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Abstract

An interval hypergraph is a hypergraph H = (V,E) such that there exists an linear order σ (which
is said to be compatible) on V such that, when V is sorted along σ, every hyperedge is an interval
of V . A interval cover of a set V is an interval hypergraph H = (V,E) such that

⋃
e∈E e = V and

∀e, e′ ∈ E, e 6⊂ e′. In this note, we show that:

• Nearly all interval hypergraphs have only two compatible orders.

• The number of interval covers of {1, . . . , n} is the Catalan number Cn = 1
n+1

(
2n
n

)
.
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1 Definitions and notations

A hypergraph is a couple H = (V,E) where V is a finite set whose elements are vertices and E ⊆ 2V is the
hyperedge set. A hypergraph H = (V,E) is an interval hypergraph if there exists a compatible (linear) order
σ of V such that, when V is sorted along σ, all hyperedges are intervals. A interval hypergraph H = (V,E)
is a interval cover of V if

⋃
e∈E e = V and ∀e, e′ ∈ E, e 6⊂ e′. For V ′ ⊂ V , the restriction of H = (V,E) to

V ′ is the hypergraph H|V ′ = (V ′, E′) where E′ = {e ∩ V ′ : e ∈ E}.

A PQ-tree T on a set V is a tree that represents a set of permutations on V , and if H = (V,E) is an
interval hypergraph, then the set of all compatible orders of H can be represented by a PQ-tree [1, 7]. The
leaves of T are the elements of V , and the nodes of T are of two types: the P-nodes and the Q-nodes. We
use the general convention of writing that is to represent P-nodes by circles, and Q-nodes by rectangles. On
a P-node, one can apply any permutation of its children (equivalently, its children are not ordered). The
children of a Q-node are ordered, and the only permutation we can apply on them is to reverse the order.
For instance, the PQ-tree of figure 1 represents the set of permutations {(1,2,3,4,5), (1,3,2,4,5), (2,1,3,4,5),
(2,3,1,4,5), (3,1,2,4,5), (3,2,1,4,5), (5,4,1,2,3), (5,4,1,3,2), (5,4,2,1,3), (5,4,2,3,1), (5,4,3,1,2), (5,4,3,2,1)}.

We say that a PQ-tree is flat if it has only one internal node, which is a Q-node. A flat PQ-tree represents
only two permutations. Similarly, an interval hypergraph is flat if it has only two compatible orders, i.e. if
its PQ-tree is flat. Conversely, a PQ-tree with one internal node, which is a P-node, is said to be universal.
A universal PQ-tree represents all the permutations on S.

A dissimilarity on a finite set V is a symmetric function d : V ×V → R+ such that d(i, j) = 0 if and only
if i = j. Dissimilarities can be seen as a generalization of distances and can be represented by symmetric
matrices on R+ with a null diagonal. For a dissimilarity d on a set V and δ ∈ R, the graph Gδd = (V,Eδd)
with xy ∈ Eδd ⇐⇒ d(x, y) ≤ δ is a threshold graph of d. The set Cd of all maximal cliques of all threshold
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Figure 1: A PQ-tree

graphs of d is called the class system of d. Note that Hd = (V, Cd) is a hypergraph such that V and all
singletons are hyperedges.

In the rest of this paper, we will only consider hypergraphs with vertex set V = {1, . . . , n} and we will
suppose that, if H is an interval hypergraph, then (1, . . . , n) is one of its compatible orders. We will denote
the number of interval hypergraphs on {1, . . . , n} by In, the number of flat interval hypergraphs by Fn and
the Catalan number 1

n+1

(
2n
n

)
by Cn.

2 Results on interval hypergraphs

Claim 1. In = 2n(n+1)/2.

Proof. Since an interval on {1, . . . , n} is either a pair of elements (its extremities) or a singleton, there are
n(n+ 1)/2 interval in {1, . . . , n}.

Theorem 1. limn→∞ Fn/In = 1.

Proof. Let H = (V,E) be an interval hypergraph. Suppose that its PQ-tree TH has an internal node α,
different from the root of TH , and that the leaves under α are i, . . . , i + k. We have 1 < k < n − i and we
set Vα := {i, . . . , i+ k}.

For every permutation σ represented by TH , Vα is an interval of V and, if for some e ∈ E, there exists
x ∈ e ∩ Vα and y ∈ e \ Vα, then Vα ⊂ e. So H is entirely determined by H|Vα and H|(V \Vα)∪{i} and thus
the number of interval hypergraphs with a node like α (i.e. such that the leaves under it are i, . . . , i + k)

as internal node of their PQ-tree is I
[k]
n := Ik · In−k+1. This value is maximum for k = 2 and we have

I
[2]
n = 2n(n−1)/2+3. So the proportion of interval hypergraphs having a PQ-tree with a node like α as

leftmost internal node is ≤ 1
2n−3 . There are less than (n − 1)2 possible choices for the type of α (at most

n − 1 choices for i and n − 1 choices for k), so the proportion of interval hypergraphs on {1, . . . , n} which
are compatible with a PQ-tree having internal nodes tends to 0 when n tends to ∞. If the PQ-tree of an
interval hypergraph H is universal, the hyperedges of H are either singletons or V . So there are only 2n+1

interval hypergraphs whose PQ-tree is universal, and the result follows.

Note that, even if we do not impose (1, . . . , n) to be a compatible order, nearly all interval hypergraphs
have only two compatible orders.

Theorem 2. The number of interval covers of {1, . . . , n} is Cn.

Proof. There are Cn lattice paths in Z×Z from (1, 1) to (n, n) with steps (0, 1), (1, 0) and (1, 1) never going
below the line y = x and such that steps (1, 1) only appear on the line y = x (Exercice 52 of [9]). In such a
path, a summit is a point with neither a step (1, 0) just before it nor a step (0, 1) just after.

If we associate with each summit (i, j) the interval [i, j] (see Figure 2), we build a one-to-one correspon-
dence between these paths and interval covers of {1, . . . , n}.
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Figure 2: A lattice path on Z × Z from (1, 1) to (13, 13) with summits a, b, . . . , g and the corresponding
intervals Ia, Ib, . . . , Ig, which form an interval cover of the points (1, 1), (2, 2), . . . (13, 13).

3 Robinson dissimilarities

A dissimilarity d on a finite set V is Robinson [8] if there exists a linear order σ on V (which is said to be
compatible) such that, when V is ordered along σ, i < j < k =⇒ d(i, j) ≤ d(i, k) and d(j, k) ≤ d(i, k). A
dissimilarity d on V is Robinson if and only if (V, Cd) is an interval hypergraph [3, 4]; in addition, d and
(V, Cd) have the same set of compatible orders [7]. We will identify two dissimilarities d and d′ if Cd = Cd′ ;
and, as for interval hypergraphs, we will suppose that V = {1, . . . , n} and (1, . . . , n) is a compatible order.

Claim 2. The number of Robinson dissimilarities on V is 2n(n−1)/2−1

Proof. V ∪{V } is always a subset of Cd, so the number of intervals that can be, or not, in Cd is n(n− 1)/2−
1.

Theorem 3. The number of Robinson dissimilarities on {1, . . . , n} with values in {0, 1, 2} is Cn − 1.

Proof. When d takes its values in {0, 1, 2}, the relation R on V defined by iRj ⇐⇒ d(i, j) ≤ 1 is reflexive,
symmetric and such that if 1 ≤ i < j < k ≤ n, and iRk, then iRj and jRk. There are Cn such relations on V
(Exercice 187 of [9]). Since the dissimilarities defined by i 6= j =⇒ d(i, j) = 1 and by i 6= j =⇒ d(i, j) = 2
are equivalent, the result follows.

If we represent a Robinson dissimilarity d by a matrix with a horizontal diagonal (see Figure 3), we get
“stacks” of lattice paths (like the one in Figure 2) with a “peak” in foreground. If d takes its values in
{0, . . . , k}, the stack is made of k lattice paths (including the peak in foreground); equivalently, Cd does not
contain e1, e2, . . . ek with ∀1 ≤ i ≤ k, 1 < |ei| < n and e1 ⊂ e2 ⊂ . . . ⊂ ek. Table 1 shows the number of
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Figure 3: Robinson dissimilarities represented by matrices with a horizontal diagonal.

Robinson dissimilarities on {1, . . . , n} taking their values in {0, . . . , k} for small values of k and n. Sequences
for k = 3, 4, 5 match no sequence in OEIS [6] and we know no formula for them.
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Table 1: Number of Robinson dissimilarities on {1, . . . , n} that take their values in {1, . . . , k} for small values
of n and k ∈ {2, 3, 4, 5,∞}. The boxes with // needed too much computation time to be filled.

n \ k 2 3 4 5 ∞
2 1 1 1 1 1
3 4 4 4 4 4
4 13 32 32 32 32
5 41 266 512 512 512
6 131 2254 9938 16384 16384
7 428 19934 208717 708314 1048576
8 1429 185383 // // 134217728
9 4861 // // // 34359738368

n Cn − 1 ? ? ? 2n(n−1)/2−1

4 Conclusion

Our original goal was to prove that nearly all Robinson dissimilarities have a flat PQ-tree (a direct con-
sequence of Claim 2 and of the proof of Theorem 1), which was intended to be a first step toward the
determination of the average complexity of algorithms like those of [2] or [5]. This lead us to lattice paths,
and thus to a combinatorial interpretation of Catalan numbers (Theorem 2). This interpretation, although
very simple, natural and easy to prove, seems curiously to have been unknown until now.
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