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It is shown that a certain class of Riesz product type measures on R is realized a spectral type of rank one flows. As a consequence, we will establish that some class of rank one flows has a singular spectrum. Some of the results presented here are even new for the Z-action. Our method is based, on one hand, on the extension of Bourgain-Klemes-Reinhold-Peyrière method, and on the other hand, on the extension of the Central Limit Theorem approach to the real line which gives a new extension of Salem-Zygmund Central Limit Theorem. We extended also a formula for Radon-Nikodym derivative between two generalized Riesz products obtained by el Abdalaoui-Nadkarni and a formula of Mahler measure of the spectral type of rank one flow but in the weak form. We further present an affirmative answer to the flow version of the Banach problem, and we discuss some issues related to flat trigonometric polynomials on the real line in connection with the famous Banach-Rhoklin problem in the spectral theory of dynamical systems.

INTRODUCTION

The purpose of this paper is to study the spectral type of some class of rank one flows and its connection to Riesz products on real line. we will also establish similar results to those proved for the spectral type of rank one maps, and we will extended, as far as possible, the results obtained by M. Nadkarni and the author for the generalized Riesz products on the circle [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF]. So, this later paper can be seeing as a companion to this paper. Notice that, therein, the authors proved an entropy formula for the spectral type of rank one by computing its Mahler measure and by applying some methods from H p theory. Here, using the entropy method, we will extended as far as possible those results. Let us point also that some of the results presented here are new even for the Z-action. Precisely, Klemes-Parreau theorem on the singularity of the linear staircase and our result on the singularity of exponential straicase. we will further discuss some issues related to flat trigonometric polynomials on real line.

We recall that there exists a several generalized Riesz products [START_REF] Queffélec | Substitution dynamical systems spectral analysis[END_REF], [START_REF] Brown | Some new singular Fourier-Stieltjes series[END_REF], [START_REF] Hewitt | Singular measures with absolutely continuous convolution squares[END_REF], [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF]. But all those generalized Riesz products is based on the notion of dissociation (Roughly speaking the alphabet is dissociated if there exist at most one way to product a word of given length). As in the classical case, the dissociation property is needed to prove the existence of those generalized Riesz products. In our case we deals with generalized Riesz products without dissociated property, nevertheless, we shall prove the existence of these kind of generalized Riesz products in the case of R action using the dynamical properties. In 1993, The same generalization for Z action has been produced by Bourgain in [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF]. Precisely, J. Bourgain in [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] introduced a new method of generalized Riesz products and proved that almost surely Ornstein's transformations have singular spectrum. Subsequently, using the same method, I. Klemes [START_REF] Klemes | The spectral type of staircase transformations[END_REF] and I. Klemes & K. Reinhold [START_REF] Klemes | Rank one transformations with singular spectre type[END_REF] show that mixing staircase transformations of Adams [START_REF] Adams | On Smorodinsky conjecture[END_REF] and Adams & Friedman [START_REF] Adams | Mixing staircase[END_REF] have singular spectrum. Here, we will extended, as far as possible, those results.

Rank one flows have simple spectrum and using a random Ornstein procedure [START_REF] Ornstein | On the root problem in ergodic theory[END_REF], A. Prikhod'ko in [START_REF] Prikhod'ko | Stochastic constructions of flows of rank 1[END_REF] produce a family of mixing rank one flows. It follows that the mixing rank one flows may possibly contain a candidate for the flow version of the Banach's well-known problem whether there exists a dynamical flow pΩ, A, µ, pT t q tPR q with simple Lebesgue spectrum. In [START_REF] Prikhod'ko | Littlewood polynomials and their applications to the spectral theory of dynamical systems[END_REF], A. Prikhod'ko introduced a class of rank one flows called exponential staircase rank one flows and studied its spectral type. The paper contained many interesting ideas and facts. Moreover, therein, the author stated also that in this class the answer to the flow version of Banach problem is affirmative by establishing that there is a L 1 -locally flat trigonometric polynomials on real line. Unfortunately, as we shall see , those polynomials are far from being L 1 -locally flat (see the appendix). We will further proved that the spectrum of a large class of exponential staircase rank one flow is singular.

Our main tools are on one hand an extension to R of the CLT method (introduced in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF] for the torus) and on the other hand the extension of Bourgain methods [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] for the generalized Riesz products on R. It turns out that one of the most crucial idea here is to generalize first the Bourgain lemma in [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] which may be independently with some interest. For that, we shall give a new generalization of Weiner Wintner to flows. We further present a new extension of the Salem-Zygmund CLT Theorem [START_REF] Zygmund | Trigonometric series[END_REF] to the trigonometric sums with real frequencies.

Originally Salem-Zygmund CLT Theorem concerns the asymptotic stochastic behavior of the lacunary trigonometric sums on the torus. Since Salem-Zygmund pioneering result, the central limit theorem for trigonometric sums has been intensively studied by many authors, Erdös [START_REF] Erdös | On trigonometric sums with gaps[END_REF], J.P. Kahane [START_REF] Kahane | Lacunary Taylor and Fourier series[END_REF], J. Peyrière [START_REF] Peyrière | Étude de quelques propriétés des produits de Riesz[END_REF], Berkers [START_REF] Berkes | On the central limit theorem for lacunary trigonometric series[END_REF], Murai [START_REF] Murai | The central limit theorem for trigonometric series[END_REF], Takahashi [START_REF] Takahashi | Probability limit theorems for trigonometric series. Limit theorems of probability theory[END_REF], Fukuyama and Takahashi [START_REF] Fukuyama | The central limit theorem for lacunary series[END_REF], and many others. The same method is used to study the asymptotic stochastic behaviour of Riesz-Raikov sums [START_REF] Petit | Le théorème limite central pour des sommes de Riesz-Raȋkov[END_REF]. Nevertheless all these results concern only the trigonometric sums on the torus.

It turns out that the fundamental ingredient in our proof is based on the famous Hermite-Lindemann Lemma in the transcendental number theory [START_REF] Waldschmidt | Elliptic functions and transcendence[END_REF].

Notice that the main argument used in the torus case [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF] is based on the density of trigonometric polynomials. This argument cannot be applied here since the density of trigonometric polynomials in L 1 pR, ωptqdtq (ω is a positive function in L 1 pRq), is not verified unless ω satisfies some extra-condition. Nevertheless, using the density of the functions with compactly supported Fourier transforms, we are able to conclude.

We recall that Banach problem is stated in Ulam's book [69, p.76] as follow Question 1.1 (Banach Problem). Does there exist a square integrable function f pxq and a measure preserving transformation T pxq, ´8 ă x ă 8, such that the sequence of functions tf pT n pxqq; n " 1, 2, 3, ¨¨¨u forms a complete orthogonal set in Hilbert space? 1 Therefore, the flow can act on a σ-finite measure space. Banach problem was solved positively here [START_REF] El Abdalaoui | Ergodic Banach problem, flat polynomials and Mahler's measures with combinatorics[END_REF] by establishing that there is a sequence of L 1 -flat 1 Professor M. Nadkarni pointed to me that the question contain an oversight. The sequence of functions should be bilateral, that is, n P Z. trigonometric polynomials on the torus. This is accomplished by applying a result due to M. Nadkarni and the author which say that the existence of L 1 -flat polynomials implies that there is rank one map acting on infinite measure space. As, we shall see, this result can be extended to the case of the flow of rank one. We will thus obtain a positive answer to Banach problem by establishing the existence of rank one flow acting on infinite measure space.

We should point out here that the famous spectral problem in ergodic theory asks on the existence of a measure preserving transformation on a probability space with simple Lebesgue spectrum. This problem should be attributed to Banach and Rokhlin. Indeed, Rokhlin asked whether there exist an ergodic measure preserving transformation on a finite measure space whose spectrum is Lebesgue type with finite multiplicity [61, p.219].

Later, Kirillov in his 1966's paper [START_REF] Kirillov | Dynamical systems, factors and group representations, (Russian) Uspehi Mat. Nauk[END_REF] wrote "there are grounds for thinking that such examples do not exist". However he has described a measure preserving action (due to M. Novodvorskii) of the group p À 8 j"1 Zq ˆt´1, 1u on the compact dual of discrete rationals whose unitary group has Haar spectrum of multiplicity 2. Similar group actions with higher finite even multiplicities are also given.

Subsequently, finite measure preserving transformation having Lebesgue component of finite even multiplicity have been constructed by J. Mathew and M. G. Nadkarni [START_REF] Mathew | A measure-preserving transformation whose spectrum has Lebesgue component of multiplicity two[END_REF], Kamae [START_REF] Kamae | Spectral properties of automaton-generating sequences[END_REF], M. Queffelec [START_REF] Queffélec | Une nouvelle propriété des suites de Rudin-Shapiro[END_REF], and O. Ageev [START_REF] Ageev | Dynamical System With an Even-Multiplicity Lebesgue Component in the Spectrum[END_REF]. Fifteen years later, M. Guenais [START_REF] Guenais | Morse cocycles and simple Lebesgue spectrum Ergodic Theory Dynam[END_REF] used a L 1 -flat generalized Fekete polynomials on some torsion groups to construct a group action with simple Lebesgue component. A straightforward application of Gauss formula yields that the generalized Fekete polynomials constructed by Guenais are ultraflat. Very recently, el Abdalaoui and Nadkarni strengthened Guenais's result [START_REF] El Abdalaoui | A non-singular transformation whose Spectrum has Lebesgue component of multiplicity one[END_REF] by proving that there exist an ergodic non-singular dynamical system with simple Lebesgue component. However, despite all these efforts, it is seems that the question of Rokhlin still open since the maps constructed does not have a pure Lebesgue spectrum.

It is noticed in [START_REF] El Abdalaoui | Ergodic Banach problem, flat polynomials and Mahler's measures with combinatorics[END_REF] that this problem is a "dark continent" for the ergodic theory.

We should mention also that the famous problem in ergodic theory whether there is flow acting on the probability space with finite multiplicity and pure Lebesgue spectrum is due to Rokhlin [61, p.219 and p.238]. As far as the author know, this problem is still open for any finite multiplicity.

The paper is organized as follows. In section 2, we review some standard facts from the spectral theory of dynamical flows. In section 3, we recall the basic construction of the rank one flows obtained by the cutting and stacking method and some related definitions. In sections 4, 5, 6 and 7, we summarize and extend the relevant material on the Bourgain criterion concerning the singularity of the generalized Riesz products on R. In section 8, we extend el Abdalaoui-Nadkarni theorem [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF] by presenting a formula of Radon-Nikodym for the Riesz products on R. In section 9, we extend partially the el Abdalaoui-Nadkarni formula for the Mahler measure of the spectral type of rank one maps established in [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF]. In section 10, we extend the results from [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF] and [START_REF] El Abdalaoui | Notes on the flats polynomials[END_REF] to the real line with connection to flat polynomials and Banach problem. In section 11, we extend Bourgain theorem [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] by establishing the singularity almost sure of Ornstein rank one flows. In sections 12 and 13, we present the real line version of Klemes-Reinhold theorem and Klemes-Parreau theorem. In sections 14 and 15, we develop the CLT method for trigonometric sums with real frequencies and we prove the singularity of some class of exponential staircase rank one flows. In section 16, we present present an affirmative answer to the flow version of Banach problem. Finally, in the appendix, we introduce the notion of L 1 -locally flat polynomials and we discuss some issues related to the main result in [START_REF] Prikhod'ko | Littlewood polynomials and their applications to the spectral theory of dynamical systems[END_REF].

BASIC FACTS FROM SPECTRAL THEORY OF DYNAMICAL FLOWS

A dynamical flow is a quadruplet pX, A, µ, pT t q tPR q where pX, A, µq is a Lebesgue probability space and pT t q tPR is a measurable action of the group R by measure preserving transformations. (It means that ' each T t is a bimeasurable invertible transformation of the probability space such that, for any A P A, µpT ´1 t Aq " µpAq, ' for all s, t P R, T s ˝Tt " T s`t , ' the map pt, xq Þ Ñ T t pxq is measurable from R ˆX into X.)

Let us recall some classical definitions. A dynamical flow is ergodic if every measurable set which is invariant under all the maps T t either has measure zero or one. A number λ is an eigenfrequency if there exists nonzero function f P L 2 pXq such that, for all t P R, f ˝Tt " e iλt f . Such a function f is called an eigenfunction. An ergodic flow pX, A, µ, pT t q tPR q is weakly mixing if every eigenfunction is constant (a.e.). A flow pX, A, µ, pT t q tPR q is mixing if for all f, g P L 2 pXq, Any dynamical flow pT t q tPR q induces an action of R by unitary operators acting on L 2 pXq according to the formula U Tt pf q " f ˝T´t . When there will be no ambiguity on the choice of the flow, we will denote U t " U Tt .

The spectral properties of the flow are the property attached to the unitary representation associated to the flow. We recall below some classical facts; for details and references see [START_REF] Cornfeld | Ergodic theory[END_REF] or [START_REF] Katok | Spectral Properties and Combinatorial Constructions in Ergodic Theory[END_REF].

Two dynamical flows pX 1 , A 1 , µ 1 , pT t q tPR q and pX 2 , A 2 , µ 2 , pS t q tPR q are metrically isomorphic if there exists a measurable map φ from pX 1 , A 1 , µ 1 q into pX 2 , A 2 , µ 2 q, with the following properties:

' φ is one-to-one, ' For all A P A 2 , µ 1 pφ ´1pAqq " µ 2 pAq. ' S t ˝φ " φ ˝Tt , @t P R.
If two dynamical flows pT t q tPR and pS t q tPR are metrically isomorphic then the isomorphism φ induces an isomorphism V φ between the Hilbert spaces L 2 pX 2 q and L 2 pX 1 q which acts according to the formula V φ pf q " f ˝φ. In this case, since V φ U St " U Tt V φ , the adjoint groups pU Tt q and pU St q are unitary equivalent. Thus if two dynamical flows are metrically isomorphic then the corresponding adjoint groups of unitary operators are unitary equivalent. It is well known that the converse statement is false [START_REF] Cornfeld | Ergodic theory[END_REF].

By Bochner theorem, for any f P L 2 pXq, there exists a unique finite Borel measure σ f on R such that

x σ f ptq " ż R e ´itξ dσ f pξq " xU t f, f y " ż X f ˝Tt pxq ¨f pxq dµpxq.
σ f is called the spectral measure of f . If f is eigenfunction with eigenfrequency λ then the spectral measure is the Dirac measure at λ.

The following fact derives directly from the definition of the spectral measure: let pa k q 1ďkďn be complex numbers and pt k q 1ďkďn be real numbers; consider f P L 2 pXq and denote F " ř n k"1 a k ¨f ˝Tt k . Then the spectral measure σ F is absolutely continuous with respect to the spectral measure σ f and

dσ F dσ f pξq " ˇˇˇˇn ÿ k"1 a k e it k ξ ˇˇˇˇ2 . (1) 
Here is another classical result concerning spectral measures : let pg n q be a sequence in L 2 pXq, converging to f P L 2 pXq ; then the sequence of real measures pσ gn ´σf q converges to zero in total variation norm.

The maximal spectral type of pT t q tPR is the equivalence class of Borel measures σ on R (under the equivalence relation µ 1 " µ 2 if and only if µ 1 ăă µ 2 and µ 2 ăă µ 1 ), such that σ f ăă σ for all f P L 2 pXq and if ν is another measure for which σ f ăă ν for all f P L 2 pXq then σ ăă ν.

The maximal spectral type is realized as the spectral measure of one function: there exists h 1 P L 2 pXq such that σ h 1 is in the equivalence class defining the maximal spectral type of pT t q tPR . By abuse of notation, we will call this measure the maximal spectral type measure.

The reduced maximal type σ 0 is the maximal spectral type of pU t q tPR on

L 2 0 pXq def " $ ' & ' % f P L 2 pXq : ż f dµ " 0 , / .
/ -. The spectrum of pT t q tPR is said to be There exists an orthogonal decomposition of L 2 pXq into cyclic spaces

L 2 pXq " 8 à i"1 Zph i q, σ h 1 " σ h 2 " . . . (2) 
Each decomposition ( 2) is be called a spectral decomposition of L 2 pXq (while the sequence of measures is called a spectral sequence). A spectral decomposition is unique up to equivalent class of the spectral sequence. The spectral decomposition is determined by the maximal spectral type and the multiplicity function M : R Ñ t1, 2, . . .u Y t`8u, which is defined σ h 1 -a.e. by Mpsq "

ř 8 i"1 1 Y i psq, where Y 1 " R and Y i " supp dσx i dσx 1 for i ě 2.
The flow has simple spectrum if 1 is the only essential value of M. The multiplicity is homogeneous if there is only one essential value of M. The essential supremum of M is called the maximal spectral multiplicity.

Von Neumann showed that the flow pT t q tPR has homogeneous Lebesgue spectrum if and only if the associated group of unitary operators pU t q tPR satisfy the Weyl commutation relations for some one-parameter group pV t q tPR i.e.

U t V s " e ´ist V s U t , s, t P R,
where e ´ist denotes the operator of multiplication by e ´ist . It is easy to show that the Weyl commutation relations implies that the maximal spectral type is invariant with respect to the translations. The proof of von Neumann homogeneous Lebesgue spectrum theorem can be found in [START_REF] Cornfeld | Ergodic theory[END_REF].

RANK ONE FLOWS BY CUTTING AND STACKING METHOD

Several approach of the notion of rank one flow have been proposed in the literature. The notion of approximation of a flow by periodic transformations has been introduced by Katok and Stepin in [START_REF] Katok | Approximations in ergodic theory. (Russian) Uspehi Mat[END_REF] (see Chapter 15 of [START_REF] Cornfeld | Ergodic theory[END_REF]). This was the first attempt of a definition of a rank one flow.

In [START_REF] Del Junco | An example of a measure-preserving flow with minimal selfjoinings[END_REF], del Junco and Park adapted the classical Chacon construction [START_REF] Chacon | Approximation of transformations with continuous spectrum[END_REF] to produce similar construction for a flow. The flow obtain by this method is called the Chacon flow.

This cutting and stacking construction has been extended by Zeitz ([71]) in order to give a general definition of a rank one flow. In the present paper we follow this cutting and stacking (CS) approach and we recall it now. We assume that the reader is familiar with the CS construction of a rank one map acting on certain measure space which may be finite or σ-finite. A nice account may be founded in [START_REF] Friedman | Replication and stacking in ergodic theory[END_REF].

Let us fix a sequence pp n q nPN of integers ě 2 and a sequence of finite sequences of non-negative real numbers ´ps n,j q p n´1 j"1 ¯ną0 .

Let B 0 be a rectangle of height 1 with horizontal base B 0 . At stage one divide B 0 into p 0 equal parts pA 1,j q p 0 j"1 . Let pA 1,j q p 0 j"1 denotes the flow towers over pA 1,j q p 0 j"1 . In order to construct the second flow tower, put over each tower A 1,j a rectangle spacer of height s 1,j (and base of same measure as A 1,j ) and form a stack of height h 1 " p 0 `řp 0 j"1 s 1,j in the usual fashion. Call this second tower B 1 , with B 1 " A 1,1 .

At the k th stage, divide the base B k´1 of the tower B k´1 into p k´1 subsets pA k,j q p k´1 j"1 of equal measure. Let pA k,j q p k´1 j"1 be the towers over pA k,j q p k´1 j"1 respectively. Above each tower A k,j , put a rectangle spacer of height s k,j (and base of same measure as A k,j ). Then form a stack of height h k " p k´1 h k´1 `řp k´1 j"1 s k,j in the usual fashion. The new base is B k " A k,1 and the new tower is B k .

All the rectangles are equipped with Lebesgue two-dimensional measure that will be denoted by ν. Proceeding this way we construct what we call a rank one flow pT t q tPR acting on a certain measure space pX, B, νq which may be finite or σ´finite depending on the number of spacers added at each stage. This rank one flow will be denoted by pT t q tPR def " ´T t ppn,ps n`1,j q pn j"1 q ně0 ¯tPR The invariant measure ν will be finite if and only if

`8 ÿ k"0 ř p k j"1 s k`1,j p k h k ă `8.
In that case, the measure will be normalized in order to have a probability.

Remarks 3.1.

' The only thing we use from [START_REF] Zeitz | The centralizer of a rank-one flow[END_REF] is the definition of rank one flows. Actually, a careful reading of Zeitz paper [START_REF] Zeitz | The centralizer of a rank-one flow[END_REF] shows that the author assumes that for any rank one flow there exists always at least one time t 0 such that T t 0 has rank one property. But, as we shall see in the next point, this is not the case in general. Furthermore, if this property was satisfied then the weak closure theorem for flows would hold as a direct consequence of the King weak closure theorem [START_REF] King | The commutant is the weak closure of the powers, for rank-1 transformations[END_REF] which state that for any rank one map T , we have the centralizer of T is the weak closure of the powers, that is, CpT q " W CT pT q, where CpT q is the centralizer of T and W CT pT q is the weak closure of tT n , n P Zu. Indeed, by King's theorem, we get CpT t q Ă CpT t 0 q J.King " W CT pT t 0 q Ă W CT pT t q Ă CpT t q,. ' Let us further notice that an alternative definition of a rank one flow has been proposed by Ryzhikov in [START_REF] Ryzhikov | Mixing, rank and minimal self-joining of actions with invariant measure[END_REF]. We don't know if these two definitions are equivalent. Here is Ryzhikov definition.

Definition 3.2. A dynamical flow pX, A, µ, pT t q tPR q has rank one if there exists a sequence pE j q in A, a sequence ps j q of real numbers and a sequence ph j q of positive integers such that, for each j, ξ j :" ˜Ej , T s j E j , T 2s j E j , ¨¨¨, T ph j ´1qs j E j , Xz

h j ´1 ğ i"0 T is j E j is a partition of X and
the sequence pξ j q converges to the σ-algebra (that is, for every A P A and every j, we can find a ξ j -measurable set A j in such a way that µpA △ A j q ´´Ñ jÑ`8 0q;

-s j h j ´´Ñ jÑ`8 `8. 
' Based on the previous definition, Ryzhikov proved the weak closure theorem for flows, that is, CpT t q " W CT pT t q. It follows that for a mixing rank one flow, we have CpT t q " tT t , t P Ru. Hence for each t, T t is not a rank one map since its centralizer is uncountable.

' After Ryzhikov's paper, del Junco in [START_REF] Del Junco | A simple map with no prime factors[END_REF] extended the cutting and stacking methods to the case of local Abelian group using a Følner sequence. He introduced a new construction called CF construction. The definition using the CF construction can be founded in [START_REF] Danilenko | Mixing rank-one actions of locally compact abelian groups[END_REF]. But we must point out that this definition is more general than the CS definition. In fact, CF definition corresponds to the notion of funny rank one flows.

ON BOURGAIN'S LEMMA FOR FLOWS

Let pX, B, µ, T q be an ergodic probability measure preserving dynamical system. In [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] Bourgain uses the following fact : for all f P L 2 pXq, for µ-almost all x, the sequence of finite measures

σ f,N,x pdθq " ˇˇˇˇ1 ? N N ´1 ÿ j"0 f pT j xq e 2iπjθ ˇˇˇˇ2 dθ
converges weakly to the spectral measure of f . This fact is a simple consequence of a classical harmonic analysis lemma [START_REF] Coquet | Sur la mesure spectrale de certaines suites arithmétiques[END_REF], combined with the ergodic theorem which asserts that, for µ-almost all x, for all k P Z,

lim N Ñ`8 1 N N ÿ n"1 f pT n`k xq ¨f pT n xq " ż X f ˝T k ¨f dµ " x σ f pkq.
We will state a similar result for R-actions.

Let us consider a kernel tk λ u λą0 , that is a family of bounded positive integrable functions k λ on R, with ş k λ ptq dt " 1 such that the family of probability measures k λ ptq dt converges weakly to the Dirac mass at zero, when λ goes to zero.

If ψ is any bounded continuous function on R we have : for all t P R, lim λÑ0 ψ ˚kλ ptq " ψptq.

Thus for all φ P L 2 pdtq and for all t P R we have lim λÑ0 pφ ˚r φq ˚kλ ptq " φ ˚r φptq, where we denote r φptq " φp´tq. Using Fourier transformation and its inverse this can be written :

lim λÑ0 _ hkkkkkikkkkkj ˆˇˇp φ ˇˇ2 ¨p k λ ˙" lim λÑ0 _ hkkkkkkkikkkkkkkj ˆ{ pφ ˚rq φ ¨p k λ ˙" φ ˚r φ. (3) 
Let pT t q tPR be an ergodic flow on a Lebesgue space pX, B, µq, and f P L 2 pXq. We claim that, for µ-almost all x, for all S ą 0, Equation [START_REF] El Abdalaoui | Notes on the flats polynomials[END_REF] 

lim λÑ0 `σf,λ,S,x " σ f ,
in the sense of weak convergence.

ALMOST SURE APPROXIMATION OF THE CORRELATION FUNCTION

We state and prove in this section a version of the ergodic theorem which gives an almost sure approximation of the function s Þ Ñ x σ f psq. The statement of Corollary 5.2 can be found in [START_REF] Wiener | On the ergodic dynamics of almost periodic systems[END_REF], but we have not been able to find a proof in the literature.

We prove the result for functions which are Lipschitz regular along the trajectories, then use a density argument. This method can be applied to a wide class of ergodic theorems perturbed in time, including convergence of multiple ergodic averages with weight of Wiener-Wintner type.

We consider an ergodic dynamical flow pX, A, µ, pT t q tPR q.

Theorem 5.1. For any S ą 0 and all f, g P L 2 pXq, for almost all x P X, we have This yields the result we need as a corollary.

lim τ Ñ`8 1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt "
Corollary 5.2. Let f P L 2 pµq. There exist a full measure subset X f of X such that, for any x P X f and any s P R, we have

lim τ Ñ8 1 τ ż τ 0 f pT t`s xq ¨f pT t xq dt " ż X f ˝Ts ¨f dµ.
As mentioned above we shall need the following crucial lemma.

Lemma 5.3. The set of bounded measurable functions f on X such that, for any x P X, the function s Þ ÝÑ f pT s xq is Lipschitz continuous with Lipschitz constant not depending on x, is dense in L 2 pXq.

Proof. Let f be a bounded measurable function on X and a be a positive number. We define the function f a on X by Let us choose x and S as above. Let ε be a positive number and q a positive rational number such that 1 q ă ε. Then, there exists τ 0 ą 0 such that , for all τ ą τ 0 , for any rational number r " p q belonging to the interval r´S, Ss, ˇˇˇ1 Remark. Using the same ideas of Bourgain in [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] combined with the lemma 4.1 one may compute the maximal spectral type of rank one flows. But,as we shall see in the next section, it is easier to do the calculations directly following the ideas of Choksi-Nadkarni [START_REF] Choksi | The maximal spectral type of rank one transformation[END_REF] and Klemes-Reinhold [START_REF] Klemes | Rank one transformations with singular spectre type[END_REF].

f a pxq " 1 a ż a 0 f pT t xq dt. Since lim tÑ0 f ˝Tt " f in L 2 pXq
τ ż τ 0 f pT t`

ON THE MAXIMAL SPECTRAL TYPE OF ANY RANK ONE FLOW BY CS CONSTRUCTION

In the spirit of the methods used in the case of Z actions by Host-Mela-Parreau [START_REF] Host | Nonsingular transformations and spectral analysis of measures[END_REF], Choksi-Nadkarni [START_REF] Choksi | The maximal spectral type of rank one transformation[END_REF] and Klemes-Reinhold [START_REF] Klemes | Rank one transformations with singular spectre type[END_REF], we shall compute the maximal spectral type of the rank one flow given by CS construction. Since the dual group of R is R which is not compact, we need to produce a probability measure on R for which we can define the notion of Riesz product. It turns out that a probability measure on R naturally associated to rank one construction is given by Fejér kernel density. Precisely, we have Theorem 6.1 (Maximal spectral type of rank one flows). For any s P p0, 1s, the spectral measure σ 0,s is the weak limit of the sequence of probability measures

n ź k"0 |P k pθq| 2 K s pθq dθ,
where

P k pθq " 1 ? p k ˜pk ´1 ÿ j"0
e iθpjh k `s k pjqq ¸, sk pjq "

j ÿ i"1 s k`1,i , sk p0q " 0.
and

K s pθq " s 2π ¨˜sinp sθ 2 q sθ 2
¸2.

In addition the continuous part of spectral type of the rank one flow pX, A, ν, pT t q tPR q is equivalent to the continuous part of

ÿ kě1 2 ´kσ 0, 1 k .
As customary, for a fixed s P p0, 1s, the spectral measure σ 0,s will be denoted by

σ 0,s " `8 ź k"0 |P k pθq| 2 .
The theorem above gives a new generalization of Choksi-Nadkarni Theorem [START_REF] Choksi | The maximal spectral type of rank one transformation[END_REF], [START_REF] Nadkarni | Spectral theory of dynamical systems[END_REF]. We point out that in [START_REF] El Abdalaoui | Thése d'habilitation[END_REF], the author generalized the Choksi-Nadkarni Theorem to the case of funny rank one group actions for which the group is compact and Abelian. 6.1. Spectral interpretation of CS construction. We start from the CS construction described in the preceding section. Let B n,s be the rectangle of height s Ps0, h n r and base A n,1 " B n in the n th flow tower. By construction, we have

B n,s " pn´1 ď j"0 T jhn`snpjq B n`1,s ,
where sn pjq :" s n`1,1 `sn`1,2 `. . . `sn`1,j and sn p0q " 0. We have 

ν `Bn,s ˘" p n ν `Bn`1,s ˘, Put f n,s " 1 b ν `Bn,s ˘1 1 
It follows from (1) that

dσ k,s " |P k | 2 dσ k`1,s " . . . " m´1 ź j"0 |P k`j,s | 2 dσ k`m,s , (5) 
where σ k,s denotes the spectral measure of f k,s , k ě 0, s Ps0, h k r.

Lemma 6.2. Denoting, for each integer n ě 0, H n :" linear spantU t pf n,s q : s Ps0, h n r, t P r0, h n ´ssu,

we have H n Ă H n`1 .
Proof. On one hand we have (4); on the other hand, for s Ps0, h n r and t P r0, h n śs, since 1 1 TtBn,s "

1 1 B n,s`t ´1 1 Bn,t ,
we have

U t pf n,s q " c 1 `t s f n,s`t ´c t s f n,t .
These two facts show that

H n Ă H n`1 . Lemma 6.3. `8 ď n"0 H n " L 2 pXq.
Proof. Notice that ttT t pB n,s qu sPs0,hnr,tPr0,hn´ss u 8 n"0 generates a dense subalgebra of the Borel σ-algebra, (here we are using the metric (modulo sets of measure zero) given by dpA, Bq " Lebesgue measure of A△B). It follows that the linear subspace generated by tU t pf n,s q : s Ps0, h n r, t P r0, h n ´ss, 0 ď n ă 8u is dense in L 2 pXq. But Lemma 6.2 shows that this linear subspace is Y n H n . Lemma 6.4. The maximal spectral type σ of the rank one flow pX, A, ν, pT t q tPR q is absolutely continuous with respect to

ÿ ně0,kě1 2 ´pn`kq σ n, 1 k .
This lemma tells us that the class of ř ně0,kě1 2 ´pn`kq σ n, 1 k is the maximal spectral type of the flow.

Proof. Given f P L 2 pXq, since the span of the family tU t pf n,s q : s Ps0, h n r, t P r0, h n ´ss, 0 ď n ă 8u in dense in L 2 pXq, f can be approximated by functions g n P L 2 pXq which are constant on the levels of the flow tower B n . We can find is the complex measure on R whose Fourier transform is

g n " kn ÿ j"1 a pnq j U t pnq j f n,
t Þ Ñ A U t ´Ut pnq j f n,s pnq j ¯, U t pnq i f n,s pnq i q E .
It is easy to see that σ t pnq i ,s

pnq i ,t pnq j ,s pnq j
is absolutely continuous with respect to σ n,s pnq i and σ n,s pnq j . We claim that, for all n P N and s ą 0, the spectral measure σ n,s is absolutely continuous with respect to

ÿ ně0,kě1 2 ´pn`kq σ n, 1 k .
First consider the case where s is rational. In this case, put s " p q where p P Z and q P Z ˚. Then

f n,s " 1 ? p p ÿ j"1 Tj´1 q f n, 1 q , which implies that σ n,s ! σ n, 1 q
. The case where s is irrational can be handled using the existence of rational numbers p pm qm q mPN which converge to s. We have

}f n,s ´fn, pm qm } 2 ´´Ñ mÑ8 0.
This yields that σ n, pm qm converges in the sens of the norm variation to σ n,s and the proof of the claim is complete. Therefore, if A is a Borel set such that, for any pn, kq P N ˆN˚, we have σ n, 1 k pAq " 0, then, for all pn, sq P Nˆs0, h n r, σ n,s pAq " 0. We deduce that σ gn " 0. Thus

0 ď σ f pAq " ν n pAq ď ||ν n || ´´Ñ nÑ`8 0.
This achieves the proof of the lemma.

Remark. Lemma 6.4 can be derived from the more general result which follows.

Let pU t q tPR be a family of bounded operators on the Hilbert space H such that U t`s " U t ˝Us , for any s, t P R and let px i q iě1 be a bounded sequence in H such that span tU t x i { t P R, i ě 1u " H.

Then the maximal spectral type pU t q tPR can be given by

σ max " `8 ÿ i"1 σ x i 2 i .
As mentioned in the introduction, we shall show that the maximal spectral type of a rank one flow given by CS construction is given by some kind of generalized Riesz product. In the classical theory, the Riesz product on R is defined using some kernel function as is done in [START_REF] Peyrière | Étude de quelques propriétés des produits de Riesz[END_REF] (a function K is called a kernel function if K is a positive integrable function on R with positive Fourier transform p K such that the support of p K is contained in some bounded interval). In our case, we will see that the kernel is given by the dynamics as the weak limit of the sequence of measures pσ n,s q nPN . We summarize this fact in the following lemma. (We consider only values of s in s0, 1r, so that the measures σ n,s are always well defined.) Lemma 6.5. The sequence of spectral measures pσ n,s q nPN converges weakly to the measure K s ptq dt, where K s ptq "

s 2π ¨ˆsinp st 2 q st 2 ˙2.
Proof. Let t P r0, `8r and choose n 0 P N ˚such that for all n ě n 0 , h n ´s ą t. By definition of σ n , we have

y σ n,s ptq " νpT t B n,s Ş B n,s q νpB n,s q .
When comparing t to s we must distinguish two cases 1. t ą s. In this case we have

T t B n,s č B n,s " H, 2. t ď s.
We claim that we have

νpT t B n,s Ş B n,s q νpB n,s q " 1 ´t s . (6) 
Indeed the flow move by the unit speed uniformly and if we put B n,s " r0, α n s ˆr0, ss, we have T t B n,s " r0, α n s ˆrt, s `ts. It follows easily that we have T t B n,s Ş B n,s " r0, α n s ˆrt, ss which yields to

νpT t B n,s Ş B n,s q νpB n,s q " t ´s s " 1 ´t s .
and the proof of ( 6) is complete.

Notice that x K s ptq " ˆ1 ´|t| s ˙1 1 r´s,ss ptq. Therefore,

x σ n ptq ´´Ñ nÑ8 x K s ptq,
which achieves the proof of the lemma.

Remark 6.6. Since K s ptq is positive a.s. with respect to Lebesgue measure and ż `8

´8 K s ptqdt " x K s p0q " 1,
the probability measure K s ptq dt is equivalent to the Lebesgue measure on R.

6.2.

A generalized Riesz product on R and dynamics. The trigonometric polynomials P n are related to the cutting and stacking construction of a rank one flow. They are defined by

P n pθq " 1 ? p n pn´1 ÿ j"0 e iθpjhn`snpjqq .
We also recall that K s denotes the Fejér Kernel on R, characterized by its Fourier transform :

x K s pθq " ˆ1 ´|θ| s ˙1 1 r´s,ss pθq. Lemma 6.7. Let K be an integrable function on R, whose Fourier transform p K is null outside the interval r´1, 1s. Let 0 ď n 1 ă n 2 ă . . . ă n k be integer numbers. We get ż

R k ź j"1 ˇˇP n j pθq ˇˇ2 ¨Kpθq dθ " ż R Kpθq dθ.
This applies in particular to K " K s when 0 ă s ă 1.

Proof. We start with

ˇˇP n j pθq ˇˇ2 " 1 `1 p n j ÿ
0ďa,băpn j a‰b e iθppb´aqhn j `sn j pbq´sn j paqq .

Let us define

W j " tpb ´aqh n j `s n j pbq ´s n j paq | b ‰ a P t0, ¨¨¨, p n j ´1uu.
Expanding the product of the ˇˇP n j pθq ˇˇ2 , we can write

ż R k ź j"1 ˇˇP n j pθq ˇˇ2 ¨Kpθq dθ ´1
as a sum of terms of the type

1 p n 1 ¨¨¨p n k p K ˜k ÿ j"1 ǫ j w j ¸,
where each ǫ j is 0 or 1 (not all " 0) and each w j belongs to W j . It is sufficient to prove that each of these terms is null. Since the Fourier transform of K is supported on r´s, ss, it is sufficient to prove that each of the numbers ř k j"1 ǫ j w j has absolute value ě 1.

We consider one of these expressions ř k j"1 ǫ j w j and denote by j 0 the greater index j such that ǫ j ‰ 0. We have ˇˇˇˇÿ

j ǫ j w j ˇˇˇˇě |w j 0 | ´ÿ jăj 0 |w j | .
Moreover, for all j,

h n j ď |w j | ď pp n j ´1qh n j `s n j pp n j q.
Thus it is sufficient to prove that

h n j 0 ´j0 ´1 ÿ j"0 pp n j ´1qh n j `s n j pp n j q ě 1.
And this is true since

h n " p n´1 h n´1 `s n´1 pp n´1 q
implies by induction

h n ´n´1 ÿ k"0 pp k ´1qh k `s k pp k q " 1.
Lemma 6.8. Let K be a positive integrable function on R, whose Fourier transform p K has compact support. The sequence of measures |P n pθq| 2 Kpθq dθ converges weakly to Kpθq dθ.

Proof. Let us compute the Fourier transform of |P

n | 2 K. Fix t P R. ż R e ´itθ |P n pθq| 2 Kpθq dθ " ż R e ´itθ ˜1 `1 p n ÿ p‰q e iθppp´qqhn`psnppq´snpqqq ¸Kpθq dθ " p Kptq `1 p n ÿ p‰q p K pt ´pp ´qqh n ´ps n ppq ´s n pqqqq .
Since, for p ‰ q, |t ´pp ´qqh n ´s n ppq `s n pqq| ě h n ´|t|, we can choose n 0 ą 0 such that for all n ě n 0 , we have t ´pp ´qqh n ´s n ppq `s n pqq outside the support of p K. For all such n, ż R e ´itθ |P n pθq| 2 Kpθq dθ " p Kptq.

We proved that the Fourier transform of |P n | 2 K converges everywhere to the Fourier transform of K. The proof of Lemma 6.8 is complete.

Proposition 6.9. The sequence of measures |P n pθq| 2 dθ converges weakly to Lebesgue measure.

The weak convergence here is the convergence for the vague topology, where the space of test functions is the set of continuous functions with compact support. Of course, when we consider the convergence of a sequence of finite measures without "loss of mass", this weak convergence is also the convergence in the narrow topology, where the space of test functions is the set of all bounded continuous functions. Thus in Lemma 6.8 we can speak of narrow convergence, while in Proposition 6.9 we have to speak of vague convergence.

Proof of Proposition 6.9. Lemma 6.8 applies in particular to the Fejér Kernel K s , which is strictly positive on the interval p´2 π s , 2π s q. Let f be continuous function on R with compact support S. For s small enough, we have

K s ą 0 on S. Then ż R f pθq|P n pθq| 2 dθ " ż S f pθq K s pθq |P n pθq| 2 K s pθq dθ ÝÑ ż S f pθq K s pθq K s pθq dθ " ż R f pθq dθ.
Proposition 6.10. For any s P p0, 1s, the spectral measure σ 0,s is the weak limit of the sequence of probability measures

n ź k"0 |P k pθq| 2 K s pθq dθ.
Proof. As we did in the proof of Lemma 6.7, we can write

n ź k"0 |P k pθq| 2 " 1 p 0 p 1 ¨¨¨p n ÿ mPMn e imθ ,
where M n is the family of all sums of the type

R ppa k , b k q 0ďkďn q :" n ÿ k"0 pb k ´ak qh k `s k pb k q ´s k pa k q, 0 ď a k , b k ď p k ´1.
We know (see proof of Lemma 6.7) that for all choice of pa k , b k q 0ďkďn as above,

|R ppa k , b k qq| ď h n`1 ´1. (7) 
The same argument shows that the sign of R ppa k , b k qq is the sign of b j ´aj where j is the greatest index k such that a k ‰ b k .

We will use the following fact: Given pa k , b k q 0ďkďn as above, 0 ď ℓ ď n, and t P r0, h ℓ s rDj P tℓ, ℓ `1, . . . , nu, a j ´bj ă

p j ´1s ùñ |R ppa k , b k qq ´t| ď h n`1 ´1. (8) Let us prove this fact. If R ppa k , b k qq ě 0, it is clear that |R ppa k , b k qq ´t| ď h n`1 ´1
, since we have [START_REF] El Abdalaoui | A new class of Ornstein transformations with singular spectrum[END_REF] and 0 ď t ď h n`1 ´1. Suppose now that R ppa k , b k qq ă 0. Denote by j an index satisfying the hypothesis of [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF]. Using the fact that 0 ď t ď h ℓ ď h j , we can write

|R ppa k , b k qq ´t| " t `R ppb k , a k qq ď h j `R ppb k , a k qq " pa j ´bj `1qh j `s j pa j q ´sj pb j q `ÿ 0ďkďn k‰j pa k ´bk qh k `s k pa k q ´s k pb k q,
and this is ď h n`1 ´1, once more by the argument used in the proof of Lemma 6.7.

The fact ( 8) is proved. It says that, if t P r0, h ℓ s, in order to see |R ppa k , b k qq ´t| ą h n`1 ´1, we must have a j " p j ´1 and b j " 0 for all j between ℓ and n ; as a consequence, the number of elements m of M n such that |m ´t| ą h n`1 ´1 is bounded by pp 0 p 1 ¨¨¨p ℓ´1 q 2 . Of course, by symmetry, the result is identical for t P r´h ℓ , 0s.

We have

ż R e ´itθ n ź k"0 |P k pθq| 2 K s pθq dθ " 1 p 0 p 1 ¨¨¨p n ÿ mPMn x K s pt ´mq.
For |t| ď s we have x K s ptq " { σ n`1,s ptq, and for |t| ě s we have x

K s ptq " 0. We obtain ż R e ´itθ n ź k"0 |P k pθq| 2 K s pθq dθ " 1 p 0 p 1 ¨¨¨p n ÿ mPMn |m´t|ăs { σ n`1,s pt ´mq. (9) 
On the other hand, since dσ 0,s dσ n`1,s "

n ź k"0 |P k pθq| 2 , we have y σ 0,s ptq " 1 p 0 p 1 ¨¨¨p n ÿ mPMn { σ n`1,s pt ´mq. ( 10 
)
By construction we have { σ n`1,s ptq " 0 for all t P rs, h n`1 ´ss. Moreover, for all t, |{ σ n`1,s ptq| ď 1. We deduce from [START_REF] El Abdalaoui | Thése d'habilitation[END_REF] that ˇˇˇˇˇˇˇy

σ 0,s ptq ´1 p 0 p 1 ¨¨¨p n ÿ mPMn |m´t|ăs { σ n`1,s pt ´mq ˇˇˇˇˇˇˇď # tm P M n | |m ´t| ą h n`1 ´su p 0 p 1 ¨¨¨p n .
We can conclude that if |t| ď h ℓ , then ˇˇˇˇˇˇˇy

σ 0,s ptq ´1 p 0 p 1 ¨¨¨p n ÿ mPMn |m´t|ăs { σ n`1,s pt ´mq ˇˇˇˇˇˇˇď pp 0 p 1 ¨¨¨p ℓ´1 q 2 p 0 p 1 ¨¨¨p n .
Associated with [START_REF] Abdalaoui | La singularité mutuelle presque sure du spectre des transformationsdOrnstein[END_REF], this shows that, for all t P R,

lim nÑ`8 ż R e ´itθ n ź k"0 |P k pθq| 2 K s pθq dθ " y σ 0,s ptq,
and this gives the announced weak convergence result.

Proof of Theorem 6.1. With the same argument that allowed us to go from Lemma 6.8 to Proposition 6.9, we deduce from Proposition 6.10, that the sequence of measures ś n k"0 |P k pθq| 2 dθ is weakly convergent to a limit denoted by σ. Let S be a compact subset of R. For all ℓ ě 1 and all non negative continuous function f with support in S, we have

inf θPS K 1 ℓ pθq ¨żR f pθq n ź k"0 |P k pθq| 2 dθ ď ż R f pθq n ź k"0 |P k pθq| 2 K 1 ℓ pθq dθ ď sup θPS K 1 ℓ pθq ¨żR f pθq n ź k"0 |P k pθq| 2 dθ,
and letting n go to infinity, we have

inf θPS K 1 ℓ pθq ¨żR f pθq dσpθq ď ż R f pθq dσ 0, 1 ℓ pθq ď sup θPS K 1 ℓ pθq ¨żR f pθq dσpθq.
The second inequality proves that the measure We recall now [START_REF] El Abdalaoui | The Mahler measure of the spectral type of a rank one map with cutting parameter Opj β q, β ď 1, is zero[END_REF], which states that the measure σ 0,s is absolutely continuous with respect to the measure σ n,s and the Radon-Nicodym derivative has only countably many zeros. It follows that the continuous parts of these measure are equivalent.

Thus the continuous part of ř ℓě1 2 ´ℓσ 0,1{ℓ is equivalent to the continuous part of the maximal spectral type ř ně0,ℓě1 2 ´pn`ℓq σ n, 1 ℓ and the proof of theorem is complete.

ON THE SINGULARITY CRITERION OF GENERALIZED RIESZ PRODUCTS

ON R

The notion of Riesz products on R is introduced by Peyrière in [START_REF] Peyrière | Étude de quelques propriétés des produits de Riesz[END_REF]. As observed by Peyriére in the context of classical Riesz products one may check that Zygmund theorem and Peyrière theorem holds for the classical Riesz products in the case of the torus can be extended to the case of R. We shall show in this section that the same holds for the generalized Riesz products on R coming from dynamical systems. More precisely, we shall stated and proved Bourgain singularity criterion for the generalized Riesz Products on R and the Guenais sufficient condition on the L 1 flateness of the polynomials which implies the existence of rank one maps with Lebesgue component. Guenais conditions is connected to the strong L 1 flateness of the polynomials.

We keep the notations of the CS construction described in Sections 3 and 6. We denote by σ the weak limit of the sequence of measures ś n k"0 |P k pθq| 2 dθ. By Proposition 6.10, the spectral measure σ 0,s has density K s with respect to σ. For fix s P p0, 1q, recall that

K s pθq " s 2π ¨˜sinp sθ 2 q sθ 2 ¸2,
and λ s is the probability measure of density K s on R, that is,

dλ s pθq " K s pθq dθ.
Here is the R version of Bourgain singularity criterion.

Theorem 7.1 (Bourgain criterion). Fix s P p0, 1s. The following are equivalent:

(i) σ 0,s is singular with respect to Lebesgue measure.

(ii) inf # ż R L ź ℓ"1
|P n ℓ pθq| ¨Ks pθq dλ s :

L P N, n 1 ă n 2 ă . . . ă n L + " 0.
We recall here that the maximal spectral type of the flow is singular if and only if, for all s, the measure σ 0,s is singular. (See the end of Section 6.)

Let us begin by a Lemma which gives a simplest version of condition (ii) of Theorem 7.1.

Lemma 7.2. The following are equivalent

(1) ż R N ź k"0 |P k pθq| ¨Ks pθq dθ ´´Ñ N Ñ`8 0. (2) inf # ż R L ź ℓ"1 |P n ℓ pθq| ¨dλ s : L P N, n 1 ă n 2 ă . . . ă n L + " 0.
Proof. The proof is simply a double application of Cauchy-Schwarz inequality. Consider n 1 ă n 2 ă . . . ă n L and N ě n L . Denote N " tn 1 ă n 2 ă . . . ă n L u and N c its complement set in t1, ¨¨¨, Nu. We have

ż N ź k"0 |P k |dλ s " ż ź kPN |P k | 1 2 ˆź kPN c |P k | 1 2 N ź k"0 |P k | 1 2 dλ s ď ˜ż ź kPN |P k | dλ s ¸1 2 ˜ż ź kPN c |P k | ˆN ź k"0 |P k | dλ s ¸1 2 ď ˜ż ź kPN |P k | dλ s ¸1 2 ˜ż ź kPN c |P k | 2 dλ s ¸1 4 ˜ż N ź k"0 |P k | 2 dλ s ¸1 4 " ˜ż ź kPN |P k | dλ s ¸1 2 .
The last equality comes from two uses of Lemma 6.7.

Proof of Theorem 7.1. Assume that (i) holds. Denote by λ s the measure dλ s pθq " K s pθq dθ. To prove that σ 0,s is singular , it suffices to show that σ 0,s K λ s . For that it suffices to show that for any ǫ ą 0, there is a Borel set E with λ s pEq ă ǫ and σ 0,s pE c q ă ǫ. Let 0 ă ǫ ă 1.

Fix N 0 such that, for any N ą N 0 we have

ş ś N k"0 |P k | dλ s ă ǫ 2 . The set E " ! θ P R : ś N k"0 |P k pθq| ě ǫ
) satisfies:

λ s pEq ď 1 ǫ › › › › › N ź k"0 P k › › › › › 1 ď ǫ 2 {ǫ " ǫ,
and, by the Portmanteau Theorem, since

E c is open set, it follows σ 0,s pE c q ď lim inf M Ñ`8 ż E c M ź k"0 |P k | 2 dλ s ď lim inf M Ñ`8 ż E c N ź k"0 |P k | 2 M ź k"N `1 |P k | 2 dλ s ď ǫ 2 lim M Ñ`8 ż R M ź k"N `1 |P k | 2 dλ s " ǫ 2 ă ǫ.
For the converse. Given 0 ă ǫ ă 1, there exists a continuous function ϕ on R such that:

0 ď ϕ ď 1, σ 0,s ptϕ ‰ 0uq ď ǫ and λ s ptϕ ‰ 1uq ď ǫ. Let f N " N ź k"1 |P k |.
By a double use of Cauchy-Schwarz inequality, we have

ż f N dλ s " ż tϕ‰1u f N dµ s `żtϕ"1u f N dλ s ď λ s ptϕ ‰ 1uq 1{2 ˆżR f 2 N dµ s ˙1{2 `ˆż tϕ"1u f 2 N dλ s ˙1{2 µ s ptϕ " 1uq 1{2 ď ? ǫ `ˆż f 2 N ϕ dλ s ˙1{2 . But since dσ 0,s " W ´lim f 2 N dλ s , lim N Ñ8 ż f 2 N ϕ dλ s " ż ϕ dσ 0,s ď σ 0,s ptϕ ‰ 0uq ď ǫ.
Thus, lim sup

ż f N dµ s ď 2 ? ǫ. Since ǫ is arbitrary, we get lim N Ñ8 ż f N dλ s "
0, and this completes the proof.

In the following lemma we state a sufficient condition for the existence of an absolutely continuous component for the generalized Riesz product associated to CS-construction of a rank one flow. In the case of Z action, the lemma is due to M. Guenais [START_REF] Guenais | Morse cocycles and simple Lebesgue spectrum Ergodic Theory Dynam[END_REF], and the proof is similar. We present its proof by sake of completeness. We keep the notation dλ s pθq " K s pθq dθ.

Lemma 7.3. If `8 ÿ k"1 d 1 ´ˆż R
|P k pθq| dλ s pθq ˙2 ă 8 then σ 0,s admits an absolutely continuous component.

(Of course, if there exists s such that σ 0,s admits an absolutely continuous component, then it is the same for the maximal spectral type of the flow.)

Proof. We denote by } ¨}p the norm in L p pλ s q.

For all functions P and Q in L 2 pλ s q, by Cauchy-Schwarz inequality we have

}P } 1 }Q} 1 ´}P Q} 1 " ´ż p|P | ´}P } 1 q p|Q| ´}Q} 1 q dλ s ď }|P | ´}P } 1 } 2 }|Q| ´}Q} 1 } 2 . (11) 
By assumption,

`8 ÿ k"1 b 1 ´}P k } 2 1 ă 8. Hence `8 ÿ k"1
1 ´}P k } 2 1 ă 8 and the infinite product

ź k }P k } 1 is convergent: `8 ź k"0 }P k } 1 ą 0. (12) 
Let n 0 ď n be positive integers. If P " P n and Q " [START_REF] Adams | On Smorodinsky conjecture[END_REF] we have

n´1 ź k"n 0 P k , then }|P | ´}P } 1 } 2 " a 1 ´}P } 2 1 and }|Q| ´}Q} 1 } 2 ď 1 ; hence by
}P Q} 1 ě }P } 1 }Q} 1 ´b1 ´}P } 2 1 .
Using also the fact that }P k } 1 ď 1, we obtain by induction

› › › › › n ź k"n 0 P k › › › › › 1 ě n ź k"n 0 }P k } 1 ´n ÿ k"n 0 b 1 ´}P k } 2 1 ě n ź k"n 0 }P k } 1 ´`8 ÿ k"n 0 b 1 ´}P k } 2 1 .
From lemma assumption and from [START_REF] Adams | Mixing staircase[END_REF] we deduce that, for n 0 chosen large enough

lim nÑ`8 n ź k"n 0 }P k } 1 ´`8 ÿ k"n 0 b 1 ´}P k } 2 1 ą 0,
hence the sequence `śn k"n 0 P k ˘does not go to zero in L 1 -norm. It follows from Bourgain criterion that the generalized Riesz product

ś `8 k"n 0 |P k | 2 dλ s is not purely singular. As ś n 0 ´1 k"0 |P k | 2
has only countably many zeros, we conclude that σ admits also an absolutely continuous component.

As observed by Bourgain and Klemes in the case of the torus, in order to prove the singularity of the spectrum of the rank one it is sufficient to prove that a weak limit point of the sequence p||P m | 2 ´1|q is bounded by below by a positive constant. More precisely we have the following proposition. The proof is similar to the one given in the case of Z in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF]. However, for the sake of completeness, we will give the proof here. Proposition 7.4. Let E be an infinite set of positive integers. Suppose that there exists a constant c ą 0 such that, for all integer L ą 0 and all integers 0

ď n 1 ă n 2 ă . . . ă n L , lim inf mÝÑ`8 mPE ż R ˇˇ|P m | 2 ´1ˇˇL ź ℓ"1 |P n ℓ | dλ s ě c ż R L ź ℓ"1 |P n ℓ | dλ s .
Then σ 0,s is singular.

The following lemma comes from [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF] and it can also be found in [START_REF] Abdalaoui | La singularité mutuelle presque sure du spectre des transformationsdOrnstein[END_REF] (Lemma 3.2). Lemma 7.5. Let E be an infinite set of positive integers. Let L be a positive integer and

0 ď n 1 ă n 2 ă ¨¨¨ă n L be integers. Denote Q " ś L ℓ"1 |P n ℓ |. Then lim sup mÝÑ`8 mPE ż Q |P m | dλ s ď ż Q dλ s ´1 8 ˜lim inf mÝÑ`8 mPE ż Q ˇˇ|P m | 2 ´1ˇˇd λ s ¸2 .
The proof of this lemma relies on the following inequality (for m ą n L ):

ż Q |P m | dλ s ď 1 2 ˆż Q dλ s `ż Q |P m | 2 dλ s ˙´1 8 ˆż Q ˇˇ|P m | 2 ´1ˇˇd λ s ˙2 .
Proof of Proposition 7.4.

Let β " inf # ż Q dλ s : Q " L ź ℓ"1 |P n ℓ | , L P N, 0 ď n 1 ă n 2 ă ¨¨¨ă n L + . Then, for any such Q, we have ż Q dλ s ě β and lim inf ż Q|P m | dλ s ě β.
Thus by Lemma 7.5 and by taking the infimum over all Q we get

β ď β ´1 8 pcβq 2
It follows that β " 0, and the proposition follows from Theorem 7.1.

The previous argument is refined as in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF], as follows.

Proposition 7.6. Let s ą 0. Then, there exist a subsequence of the sequence p||P m ptq| ´1|q which converge weakly in L 2 pλ s q to some non-negative function φ which satisfy φ ď2, almost surely with respect the Lebesgue measure.

Proof. The sequence ||P m ptq| ´1| is bounded in L 2 pλ s q. It follows that there exist a subsequence which converges weakly to some non-negative L 2 pλ s q function φ.

Let ω be a non-negative continuous where χ A|K is the restriction of the indicator function of A to K. Hence, we have ż A ωptq φptqdλ s ď 2λ s pAq.

and the proposition follows.

Put α s " φ dλ s .

By applying the same arguments as before it is easy to see that we have the following.

Proposition 7.7. For any s ą 0, α s Kσ..

In the next section we will generalize the previous results by establishing a formula for Radon-Nikodym derivative of two Riesz products on real line obtained in [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF].

A FORMULA FOR RADON NIKODYM DERIVATIVE.

Let s P p0, 1s and consider two generalized Riesz products µ s and ν s based on polynomials P j , j " 1, 2, ¨¨¨and Q j , j " 1, 2, ¨¨¨where ν s is continuous except for a possible mass at 1. Under suitable assumptions we prove the formula:

c dµ s dν s " lim nÑ8 ś n j"1 | P j | ś n j"1 | Q j |
, in the sense of L 1 pR, ν s q convergence. Let σ and τ be two measures on the real line. Then, by Lebesgue decomposition of σ with respect to τ , we have

σ " dσ dτ dτ `σs ,
where σ s is singular to τ and dσ dτ is the Radon-Nikodym derivative. In the case of two Riesz products µ s " ś 8 j"1 | P j | 2 and ν s "

ś 8 j"1 | Q j | 2
, we are able to extend el Abdalaoui-Nadkarni theorem [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF] by proving that the ratios

ś n j"1 |P j | ś n j"1 |Q j | , k " 1, 2, ¨¨¨, converge in L 1 pν s q to b dµs dνs
, assuming that ν s has no point masses except possibly at 1.

Theorem 8.1. Let µ s " ś 8 j"0 | P j | 2 , ν " ś 8 j"0 | Q j | 2 be two generalized Riesz products. Let µ n,s " 8 ź j"n`1 | P j | 2 , ν n,s " 8 ź j"n`1 | Q j | 2 Assume that (1) ν s " ν 1 s `bδ 1 , ν 1 s is continuous measure, 0 ď b ă 1.
(2) ś n j"0 | P j | 2 dν n,s ÝÑ µ s weakly as n ÝÑ 8

(3)

ś n j"0 | Q j | 2 dµ n,s ÝÑ ν s weakly as n ÝÑ 8
Then the finite products R n "

ś n k"1 ˇˇP k ptq Q k ptq ˇˇ, n " 1, 2, ¨¨¨converge in L 1 pR, ν s q to b dµs dνs .
To prove this we need the following proposition. 

ż R R 2 n dν s " ż R n ź j"1 | P j | 2 dν n,s Ñ ż R dµ s " 1
by assumption (2). Hence ş R R 2 n dν s , n " 1, 2, ¨¨¨remain bounded. Thus, the weak closure of R n ptq, n " 1, 2, ¨¨¨in L 2 pR, ν s q is not empty.

We show that this weak closure has only one point, namely, b dµs dνs . Indeed, let g be a weak subsequential limit, say, of R n j ptq, j " 1, 2, ¨¨¨. Then, for any continuous positive function h, we have, by judicious applications of Cauchy-Schwarz inequality,

˜żR f ptqhptqdν s ptq ¸2 " ˜żR hptqR n j ptq 1 R n j ptq c dµ s dν s dν s ptq ¸2 ď ˜żR hptqR n j ptqdν s ptq ¸˜ż S 1 hptqR n j ptq 1 R 2 n j ptq dµ s dν s dν s ptq ḑ ˜żR hptqR n j ptqdνptq ¸˜ż R hptq 1 R n j ptq dµ s ḑ ż R hptqR n j ptqdνptq ˜żR hptqdµ s ¸1 2 ˜żR hptq dµ R 2 n j ptq ¸1 2 ď ˜żR hptqR n j ptqdν s ptq ¸˜ż R hptqdµ s ¸1 2 ˜żR hptq | n j ź k"1 Q k | 2 dµ n j ,s ¸1 2
Letting j Ñ `8, from our assumption (3), we get

˜żR f hdν s ¸2 ď ˜żR hgdν s ¸˜ż R hdµ s ¸1 2 ˜żR hdν s ¸1 2 p2q.
But, since the space of continuous functions is dense in L 2 pµ `νq, we deduce from (2) that, for any Borel set B, ˜żB

f dν s ¸2 ď ˜żB gdν s ¸˜ż B dµ s ¸1 2 ˜żB dν s ¸1 2
.

By taking a Borel set E such that µ s pEq " 0 and ν s pEq " 1, we thus get, for any

B Ă E, ˜żB f dν s ¸2 ď ˜żB gdν s ¸˜ż B f 2 dν s ¸1 2 ˜żB dν s ¸1 2 .
It follows from Martingale convergence theorem that:

f ptq ď gptq for almost all z with respect to ν.

Indeed, let P n " tA n,1 , A n,2 ¨¨¨, A n,kn u, n " 1, 2, ¨¨¨, be a refining sequence of finite partitions of E into Borel sets such that they tend to the partition of singletons. If txu "

8 č n"1 A n,jn , ˜1 µ s pA n,jn q ż B f dν s ¸2 ď ˜1 µ s pA n,jn q ż A n,jn gdν s ¸˜1 µ s pA n,jn q ż A n,jn f 2 ptqdν s ¸1 2 ˜1 µ s pA n,jn q ż A n,jn dν s ¸1 2 .
Letting n Ñ 8 we have, by Martingale convergence theorem as applied to the theory of derivatives, for a.e x P E w.r. .

As before we deduce that gptq ď f ptq for almost all t with respect to ν s . Consequently, we have proved that g " f for almost all t with respect to ν s and this complete the proof of the proposition.

Proof of Theorem 8.1. We will show that 

β n def " ş R | R n ´f | dν Ñ 0 as n Ñ 8,
Then, ż R f 2 n dν s " ż R n ź k"1 | Q k | 2 dµ n,s Ñ ż R dν s " 1, , 
by assumption (3). The functions f n , n " 1, 2, ¨¨¨are therefore bounded in L 2 pR, ν s q. Hence, there exists a subsequence f n j " c dµn j ,s dνn j ,s , j " 1, 2, ¨¨¨which converges weakly to some L 2 pR, ν s q-function φ. We show that 0 ď φ ď 1 a.e (ν s ). For any continuous positive function h, we have

˜żR hf n j dν s ¸2 ď ˜żR hdν s ¸˜ż R hf 2 n j dν s ¸ ď ˜żR hdν s ¸˜ż R h dµ n j dν n j ,s dν s ¸.
Hence, by letting j go to infinity combined with our assumption (3), we deduce that

ż R hptqφptqdν s ď ż R hptqdν s .
Since this hold for all continuous positive functions h, we conclude that 0 ď φ ď 1 for almost all t with respect to ν s . Thus any subsequential limit of the sequence f n , n " 1, 2, ¨¨¨assumes values between 0 and 1. Now, for any subsequence n j , j " 1, 2, ¨¨¨over which f n j , j " 1, 2, ¨¨¨has a weak limit , from our assumption (2) combined with Cauchy-Schwarz inequality, we have ˜żR

|R n j ´f |dν s ¸2 " ˜żR |R n j ´Rn j f n j |dν s ¸2 " ˜żR R n j |1 ´fn j |dν s ¸2 ď ˜żR R n j ptq|1 ´fn j | 2 dν s ¸˜ż R R n j ptqdν s ḑ ˜żR R n j dν s ´2 ż R R n j f n j dν s `żR R n j pf n j q 2 dν s ¸˜ż R R n j dν s ḑ ˜żR R n j dν s ´2 ż R f dν s `żR R n j f n j .f n j dν s ¸˜ż R R n j dν s ḑ ´żR R n j dν ´2 ż R f dν `żR f.f n j dν ¯´ż R R n j dν
Hence, letting j go to infinity, ˜lim

jÑ8 ż R | R n j ´f | dν s ¸2 ď ż R f dν s ´2 ż R f dν s `żR f.φdν s ď ż R pφptq ´1qf ptqdν s ptq. ď 0,
and this implies that R n j , j " 1, 2, ¨¨¨converges to f in L 1 pR, ν s q and the proof of the theorem is achieved.

Remark 8.3. Notice that ż R dµ s dν s dν s " 1, implies the convergence of ś N j"0 |R j | to b
dµs dνs in L 2 pdν s q, by virtue of the classical results on "when weak convergence implies strong convergence". We further have [START_REF] Choksi | The maximal spectral type of rank one transformation[END_REF] Corollary 8. [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF] In this section, we will extended, as far as possible, the formula established by el Abdalaoui-Nadkarni in [START_REF] El Abdalaoui | Calculus of Generalized Riesz Products[END_REF]. Our extension is based on the entropy method.

For that, we start by introducing the notion of Mahler measure. Let pX, B, ρq be a probability space and f P L 1 pX, ρq. The Mahler measure of the measure µ " f pxqdρpxq is defined by

Mpµq " exp ˜żX log `ˇf pxq ˇˇ˘d ρ ¸.
In our case the measure ρ is equal to λ s " K s ptqdt and the Mahler measure of a trigonometic polynomial P and a measure µ is given, respectively, by

M s pP q " exp ˜żR log `ˇP ptq ˇˇ˘d λ s ptq ¸, (13) 
M s pµq " exp ˜żR log ´ˇˇd µ dλ s ptq ˇˇ¯dλ s ptq ¸( 14)

Here are some elementary properties of the Mahler measure. But, we provide a proof for the reader's convenience.

Proposition 9.1. Let pX, B, ρq be a probability space. Then, for any two positive functions f, g P L 1 pX, ρq, we have i) Mpf q is a limit of the norms ||f || δ as δ goes to 0, that is,

||f || δ def " ˜ż f δ dρ ¸1 δ ´´Ñ δÑ0 Mpf q,
provided that logpf q is integrable.

ii

) If ρ ! f ą 0 ) ă 1 then Mpf q " 0. iii) If 0 ă p ă q ă 1, then › › f › › p ď › › f › › q . iv) If 0 ă p ă 1, then Mpf q ď › › f › › p . v) lim δÝÑ0 ż f δ dρ " ρ ! f ą 0 ) . vi) Mpf q ď › › f › › 1 .
vii) Mpf gq " Mpf qMpgq.

Proof. We start by proving ii). Without loss of generality, assume that f ě 0 and put

B " ! f ą 0 ) ,
and let δ " 1{k be in s0, 1r, k P N ˚. Then 1{p1{δq`1{p1´δq " 1{k `pk ´1q{k " 1. Hence, by Hölder inequality, we have

ż f δ dρ " ż f 1{k . 1 1 B dρ ď ˜ż pf 1{k q k dz ¸1{k ˜ż 1 1 k{k´1 B dz ¸k´1{k ď ˜ż f dρ ¸1{k ˜ż 1 1 B dz ¸k´1{k 
ď ˜ż f dρ ¸1{k ´ρpBq ¯pk´1q{k
Therefore we have proved

||f || δ ď ˜ż f dρ ¸´ρpBq ¯p1´δq{δ ď ˜ż f dρ ¸´ρpBq ¯k´1 ´´Ñ kÑ`8 0,
To prove i), apply the Mean Value Theorem to the following functions

" δ Þ ÝÑ x δ , if x Ps0, 1r; t Þ ÝÑ t δ , if x ą 1,
Hence, for any δ Ps0, 1r and for any x ą 0, we have

ˇˇˇˇx δ ´1 δ ˇˇˇˇď x `ˇˇl ogpxq ˇˇ.
Furthermore, it is easy to see that

f δ ´1 δ " e δ logpf q ´1 δ ´´Ñ δÑ0 logpf q,
and, by Lebesgue Dominated Convergence Theorem, we get that

ż f δ ´1 δ dρ ´´Ñ δÑ0 ż logpf qdρ.
On the other hand, for any δ Ps0, 1r

ˇˇˇˇf ˇˇˇˇδ " exp ˜1 δ log ˜ż f δ dρ ¸¸,
and for a sufficiently small δ, we can write

1 δ log ˜ż f δ dρ ¸" ż f δ ´1 δ dρ
since logpxq " x ´1 as x ÝÑ 1. Summarizing we have proved

lim δÝÑ0 ||f || δ " exp ˜ż logpf qdρ ¸" Mpf q.
For the proof of iii) and iv), notice that the function x Þ Ñ x q p is a convex function and x Þ Ñ logpxq is a concave function. Applying Jensen's inequality to

ż ˇˇf ˇˇp dρ we get › › f › › p ď › › f › › q , ż logp ˇˇf ˇˇqdρ ď log ´› › f › › p ¯,
and this finish es the proof, the rest of the proof is left to the reader.

Szegö-Kolmogorov-Krein theorem established a connection between a given measure and the Mahler measure of its derivative. Precisely, we have Theorem 9.2 (Szegö, Kolmogorov-Krein [35, p.49].). Let σ be a finite positive Baire measure on the unit circle and let h be the derivative of σ with respect to normalized Lebesgue measure. Then, for any r ą 0,

Mphq " inf P › › ›1 ´P › › › r r " inf P ˜ż ˇˇ1 ´P ˇˇrhpzqdz ¸,
where P ranges over all analytic trigonometric polynomials with zero constant term. The right side is 0 if logphq is not integrable.

Clearly, Szegö-Kolmogorov-Krein theorem gives an alternative definition to Mahler measure (that is, the Malher measure of a given measure is the Mahler measure of its derivative). For other definitions, we refer the reader to [START_REF] Dégot | Finite-dimensional Mahler measure of a polynomial and Szegö's theorem[END_REF]. Following Helson and Szegö [START_REF] Helson | A problem in prediction theory[END_REF], Szegö-Kolmogorov-Krein theorem solved the first problem of the theory of prediction. This theorem can be interpreted in the entropy language. We are going to recall the entropy between two positive measures and present this interpretation. For more details, we refer to [START_REF] Simon | Szegő's Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials[END_REF].

Let µ and ν be two (positive) measures on a Polish space X. We define their relative entropy by

En ´µ || ν ¯" $ & % ´żX log ´dµ dν pxq ¯dµpxq if µ ! ν ´8 if not.
.

For the entropy interpretation of Szegő theorem on the circle for refer to [START_REF] Simon | Szegő's Theorem and Its Descendants: Spectral Theory for L 2 Perturbations of Orthogonal Polynomials[END_REF]. Let us denote PpXq the set of probability measures on X. In this setting, we have Theorem 9.3. Let σ 0,s " ś `8 k"0 |P k pθq| 2 be a spectral type of some rank one flow.

Then M s pσ 0,s q ě lim sup

KÑ8 ż log ´K ź k"0 |P k pθq| 2 q ¯Ks pθqdθ,
For the proof we need the following lemma.

Lemma 9.4. The Relative entropy E : PpXq ˆPpXq ÝÑ r0, `8s is a nonpositive, convex and upper semicontinuous function with respect to the weak-star topology on PpXq.

Proof of Theorem 9.3. We start by writing the Lebsegue decomposition of σ 0,s with respect to λ s as follows σ 0,s " f dλ s `µsin .

Therefore Enpdλ s ||σ 0,s q " ż logpf qdλ s .

Moreover, applying Lemma 9.4, we get Enpdλ s ||σ 0,s q ě lim sup

KÑ8 ż log ´K ź k"0 |P k pθq| 2 ¯dλ s . since K ź k"0
|P k pθq| 2 dλ s converge weakly to σ 0,s . Whence M s pσ 0,s q ě lim sup

KÑ8 M s p K ź k"0 |P k pθq| 2 q.
The proof of the theorem is complete.

Question 9.5. We ask whether the following extension of Theorem 9.3 is true:

M s pσ 0,s q " lim KÑ8 M s ´K ź k"0 |P k pθq| 2 ¯?
For the case of Z-action this formula holds, and by applying Proposition 2 from the appendix of [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF]. The author in unpublished paper [START_REF] El Abdalaoui | The Mahler measure of the spectral type of a rank one map with cutting parameter Opj β q, β ď 1, is zero[END_REF] proved that the Mahler measure of the spectral type of any rank one maps with the cutting parameter pm j q satisfying m j " θpj β q, for some β ď 1 is zero. We ask also if it is possible to extend this result to the rank one flow.

BANACH PROBLEM FOR FLOW AND FLAT POLYNOMIALS ON REAL LINE

In this section, we strengthen Lemma 7.3 by establishing that Banach problem for flow has a positive solution if and only if there is a sequence of flat polynomials on real line. We start by recalling the notion of flatness.

Let s P p0, 1s, and α P r0, `8s. If α ą 0, the sequence `Pn ptq ˘of analytic trigonometric polynomials of L 2 pR, dλ s q norm 1 is said to be L α -flat if the sequence `|P n ptq| ˘converges in L α -norm to the constant function 1 as n ÝÑ `8. For α " `8, the sequence is said to be almost everywhere (a.e) ultraflat. If α " 0, we say that pP n q is L α -flat, if the sequence of the Mahler measures `MpP n q ˘converge to 1. We recall that the Mahler measure of a function f P L 1 pR, dλ s q is defined by

Mpf q " }f } 0 " lim βÝÑ0 }f } β " exp ´żR logp|f ptq|qdλ s ptq ¯.
The sequence `Pn ptqK s ptq ˘is said to be flat in a.e. sense (almost everywhere sense) if the sequence `|P n ptq| ˘, converges a.e. to 1 with respect to dλ s as n ÝÑ `8. Since λ s is equivalent to the Lebesgue measure, the a.e. is stand also for the Lebesgue measure.

The sequence `Pn ptqK s ptq ˘can be seeing as a sequence of functions in C 0 pRq(the subspace of continuous functions which vanish at infinity). We thus say that `Pn ptq ˘is ultraflat if there is a sequence of compact subset K m Ă R, m ě 1 such that (i)

č mPR K m " R, and
(ii) sup tPKm ˇˇˇˇP m ptq| ´1| ˇˇ´´Ñ mÑ`8 0, for each m P N.

We further say that a sequence `Pn ˘of L 2 -normalized polynomials is flat in the sense of Littlewood if there is a sequence of compact subset K m Ă R, and a constants 0 ă A m ă B m , m ě 1 such that for all n P N (or at least for sufficiently large n P N), we have

A m ď ˇˇP n ptq ˇˇď B m , @t P K m , @m P N.
Erdös and Newman asks on the existence of ultraflat polynomials on the torus with coefficients of modulus one [27, Problem 22], and Littlewood on the existence of flat polynomials with coefficients ˘1 in his sense [START_REF] Littlewood | Some Problems in Real and Complex Analysis, Heath Mathematical Monographs[END_REF]. One may ask the same questions about polynomials on R. But, it is easy to see that if pP n q is a flat polynomials in any sense on the torus then pP n q is flat as polynomials on R.

Here, we will first establish that the existence of such polynomials in L 1 or a.e. sense implies the existence of rank one flow acting on infinity measure space with Lebesgue spectrum. We thus obtain that the existence of those polynomials implies that Banach problem has a positive answer in the class of conservative flows. The complete solution of Banach problem will be given in section 16.

Generalized Riesz Products of Dynamical Origin. We start by introducing the notion of dissociation. Let Γ be a subset of R and denote by WpΓq the set of all element w of R of the form

w " n ÿ j"0 ǫ j γ j , (15) 
where all γ j are distinct elements of Γ, ǫ k " ˘1. Following [START_REF] Hewitt | Singular measures with absolutely continuous convolution squares[END_REF], the subset Γ of R is a dissociate set if each element of WpΓq has a unique representation of the form [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF]. For the general definition of dissociate subset of locally compact abelien group, and its connection to the classical Riesz products, we refer to [START_REF] Kilmer | On Riesz Product measures : mutual absolute continuity and singularity[END_REF] and the references therein.

In our setting, we formulate the dissociation notion as follows.

Definition 10.1. Finitely many trigonometric polynomials on real line P 0 , P 1 , ¨¨¨, P n , P j pθq " ř N j k"´N j d pjq k e it k θ ,j " 0, 1, 2, ¨¨¨, n are said to be dissociated if in their product P 0 pθqP 1 pθq ¨¨¨P n pθq, (when expanded formally, i.e., without grouping terms or canceling identical terms with opposite signs), the frequencies t l 0 `tl 1 `¨¨¨`t ln in non-zero terms

d p0q l 0 d p1q l 1 ¨¨¨d
pnq ln e ipt l 0 `tl 1 `¨¨¨`t ln qθ are all distinct.

A sequence P 0 , P 1 , ¨¨¨, of trigonometric polynomials on real line is said to be dissociated if for each n the polynomials P 0 , P 1 , ¨¨¨, P n are dissociated. Now, let s Ps0, 1s and K s be the Fejér Kernel as in Theorem 6.1, and consider the polynomials appearing in the spectral type of some rank one flow.

P j pθq " 1 ? m k ´1 `eiR 1,k θ `¨¨¨`e iR m k ´1,k θ ¯. The exponent R j,k , 1 ď j ď m k ´1, j " 1, 2, ¨¨¨, is the j-th return time of a point in B k,s into B k´1,s , 0 ă s ď 1. Also R j,h " jh k´1 `s0,k `s1,k `¨¨¨`s j´1,k , 1 ď j ď m k ´1
where h k´1 is the height of the tower after pk ´1q-th stage of the construction is complete, and s k,l is the number of spacers on the l-th column, 0 ď l ď m k ´2.

We observe that

(1) h 1 " R m 1 ´1,1 `1, (2) R 1,k ě h k´1 ą R m k´1 ,k´1 , (3) R j`1,k ´Rj,k ě h k´1 .
These properties (1), ( 2), (3) of the powers R j,k , 1 ď j ď m k ´1, k " 1, 2, ¨¨ï ndeed characterize generalized Riesz products which arise from rank one transformations . More precisely consider a generalized Riesz product

8 ź k"1 | Q k pθq | 2 .
where

Q k pθq " 1 ? m k m k ´1 ÿ i"0
e ir i,j θ .

Define inductively:

h 0 " 1, h 1 " r m 1 ,1 `h0 , ¨¨¨, h k " r m k ,k `hk´1 , k ě 2 Note that h k ą r m k ,k .
We further have for any ̺ ą 1, the L 2 ´norm of P j p̺θq is 1. Indeed, by changing the variable of integration, we have

› › P j p̺θq} 2 " ż R ˇˇP j p̺θq| 2 K s pθqdθ " ż R ˇˇP j pθq ˇˇ2 1 ̺ K s ´θ ̺ ¯dθ (16) " ż R ˇˇP j pθq ˇˇ2 K s ̺ pθqdθ " 1.
Proposition 10.2. Assume that for each k " 1, 2, ¨¨¨,

r 1,k ě h k´1 , r j`1,k ´rj,k ě h k´1
Then r j,k , h k , satisfy (1), ( 2) and (3). The generalized product ś 8 k"1 | Q k pθq | 2 describes the maximal spectral type (up to possibly a discrete part) of a suitable rank one flow.

Proof. That the r i,j , h j satisfy (1), ( 2), (3) is obvious. The needed rank one flow pT t q is given by cutting parameters p k " m k , j " 1, 2, ¨¨¨, and spacers s j´1,k " r j,k ´rj´1,k ´hk´1 , 1 ď j ď m k ´1, k " 1, 2, ¨¨¨. This proves the proposition.

Definition 10.3. A generalized Riesz product µ s " ś 8 k"1 ˇˇQ k pθq ˇˇ2 , where Q k pθq " 1 ? m k ř m k
j"0 e ´2πir j,k θ , is said to be of dynamical origin if with

h 0 " 1, h 1 " r m 1 ,1 `h0 , ¨¨¨, h k " r m k ,k `hk´1 , k ě 2 it is true that for k " 1, 2, ¨¨¨, r 1,k ě h k´1 , r j`1,k ´rj,k ě h k´1 .
Let us further observe that the generalized Riesz products ś 8 j"1 |P j | 2 raised from rank one pT t q have the property that the sequence of their tails µ n,s " ś 8 j"n`1 |P j | 2 , n " 1, 2, ¨¨¨converges weakly to λ s " K s pθqdθ. In the rest of this section we will assume that the generalized Riesz products have this additional property, although is not assumed that they arise from rank one transformations as above. Proof. In Theorem 8.1 we put Q j pθq " 1 for all j, so that ν is the probability measure on λ s . The first conclusion follows from theorem 8.1. The second conclusion follows since L 1 convergence implies convergence a.e over a subsequence and λ s is equivalent to Lebesgue measure.

The following formula follows immediately from this: Corollary 10.6. Let s Ps0, 1s, and µ be a generalized Riesz product of class (L). Let K 1 , K 2 be two disjoint subsets of natural numbers and let K 0 be their union. Let µ 1,s , µ 2,s and µ 0,s be the generalized Riesz subproducts of µ s over K 1 , K 2 , and K 0 respectively. Then we have:

dµ 0 dλ s " dµ 1 dλ s dµ 2 dλ s , p1q
where equality is a.e. with respect to the measure dθ.

Flat Polynomials and Generalized Riesz Products.

Lemma 10.7. Given a sequence of trigonometric polynomials

P n pθq " 1 ? m n ´1 `mn´1 ÿ j"1 e it j θ ¯, t j ě 0, 1 ď j ď m n ´1, n " 1, 2, ¨¨¨,
then there exist a sequence of positive real numbers ̺ 1 , ̺ 2 , ¨¨¨such that

8 ź j"1 | P j p̺ j θq | 2
is a generalized Riesz product of dynamical origin.

Proof. For each j ě 1, let

P j pθq " m j ´1 ÿ k"0 b k,j e ir k,j θ , b k,j " 1 a ? m j ‰ 0, b 0,j " 1 ą 0, n j ÿ i"1 | b i,j | 2 " 1. Let ̺ 1 " 1 and h 1 " H 1 " r n 1 ,1 `1. Choose ̺ 2 ě 2H 1 ą 2r n 1 ,1 . Then λ 2 ¨r1,2 ą h 1 , ̺ 2 pr i`1,2 ´ri,2 q ą h 1 . Since ̺ 2 ą 2r n 1 ,1 the polynomials | P 1 p̺ 1 θq | 2 and | P 2 p̺ 2 θq | 2 are disso- ciated. Consider now P 1 p̺ 1 θqP 2 p̺ 2 θq. Write H 2 " ̺ 1 r n 1 ,1 `̺2r n 2 ,2 `h1 ą ̺ 2 r n 2 ,2 `h1 def " h 2 . Choose ̺ 3 ě 2H 2 . Then ̺ 3 ¨r1,3 ě h 2 , ̺ 3 pr i`1,3 ´ri,3 q ą h 2 . Since ̺ 3 ě 2H 2 ą 2p̺ 1 rpn 1 , 1q `̺2 rpn 2 , 2qq the polynomial | P 3 p̺ 3 θq | 2 is dissociated from | P 1 p̺ 1 θq | 2 and | P 2 p̺ 2 θq | 2 .
Proceeding thus we get ̺ j , j " 1, 2, ¨¨¨and polynomials Q j pθq " P j p̺ j θq, j " 1, 2, ¨¨¨such that

(i) || Q j || 2 " 1 (since || P j || 2 " 1 and || P j p̺ j θq || 2 " 1 by (16) .) (ii) the polynomials | Q j | 2 , j " 1, 2, ¨¨¨are dissociated,
(iii) for each j ě 1, h j´1 ă ̺ j r 1,j , h j´1 ă ̺ j pr i`1,j ´ri,j q Since the polynomials Q j , j " 1, 2, ¨¨¨have L 2 pR, dλ s q norm 1 and their absolute squares are dissociated, the generalized Riesz product ś 8 j"1 | P p̺ j θq | 2 is well defined. Moreover, (iii) shows that the conditions for it to arise from a rank one flow pT t q in the above fashion are satisfied. The lemma follows.

An immediate application of this Lemma is the following: Theorem 10.8. Let s Ps0, 1s and P j , j " 1, 2, ¨¨¨be a sequence of trigonometric polynomials on real such that | P j pθq |Ñ 1 a.e. pdθq as j Ñ 8. Then there exists a subsequence P j k , k " 1, 2, ¨¨¨and real numbers ̺ 1 ă ̺ 2 ă ¨¨¨such that for any s Ps0, 1s, the product µ s " ś 8 k"1 | P j k p̺ k θq | 2 is a generalized Riesz product of dynamical origin with dµs dθ ą 0 a.e. pdθq. Proof. Since | P j pθq |Ñ 1 as j Ñ 8 a.e. pdθq, by Egorov's theorem we can extract a subsequence P j k , k " 1, 2, ¨¨¨such that for any s Ps0, 1s, the sets

E k def " ! θ :| p1´| P j l pθq |q |ă 1 2 k @ l ě k )
increase to R (except for a λ s def " K s dθ null set, s Ps0, 1s), and 1 2 k . By the lemma above we can choose ̺ 1 , ̺ 2 , ¨¨¨such that

ř 8 k"1 p1´λ s pE k qq ă 8. Write Q k " P j k . Then for θ P E k , | 1´| Q k pθq |ă
8 ź k"1 | Q k p̺ k θq | 2 is a generalized Riesz product of dynamical origin. We show that lim LÑ8 ś L k"1 | Q k p̺ k θq | is nonzero a.e.
pdθq, which will imply, by proposition 10.5, that dµs dθ ą 0 a.e pdθq. Now the maps S ̺ : θ Ñ ̺θ, λ ą 0 preserve the measure Fejér kernel family, and since ř 8 k"1 λ s pRzE k q ă 8 we have

ř 8 k"1 λ s pS ´1 ρ k pRzE k qq ă 8, for all s P s0, 1s. Let F k " S ´1 ̺ k pRzE k q and F " lim sup kÑ8 F k " 8 č k"1 8 ď l"k F l . Then λ s pF q " 0, and if θ R F , θ R S 1 ρ k
pRzE k q hold for all but finitely many k, which in turn implies that S ̺ k θ P E k for all but finitely many k.

Thus, if θ R F , then | 1´| Q k p̺ k θq ||ă 1
2 k for all but finitely many k. Also the set of points θ for which some finite product

ś L k"1 | Q k p̺ k θq | vanishes is countable. Clearly lim LÑ8 L ź k"1 | Q k p̺ k θq |
is nonzero a.e. pdλ s q and the theorem is proved.

Corollary 10.9.

(i) If P k , k " 1, 2, ¨¨¨are as in the above theorem and if lim sup kÑ8 M s pP k q "

1, for all s Ps0, 1s, then we can choose P j k , k " 1, 2, ¨¨¨and ̺ 1 , ̺ 2 , ¨¨ï n such a way that M s pµ s q is positive, for all s Ps0, 1s.

(ii) If P k , k " 1, 2, ¨¨¨are as in the above theorem and if lim inf

kÑ8 M s pP k q ă 1,
for all s Ps0, 1s, then we can choose P j k , k " 1, 2, ¨¨¨and ̺ 1 , ̺ 2 , ¨¨¨in such a way that M s pµ s q " 0, and dµs dθ ą 0 a.e. pdθq. Remark 10.10.

(1) Now it is easy to construct polynomials P k , k " 1, 2, ¨¨¨satisfying the hypothesis of part (ii) of the above corollary, so one can obtain generalized Riesz products µ s with zero Mahler measure and dµ dλs positive a.e pdθq.

(2) In our presentation, we use the notion of dissociation but since the coefficients of our polynomials are positives this assumption can be dropped (see Lemma 12.3 ).

(3) The results of this section can be straightforward generalized to the nonsingular rank on flow and its Z 2 " t˘1u extension. The details are left to the reader.

THE SPECTRAL SINGULARITY THEOREM FOR ORNSTEIN MIXING FLOWS

In this section, we extend Ornstein random construction of rank one transformations to flows. We extend Bourgain theorem in this setting by showing that the spectrum of Ornstein flow is almost surely singular. Our method, following ideas introduced in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF], uses the Central Limit Theorem.

In the classical Orsntein construction the spacers are chosen randomly and independently using the uniform distribution. In the present article, we will stay in this setting. Let us notice however, as it has been pointed out by J. Bourgain in [START_REF] Bourgain | On the spectral type of Ornstein class one transformations[END_REF], that other random choices are possible : in [START_REF] El Abdalaoui | A new class of Ornstein transformations with singular spectrum[END_REF] the authors shows that Bourgain singularity theorem holds for some more general random constructions.

Let us now describe the classical Ornstein construction, adapted to flows. We fix a sequence pp k q kě0 of integers ě 2 and a sequence pt k q kě0 and of positive real numbers.

Put

Ω " `8 ź k"0 " ´tk 2 , t k 2  p k ´1
equipped with the probability product measure P :"

â kě0 p k ´1 â 1 U k , where U k is uniform measure on r´t k 2 , t k 2 s.
We denote by x k,j , (j " 1, . . . , p k ´1 and k ě 0) the projection maps. It follows that x k,j are independent random variables and that each x k,j is uniformly distributed in r´t k 2 , t k 2 s. We define the spacers in the following way s k`1,j " t k `xk,j ´xk,j´1 , j " 1, . . . , p k , where x k,0 " 0 and the x k,p k are chosen deterministically in R ˚. (Note that in this random construction the sequence of heights ph k q stays deterministic.) In order to insure that we get a finite measure preserving system, we impose the following condition on the parameters of the construction ÿ

k 1 p 0 p 1 ...p k pp k t k `xk,p k q ă `8. ( 17 
)
We get a family of probability preserving dynamical rank one flows denoted by pX, A, ν, pT ω t q ωPΩ q. Following notation introduced in Subsection 6.1, we have sk pjq " ř j i"1 s k`1,i " jt k `xk,j . According to Theorem 6.1 the spectral type of each T ω t , up to discrete part, is given by the weak limit

dσ pωq pθq " W ´lim n ź k"0 |P ω k pθq| 2 dθ, (18) 
where

P ω k pθq " 1 ? p k p k ´1 ÿ j"0 e iθpjph k `tk q`x k,j pωqq . ( 19 
)
More precisely, the continuous part of the maximal spectral type is equivalent to the continuous part of σ ω . Theorem 11.1. Let pp k q, px k,p k q and pt k q be a choice of parameters for the Ornstein construction of a rank one flow. Suppose that condition ( 17) is satisfied and that there exists an infinite set of positive integers along which the sequences pp k q and pt k q go to infinity.

Then the Ornstein flow has almost surely singular spectrum, i.e.

Ptω : σ pωq K Lebesgue measure on Ru " 1.

We denote by σ pωq s the measure with density K s with respect to σ ω . On each compact subset of R, for all s large enough the measures σ pωq s and σ ω are equivalent. In order to prove Theorem 11.1, it is sufficient to prove that, for each s P p0, 1q, the measure σ pωq s is almost surely singular. This will be done in the sequel of this section. The proof is organized as in the case of Z rank one actions, using the Central Limit Theorem as it appears in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF].

We suppose in the rest of this section that hypothesis of Theorem 11.1 are satisfied. In particular we denote by D an infinite set of integers such that

lim kÑ`8 kPD p k " lim kÑ`8 kPD t k " `8.
We denote by λ s the measure with density K s with respect to Lebesgue measure. As we know,

dσ pωq s pθq " W ´lim n ź k"0
|P ω k pθq| 2 dλ s pθq, Proposition 11.2. There exists a subsequence of the sequence ppθ, ωq Þ Ñ ||P ω k pθq| ´1|q kPD which converges weakly in L 2 pµ s b Pq to some non-negative function φpθ, ωq below by a universal positive constant c.

Proof. Since for all k and all ω, we have }P ω k } L 2 pµsq " 1, the sequence p||P k | ´1|q kPD is bounded in L 2 pµ s b Pq, thus admits a weakly convergent subsequence. Let us denote by φ one such weak limit function.

Let us prove that the function φ is bounded by below by a universal positive constant.

Lemma 11.3. We have

lim kÑ`8 kPD ż R ˇˇˇż Ω P ω k pθq dPpωq ˇˇˇd λ s pθq " 0.
As a direct consequence of this lemma, if we define P 1 k pθq " P k pθq´ş Ω P ω k pθq dPpωq, we have lim

kÑ`8 kPD żż ||P k | ´|P 1 k || dPdλ s " 0. ( 20 
)
Proof of Lemma 11.3. We come back to the expression of the polynomial P k .

ż Remind that we assume that the sequence pt k q goes to infinity. The function under the integral in the last expression goes to zero when k goes to infinity, and it is uniformly bounded by 1. Thus the whole integral goes to zero.

Ω P ω k pθq dPpωq " 1 ? p k p k ´1 ÿ j"0 e ijph k `tk qθ ż Ω e iθx k,j pωq dPpωq " 1 ? p k p k ´1 ÿ j"0 e ijph k `tk qθ 1 t k ż t k {2 ´tk {2 e iθx dx " 1 ? p k p k ´1 ÿ j"0 e ijph k `
We will use the following version of the Central Limit Theorem. It is a particular case of the classical Lindeberg-Feller Theorem (see for example [START_REF] Durrett | Probability : Theory and Examples, Second Edition[END_REF], Chapter 2, Section 4.b).

Proposition 11.4. Let pY k,j ; 0 ď j ă p k , k ě 1q be an array of real random variables, with p k Ñ `8 when k Ñ `8. Suppose that (i) The random variables are centered : for all k, j, EpY k,j q " 0;

(ii) The random variables are uniformly bounded : sup k,j,ω |Y k,j pωq| ă `8;

(iii) For each k ě 1, the random variables Y k,j , 0 ď j ă p k , are independent;

(iv) lim kÑ`8

1 p k ř p k ´1 j"0 E `Y 2 k,j ˘" σ 2 P r0, `8q
Then the sequence

1 ? p k p k ´1 ÿ j"0 Y k,j
converges in law to the normal distribution N p0, σ 2 q when k goes to infinity.

(If σ " 0, this convergence is a convergence in probability to zero.)

Corollary 11.5. For all θ ‰ 0, the sequence of random variables pReP 1 k pθqq kPD converges in law to N p0, 1 2 q. Proof. We fix θ ‰ 0. We define Y k,j pωq :" cos pθpjph k `tk q `xk,j pωqqq ´E pcos pθpjph k `tk q `xk,j pωqqqq .

We have ReP 1

k "

1 ? p k p k ´1 ÿ j"0 Y k,j .
Conditions (i), (ii) and (iii) of Proposition 11.4 are satisfied. Let us verify the last one.

E `Y 2 k,j " E `pcos pθpjph k `tk q `xk,j pωqqqq 2 ˘´pE pcos pθpjph k `tk q `xk,j pωqqqqq 2 " 1 t k ż t k {2 ´tk {2 cos 2 pθpjph k `tk q`xqq dx´˜1 t k ż t k {2 ´tk {2 cospθpjph k `tk q `xqq dx ¸2 " 1 2 ˆ1 `cos p2θjph k `tk qq sinpt k θq t k θ ˙´ˆc os pθjph k `tk qq sinpt k θ{2q t k θ{2 ˙2 If t k Ñ `8, we see that E `Y 2 k,j ˘Ñ 1 2 , hence condition (iv) is satisfied with σ 2 " 1 2 .
Coming back to the proof of Proposition 11.2, we consider a weak limit φ in L 2 pµ s b Pq of the sequence p||P k | ´1|q kPD . Let A be a measurable subset of R and let C be a cylinder subset of Ω. By cylinder subset we mean a set of ω's defined by a condition depending only of finitely many coordinates of ω P

Ω " ś `8 k"0 " ´tk 2 , t k 2 ‰ p k ´1.
Note that, for all large enough k, for all θ, the set C is independent of the random variable P kpθq. We have

ż AˆC ||P ω k pθq| ´1| dµ s pθqdPpωq " PpCq ż AˆΩ ||P k | ´1| dλ s dP ě PpCq ż AˆΩ ||P 1 k | ´1| dµ s dP ´żRˆΩ ||P k | ´|P 1 k || dλ s dP.
On one hand, we have ż

AˆΩ ||P 1 k | ´1| dµ s dP ě ż A P pReP 1 k ą 2q dµ s ,
and, by Corollary 11.5,

lim P pReP 1 k ą 2q " 1 ? π ż `8 2 e
´t2 dt ": c, thus, by dominated convergence,

lim ż A P pReP 1 k ą 2q dλ s pθq " cλ s pAq.
On the other hand, by Lemma 11.3

lim ż RˆΩ ||P k | ´|P 1 k || dλ s dP " 0.
We conclude that lim inf ż AˆC ||P ω k pθq| ´1| dλ s pθqdPpωq ě cPpCqλ s pAq, which proves that the weak limit φ satisfies ş AˆC φ dλ s dP ě cPpCqλ s pAq. Since this is true for all choices of A and C, the function φ is (a.s.) bounded by below by c. Proposition 11.2 is proved.

Let us state now a randomized version of Lemma 7.5. Its proof is straightforward by integration with respect to P of the inequality which follows the statement of Lemma 7.5. Lemma 11.6. Let E be an infinite set of positive integers. Let L be a positive integer and 0 ď n 1 ă n 2 ă ¨¨¨ă n L be integers. Denote Qpθ, ωq "

ś L ℓ"1 ˇˇP ω n ℓ pθq ˇˇ. Then lim sup kÝÑ`8 kPE żż Q |P k | dλ s dP ď żż Q dµ s dP ´1 8 ˜lim inf kÝÑ`8 kPE żż Q ˇˇ|P k | 2 ´1ˇˇd λ s dP ¸2 .
Proof of Theorem 11.1. Applying Proposition 11.2, we fix an infinite set of integers E such that the sequence p||P k | ´1|q kPE converges weakly to a function bounded by below by c. We use notations of Lemma 11.6. Since we have of course żż

Q ˇˇ|P k | 2 ´1ˇˇd λ s dP ě żż Q ||P k | ´1| dλ s dP,
we know that

lim inf kÝÑ`8 kPE żż Q ˇˇ|P k | 2 ´1ˇˇd λ s dP ě c żż Q dλ s dP
Thanks to Lemma 11.6, we can construct by induction an increasing sequence pn ℓ q ℓě1 such that, for all L ě 1,

żż L`1 ź ℓ"1 |P n ℓ | dλ s dP ď żż L ź ℓ"1 |P n ℓ | dλ s dP ´c2 9 ˜żż L ź ℓ"1 |P n ℓ | dλ s dP ¸2 .
This inequation gives us the existence and the value of the following limit:

lim LÑ`8 żż L ź ℓ"1 |P n ℓ | dλ s dP " 0.
Almost surely (for the probability measure P), along a subsequence of L's, we have

ż L ź ℓ"1 |P n ℓ | dλ s ÝÑ 0.
By Bourgain criterion (Theorem 7.1) we conclude that, for almost all ω, the measure σ pωq s is singular. This is what had to be proved.

Remark. The results above can extended to establish that for almost all choose of pω, ω 1 q in the Ornstein probability space of spacers, the spectral type of T t ppnq,ω and T t ppnq,ω are singular, that is, T t p,ω and T t p,ω are spectrally disjoint. The details of the proof is left to the reader.

KLEMES-REINHOLD'S THEOREM FOR RANK ONE FLOWS.

In this section we present the extension of Klemes-Reinhold's theorem to the rank one flow. This theorem, for a rank one map, assert that if the sequence square of the cutting parameter is not summable then the spectrum is singular. The principal ingredients of the proof is based on the Bourgain singularity tools, as presented in subsection 7, combined with the extension of Peyrière criterion to the generalized Riesz products to R. This later extension can be obtained easily. But, for sake of completeness, we will present its proof. Let us state Klemes-Reinhold's theorem to the rank one flow. Lemma 12.3 (of the weak convergence). Let P n ptq " ř n k"1 a k e 2πiξ k t , n " 1, 2, ¨¨¨, be a family of trigonometric polynomials on R with positive coefficients, and s P p0, 1s. Let dρ n " ś n k"1 ˇˇP n ptq ˇˇ2 dλ s , and suppose that › › ś n j"1 P j ptq › › L 2 pλsq " 1, and › › P n ptq › › L 2 pλsq " 1, for all n P N ˚. Then pρ n q converge in the weak topology. Proof. By our assumption, we have for any n, ρ n is a probability measure on R. Furthermore, for any ξ P R, we have

y ρ n`1 pξq " ż e ´2πiξ j t n ź j"1 |P j ptq| 2 .|P n`1 ptq| 2 dλ s " ż e ´2πiξ j t n ź j"1 |P j ptq| 2 .p1 `Rn`1 ptqqdλ s ,
where R n`1 ptq " ř 1ďj‰kďn a j a k e 2πipξ j ´ξk qt . We thus get

y ρ n`1 pξq " p ρ n pξq `ÿ 1ďj‰kďn a j a k p λ s pξ j ´ξk q.
Whence, y ρ n`1 pξq ě p ρ n pξq since the coefficients a i a j are positive and p λ s ptq ě 0. We thus conclude that lim ρ n exists in the weak topology.

According to Bourgain criterion, we need to construct a subseqence pn k q for which the sequence of probability measures ρ k " ś k j"1 |P n j | 2 dλ s , k P N ˚converge to a probability measure α, by Lemma 12.3. By construction, α will satisfy the condition piiq and piiiq of Pyrière Lemma. We start by putting R n ptq " |P n ptq| 2 , and

Q k ptq " k ź j"1 |P n j ptq| 2 .
By construction, the dynamic of the rank one flow is obtained at each stage n by cutting in subcolumns of the tower B n , we further have that the height of jth subclumn is c j " h n `sn,j with j " 1, ¨¨¨, p n ´1 and c 0 " 0. Put d j " ř j k"0 c k . Then, we have

P n ptq " 1 p n pn´1 ÿ j"0 e 2πid j t . R n ptq " 1 `1 p n ÿ ξPΓn e 2πiξt (22) 
where Γ n " d j ´dk {k ‰ j " 0, ¨¨¨, p n ´1( . Let d n " maxt|γ|, γ P Γ n u. Then d n " h n`1 ´hn ´sn,pn ă h n`1 . We further have h n ď h n`1 pn ď h n`1 2 .

Now, let n 1 ă n 2 ă ¨¨¨ă n k such that n j`1 ě n j `3. It follows that

Q k ptq " 1 `1 p n 1 ¨¨¨p n k ÿ ξPS k e 2πiξt ,
where

S k " ξ 1 `¨¨¨`ξ k |ξ i P Γ n i , i " 1, ¨¨¨, k ( 
. We thus get, by the triangle inequality,

q k " max |x||x P S k ( ď d n 1 `¨¨¨`d n k ď h n 1 `1 ´hn 1 `hn 2 `1 ´hn 2 `¨¨¨`h n k `1 ´hn k ă h n k `1, (23) 
since, for any j " 1, ¨¨¨, k, n j`1 ě n j and h n j `1 ď

hn j`1 4 . Whence, (23) 
follows by telescoping. We will now summarize some proprieties of Fourier coefficients of R n k and Q k with respect to L 2 pλ s q, s P p0, 1s, as follows.

Proposition 12.4. Let n 1 ă n 2 ă ¨¨¨ă n k such that n j`1 ě n j `3, for each j " 1, ¨¨¨, k, and s P p0, 1s. Then, the Fourier coefficients of π k " R n k dλ s and τ k " Q k dλ s satisfy (a) p π k p0q " 1, and p π k ptq " 0, if s ă |t| ă h n k ´s.

(b) p π k pd n k q " 1 pn k , and p π k ptq " 0, if, d n k ´hn k `s ă |t| ă d n k ´s. (c) z τ m`k ptq " p τ k ptq, whenever |t| ă q k , m ě 0. (d) p τ k p0q " 1 and p τ k pd n k q " 1 pn k .
Proof. By definition of π k , as in the proof of Lemma 6.8, for any t P R we have,

p π k ptq " x K s ptq `1 p n k ÿ γPΓ x K s pt ´γq,
Therefore, p π k p0q " 1 and for s ă |t| ă h n k ´s, the first term is zero. The rest of (a) follows from the fact that for i ą j, d i,j ě c i ě h n k , and by symmetry, |d i,j | ě h n k for i ă j also. Indeed, assume i ą j and t ě 0. Then, d i,j ´t ě h n k ´t ą s, and by symmetry, we conclude that t ´γ R Γ, for any s ă |t| ă h n k ´s, and γ P Γ. For the proof of the first part of (b) , it suffices to observe that d n k " maxpd i,j q. For the second part, suppose i ą j and pi, jq ‰ pp n k ´1, 0q. Then d i,j " ř i l"j`1 c l is a sum over a proper subset I of the indexes t1, 2, ¨¨¨, p n k ´1u.

Whence d n k ´di,j ě mintc 1 , c 2 , ¨¨¨, c pn k ´1u ě h n k , since d n k ´di,j is the sum over the complement of I. We thus get for t P rd n k ´hn k `s, d n k ´ss, t ´γ ą s, for all γ P Γ, and by symmetry for t ă 0. The first part of (d) follows from Lemma 6.7. For the rest of (d) and the proof of (c).

Consider Q k`1 " Q k R n k`1 . Then, y τ k`1 pt `dn k q " y τ k`1 ptq 1 p n k , @t P r´q k , q k s. (24) 
Indeed,

y τ k`1 pt `dn k`1 q " p π k pt `dn k`1 q `1 p n k`1 ÿ ξPS k z π k`1 pt `dn k`1 ´ξq, " 1 p n k p τ k ptq, (25) 
by ( 23) and (a). We thus get for t " 0 the second part of (d). By the same reasoning, we get (c). This finish the proof of the proposition. Now, we are going to construct, for any s Ps0, 1s, a generalized Riesz product ν s which satisfy the condition of Lemma 12.2. Let pn j q such that n j`1 ě n j `3, and put

ν s " `8 ź j"0 |P n j pθq| 2 .
Lemma 12.5. There is a subsequence ! t j , j P N ) Ă R `such that the generalized Riesz products pν s q sPs0,1s satisfy (i) p ν s p˘t j q " 1 pn j , (ii) p ν s pt j ˘tk q " p ν s pt j q p ν s pt k q.

Proof. By definition of the family pν s q sPs0,1s , we have

p ν s ptq " lim JÝÑ`8 ż R e ´itθ J ź j"0 |P n j pθq| 2 dλ s . Let t k " d n k .
Then, by Proposition 12.4, we have p ν s ptq " π k ptq, whenever t P r´q k , q k s. We further have p ν s pt k q " 1 pn k and since p ν s p´tq " p ν s ptq, for any

t P R `, we get p ν s p´t k q " 1 pn k
. This proves (i). To prove (ii), suppose j ă k and apply [START_REF] Dégot | Finite-dimensional Mahler measure of a polynomial and Szegö's theorem[END_REF] combined [START_REF] Durrett | Probability : Theory and Examples, Second Edition[END_REF] to get p ν s pt j ˘tk q " π k pt j ˘tk qq " π k´1 p˘t j q 1 p n k

" p ν s p˘t j q p ν s pt k q (27) " p ν s pt j q p ν s pt k q,

since the support of p π j is a subset of the support of π k´1 which is subset of r´q k´1 , q k´1 s. The proof of the lemma is complete.

We proceed now to the proof of Theorem 12.1.

Proof of Theorem 12.1 . According to our assumption the series p 1 pn q nPN is not in ℓ 2 pNq. Therefore, for any k " 3, ¨¨¨, there is r P t0, 1, ¨¨¨, k ´1u such that

ÿ n"rrks 1 p 2 n " `8.
Therefore, we can choose pn j q such that n j`1 ě n j `3 and the series p 1 pn j q jPN is not in ℓ 2 pNq. Now, by applying Lemma 12.2 with µ " ν s we obtain that ν s is singular for any s Ps0, 1s. This finish the proof of the theorem.

KLEMES-PARREAU'S THEOREM FOR LINEAR STAIRCASE RANK ONE

FLOWS.

In this section, we extended Klemes theorem [START_REF] Klemes | Rank one transformations with singular spectre type[END_REF] to linear staircase rank one flows. For that, we will adapt the material from Tuesday, 20 December 1994 conference of Franc ¸ois Parreau given at the seminar of ergodic theory of Paris Jussieu on Klemes's theorem. In this conference, F. Parreau presented an extension of Klemes's result. The condition on the cutting parameter was improved. But, the result still unpublished until this paper.

We recall that the rank one flow is in the class of linear staircase if the family of spacers ps n,k q pn´1 k"0 is given by s n,1 " s n,pn´1 " 0 and s n,k " kα, α ą 0, k " 2, ¨¨¨, p n ´2. In this case, the polynomials associated to the spectral type are given by

P n pθq " 1 ? p n pn´1 ÿ j"0 e ipjhn`snpjqqθ ,
where s n p0q " 0 and s n pjq " jpj`1q 2 α, j " 1, ¨¨¨, p n ´1. We fix also, as before, K, n 1 ă n 2 ă ¨¨¨ă n K , and

Qpθq " K ź j"1 |P n j pθq|.
The subject of this section is to establish the following theorem. Let us stress that Theorem 13.1 extended Klemes's theorem even for the case of Z action. We start by putting, for any ℓ P N ˚, D ℓ pθq " ℓ´1 ÿ j"0 e ijθ , and a n,j " jh n `sn pjq, j " 0, ¨¨¨, p n ´1, and for convenience, we further put D ´ℓpθq " D ℓ pθq and a n,´j " a n,j .

For θ R 2πZ, we have

D ℓ pθq " e iℓθ ´1 e iℓθ ´1 ,
Moreover, for any x P R, |x| ď 1 8ℓ , we have ℜpD ℓ p2πxqq ě ℓ ? 2 . Indeed,

ℜpD ℓ p2πxqq " ℓ´1 ÿ j"0 cosp2jπxq (29) 
ě ℓ ? 2 , (30) 
since, for any j " 0, ¨¨¨, ℓ´1, |2jπx| ď |j|π 4ℓ ď π 4 , and cosp2jπxq ě cosp π 4 q " 1 ? 2 .

We have also the following lemma. We thus get, by Proposition 7.4 that σ 0,s is singular and the proof of Theorem 13.1 is complete. Therefore, we need only to establish (i) and (ii) of Claim 13.5.

For the proof of Claim 13.5, we need the following observation.

Observation 13.6. Let f P L 1 pRq and define r f by

r f pθq " α 2π ÿ nPZ f pθ `2πn α q, θ P R.
Obviously, φpθq depend only on θ mod 2π α . We can thus consider r f as defined on r0, 2π α q equipped with the normalized Lebesgue measure dθ α " α 2π dθ. We further have p r f pnq " p f pnq, @n P Z,

and › › r f › › 1 ď › › f › › 1 .
According to this observation, we shall proved the following lim inf ℜpI n q ě c ż Qpθqdλ s pθq, for some absolute constant c. 

χ I f n,k pxq dx ż 1 0 f n,k pxqdx " ż 1 0 χ I dν n,k ´´Ñ nÑ8 ż 1 0 χ I pxq dx.. (37) 
Summarizing, we have proved

lim inf nÑ8 RepI n q ě 1 4 ? 2 ż Ć QK s pθqdθ α lim inf ż ÿ pn 4 ďkď 3pn 4 f n,k pxqdx α (38) ě 1 4 ? 2 3 2π 2 ż R Qpθqdλ s . (39) 
This proved (i) of Claim 13.5 with the constant c " 3 4 ? 2π 2 . We proceed in the same manner to prove (ii), by reducing the study to the case of the torus r0, 1q. We point out here that we modify slightly the construction of the rank one by taking Hence, by our assumption, for n largely enough, we have |ℓ| " h n 2 , and

ˇˇII n ˇˇď C.p 3 n sup |ℓ|ě hn 2 | x χ j k 1 pℓq| (45) ď C.p 3 n sup |ℓ|ě hn 2 1 π|ℓ| (46) ď C 1 p 3 n h n ´´Ñ nÑ8 0. ( 47 
)
the last assertion follows for our assumption. This completes the proof of(ii) of Claim 13.5 and the proof of the theorem (Theorem 13.1.)

EXPONENTIAL STAIRCASE RANK ONE FLOWS

The main purpose of this section is to study the spectrum of a subclass of a rank one flows called exponential staircase rank one flows which are defined as follows.

Let pm n , p n q nPN be a sequence of positive integers such that m n and p n goes to infinity as n goes to infinity. Let ε n be a sequence of rationals numbers which converge to 0. Put ω n ppq " m n ε 2 n p n ´exp `εn .p p n ˘´1 ¯for any p P t0, ¨¨¨, p n ´1u, and define the sequence of the spacers pps n`1,p q p"0,¨¨¨,pn´1 q ně0 by h n `sn`1,p`1 " ω n pp `1q ´ωn ppq, p " 0, ¨¨¨, p n ´1, n P N.

In this definition we assume that

(1) m n ě ε n .h n , for any n P N.

(2)

logpp n q m n ´´Ñ nÑ8 0 if p n ě mn εn (3) logpp n q m n ´´Ñ nÑ8 0 and logpp n q p n ď ε n if p n ă mn ǫn
We will denote this class of rank one flow by pT t q tPR def " `T t ppn,ωnq ně0 ˘tPR .

It is easy to see that this class of flows contain a large class of examples introduced by Prikhodko [START_REF] Prikhod'ko | Littlewood polynomials and their applications to the spectral theory of dynamical systems[END_REF]. Indeed, assume that h β n ě p n ě h 1`α n , β ě 2 and α Ps0, 1 4 r. Then, by assumption (1), we have

logpp n q m n ď β logph n q ε n h n , Taking β " ε n `th δ n u `1˘, 0 ă δ ă 1, we get logpp n q m n ´´Ñ nÑ8 0.
At this point we stat the main result of this section.

Theorem 14.1. Let pT t q tPR " ´T t ppn,ωnq ně0 ¯tPR be a exponential staircase rank one flow associated to

ω n ppq " m n ε 2 n p n exp `εn .p p n ˘, p " 0, ¨¨¨, p n ´1,
which satisfy the condition (1), ( 2) and (3). Then the spectrum of pT t q R is singular.

The proof of Theorem 14.1 is the subject of the next section.

THE CLT METHOD FOR TRIGONOMETRIC SUMS AND THE SINGULARITY OF THE SPECTRUM OF EXPONENTIAL STAIRCASE RANK ONE FLOWS

The main goal of this section is to prove the following proposition Proposition 15.1. Let pT t q tPR " ´T t ppn,ωnq ně0 ¯tPR be a exponential staircase rank one flow associated to

ω n ppq " m n ε 2 n p n exp `εn .p p n ˘, p " 0, ¨¨¨, p n ´1.
Then, there exists a constant c ą 0 such that, for any positive function f in L 2 pR, λ s q, we have

lim inf mÝÑ`8 ż R f ptq ˇˇ|P m ptq| 2 ´1ˇˇd µ s ptq ě c ż R f ptq dλ s ptq.
The proof of the proposition 15.1 is based on the study of the stochastic behavior of the sequence |P m |. For that, we follow the strategy introduced in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF] based on the method of the Central Limit Theorem for trigonometric sums. This methods takes advantage of the following classical expansion exppixq " p1 `ixq exp ´´x 2

2

`rpxq

¯,

where |rpxq| ď |x| 3 , for all real number x 2 , combined with some ideas developed in the proof of martingale central limit theorem due to McLeish [START_REF] Mcleish | Dependent central limit theorems and invariance principles[END_REF]. Precisely, the main ingredient is the following theorem proved in [START_REF] El Abdalaoui | A new class of rank-one transformations with singular spectrum[END_REF].

Theorem 15.2. Let tX nj : 1 ď j ď k n , n ě 1u be a triangular array of random variables and t a real number. Let

S n " kn ÿ j"1 X nj , T n " kn ź j"1 p1 `itX nj q, and 
U n " exp ˜´t 2 2 kn ÿ j"1 X 2 nj `kn ÿ j"1 rptX nj q ¸.
Suppose that

(1) tT n u is uniformly integrable.

(2) EpT n q ´´Ñ nÑ8 1.

( We remind that the sequence tX n , n ě 1u of random variables is said to be uniformly integrable if and only if

) kn ÿ j"1 X 2 nj ´´Ñ 3 
lim cÝÑ`8 ż |Xn|ąc ( ˇˇX n ˇˇdP " 0 uniformly in n.
and it is well-known that if

sup nPN ˆE`ˇˇX n ˇˇ1`ε ˘˙ă `8, (48) 
2 this is a direct consequence of Taylor formula with integral remainder.

for some ε positive, then tX n u is uniformly integrable.

Using Theorem 15.2 we shall prove the following extension to R of Salem-Zygmund CLT theorem, which seems to be of independent interest. Theorem 15.3. Let A be a Borel subset of R with µ s pAq ą 0 and let pm n , p n q nPN be a sequence of positive integers such that m n and p n goes to infinity as n goes to infinity. Let ε n be a sequence of rationals numbers which converge to 0 and

ω n pjq " m n ε 2 n p n exp `εn .j
p n ˘for any j P t0, ¨¨¨, p n ´1u.

Then, the distribution of the sequence of random variables ? 2 ? pn ř pn´1 j"0 cospω n pjqtq converges to the Gauss distribution. That is, for any real number x, we have

1 µ s pAq µ s # t P A : ? 2 ? p n pn´1 ÿ j"0 cospω n pjqtq ď x + ´´Ñ nÑ8 1 ? 2π ż x ´8 e ´1 2 t 2 dt def " N ps´8, xsq . (49) 
As in the proof of Theorem 11.1 we need to see that the function φ defined in 7.6 is bounded by below by a universal positive constant. For that we need to prove Proposition 15.1. Let n be a positive integer and put

W n def "
! ÿ jPI η j ω n pjq : η j P t´1, 1u, I Ă t0, ¨¨¨, p n ´1u

) .

The element w " ř iPI η j ω n pjq is called a word.

We shall need the following two combinatorial lemmas. The first one is a classical result in the transcendental number theory and it is due to Hermite-Lindemann.

Lemma 15.4 (Hermite-Lindemann, 1882). Let α be a non-zero algebraic number. Then, the number exppαq is transcendental.

We state the second lemma as follows.

Lemma 15.5. For any n P N ˚. All the words of W n are distinct.

It is easy to check that the variables tX nj u satisfy condition (4). Further, condition [START_REF] El Abdalaoui | Notes on the flats polynomials[END_REF] 

The proof of the claim is complete. It still remains to prove [START_REF] Kuipers | Uniform Distribution of Sequences[END_REF]. For that, let us compute the cardinality of words of length r which can belong to the support of φ.

By the well-known sampling theorem, we can assume that the support of φ is r´Ω, Ωs, Ω ą 0. First, it is easy to check that for all odd r, |w Indeed, for k " 2. Write w p4q n " η 1 ω n pk 1 q `η2 ω n pk 2 q `η3 ω n pk 3 q `η4 .ω n pk 4 q, with η i P t´1, 1u and k i P t0, ¨¨¨, p n ´1u, i " n " η 1 ω n pk 1 q `η2 ω n pk 2 q `η3 ω n pk 3 q `η4 ω n pk 4 q " m n ǫ 2 n p n e n pk 1 q ´η1 `η2 e n pα 1 q `η3 e n pα 2 q `η4 e n pα 3 q where, α i " k i`1 ´k1 , i " 1, ¨¨¨, 3. At this stage, we may assume again WLOG that η 1 `η2 " 0 and η 3 `η4 " 0. It follows that

w p4q n " m n ǫ 2 n
p n e n pk 1 q ´η2 `en pα 1 q ´1˘`η 4 e n pα 2 q `en pα p n e n pk 1 q ´en pα 1 q ´1ě

m n ǫ 2 n p n ε n p n ´´Ñ nÑ8 `8. 
' Case 2: η 2 " ´η4 . We thus get

w p4q n " m n ǫ 2 n p n .e n pk 1 qη 4 ´en pα 2 q `en pα 1 1 q ´1˘´`e n pα 1 q ´1˘H ence ˇˇw p4q n ˇˇ" m n ǫ 2 n
p n e n pk 1 q ˇˇe n pα 2 q `en pα 1 1 q ´1˘´`e n pα 1 q ´1˘ˇˇŤ herefore, we have three cases to deal with.

-Case 1: α 1 1 ą α 1 . In this case, ˇˇw p4q n ˇˇ"

m n ǫ 2 n
p n e n pk 1 q ´en pα 2 q `en pα 1 1 q ´1˘´`e n pα 1 q ´1˘ě

m n ǫ 2 n p n `en pα 1 1 q ´en pα 1 q ě m n ǫ 2 n p n `en pα 1 1 ´α1 q ´1˘´´Ñ nÑ8 `8.
-Case 2:

α 1 1 ă α 1 . Write α 1 " α 1 1 `β. Thus ˇˇw p4q n ˇˇ" m n ε 2 n
p n e n pk 1 q ˇˇe n pα 2 q `en pα 1 1 q ´1˘´`e n pα 1 1 `βq ´1˘ˇˇě

m n ε 2 n p n ˇˇe n pα 1 1 `α2 q ´en pα 2 q ´en pα 1 1 `βq `1ˇˇě m n ε 2 n p n ˇˇ`e n pα 2 q ´1˘`e n pα 1 1 q ´1˘´e n pα 1 1 q `en pβq ´1˘ˇˇě m n ε 2 n p n ε n βα 1 1 p n ´en pα 1 1 q `en pβq ´1ε nβα 1 1
pn

´`e n pα 2 q ´1˘`e n pα 1

1 q ´1ε nβα 1 1 pn ě m n ε n βα 1 1 ´en pα 1 1 q `en pβq ´1ε nβα 1 1
pn

´`e n pα 2 q ´1˘`e n pα 1 1 q ´1ε nβα 1 1 pn But for any x P r0, logp2qr, we have x ď e x ´1 ď 2x. Therefore `en pα 2 q ´1˘`e n pα where η " ˘1. In the case η " 1, it is easy to see that ˇˇw p8q n ˇˇě

m n ε n p 2 n α 3 Ă α 1 Ă α 2 , where r α i " infpα i , α 3`i q.
For η " ´1, write ˇˇw p8q n ˇˇ"

m n ε 2 n
p n e n pαq ˇˇpe n pα 1 q ´1qpe n pα 2 q ´1q ṕe n pα 3 q ´1qpe n pα 4 q ´1qpe n pα 5 q ´1q ´pe n pα 4 q ´1qpe n pα 5 q ´1q ˇˇ.

Using the following expansion

e n pxq " 1 `εn .x p n `op1q, (56) 
we obtain, for a large n, ˇˇw p8q n ˇˇě

m n ε n p 2 n α 3 Ă α 1 Ă α 2 .
We deduce that the cardinality of words of length 8 which can belong to r´Ω, Ωs is less than

Ω.p n . p 2 n m n ε n ÿ Ă α 1 , Ă α 2 1 Ă α 1 Ă α 2 ď Ω. p 3 n m n ε n plogpp n qq 2 .
In the same manner as before consider the words of length k in the following form

w p2 k q n " m n ǫ 2 n
p n e n pαq ´pe n pα 1 q ´1q ¨¨¨pe n pα k q ´1q ¯.

Therefore

ˇˇw p2 k q n ˇˇě m n ǫ 2 n p n . ´εn p n ¯k.α 1 .α 2 ¨¨¨α k . ě m n p k´1 n ε k´2 n α 1 .α 2 ¨¨¨α k
which yields as above that the cardinality of words of length 2 k which can belong to r´Ω, Ωs is less than

Ω.p n . p k´1 n m n ε k´2 n ÿ α 2 ,¨¨¨,α k 1 α 2 ¨¨¨α k ď Ω.p n . p k´1 n m n ε k´2 n plogpp n qq k´1 .
Now, if r is any arbitrary even number. Write r in base 2 as r " 2 ls `¨¨¨`2 l 1 with l s ą ¨¨¨ą l 1 ě 1.

and write w prq n " w p2 ls q n `¨¨¨`w p2 l 1 q n , with w p2 l j q n " η pjq 1 ω n pk pjq 1 q `¨¨¨`η pjq 2 l j ω n pk pjq l j q, j " 1, ¨¨¨, s, and

2 l j ÿ i"1 η pjq i " 0, j " 1, ¨¨¨, s.
Observe that the important case to consider is the case

w p2 l j q n " ˘mn ε 2 n p n l j ź i"1 `epα pjq i q ´1˘, j " 1, ¨¨¨, s.
Using again [START_REF] Peyrière | Étude de quelques propriétés des produits de Riesz[END_REF] we obtain for a large n that

ˇˇw prq n ˇˇě m n p ls´1 n ε ls´2 n ls ź i"1 α psq i .
Hence, the cardinality of words of length r which can belong to r´Ω, Ωs is less than

Ω. 1 m n . p tlog 2 prqu n ε tlog 2 prqu´2 n plogpp n qq tlog 2 prqu´1 , 15.4, there exists α ě 1 such that r ÿ j"1 η j k α j α! ‰ 0.
Therefore, using a Taylor expansion of e n and assuming that all the terms of degree less than α are 0, we have

|W prq n | " m n .p n ε n ˇˇ´ε n p n ¯α r ÿ j"1 η j k α j α! `o´´ε n p n ¯α r ÿ j"1 η j k α j α! ¯ˇě ˇˇh n .ε α´1 n p α´1 n r ÿ j"1 η j k α j α! `o´h n .ε α´1 n p α´1 n r ÿ j"1 η j k α j α! ¯ˇˇ´´Ñ nÑ8 `8.
To ensure that the assumption (57) holds, take p n " n, ε n " According to our results we ask the following question.

Question 15.6. Does any exponential rank one flow have singular spectrum?

We are not able to address the previous question. However, in the next section, we establish that there exists a rank one flow acting on infinite measure space with Lebesgue spectrum. We will further discuss some flatness problem related to the previous question raised by A. A. Prikhod'ko in [START_REF] Prikhod'ko | Littlewood polynomials and their applications to the spectral theory of dynamical systems[END_REF].

INFINITE RANK ONE FLOW WITH SIMPLE LEBESGUE SPECTRUM

The main subject of the following section is to establish the following theorem.

Theorem 16.1. There exist a conservative ergodic measure preserving flow on σ-finite space pX, A, µq with simple Lebesgue spectrum.

The proof of Theorem 16.1 is based essentially on the following result proved in [START_REF] El Abdalaoui | Ergodic Banach problem, flat polynomials and Mahler's measures with combinatorics[END_REF].

Lemma 16.2. There exist a sequence of analytic trigonometric polynomials `Pn ˘nPN with coefficients 0 and 1 such that the polynomials Pnpzq }Pn} 2 are flat in almost everywhere sense, that is,

P n pzq }P n } 2 ´´Ñ nÑ`8 1,
for almost all z of modulus 1 with respect to the Lebesgue measure dz.

We are now able to proceed to the proof of Theorem 16.1.

Proof of Theorem 16.1. We start by establishing the existence of a sequence of L 1 pdλ s q-flat trigonometric polynomials on R with coefficients 0 and 1, for any s P s0, 1s. For that, let `Pnpzq }Pn} 2 q nPN be a sequence of flat polynomials given by Lemma 16.2, and for any θ P R, put Q n pθq " P n pe iθ q }P n } 2 .

As before, for any s ą 0, define r K s pθq " 2π ÿ nPZ K s pθ `2nπq, @θ P R.

Then r K s pθq is 2π-periodic. We further have since Q n pzq is L 1 pdzq-flat. Now, applying Theorem 10.8, we get that there exist a rank one flow pT t q acting on σ-finite measure space with simple Lebesgue spectrum. The proof of the theorem is complete.

APPENDIX. ON THE LOCALLY FLAT POLYNOMIALS ON THE REAL LINE

The purpose of this appendix is to investigate the problem of flatness of some class of polynomials on the real line. This class of polynomials was introduced in [START_REF] Prikhod'ko | Littlewood polynomials and their applications to the spectral theory of dynamical systems[END_REF] in connection with the study of the spectrum of some class of flows in ergodic theory. Therein, the author claimed that those polynomials are L 1 -locally flat. Unfortunately, as we will see by applying carefully Karatsuba-Korolev theorem [START_REF] Karatsuba | A theorem on the approximation of a trigonometric sum by a shorter one[END_REF], this is not the case.

Let us point out that the reader is not required to be familiar with the spectral theory of dynamical systems and the flat polynomials business. But, the only thing need it from [START_REF] Prikhod'ko | Littlewood polynomials and their applications to the spectral theory of dynamical systems[END_REF] is the definition of the sequences of polynomials which we recall in the next section.

Let us start by recalling that the sequence of polynomials pP n q on the real line is The connection between the notion of L 1 -locally flat and the notion of L 1 -flat is formulated in the following proposition.

Proposition 16.3. Let pP n ptqq be a sequence of real trigonometric polynomials L 2 pK s ptqdtq-normalized for any s ą 0, and pP n ptqq is L 1 -Locally flat, then there is a subsequence pP n k ptqq which is L 1 pK s ptqdtq-flat for any s ą 0.

Proof. Assume that pP n ptqq is L 0.

Hence, pP n k ptqq is L 1 pK s ptqdtq-flat, for any s ą 0, which finish the proof of the proposition.

EXPONENTIAL-STAIRCASE POLYNOMIALS ARE NOT L 1 -LOCALLY FLAT

The main issue of this appendix is related to the problem of L 1 -locally flatness of the following sequence of polynomials

P n ptq " 1 ? q n qn´1 ÿ j"0 e 2iπωnpjqt ,
where q n is a sequence of positives integers such that q n ÝÑ `8, ω n is given by

ω n pxq " m n β 2 n
q n e βn x qn , β n ÝÑ 0. We call such polynomials the exponential-staircase polynomials. This is due to the fact that this class of polynomials is related to the spectral type of the exponential-staircase rank one flows. In [START_REF] Prikhod'ko | Littlewood polynomials and their applications to the spectral theory of dynamical systems[END_REF], the sequences m n , β n , q n verify (i) 1 βn P N and we put mn βn " h n P N.

(ii) For some α P p0, 1 4 q, h 1 2

`α n ă q n and m n ď h For a real number x we will denote by rxs the greatest integer less than or equal to x, and by txu " x ´rxs the fractional part. Let ||x|| denote the distance of x to the nearest integer, that is, ||x|| " min ! txu, 1 ´txu

) . If f is a differentiable real function and ρ is a positive number, we set

T f,x,ρ " " 0, if ||f 1 pxq|| " 0; mint ? ρ, 1 ||f 1 pxq|| u, if not.
In [START_REF] Prikhod'ko | Littlewood polynomials and their applications to the spectral theory of dynamical systems[END_REF], the author stated under condition (i) and (ii) that the following sequence of polynomials is L 1 -locally-flat:

Q n ptq " 1 ? q n qn´1 ÿ j"0 e 2iπψnpjqt ,
where ψ n pjq " ω n pjq m n " q n β 2 n e βn j qn .

There is many issues in the paper but the principal gap is in the proof of Lemma 6 and 7 from [START_REF] Prikhod'ko | Littlewood polynomials and their applications to the spectral theory of dynamical systems[END_REF]. Indeed, the author state that γpy k q " e βn 2qn y k " 1 with tψ 1 py k q " k (this is also hidden in the equation (3.27)). But, according to the definition of y k (equation (3.20) 

Therefore, the computation need to be carried out carefully since the constant in the approximation in the equation (3.27) depend on k and t. Moreover, the parameters depend tightly on each other (see equation [START_REF] Rokhlin | Selected topics from the metric theory of dynamical systems[END_REF] where x j play the same role as y k .).

Let us state now the main result of this appendix. |Q n ptq| ď ? t,

uniformly for any t P rτ 1 , τ 2 s.

The proof of Theorem 16.4 is a direct consequence of the so-called van der Corput method, for a nice account on this method and its generalization by Salem , we refer to [START_REF] Zygmund | Trigonometric series[END_REF] and [START_REF] Salem | Essais sur les séries trigonométriques[END_REF]. For the classical results, we refer to [START_REF] Titchmarsh | The theory of the Riemann zeta-function[END_REF] and [START_REF] Graham | Van der Corput's method of exponential sums[END_REF].

Here, we need the following theorem due to Karatsuba and Korolov [START_REF] Karatsuba | A theorem on the approximation of a trigonometric sum by a shorter one[END_REF]. cpjqZpjq `E, with cpjq " " 1, if f 1 paq ă j ă f 1 pbq; 0.5, if j " f 1 paq or j " f 1 pbq, Zpjq " 1 `i ? 2 1 a f 2 px j q e 2πipf px j q´jx j q , where the numbers x j satisfy f 1 px j q " j. E is given by E " θ ´K1 lnpf 1 pbq ´f 1 paq `2q `K2 `K3 pT f,a,A `Tf,b,A q ¯, |θ| ď We further have τ 1 . 1 q n ď f 2 pxq ď e.τ 2 1 q n .

From this, we can set c 1 " τ 1 , c 2 " c 3 " c 4 " e.τ 2 , A " q n .

Of course we take λ " 1 and U " q n , and it is a simple matter to see that |f p3q pxq| " f p3q pxq ď c 3 AU " eτ 2 1 q n . 1 q n , |f p4q pxq| " f p4q pxq ď c 4 AU 2 " eτ 2 1 q n . 1 q 2 n , and f 1 pxq f pxq " f 2 pxq f 1 pxq " f p3q pxq f 2 pxq " ¨¨¨" β n q n , From this, we deduce that f 2 px j q " β n q n j, and f px j q " q n β n j P Z, @j P rt

1 β n , t 1 β n e βn s, (61) 
since f 1 px j q " j, @j P rt ¯¯.

Finally, we note that there exist a constant γptq which depend only on t such that for an infinitely many n, we have Applying the classical Rolle's theorem, we get that there is θ Psτ 1 , τ 2 r such that 1 ď ? θ, which is impossible.

żXf

  ˝Ts ¨g dµ uniformly for s in the interval r´S, Ss.

ÿ ℓě1 2 ´ℓσ 0, 1 ℓ

 1 is absolutely continuous with respect to σ. In order to use the first inequality, we choose an integer ℓ large enough so that the kernel K 1 ℓ is strictly positive on S, and we conclude that, on S, σ ! σ 0, 1 ℓ . Hence, on the whole real line we get σ ! ÿ ℓě1 2 ´ℓσ 0, 1 ℓ , and at the end σ « ÿ ℓě1 2 ´ℓσ 0, 1 ℓ

Proposition 8 . 2 .

 82 The sequence n ź j"0 ˇˇˇP j ptq Q j ptq ˇˇˇ, n " 1, 2, ¨¨¨converges weakly in L 2 pR, ν s q to c dµ s dν s . Proof. Put f " b dµs dνs and let n be a positive integer. Now

  as n ÝÑ `8, then the spectral type of the linear staircase flow σ is singular.

  s ě Kλ s pAq, for any Borel subset A of R. This end the proof of the proposition. Now, we give the proof of our main result.Proof of Theorem 14.1. Follows easily from the proposition 15.1 combined with proposition 7.4.

ˇˇˇˇQ

  n pθq ˇˇ´1 ˇˇr K s pθqdθ " ż R ˇˇˇˇQ n ptq ˇˇ´1 ˇˇdt. But r K s pθq is bounded. Therefore, ż R ˇˇˇˇQ n ptq ˇˇ´1 ˇˇdt ´´Ñ nÑ`8 0,

L 1 - 8 0.

 18 locally flat if, for any a ă b, we have ż b a ˇˇ|P n ptq| 2 ´1| ˇˇdt ´´Ñ nÑ`We further demand that for s ą 0, ż |P n ptq| 2 K s ptqdt " 1,

1 2 `α ă q n β n 1 2 `α ă pq n β n q 1 2

 111 condition (i) and (ii) gives (A) m n `α. (B) From which we get m n ă q n β n . (C) We further have a m n β n ď β α n ă 1.

Theorem 16 . 4 .

 164 For any positive numbers τ 1 ă τ 2 , we have lim sup nÑ`8

Lemma 16 . 5 .

 165 Let real function f pxq satisfies the following conditions on a closed interval ra, bs: (a) The fourth derivative f p4q pxq of f is continuous. (b) There are non-negative numbers U, A, λ, c 1 , c 2 , c 3 , c 4 such that U ě 1, 0 ă b ´a ď λU,

1 |Q n k ptq|dt " τ 2

 12 qn , T f,qn,qn)ď γptq.Indeed, we haveT f,0,qn ď 1 }β ´1n t} , and T f,qn,qn ď 1 }e βn β ´1 n t} .

  can be applied to the function φptq " f pT t xq1 r0,Ss ptq.

	is measurable and		
			ż S 0 ˆżX	|f pT t xq| 2 dµpxq ˙dt " S}f } 2 2 ă `8.
	By taking a sequence of S's going to infinity, we conclude that, for µ-almost all
	x, for all S ą 0,	ż S 0	|f pT t xq| 2 dt ă `8.
	This proves our claim.		
	Equation (3) applied to our particular functions gives : for µ-almost all x, for
	all S ą 0, lim λÑ0 ż R ˇˇˇż	S 0	f pT t xqe ´iθt dt ˇˇˇ2	ˆżR	k λ psqe ´iθs ds ˙eiθu dθ ż mintu`S,Su
						"	maxtu,0u	f pT t xq ¨f pT t´u xq dt
	In the next section, we will prove that for µ-almost all x, for all u P R, we have lim SÑ`8 ż mintu`S,Su ż 1 S maxtu,0u f pT t xq ¨f pT t´u xq dt " X f ˝Tu ¨f dµ.
	This allows us to state the following lemma.
	Lemma 4.1. For f P L 2 pXq and x P X, we consider the absolutely continuous measure σ f,λ,S,x pdθq " ˇˇˇ1 ? S ż S 0 f pT t xqe ´iθt dt ˇˇˇ2 p k λ pθq dθ.
	For all f P L 2 pXq, for µ-almost all x, we have
				lim SÑ`8
		The function		
						r0, Ss ˆX Q pt, xq Þ Ñ f pT t xq

, we deduce that lim aÑ0 f a " f in L 2 pXq. But, for any x

  , the function s Þ Ñ f a pT s xq is Lipschitz continuous with Lipschitz constant equal to 2}f } 8 {a. In fact, we have |f a pT s xq ´fa pT s 1 xq| "

	Lemma 5.4. Let f, g be two bounded measurable functions on X. Assume that,
	for any x P X, the function s Þ ÝÑ f pT s xq is Lipschitz continuous. Then, for any S ą 0, for almost all x P X, we have lim τ Ñ`8 ż τ ż 1 τ 0 f pT t`s xq ¨gpT t xq dt " X f ˝Ts ¨g dµ
	uniformly for s in the interval r´S, Ss.				
	Proof. By the Ergodic Theorem, for almost all x P X and all rational number r, we have lim τ Ñ8 ż τ ż 1 τ 0 f pT t`r xq ¨gpT t xq dt " X f ˝Tr ¨g dµ.
	1 a	ˇˇˇˇż s a`s	f pT t xq dt	s 1 ´ż a`s 1	f pT t xq dt ˇˇˇˇ,
	and if 0 ď s ´s1 ď a, then |f a pT s xq ´fa pT s 1 xq| " 1 a 1 a ˜ż s 1 s |f pT t xq| dt ˇˇˇˇż s 1 s f pT t xq dt `ż a`s 1 ´ż a`s 1 a`s a`s |f pT t xq| dt f pT t xq dt ˇˇˇď ¸ď 2 a }f } 8 ps ´s1 q.

  r xq ¨gpT t xq dt ´żX f ˝Tr ¨g dµ ˇˇˇď ε. Using Lipschitz condition, we see that first and third terms are bounded by c}g} 8 ε. The second term is bounded by ε by our choose of x and τ and the proof of the lemma is complete. P L 2 pXq and ε be a positive number, assume that there exist f , g P L 2 pXq such that ||f ´f || 2 ă ε and ||g ´g|| 2 ă ε, and for almost all x, }g} 2 `} f } 2 }g ´g} 2 ď ε}g} 2 `pε `}f } 2 qε. }g} 2 `} f } 2 }g ´g} 2 ď ε}g} 2 `pε `}f } 2 qε.

	Let s P r´S, Ss. There exists a rational number r " p{q such that |s ´r| ď ε. We have, for all τ ą τ 0 , ˇˇˇ1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ´żX f ˝Ts ¨g dµ ˇˇď ˇˇˇ1 τ ż τ 0 pf pT t`s xq ´f pT t`r xq ¨gpT t xq dt ˇˇ1 τ ż τ 0 f pT t`r xq ¨gpT t xq dt ´żX f ˝Tr ¨g dµ ˇˇż X f ˝Ts ¨g dµ ´żX f ˝Tr ¨g dµ ˇˇˇ. Proof of Theorem 5.1. Let S be a positive number. By Lemmas 5.3 and 5.4, it is sufficient to show that the set of pairs of L 2 functions pf, gq for which the theorem holds is closed in L 2 pXq ˆL2 pXq. Let f, g lim τ Ñ8 1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt " ż X f ˝Ts ¨g dµ, uniformly for s P r´S, Ss. For such an x we have lim sup τ Ñ8 sup ´SďsďS ˇˇˇ1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ´żX f ˝Ts ¨g dµ ˇˇď lim sup τ Ñ8 sup ´SďsďS ˇˇˇ1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ´1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ˇˇš up ´SďsďS ˇˇˇż X f ˝Ts ¨g dµ ´żX f ˝Ts ¨g dµ ˇˇW e need to estimate two terms on the right hand side. For the first one, we have lim sup τ Ñ8 sup ´SďsďS ˇˇˇ1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ´1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ˇˇď lim sup τ Ñ8 sup ´SďsďS ˇˇˇ1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ´1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ˇˇľ im sup τ Ñ8 sup ´SďsďS ˇˇˇ1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ´1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ˇˇď lim sup τ Ñ8 sup ´SďsďS ˆ1 τ ż τ 0 ˇˇpf ´f qpT t`s xq ˇˇ2 dt ˙1{2 ˆ1 τ ż τ 0 |gpT t xq| 2 dt ˙1{2 `lim sup τ Ñ8 sup ´SďsďS ˆ1 τ ż τ 0 ˇˇf pT t`s xq ˇˇ2 dt ˙1{2 ˆ1 τ ż τ 0 |pg ´gqpT t xq| 2 dt ˙1{2 ď lim sup τ Ñ8 ˆ1 τ ż τ `S ´S ˇˇpf ´f qpT t xq ˇˇ2 dt ˙1{2 ˆ1 τ ż τ 0 |gpT t xq| 2 dt ˙1{2 `lim sup τ Ñ8 ˆ1 τ ż τ `S ´S ˇˇf pT t xq ˇˇ2 dt ˙1{2 ˆ1 τ ż τ 0 |pg ´gqpT t xq| 2 dt ˙1{2 Observe that we may assume in addition that the ergodic theorem holds at the point x for the four functions | f | 2 , |g| 2 , |f ´f | 2 and |g ´g| 2 . Hence, we have lim sup τ Ñ8 sup ´SďsďS ˇˇˇ1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ´1 τ ż τ 0 f pT t`s xq ¨gpT t xq dt ˇˇď sup ´SďsďS ˇˇˇż X f ˝Ts ¨g dµ ´żX f ˝Ts ¨g dµ ˇˇď sup ´SďsďS ˇˇˇż X f ˝Ts ¨g dµ ´żX f ˝Ts ¨g dµ ˇˇš up ´SďsďS ˇˇˇż X f ˝Ts ¨g dµ ´żX f ˝Ts ¨g dµ ˇˇď sup ´SďsďS ˆżX ˇˇpf ´f q ˝Ts ˇˇ2 dµ ˙1{2 ˆżX |g| 2 dµ ˙1{2 `sup ´SďsďS ˆżX | f ˝Ts | 2 dµ ˙1{2 ˆżX |pg ´gq| 2 dµ ˙1{2 " }f ´f } 2 Therefore, for a set of x's off full measure, lim sup τ Ñ8 sup ´SďsďS ˇˇˇ1 τ ż τ 0 f pT t`s xqf pT t xq dt ´żX f ˝Ts ¨f dµ ˇˇǐ }f ´f } 2 Consider now the second term. s arbitrarily small. The proof of the theorem is complete.

  s pnq j where k n P N, a

	pnq j	P C, t pnq j	P r0, h n	´spnq
	We have			
		dσ gn "	

j r, j " 1, ¨¨¨, k n and ||f ´gn || 2 ´´Ñ nÑ`8 0. Hence dσ f " dσ gn `dν n where }ν n } Ñ 0 as n Ñ 8. kn ÿ i,j"1 a pnq i a pnq j dσ t pnq i ,s pnq i ,t pnq j ,s pnq j , where σ t pnq i ,s pnq i ,t pnq j ,s pnq j

  t. ν, pf pxqq 2 ď gpxqf pxq, whence f pxq ď gpxq For the converse note that for any continuous positive function h we have

	ż		ż	
	ghdν s " lim jÝÑ`8	hptqR n j ptqdν s
	R		R	
	˜żR	¸1 2	˜żR	¸1 2
	ď lim jÝÑ8	hR 2 n j dν s		hdν s
	˜żR	¸1 2	˜żR	¸1 2
	ď	hdµ s		hdν s

  . Let s P p0, 1s. Two generalized Riesz products µ s "

	ν s " if and only if ś 8 j"1 ˇˇQ j	ś 8 j"1 ˇˇP j ˇˇ2 satisfying the conditions of Theorem 8.1 are mutually singular ˇˇ2 , ż n ź ˇˇP
		R	j"0

j Q j ˇˇdν s Ñ 0 as n Ñ 8. Corollary 8.4 generalized Bourgain criterion (Theorem 7.1.) 9. MAHLER MEASURE OF THE SPECTRAL TYPE OF RANK ONE FLOW.

  Definition 10.4. Let s Ps0, 1s, a generalized Riesz product µ s " ś 8 j"1 |P j | 2 is said to be of class (L) if for each sequence k 1 ă k 2 ă ¨¨¨of natural numbers, the tail measures ś 8 j"n`1 | P k j | 2 , n " 1, 2, ¨¨¨converge weakly to λ s . Proposition 10.5. Let s Ps0, 1s, if the generalized Riesz product µ s " ś 8 j"1 | P j | 2 is of class (L) then the partial products ś n j"1 | P j |, n " 1, 2, ¨¨¨converge in L 1 pR, λ s q to

	b	dµ dλs , and the convergence is almost everywhere (w.r.t dθ) over a
	subsequence.	

  tk qθ sinpt k θ{2q t k θ{2 .

	Using Cauchy-Schwarz inequality and obtain	ż	R	ˇˇ1 ? p k	ř p k j"0 e ijph k `tk qθ ˇˇ2 dλ s pθq " 1, we ´1
	ż	R	ˇˇˇż	Ω	P ω k pθq dPpωq ˇˇˇd λ s pθq ď	˜żR	ˆsinpt k θ{2q t k θ{2	˙2 dµ s pθq	¸1 2

  Lemma 13.4. For all θ P R, ˇˇF n pθq ˇˇď 1.Proof. It suffices to see that the support of the functions f n,k is disjoint. For that, let pk, jq, pk 1 , j 1 q P pn 4 , ¨¨¨, 3pn 4 ( such that pk, jq ‰ pk 1 , j 1 q, k ^j " k 1 ^j1 " 1. ipa n,k ´an,k 1 qθ D pn´k pkθαq ˘fn,k 1 pθqdλ s pθq, pθqdλ s pθq ě |I n | ´|I n |.

		ż						
	(i) lim inf nÑ8	|I n | ě c	Qpθqdλ s pθq, for som absolute constant c.
	nÑ8 (ii) II n ´´Ñ Then At this point, let us notice that from (i) and (ii), we have 0. ˇˇj k ´j1 k 1 ˇˇ" ˇˇjk 1 ´kj 1 ˇǩk ż Qpθq `ˇP n pθq ˇˇ2 ´1˘F 1 ě 1 kk 1 ě 16 9.p 2 n ą 1 p 2 n " 2. Whence lim inf nÑ8 ż Q ˇˇˇˇP n pθq ż ˇˇ2 ´1ˇˇd λ s pθq ě c Qpθqdλ s pθq. 1 n 2.p 2 .
	This implies							
		´2πj αk	`r´π 2αp 2 n	,	π 2αp 2 n	s	¯č ´2πj 1 αk 1 `r´π 2αp 2 n	,	π 2αp 2 n	s ¯" H,
	which complete the proof of the lemma.
	We proceed now to check (2) and (3). For that, we observe first that by Lemma
	13.4, we have							
		ˇˇż Q `ˇP n pθq	ˇˇ2 ´1˘F n pθqdλ s pθq ˇˇď	ż	Q ˇˇˇˇP	n pθq	ˇˇ2 ´1ˇˇd	λ s pθq.	(31)
	Lemma 13.2. Let θ P R and n P N ˚, then, we have ˇˇP n pθq We further have ˇˇ2 ´1 " g n pθq `gn pθq, ż Qpθq `ˇP n pθq ˇˇ2 ´1˘F n pθqdλ s pθq " ż Qpθqpg n pθq `gn pθq ˘Fn pθqdλ s pθq where g n pθq " 1 p n pn´1 ÿ k"1 " I n `II n , e ia n,k θ D pn´k pkθαq. where
	We further have, ℜ ´Dpn´k pkθαq I n " 1 p n ż	¯ě p n 4 ? 2 Qpθq ÿ , for 0 ă k ď pn 4 4 ďkď 3pn e ia n,k θ D pn´k pkθαq ˘fn,k pθqdλ s pθq, 3.p n 4 and ˇˇθ ´2πj αk ˇˇă	4π αp 2 n	,
	and Proof. Write II n " 1 ż Qpθq p n We claim:	ˇˇP n pθq pn 4 ďk 1 ď 3pn ˇˇ2 ´1 " " ÿ k‰k 1 4 ,1ď|k|ďppn´1q 1 p n ÿ j‰k 1 ÿ p n j‰k	e i `an,j ´an,k e i `pj´kqhn`s n,j ´sn,k ˘θ	˘θ
	Claim 13.5.						" g n pθq `gn pθq.

e n

  follows from the fact that

	and for w "	ř r j"1 ω n pq j q P W n , we have
	ż R It remains to verify conditions (1) and (2) of Theorem 15.2. For this purpose, we ˇˇp n´1 ÿ j"0 X 2 nj ´1ˇˇˇ2 nÑ8 0. |ρ w pnq pxq| ď r , 2 1´r |x| r p 2 n dλ s ptq ´´Ñ set hence max wPWn |ρ w pnq pxq| ď |x| p 1 2 n ´´Ñ nÑ8 0.	(52)
	Θ n px, tq " We claim that it is sufficient to prove the following pn´1 ź j"0 ´1 ´ix ? 2 ? p n cospω n pjqt " 1 `ÿ wPWn ρ w pnq pxq cospwtq, ż R φ pn´1 ź R j"0 ´1 ´ix ż ? 2 ? p n cospω n pjqtq ¯dt ´´Ñ nÑ8 φdt, (53)
	and			W n "	r ď	W prq n ,
	where W	prq n is the set of words of length r. Hence
				ˇˇΘ n px, tq ˇˇď	# pn´1 ź j"0	´1	p n `2x 2	¯+ 1 2
								54)
		ż					(50)
	This shows that the condition (1) is satisfied. It still remains to prove that the variables tX nj u satisfy condition (2). For that, it is sufficient to show that A pn´1 ź j"0 ˆ1 ´ix ? 2 ? p n nÑ8 λ s pAq. (51) cospω n pjqtq ˙dλ s ptq ´´Ñ R ż Θ n px, tqφ ǫ ptqdt ´żR φ ǫ ptqdt `żR φ
	Observe that ż						ż
		A	Θ n px, tqdλ s ptq " µ s pAq	`ÿ wPWn	ρ w	pnq pxq	A	cospwtqdλ s ptq

. But, since 1 `u ď e u , we get ˇˇΘ n px, tq ˇˇď e x 2 . for any function φ with compactly supported Fourier transforms. Indeed, assume that (53) holds and let ǫ ą 0. Then, by the density of the functions with compactly supported Fourier transforms [42, p.126], one can find a function φ ǫ with compactly supported Fourier transforms such that › › ›χ A .K s ´φǫ › › › L 1 pRq ă ǫ, where χ A is indicator function of A. Hence, according to (53) combined with (51), for n sufficiently large, we have ˇˇż A Θ n px, tqdµ s ptq ´λs pAq ˇˇ" ˇˇż A Θ n px, tqdλ s ptq ´żR Θ n px, tqφ ǫ ptqdt ( ǫ ptqdt ´λs pAq| ă e x 2 ǫ `2ǫ.

  Itsuffices to consider the words with even length. The case r " 2 is easy, since it is obvious to obtain the same conclusion. Moreover, as we will see later, it is sufficient to consider the case r " 2 k , k ě 2. We argue that the cardinality of words of length 2 k , k ě 2 which can belong to r´Ω, Ωs is less than Ω.

	prq n | ´´Ñ nÑ8 `8. p k n plogpp n qq k´1 m n ε k´2

n

.

  1, ¨¨¨, 4, and put In this case, without loss of generality (WLOG), we will assume that k 1 ă k 2 ă k 3 ă k 4 . Hence

	e n ppq " exp	`εn p n	.p ˘, p P t0, ¨¨¨, p n ´1u.
	If fore, let us assume that ř 4 i"1 η i ‰ 0 then there is nothing to prove since the ˇˇw ř 4 i"1 η w p4q	p4q n ˇˇ´´Ñ nÑ8	`8. There-

i " 0.

  But the cardinality of pα 1 , α 2 q such that α 2 .α 1 ď Ω Repeated the same argument as above we deduce that the only words to take into account at the stage k " 3 are the form e n pαq ´pe n pα 1 q´1qpe n pα 2 q´1q`η.e n pα 3 qpe n pα 4 q´1qpe n pα 5 q´1q

		It follows that	
			ˇˇw p4q n ˇˇď Ω ùñ α 2 .α 1 ď	p n m n	.Ω.
		p n m n logpp n q. This gives that the cardinality of words of length 4 which is less than can belong to r´Ω, Ωs is less than Ω Ω p n m n p 2 n m n logpp n q.
	w p8q n "	m n n ε 2	p ¯,
					nβα 1 1 pn	1 1 q	´1ε ď 4ε n .
			Hence	ˇˇw p4q n ˇˇ´´Ñ nÑ8	`8
			-Case 3: α 1 1 " α 1 . In this case, we have ˇˇw p4q n ˇˇě m n ǫ 2 n p n ´en pα 2 q ´1¯´e n pα 1 q	´1¯.
			From this, we have	
			ˇˇw p4q n ˇˇě ě	m n ǫ 2 n m n p n	p n . α 2 .α 1 ´εn p n	¯2.α 2 .α 1 .

n

  1 n 2 and m n " hn n 2 . Proof of Proposition 15.3. Let A be a Borel subset of R, and x Ps1, `8r, then, for any positive integer m, we have

	ż	ˇˇˇˇP m pθq	ˇˇ2 ´1ˇˇˇd	λ s pθq ě	ż	ˇˇˇˇP m pθq	ˇˇ2 ´1ˇˇˇd	λ s pθq
	A					tθPA : |Pmpθq|ąxu	
				ě px 2 ´1qλ s		
		ż						
			φ dλ s ě px ´1qt1 ´N pr´?2x,	? 2xsquλ s pAq.
		A					
	Put K " px ´1qt1 ´N pr´?2x,	?	2xsqu. Hence		

! θ P A : |P m pθq| ą x ) ě px 2 ´1qλ s ! θ P A : |ℜpP m pθqq| ą x ) Let m goes to infinity and use Theorem 15.3 and Proposition 11.2 to get

  1 -Locally flat. Then, for any a ă b,We can thus extract a subsequence pP n k ptqq such thatˇˇ|P n k ptq| ´1| ˇˇa ˇˇ|P n k ptq| ´1| 2 ˇˇK s ptqdt ď 4.Whence, the sequence pP n k ptqq is uniformly integrable. We can thus apply the classical Vitaly convergence theorem, to conclude ż

	ż b a	ˇˇ|P n ptq| ´1| ˇˇdt ´´Ñ nÑ`8	0.
		.e. ´´Ñ nÑ`8	0.
	But, for any s ą 0, we have ż		

R R ˇˇ|P n k ptq| ´1| ˇˇK s ptqdt ´´Ñ kÑ`8

  in[START_REF] Prikhod'ko | Littlewood polynomials and their applications to the spectral theory of dynamical systems[END_REF]) , we have

	e	βn qn y k " β n .	k t	, with k P r	t β n	,	t β n	e βn s.

  Proof of Theorem 16.4. We will apply Theorem 16.5 to estimate with β n ăă 1. In this case a " 0, b " q n and f pxq " t.ψ n pxq " t qnWe start by computing U, A, λ, c 1 , c 2 , c 3 , and c 4 . We check at once that f 1 pxq " t.

			K " 5c 3	`1 2	max k " min ! 9 8 c 4 `´13 6 ! c 1 4c 2 ¯2 1 c 1 , c c 1 pc 3 `0.5kc 4 q 2 , 2 ) 2c 2 .	c 2 k 2 q	)	,
								1 ? q n	j"0 qn ÿ	e 2iπψnpjqt ,
								β 2 n	e	βnx qn .
					1 β n	e	βnx qn , f 1 p0q " t.	1 β n	, f 1 pq n q " t.	1 β n	e βn .
				f 2 pxq " t.	1 q n	e	βnx qn , f p3q pxq " t.	β n n q 2	e	βnx qn ,
		and					f p4q pxq " t.	β 2 n n q 3	e	βnx qn .
								1,
	and	K 2 "	K 1 " `1 π ¯`1 1 π πc 1 ´6.5 ´4 `2.8 `2 c 1 c 2 ? ¯, c 1 `c2 `2 A K 3 " 2 ´2 1 πc 2 1 ´´λc 2 U ¯K `2c 2 ´c1 `A b ´a¯¯`´2 2.5 ¯, `2c 2 c 1 `9 c 2 A	¯,

  C n ptq `Dn logpjq, where D n " qn βn P N and C n ptq " D n log `βn Remembering that Lemma 16.5 gives us an estimate of |P n ptq| up to the error term E n " E ? qn . To achieve this goal, we need to estimate E. For that, notice that

											1 β n	, t	1 β n	e βn s.	(62)
	We further have											
	x j " logpjq " K 1 " q n β n log `t β n ˘`q n β n 1 π ´6.5 `2 τ 1 e.τ 2 ¯, K 3 " 2 ´2 `1 π ¯`1 πτ 1	´4 `2.8	? τ 1 `e.τ 2	τ 1 `2 e.τ 2	¯,
	and since τ 1 ă τ 2 , we get			k "	τ 1 4e.τ 2	.		
	We further have											
	max	! 9 8	e.τ 2	`´13 6	¯2 1 τ 1	´e.τ 2	`τ1 8	¯2, 32	e 3 .τ 3 2 τ 2 1	)	" 32	e 3 .τ 3 2 1 τ 2	.
	Hence					K " 5e.τ 2 `16	e 3 .τ 3 2 1 τ 2	.
	We thus get												
	K 2 "	1 πτ 2 1	´´e.τ 2	`2¯K `2e.τ 2 ´τ1	`1¯`´2	2.5	`9 e.τ 2 q n

t ˘.
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We begin by proving the extension of Peyrière criterion to the generalized Riesz products to R. Lemma 12.2 (of Peyrière). Let s P p0, 1s and µ a Borel probability measure on R. If there exists a sequence of reals numbers tξ k u kě1 such that (i) |ξ j ´ξk | ą s, for any j ‰ k P N ˚.

(ii) `e2πiξ k t ´p µpξ k q ˘kě1 is an orthogonal system in L 2 pµq and `p µpξ k q ˘kě1 R ℓ 2 .

(iii) p µ `ξj ´ξk ˘" p µpξ j qp µpξ k q, for all j ‰ k P N ˚.

Then, µ K λ s .

Proof. Since the support of x K s is r´s, ss and by our assumption ξ j ´ξk R r´s, ss, for all j ‰ k, it follows that the family `e2πiξ k t ˘kPN ˚is a bounded orthogonal system in L 2 pλ s q, We further have › › e 2πiξ k ´p µpξ k q › › L 2 pµq is bounded since µ is a probability measure. By our assumption (ii), we have also that `p µpξ k q ˘kě1 R ℓ 2 . Therefore, by Banach-Steinhauss theorem, there is a sequence pc k q P ℓ 2 such that

Now, consider the sequences of functions

c k e 2πiξ k t , and

Obviously f n and g n converge in L 2 pλ s q and L 2 pµq respectively. We can thus extract a subsequence pn j q such that f n j ptq and g n j ptq converge a.e. respectively with respect to λ s and µ. We thus deduce that both series cannot converge for the same t because their difference diverge by [START_REF] Danilenko | Mixing rank-one actions of locally compact abelian groups[END_REF]. Hence, the set E on which the first series converges is a Borel set such that λ s pE c q " 0 andµpEq " 0, which ends the proof.

We need also the following lemma.

where 2 . Following the strategy of the proof given by Klemes, as it was presented by Franc ¸ois Parreau, for the case of the torus, we shall construct a family of positives 2π α -periodic functions pf n,k q with disjoint support such that for any non-negative continuous function ω, we have (3) and, under the condition of Theorem 13.1, we have

s pθq, and χ n pθ `2π α q " χ n pθq, @θ P R,

The functions f n,k register the number of time for which ℜpD pn´k 1 pθqq ě pn 4 ?

2 .

Define

By construction, we have Therefore

We proceed now to the estimation of

For that we claim that We start by computing

For each k P t pn 4 , ¨¨¨, 3pn 4 u, we have

where φpkq is the indicator of Euler. At this point we need the following classical lemma from Number theory for the proof of it we refer to [START_REF] Sierpiński | Elementary theory of numbers[END_REF].

Lemma 13.8. For a large enough x ą 0, we have

Applying Lemma 13. 

It suffit to see that pµ n,k q converge weakly to dθ α . For that, let us put

We are going to show that pν n,k q converge weakly to Lebesgue measure dx on r0, 1q. Define

Therefore, for any a P Z ˚,

But, by Möbius inverse formula, we have

at the first stage a rectangle with height α, so that hn α P N, for any n ě 1. We consider, without loss of generality, that Q is a trigonometric polynomial given by Qpθq " ÿ ´ωďjďω c j e 2π α ijθ .

Therefore

"

The last equality follows from writing, for each cospω n pjqtq ˇˇ2dλ s ptq ď 1.

Therefore, applying the Helly theorem we may assume that the sequence

´?2 ? p n pn´1 ÿ j"0 cospω n pjqtq ¯ně0 converge in distribution. As is well-known, it is sufficient to show that for every real number x,

To this end we apply theorem 15.2 in the following context. The measure space is the given Borel set A of positive measure with respect to the probability measure λ s on R equipped with the normalised measure λ s λ s pAq and the random variables are given by

p n cospω n pjqtq, where 0 ď j ď p n ´1, n P N. 

The last inequality is due to the fact that for a large n we may assume that logpp n q m n is strictly less than 1. In addition, since p n ě 2,

n is convergent. We conclude that

This finishes the proof, the other case is left to the reader.

Remark. Let us point out that if

Then the spectrum of the associated exponential staircase flow is singular. Indeed,

η j e n pk j q a word of length r. |Q n ptq| ď ? t.

This complete the proof of the theorem.

Remark 16.6. Our result can be deduced also by using Lemma 5 from [START_REF] Prikhod'ko | Littlewood polynomials and their applications to the spectral theory of dynamical systems[END_REF]. But, one needs to replace carefully the exact value of γpy k q given by equation [START_REF] Prikhod'ko | Stochastic constructions of flows of rank 1[END_REF]. We further notice that therein, the error term is given as follows (see Lemma 6 equation (3.34)) ż t 2 t 1 ˇˇE n ptq ? q n ˇˇdt À pt 2 ´t1 q lnpq n q ? q n .

We end this appendix by mentioning that it is a simple matter to deduce from Theorem 16.4 that pQ n ptqq are not L 1 -locally flat. Indeed, assume by contradiction that pQ n ptqq is L 1 -locally flat and let 1 ą τ 2 ą τ 1 ą 1 2 . Then, we can extract a subsequence pn k q such that pQ n k ptq converge for a.e.