buzzard simulation
v1.9.2 (DeRose et al. 2019), selecting a total of 16 000 square deg.
We paint on the observables accounting for the correlation between
them: To a given halo, each observable s has a property computed
via equation (47) with a random normal deviation given by equation
(48).

The mock catalogue is used to construct observable vectors that
may be compared against data or simulations. To verify whether
our observable vectors are reliable, we can check: (i) the observed
p(λ|μ�) and (ii) the fraction p(log μ� − M|log M). We will start with

the latter. The stellar mass in clusters is known to be a few per cent of
the halo dark matter mass. In the simulations studied by Farahi et al.
(2018), fig. 3 shows a p(log M� − M|log M) that goes from 2 to 1 per
cent over the mass range of interest. We note here that in their work
they use the stellar mass M� and not μ�, but since we derived μ�

from stellar mass, we expect to recover similar values for the stellar
fraction computed with μ�, i.e. p(log μ� − M|log M). Using equation
(47), we can paint stellar masses on top of dark matter haloes. In
order to recreate a physical behaviour for the p(log μ� − M|log M)
relation of haloes with log M/M� ≈ 14.30, the value for the slope
needs to be between Fμ�

≈ 0.75 and 1. We checked that values of
Fμ�

lower than this (e.g. ∼0.5) start to deviate from what is known
about the cluster stellar fractions.

A mock catalogue generated using values for the pivot mass and the
mass proxy scaling for μ� that recreates the cluster stellar fractions
in the simulations of Farahi et al. (2018) and the scaling relation of
McClintock et al. (2019) for λ, then reproduces the observed p(λ|μ�)
relation in the log-space, that is

log λ = (−5.06 ± 0.17) + (0.52 ± 0.01) log μ�, (49)

with an intrinsic scatter of σλ|μ�
= 0.16. For the mocks, performing

a simple linear fit with PYTHON POLYFIT, we obtained a relation that
is log λ = (−6.42 ± 0.02) + (0.626 ± 0.002)log μ�, with a scatter of
σλ|μ�

= 0.08. Therefore, when using the fitted intrinsic scatter σλ|μ�

as the 1σ uncertainty of the mean relation, the derived observed and
simulated relations are in good agreement.

Having produced acceptable mocks, we can explore the question
of the effect of selecting on λ > 20 on the slope of the 〈log M|μ�, z〉
relation measured by weak lensing having stacked in μ�.

In order to do this, we divided the haloes into three bins of z [0.1–
0.33, 0.33–0.5, 0.5–0.65] and four of μ� [0.5–3, 3–5, 5–10, 10–100]
× 1012 M� for samples that have cuts of λ ≥ [0, 10, 20]. We took
the average values of M, μ�, and z in these bins and then performed
an MCMC fit in the same form we did in real data. We found that the
slope between the lowest and second λ-cut is basically unaffected,
changing by ∼2 per cent. The slope between the second and third
λ-cut changed by ∼7 per cent. Considering the error bars from the
MCMC, we can see that this change in the slope is not too significant.
In summary, we believe that selecting on one observable and binning
on another should have an effect (e.g. changes in the slope), but
looking into simulations that reliably reproduce our observables, we
find that there was no significant change in the slope when we mimic
this selection. Therefore, we do not believe that there is a significant
signal of this selection effect in our results. Secondly, for plausible
stellar mass fractions, i.e. p(log μ� − M|log M) relations, one expects
power-law relations for 〈log M|μ�〉 to have exponents between 0.75
and 1, which is consistent with the slope of 0.77 that we found in our
data.

6.2 The redshift evolution of the M–μ�–z relation

The M–μ�–z relation presented in the Section 5 shows a marginal
dependence on redshift. Gz is in fact 3σ away from the Gz = 0
case. However, as can be noted from Fig. 10, there is a 0.1–0.2
dex difference in μ� at fixed M200m between the lowest and highest
redshift bins. This number is consistent with the typical intrinsic
scatter in stellar mass at fixed halo mass (e.g. Pillepich et al. 2018),
implying that the found redshift evolution is not significant. The
stellar mass functions in DES galaxy clusters studied in Palmese et
al. (in preparation) also find no significant redshift evolution, using
the same stellar masses.
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Given the current uncertainties, the simple redshift evolution
model used in this work is appropriate, but for future analyses with
DES clusters including larger statistics, a more sophisticated model
shall be tested. In fact, Farahi et al. (2018) showed that the slope and
scatter in the stellar mass–halo mass relation show some evidence
for running with z, although this is not as strong of an effect as the
one found for the gas fraction.

When comparing our result to the literature, one should also note
that intra-cluster light (ICL) is not taken into account in this work,
since simulation studies will often include the diffuse component
when quoting the total stellar mass. The ICL can constitute a
significant fraction of the total stellar mass (up to 40 per cent, e.g.
Pillepich et al. 2018 and Zhang et al. 2019b), and it has been shown
to build up since z ∼ 1 (e.g. Burke, Hilton & Collins 2015).

6.3 Comparison with previous work and considerations about
selection effects

The comparison of the result obtained in this work with a previous
calibration of μ� at low redshifts is tricky, because there we used
a different cluster sample identified by redMaPPer and Voronoi-
Tessellation cluster finders in the SDSS Stripe 82 region, and we
assumed an MOR without redshift evolution. For SDSS redMaPPer
clusters, we found a slope for the mass proxy of 1.74 ± 0.62, which
is compatible at ∼2σ with our present result.

It is known that at z < 0.1, nearly all cluster members are red
(e.g. Aguerri, Sánchez-Janssen & Muñoz-Tuñón 2007). However,
at higher redshifts (z > 0.1), the number of blue galaxies is
observed to increase and the number of red members is observed
to decrease (e.g. Butcher & Oemler 1984; Rakos & Schombert
1995; Gerke et al. 2007; Nishizawa et al. 2018). Furthermore, at
low z almost all galaxies more massive than 1010.3 M� are red,
and this corresponds roughly to the 0.4 L� luminosity threshold
of redMaPPer. Thus, at low z, λ, and μ� red-sequence-selected
samples should have, approximately, the same number of total
members and the same stellar mass. At higher z, richness and
stellar mass are expected to evolve differently. We believe that
this effect is related to the evidence for redshift evolution in
our MOR results (as the redshift slope Gz is not consistent with
zero; see Section 6.2) that is not observed in McClintock et al.
(2019). In fact, previous works (e.g. Farahi et al. 2018) have found
evidence that the stellar mass content of clusters may evolve with
redshift.

We have checked that the potential selection effect on 〈M|μ�,
z〉 introduced by the fact that the cluster sample has been selected
with a cut in richness at λ > 20 is subdominant for our results (see
Section 6.1). In fact, in the absence of scatter between λ and μ�,
selecting in λ or in μ� would have the same meaning. However,
Palmese et al. (in preparation) find that the scatter in μ� at fixed
richness is σμ�|λ ∼ 0.25 dex for the λ > 5 sample, result that is
largely dominated by the scatter at the low-richness end (λ < 20).
The largest impact of this scatter on our result is expected to be at the
lowest μ� binning, where some clusters may have scattered to λ <

20. We tested the impact of this effect by removing from our fit the
lowest μ� binning, and found no significant change in our parameter
estimates of the MOR.

With this work, we complete the programme of establishing μ�

as a reliable mass proxy in the same regime as the λ-based mass
calibration work by the DES collaboration, opening the possibility
of exploring the novel regimes of low mass–low z and high mass–
high z in a forthcoming paper.

6.4 Possible implications for cluster cosmology

Since there is a tight connection between galaxy masses and halo
masses (e.g. Conroy & Wechsler 2009; Behroozi, Conroy & Wechsler
2010; Coupon et al. 2015; Niemiec et al. 2017; Shan et al. 2017;
Wechsler & Tinker 2018; Huang et al. 2020; Palmese et al. in
preparation), stellar-mass-based mass proxies such as μ� show great
potential to be accurate halo mass estimators in photometric galaxy
surveys. They can be used to probe galaxy evolution and can also
help to improve the constraints on cosmological parameters.

In the review by Wechsler & Tinker (2018), they present a series
of application for the galaxy–halo connection in cosmology, e.g.
systematics in cluster cosmology, the impact of baryons, and galaxy
clustering at small scales. For cluster cosmology, in particular,
several studies have shown that projection effects have a non-
negligible impact on the mass–richness relationship (Wojtak et al.
2018; Costanzi, M. and Rozo, E. et al. 2019b; Murata et al. 2019;
Sunayama et al. 2020), most likely due to a dependence on the details
of the galaxy–halo connection, such as the colour dependence of the
cluster members. Since μ� is a colour-independent proxy and has a
well-defined physical interpretation, we believe it has the potential
to contribute in the understanding of the projection effects in the
cluster cosmology context. In a future work, we plan to perform a
comparison of projection effects between μ� and λ, using the new
version of the DES Buzzard simulation (DeRose et al. 2019) that has
stellar-mass information.

7 SU M M A RY

We have measured the stacked weak-lensing signal around 6124
clusters in the DES Y1 redMaPPer catalogue with λ > 20 and 0.1
≤ z < 0.65. We have computed the stellar-mass-based proxy μ�

for these clusters and performed the lensing measurements in bins
of μ� and z. In the mass modelling, we have accounted for several
systematics including cluster miscentring, model calibration, boost
factors, shear and photo-z bias, triaxiality, and projection effects.

Then, we use the fitted weak-lensing mass to perform the mass
calibration of this sample. We find a mass–μ�–z relation of

〈M200c|μ�, z〉 = 1.14 ± 0.05 stat. ± 0.05 sys. · 1014

×
(

μ�

5.16 × 1012M�

)0.76±0.01 stat.±0.06 sys.

×
(

1 + z

1.35

)−1.14±0.04 stat.±0.38 sys.

, (50)

in units of h−1 M�. This scaling relation is consistent within 2σ with
previous μ� measurements using the SDSS redMaPPer clusters and
lensing data from the CS82 survey (Pereira et al. 2018).

We have used mock catalogues from DES Buzzard simulations
to check for a signal of selection effects since we have a λ-selected
sample binned in μ�, but we found that such signal is negligible.
We also concluded that if such an effect is present, we should have
seen a considerable change in the slope due to the lowest μ� bin in
comparison to the other bins. We test this hypothesis in the data by
removing the lowest bin of μ� and performing the mass calibration
again. We found no significant change in the slope of our relation.
Therefore, we conclude that our analysis is not significantly affected
by this selection effect. However, we understand that further work
to properly quantify this selection effect is necessary. We also show
from these mocks that shallower slopes in the mass proxy term are
possible for stellar-mass-based proxies.
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We found evidence for redshift evolution in our scaling relation.
However, the difference in μ� at fixed halo mass between the lowest
and highest redshift bins is ∼0.1–0.2 dex, which is consistent with
intrinsic scatter in stellar mass at fixed halo mass, and this implies
that the redshift evolution we found might not be significant.

This work provides the most careful weak-lensing mass calibration
of μ� to date. It is an important step towards establishing μ�

as a reliable mass proxy not only for studying systematics such
as projection effects and low-richness clusters but also for future
applications in cluster cosmology.
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Spain
50Institute of Astronomy, University of Cambridge, Madingley Road, Cam-
bridge CB3 0HA, UK
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