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Interval Hypergraphs and Catalan Numbers *

An interval hypergraph is a hypergraph H = (V, E) such that there exists an linear order σ (which is said to be compatible) on V such that, when V is sorted along σ, every hyperedge is an interval of V . A interval cover of a set V is an interval hypergraph H = (V, E) such that e∈E e = V and ∀e, e ∈ E, e ⊂ e . In this note, we show that:

• Nearly all interval hypergraphs have only two compatible orders.

• The number of interval covers of {1, . . . , n} is the Catalan number Cn = 1 n+1 2n n .
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Definitions and notations

A hypergraph is a couple H = (V, E) where V is a finite set whose elements are vertices and E ⊆ 2 V is the hyperedge set. A hypergraph H = (V, E) is an interval hypergraph if there exists a compatible (linear) order σ of V such that, when V is sorted along σ, all hyperedges are intervals. A interval hypergraph H = (V, E) is a interval cover of V if e∈E e = V and ∀e, e ∈ E, e ⊂ e . For V ⊂ V , the restriction of H = (V, E) to V is the hypergraph H| V = (V , E ) where E = {e ∩ V : e ∈ E}.

A PQ-tree T on a set V is a tree that represents a set of permutations on V , and if H = (V, E) is an interval hypergraph, then the set of all compatible orders of H can be represented by a PQ-tree [START_REF] Booth | Testing for the Consecutive Ones Property, Interval Graphs and Graph Planarity Using PQ-Tree Algorithm[END_REF][START_REF] Préa | An Optimal Algorithm to Recognize Robinsonian Dissimilarities[END_REF]. The leaves of T are the elements of V , and the nodes of T are of two types: the P-nodes and the Q-nodes. We use the general convention of writing that is to represent P-nodes by circles, and Q-nodes by rectangles. On a P-node, one can apply any permutation of its children (equivalently, its children are not ordered). The children of a Q-node are ordered, and the only permutation we can apply on them is to reverse the order. For instance, the PQ-tree of figure 1 represents the set of permutations {(1,2,3,4,5), (1,3,2,4,5), (2,1,3,4,5), (2,3,1,4,5), (3,1,2,4,5), (3,2,1,4,5), (5,4,1,2,3), (5,4,1,3,2), (5,4,2,1,3), (5,4,2,3,1), (5,4,3,1,2), (5,4,3,2,1)}.

We say that a PQ-tree is flat if it has only one internal node, which is a Q-node. A flat PQ-tree represents only two permutations. Similarly, an interval hypergraph is flat if it has only two compatible orders, i.e. if its PQ-tree is flat. Conversely, a PQ-tree with one internal node, which is a P-node, is said to be universal. A universal PQ-tree represents all the permutations on S.

A dissimilarity on a finite set V is a symmetric function d : V × V → R + such that d(i, j) = 0 if and only if i = j. Dissimilarities can be seen as a generalization of distances and can be represented by symmetric matrices on R + with a null diagonal. For a dissimilarity d on a set V and δ ∈ R, the graph In the rest of this paper, we will only consider hypergraphs with vertex set V = {1, . . . , n} and we will suppose that, if H is an interval hypergraph, then (1, . . . , n) is one of its compatible orders. We will denote the number of interval hypergraphs on {1, . . . , n} by I n , the number of flat interval hypergraphs by F n and the Catalan number

G δ d = (V, E δ d ) with xy ∈ E δ d ⇐⇒ d(x, y) ≤ δ is a threshold graph of d.
1 n+1 2n n by C n .
2 Results on interval hypergraphs

Claim 1. I n = 2 n(n+1)/2 .
Proof. Since an interval on {1, . . . , n} is either a pair of elements (its extremities) or a singleton, there are n(n + 1)/2 interval in {1, . . . , n}.

Theorem 1. lim n→∞ F n /I n = 1.
Proof. Let H = (V, E) be an interval hypergraph. Suppose that its PQ-tree T H has an internal node α, different from the root of T H , and that the leaves under α are i, . . . , i + k. We have 1 < k < n -i and we set V α := {i, . . . , i + k}.

For every permutation σ represented by T H , V α is an interval of V and, if for some e ∈ E, there exists x ∈ e ∩ V α and y ∈ e \ V α , then V α ⊂ e. So H is entirely determined by H| Vα and H| (V \Vα)∪{i} and thus the number of interval hypergraphs with a node like α (i.e. such that the leaves under it are i, . . . , i + k) as internal node of their PQ-tree is

I [k] n := I k • I n-k+1
. This value is maximum for k = 2 and we have I [START_REF] Chepoi | Recognition of Robinsonian Dissimilarities[END_REF] n = 2 n(n-1)/2+3 . So the proportion of interval hypergraphs having a PQ-tree with a node like α as leftmost internal node is ≤ 1 2 n-3 . There are less than (n -1) 2 possible choices for the type of α (at most n -1 choices for i and n -1 choices for k), so the proportion of interval hypergraphs on {1, . . . , n} which are compatible with a PQ-tree having internal nodes tends to 0 when n tends to ∞. If the PQ-tree of an interval hypergraph H is universal, the hyperedges of H are either singletons or V . So there are only 2 n+1 interval hypergraphs whose PQ-tree is universal, and the result follows.

Note that, even if we do not impose (1, . . . , n) to be a compatible order, nearly all interval hypergraphs have only two compatible orders.

Theorem 2. The number of interval covers of {1, . . . , n} is C n .

Proof. There are C n lattice paths in Z × Z from (1, 1) to (n, n) with steps (0, 1), (1, 0) and (1, 1) never going below the line y = x and such that steps (1, 1) only appear on the line y = x (Exercice 52 of [START_REF] Stanley | Catalan Numbers[END_REF]). In such a path, a summit is a point with neither a step (1, 0) just before it nor a step (0, 1) just after.

If we associate with each summit (i, j) the interval [i, j] (see Figure 2), we build a one-to-one correspondence between these paths and interval covers of {1, . . . , n}.
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Figure 2: A lattice path on Z × Z from (1, 1) to (13, 13) with summits a, b, . . . , g and the corresponding intervals I a , I b , . . . , I g , which form an interval cover of the points (1, 1), (2, 2), . . . (13, 13).

Robinson dissimilarities

A dissimilarity d on a finite set V is Robinson [START_REF] Robinson | A Method for Chronologically Ordering Archeological Deposits[END_REF] if there exists a linear order σ on V (which is said to be compatible) such that, when [START_REF] Diday | Orders and Overlapping Clusters by Pyramids[END_REF][START_REF] Durand | One-to-One Correspondences in Pyramidal Representation: a Unified Approach[END_REF]; in addition, d and (V, C d ) have the same set of compatible orders [START_REF] Préa | An Optimal Algorithm to Recognize Robinsonian Dissimilarities[END_REF]. We will identify two dissimilarities d and

V is ordered along σ, i < j < k =⇒ d(i, j) ≤ d(i, k) and d(j, k) ≤ d(i, k). A dissimilarity d on V is Robinson if and only if (V, C d ) is an interval hypergraph
d if C d = C d ;
and, as for interval hypergraphs, we will suppose that V = {1, . . . , n} and (1, . . . , n) is a compatible order.

Claim 2. The number of Robinson dissimilarities on V is 2 n(n-1)/2-1

Proof. V ∪ {V } is always a subset of C d , so the number of intervals that can be, or not, in

C d is n(n -1)/2 - 1.
Theorem 3. The number of Robinson dissimilarities on {1, . . . , n} with values in {0, 1, 2} is C n -1.

Proof. When d takes its values in {0, 1, 2}, the relation R on V defined by iRj ⇐⇒ d(i, j) ≤ 1 is reflexive, symmetric and such that if 1 ≤ i < j < k ≤ n, and iRk, then iRj and jRk. There are C n such relations on V (Exercice 187 of [START_REF] Stanley | Catalan Numbers[END_REF]). Since the dissimilarities defined by i = j =⇒ d(i, j) = 1 and by i = j =⇒ d(i, j) = 2 are equivalent, the result follows.

If we represent a Robinson dissimilarity d by a matrix with a horizontal diagonal (see Figure 3), we get "stacks" of lattice paths (like the one in Figure 2) with a "peak" in foreground. If d takes its values in {0, . . . , k}, the stack is made of k lattice paths (including the peak in foreground); equivalently, C d does not contain e 1 , e 2 , . . . e k with ∀1 ≤ i ≤ k, 1 < |e i | < n and e 1 ⊂ e 2 ⊂ . . . ⊂ e k . Table 1 shows the number of 

Conclusion

Our original goal was to prove that nearly all Robinson dissimilarities have a flat PQ-tree (a direct consequence of Claim 2 and of the proof of Theorem 1), which was intended to be a first step toward the determination of the average complexity of algorithms like those of [START_REF] Chepoi | Recognition of Robinsonian Dissimilarities[END_REF] or [START_REF] Laurent | Similarity-First Search: a New Algorithm with Application to Robinsonian Matrix Recognition[END_REF]. This lead us to lattice paths, and thus to a combinatorial interpretation of Catalan numbers (Theorem 2). This interpretation, although very simple, natural and easy to prove, seems curiously to have been unknown until now.
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 1 Figure 1: A PQ-tree
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 3 Figure 3: Robinson dissimilarities represented by matrices with a horizontal diagonal.Robinson dissimilarities on {1, . . . , n} taking their values in {0, . . . , k} for small values of k and n. Sequences for k = 3, 4, 5 match no sequence in OEIS[START_REF]OEIS: The On-Line Encyclopedia of Integer Sequences[END_REF] and we know no formula for them.

Table 1 :

 1 Number of Robinson dissimilarities on {1, . . . , n} that take their values in {1, . . . , k} for small values of n and k ∈ {2, 3, 4, 5, ∞}. The boxes with // needed too much computation time to be filled.

	n \ k	2	3	4	5	∞
	2	1	1	1	1	1
	3	4	4	4	4	4
	4	13	32	32	32	32
	5	41	266	512	512	512
	6	131	2254	9938	16384	16384
	7	428	19934 208717 708314	1048576
	8	1429 185383	//	//	134217728
	9	4861	//	//	//	34359738368
	n	C n -1	?	?	?	2 n(n-1)/2-1
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