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Abstract. Glass is generally known as a fragile material. It is sensible to the cracks created from 
manufacturing or contact damage. The strength of a perfect glass without crack could reach 10 GPa. 
By mean of strengthening such as thermal tempering, glass can be safely use for building as 
architectural elements and very limited to the structural elements. The authors have been developing 
glass strengthening methods and structural design for large scale glass beam. Some influencing 
factors are considered: material, premature crack effect, geometry of sample and bolt. The 
mechanical behaviour of glass is modelled as elastic-plastic material, which show significant results 
in glass-bolt contact problem. The crack length, size and position provide information of a critical 
angle that allow to govern the crack effect in the beam connection. 

1. Introduction 
In construction building, the usage of glass material increases remarkably for architectural elements and 
also structural elements. We can see some innovative glass structures such as the Apple Glass Cube canopy 
in New York [1], the renovated pavilion of the Eiffel Tower’s first floor [2], etc. To be a primary structural 
element, glass need to sustain safely with high load and the glass connections must be able to transfer the 
load to other elements of building. In the flexural strength of a glass beam, the connection strength is 
predominant over the bearing capacity of the beam itself. According to the previous studies [3], the load-
carrying of glass connection is still limited because of the local failure at the contact areas. Fractography 
analyses by using SEM observation shown that the interaction between the glass and metal assembly excites 
a flaw on the lateral surface of the glass’s hole. Furthermore, the distribution of principle stresses is also an 
important factor. A study on the geometrical optimization of the bolt and hole shape shows that, the conical 
bolt with chamfered glass hole presents the maximum stresses 1.5 times higher than the stiff cylindrical bolt 
with cylindrical glass hole [4]. Some experiments on a monolithic annealed glass shown in figure 1 and 
figure 2 confirmed that the origin of failure is initiated from where the principle stresses reach the maximum 
value, that is at the angle of 90° from the contact loading direction. Underneath the glass-bolt contact, a high 
compressive stress field is generated where the favourable densification phenomena could occur [5]. On the 
other hand, an observation on the hole’s surface shows that the drilling process induced some crack and 
important roughness on the lateral face of the hole. The machining with cemented carbide or diamond bits 
causes chatter cracks similar to a scratch event on a brittle material [6]. The crack diameter is in a range of 
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300-400µm [7]. This machining default is the main factor controlling the strength of glass-bolt connection. 
The polishing [8] and ion exchange [9] processes could decrease the crack size and thus improve the 
connection strength.  The authors aim to study on the effects of connection conditions on the bearing 
capacity of the glass beam. 
 

2. Methodology 
The current studies are conducted to understand the behaviour of the glass-bolt connection and a way to 
improve its capacity. Some influencing factors are considered: material, premature crack effect, geometry 
of sample and bolt. Base on the 2-dimensional finite element analysis, the results of simulations such as the 
intermediate (middle) principal stress, are compared for a given loading.  

2.1. Material 
The common glass used in building is soda-lime-silica glass. Its macroscopic mechanical behaviour is 
known as isotropic elastic linear with Young modulus of 72 GPa and Poisson ratio of 0.21 [10]. The glass’s 

strength is not intrinsic property because of the surface’s flaws from which the glass failure is almost 
unpredictable. Though, a microscopic observation shows some permanent deformation without failure on a 
scratched glass’s surface. There are two mechanisms involving in this deformation: densification and shear 
flow. According to Rouxel et al. [11], the initial densification threshold pressure of the soda-lime-silica 
glass is 3 GPa and the saturation level of densification is 6.3%. The shear flow threshold was identified by 
comparing the numerical simulations with a constitutive model of Keryvin et al. [12] and the experimental 
load-displacement curves and imprints of nano-indentations and nano-scratches. The equivalent yield 
strength is found to 3.81 GPa [13]. Due to the difficulty of numerical solution for a fully modelled behaviour 
of glass and small amount of the densification effect comparing to the global mechanical responses, the 
authors simplify the mechanical behaviour of the glass to be elastic linear and perfectly plastic with the yield 
strength of 3.81 GPa. The contact behaviour between glass and metal bolt is a hard contact with friction 
coefficient of 0.2. 

 

 
Figure 1. Glass drilling process. 

 
Figure 2. Glass-Bolt connection test: (a) testing 
assembly, (b) tested sample, (c) failure observation. 

Figure 3. Glass hole strengthening 
by chemical tempering. 
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2.2.  Glass strengthening effect 
Thermal and chemical tempering strengthens the glass by introducing the residual stresses in the glass 
volume. A chemical tempering by ion exchange modifies the composition of the glass from the surface to a 
deep less than 100µm ([14], [15]). This gradient of properties is assumed to have less effect on the study. 
The only one effect of the strengthening is the residual stresses. The surface’s compressive stresses induced 
by thermal and chemical strengthening are respectively 100 MPa and 250 MPa with the respective depths 
of one-fifth of the glass thickness and 90µm [16]. 
 
2.3. Geometry and numerical modelling 
The glass specimen’s size is 150mm x 300mm x 12mm with two holes of diameter of 12mm drilled along 
the centre axis and the diameter of bolt is 10 mm. The crack’s opening is fixed a = 0.050 mm and the its 
depth, b = [0.000 : 0.750] mm, is a parameter for glass strength observations. Another parameter from the 
premature crack is its position comparing to the loading direction, that is studied between 0° to 90°. Since 
the geometry and loading are symmetric for the axes perpendicular to the loading direction, the sample and 
bolt are modelled as a perforated square contacted to a circle. The meshes are gradually changed size from 
0.170 mm to 6.00 mm with a 4-node bilinear plane stress quadrilateral, reduced integration, hourglass 
control, CPS4R mesh type. 
 
3. Results and discussion 
3.1. Mechanical properties of glass 
The figure 4 shows the relationship between loading value and the corresponding maximum Mises stress in 
the sample. The properties of glass are discussed:  purely elastic and elastic perfectly plastic. Prior to the 
shear threshold (3.810 GPa), the Mises stress-force responses of both cases are identical. However, from 
that point forward, it is obvious that the very small amount of plastic zone (figure 5.a.) need to be taken into 
account in the glass material modelling. In addition, we observed that the middle principal stresses illustrate 
the tensile stress field that would initiate the failure more clearer than the Mises stress (figure 5.b. and figure 
6). 

 
Figure 4.  Comparison of Mises stress - Force responses of 
different behaviours of the glass sample. Loading by the imposed 
displacement on the perimeter of bolt. 
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(a) Mises stresses, the maximum 

value is 3810 MPa. 
(b) Intermediate principal stress, the 

maximum value is 253 MPa. 

Figure 5.  Stresses distributions in the glass for elastic-plastic behaviour with yield 
strength of 3810 MPa. The images in (a) and (b) are captured at the same time 
increment. The positive value of Mid. Principal stresses could be illustrated more 
clearer by graded more colours.  

3.2. Effect of the premature crack 
The parametric studies of the position and the depth of premature cracking along the perimeter of the glass 
hole are presented in figure 6 and figure 7. At a given load, the maximum value of the middle stresses 
presented in the glass increases importantly with the greater depth of the premature crack opening. On the 
other hand, the position of the crack comparing to the loading direction show two groups of tendency.  The 
presence of a single crack at a vicinity of the contact area at an angle less than 30° has less effects on the 
glass failure. The region between 15° to 30° is where there are transitions of tensile and compressive zone 
due to the stress fields of the Hertzian contact and crack tip. The value of 30° is the critical angle which 
depends on the bolt-hole diameter ratio and the crack size and depth. 

 
Figure 6. Intermediate (Mid.) principal stress distribution at load = 6kN on samples with 
different crack depth b. The crack openings are equal: a = 0.05 mm. 
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Figure 7. Observation on the maximum value of intermediate (Mid.) principal stresses for 
samples with different factors: (left) crack position of a 0.250 mm depth comparing to the 
loading direction, (right) cracks depth at 90° crack position. 
 

4. Summary and conclusion 
The studies have shown some important results for understanding and improving the flexural behaviour of 
structural glass. It is very important to model the plastic behaviour for glass material in the glass-bolt contact 
problem. In order to observe or compare the stress field in glass material that present very limited plastic 
zone, the intermediate principle stress is a better criterion comparing to the Mises stress. On the other hand, 
the crack length is predominant in failure mechanisms, which could be minimize thanks to the compressive 
residual stresses, e.g. in a tempered glass. The surface compressive stresses prevent crack’s growth unless 

the external tensile stresses overpass their values. However, it is a challenge to model the effect of tempering 
in glass. The profiles of the residual stresses at the edge of a tempered glass, especially around a hole, are 
more appropriate with the 3-D modelling than the 2-D one. Another method to improve the glass connection 
strength is to govern the contact surface between the bolt and the glass’s hole. The critical angle of 30° could 
be modified since the Hertzian contact provides stresses distribution depending on the radii of the both 
surfaces. It could be also supressed by introducing multiple contact surfaces along the hole’s perimeter.  
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