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Abstract

We prove a discrete version of the first Weber inequality on three-dimensional hybrid spaces
spanned by vectors of polynomials attached to the elements and faces of a polyhedral mesh. We
then introduce two Hybrid High-Order methods for the approximation of the magnetostatic model,
in both its (first-order) field and (second-order) vector potential formulations. These methods are
applicable on general polyhedral meshes with star-shaped elements, and allow for arbitrary orders
of approximation. Leveraging the previously established discrete Weber inequality, we perform
a comprehensive analysis of the two methods. We finally validate them on a set of test-cases.

Keywords: Weber inequalities; Hybrid spaces; Polyhedral meshes; Hybrid High-Order methods;
Magnetostatics
MSC2010 classification: 65N08, 65N12, 65N30

1 Introduction

Let Q c R3 denote an open, bounded, and connected polyhedral domain. In the study of problems
in electromagnetism, Weber inequalities [29] constitute a very powerful tool. They can be viewed
as a generalization of the celebrated Poincaré inequality to the case of vector fields belonging to
H(curl; Q)N H(div; Q), and featuring either vanishing tangential component (first Weber inequality),
or vanishing normal component (second Weber inequality) on the boundary Q2 of the domain. We
refer the reader to [2, Theorems 3.4.3 and 3.5.3] for a general (from a topological viewpoint) statement
of Weber inequalities.

Let us denote by n the unit normal vector field on dQ pointing out of Q. From now on, we
assume that Q is topologically trivial (a sufficient condition is that it be simply-connected), and that
0Q is connected. Under these assumptions, the first and second Betti numbers of Q are both zero,
i.e., Q does not have tunnels and does not enclose any void. For a deeper insight into the role of the
different topological assumptions we make on the domain, we refer to Remark 7. For any X c Q, we
denote by (-, -)x and || - ||x the usual inner product and norm on L>(X;RY), I € {1,2,3}. We also let
Hy(curl; Q) := {v € H(curl; Q) : nx(vxn)=0on dQ}, and

H(div%; Q) :={v € H(div;Q) : divy = 0in Q}
={v e L*(:R?) : (v,gradp)o =0 Vg€ Hy(Q)}.
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The following L?(Q; R?)-orthogonal decomposition holds (cf. [2, Proposition 3.7.2]):
Hy(curl; Q) = grad(H_(Q) & (Ho(curl; Q) N H(div°; Q)) . )

With the assumptions we have made on the topology of the domain Q, the first Weber inequality
reads: For any v € H(curl; Q) N H(div’; Q),

Ivlle < Cw |l curlv||g, 3)

for some constant Cw > 0 only depending on the domain Q. In this work, we derive a discrete
version of the first Weber inequality (3) on (three-dimensional) hybrid spaces spanned by vectors of
polynomials attached to the elements and faces of a (polyhedral) mesh, as they can be encountered in
Hybridizable Discontinuous Galerkin (HDG) [12] and related [28] methods, or in Hybrid High-Order
(HHO) [18, 17] methods; see [11] for a discussion highlighting the analogies and differences between
HDG and HHO methods in the context of scalar variable diffusion. The corresponding result is stated
in Theorem 3. The proof extends the general ideas used in [15, Lemma 2.15] to derive a discrete
Poincaré inequality on hybrid spaces.

In the second part of this paper, we tackle the HHO approximation of magnetostatics, in both its
(first-order) field formulation and (second-order, generalized) vector potential formulation. Various
discretization methods have been studied in the literature to approximate the magnetostatic equations
(or, more generally, Maxwell equations). Conforming finite element discretizations were originally
proposed (on tetrahedra, essentially) in the seminal work of Nédélec [24, 25]; see also [22], as well
as [1], in which a unified presentation of conforming finite element methods based on notions from
algebraic topology is provided. Nonconforming discretizations include the Discontinuous Galerkin
method of [27] as well as the HDG method of [26, 8] and, on general polyhedral meshes, the
variant [23] of [26] and the HDG method of [10]; see also [19]. Methods that support general
polyhedral meshes and are built upon discrete spaces that mimick the continuity properties of the
spaces appearing in the continuous weak formulation include the Virtual Element methods of [4, 3, 5],
and the fully discrete method of [14] based on the discrete de Rham sequence of [16]. All the
HDG methods cited above deal with the approximation of magnetostatics under its (generalized)
vector potential formulation. In this paper, we first study an HHO method (which has been briefly
introduced in [7]) for magnetostatics under its field formulation. We take advantage of the fact that the
corresponding problem is first-order to avoid locally reconstructing a discrete curl operator as it is done
for second-order problems (cf. Remark 10). Doing so, we propose a computationally inexpensive
and easy-to-implement method. Second, we study an HHO method for magnetostatics under its
(generalized) vector potential formulation, that can be seen as a computationally cheaper variant of
the method introduced in [10] (cf. Remark 17). Our two HHO methods are applicable on general
polyhedral meshes with star-shaped elements, and allow for an arbitrary order of approximation
k > 0 with proven energy-error of order k + 1 (cf. Theorems 13 and 22). Leveraging the previously
established discrete Weber inequality, we carry out a comprehensive analysis of the methods, and
validate them on a set of test-cases.

The article is organized as follows. In Section 2 we prove the discrete Weber inequality. Then, in
Sections 3.1 and 3.2 we tackle the HHO approximation of magnetostatics, under its field and vector
potential formulations, respectively.



2 A discrete Weber inequality on hybrid spaces

2.1 Discrete setting

We consider a polyhedral mesh M;, = (75, 1), that is assumed to belong to a regular mesh sequence
in the sense of [15, Definition 1.9]. The set 7}, is a finite collection of nonempty, disjoint, open
polyhedra T (called elements) that are star-shaped with respect to some interior point x7, and such
that Q = Ureg, T. Concerning the role of the star-shapedness assumption, see Remark 8. The
subscript 4 refers to the meshsize, defined by /& := maxrcq;, hr, where hr denotes the diameter of
the element 7. The set F, collects the planar mesh faces and, for all T € 7},, we denote by ¥ the set
of faces that lie on the boundary of 7. Boundary faces lying on 9Q are collected in the set 7,°, and
we denote by 7—2 =Fn\ Thb the set of interfaces. For all F € ¥, we denote by hp its diameter and,
forall T € 7, and all F € F7, nr F is the unit normal vector to F pointing out of 7. We recall that,
since M}, belongs to a regular mesh sequence, for all T € 7}, the quantity card(¥7) is bounded from
above uniformly in % and, for all T € 7, and all F € ¥7, hf is uniformly comparable to hr (cf. [15,
Lemma 1.12]). In what follows, we will use the notation < to indicate that an estimate is valid up to
a multiplicative constant that may depend on the mesh regularity parameter, the ambient dimension,
and (if need be) the polynomial degree, but that is independent of 4.

2.2 Hybrid spaces

Let an integer polynomial degree k > O be given. For X € 7, U 7;, and, respectively, d € {2,3}, we
denote by P4(X;R!), ¢ € N, I € {1, d}, the vector space of d-variate, [-valued polynomial functions
on X of total degree at most ¢g. When [/ = 1, we may simply write P4(X). For future use, for any
T € Ty, we let G1 := grad(P9*(T)) and C%. := curl(P*!(T;R?)), and we recall that the following
(nonorthogonal) decomposition holds:

PAU(T;RY) = 65 @ (x —x7)x CF )
with the convention that C}l := {0}. For any F € ¥}, we also let

GL'! = grad, (PT(F)) ¢ PTT(F;R?)
denote the space of (tangential) gradients of polynomials of degree up to ¢ + 2 on F. Finally, for
[ € {1, 3}, we define the broken space
P4(Tp; R := {v € LA R!) : vir e PUTIRY) VT € 73}

that may be abbreviated into P?(7;,) whenever [ = 1, as well as the broken subspaces g‘;;l =
grad,, (P7*1(7;)) and C?rh := curly, (P9!(7,;R?)), where grad, (resp. curl,) denotes the usual

broken grad (resp. curl) operator on H'(75,) (resp. H (curl; 7,)).
We introduce the following (global) hybrid spaces:

vr €e PMYTRY VT e T,
Xt =3y, = ((v)rem (V) : , (5a)
Ap {—h ( €T FeTh) VFGQI;H VF € 7,
k
el _ ‘ qr € PX(T) VYT € 7y,
as well as their subspaces incorporating homogeneous essential boundary conditions:
Xe = {y, e XET v =0 YR .

sz,t)l = {gh eYi*' 1 qr=0 VFe ﬁb}.
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Given a mesh element 7" € 7j,, we respectively denote by X’}” and X?l the restrictions of Xfl” and
Y&+ to T, and by v := (v7, (VF)Fes;) € X! and q, = (a7, (QF)Fes) € YAH! the respective
restrictions of generic vectors of polynomials v, € XZ“ and q, € X’,‘l“. Also, we let vy, and qy, (not
underlined) be the broken polynomial functions in P¥*!(75; R?) and in PX(7}) such that

(Ve)r :==vr and (qu)ir :=qr forallT € 7.

Finally, we define the interpolators llghl c H'(QR3) — X;‘l“ and l]y}} cH'(Q) — X];l“ such
that, for all v € H'(Q;R?) and all ¢ € H'(Q),

!1;&3‘, = ((”I;H(VIT))T@/;,’ (”ICQJ:}L(VT,F(V)))Feﬁ)’ (7a)
15 = (b @) e (7 @) e ) (7b)

where (i) for any X C Q, and any F € %, such that F C X, Y.r(v) € L?*(F;R?) denotes the

tangential trace on F of v € H'(X;R%), (ii) for X € %, U 7, (and, respectively, d € {2,3}), %
qg+1
G.F
stands for the L2(F; R?)-orthogonal projector onto g;“. We also introduce here, for S € {G, C}, the

notation ﬂ'flg’T for the L?(T; R?)-orthogonal projector onto S?. We will also make use of the global

(resp. n?(), g € N, denotes the L>-orthogonal projector onto P4(X) (resp. P4(X; R%)), and (iii) 7

L?- orthogonal projectors f, 7} and ”?9, , onto, respectively, P4(7;), P4(7;; R?) and S%.

2.3 Gradient reconstruction in Xﬁ”

We define the global discrete gradient reconstruction operator G';l” : Xﬁ“ — PM*1(7,:R3) such
that its local restriction G?] : X’}“ — PI(T;R3) to any T € 7}, solves the following well-posed
problem: Forallq € YA

(G5 a,uwir = —(ar,divw)r + ) @rwipnr e Yw € PEUTSRY), 8)
FGTT

We note the following commutation property (see, e.g., [15, Section 4.2.1]): For all ¢ € H'(Q), it
holds
G,y q = 7 (grad g). )

We also have the following result in the tetrahedral case.

Lemma 1 (Norm ||GflJrl ‘|lo). Let Ty, be a matching tetrahedral mesh. Then, the map ||G£Jr1 Nla
defines a norm on X’ﬂf.

Proof. Let 7j, be a matching tetrahedral mesh, and let q, € X;‘lt)l be such that ||GZ+lqh llo = 0. Then,

forall T € 7, enforcing Gl}” q, = 0 in the definition (8) of this quantity and integrating by parts, we
obtain h

(gradar,w), + > (ar —aQripwirnre)p =0 Yw e PEI(TRY). (10)
FGT‘-T

Let N’} = g?l ® (x —x7)X C'}_l denote the Nédélec space of the first kind of degree k on T
(cf. [24]), and let w € P**1(T;R?) be s.t.

(w, p)r = (gradqr, p)r Vp € N&, (11a)
W\p-nr.p,r)F = (QF — qrier)r - Vr e PKYYF), VF e 77 (11b)



The system (11) uniquely defines w as a function of the Nédélec space of the second kind of
degree k + 1 on T, that is P I(T: R3) (cf. [25, 6]). Testing (10) with w, and using the fact that
gradqr € g?l C N; and that qr — qr|F € P**1(F) for all F € ¥z, we infer from (11) that
|| grad qul% + Yresr lAF — qT|F||12, = 0. Reproducing the same reasoning on all T € 7}, and using
the fact that q, belongs to the space Xf;[)l with strongly enforced boundary conditions, finally yields

q, = 0,,.- O
2.4 Discrete Weber inequality
We begin with a preliminary technical result.

Lemma 2. Let T € ;. For all p € P4(T;R3) such that p = gradg + (x — x7) X curl¢ with
g € PI*YT) and ¢ € P4(T;R>), it holds

lp — grad g|lr < 2h7|| curl p||r. (12)

Proof. The decomposition p = gradg + (x — x7) X curl¢ follows from (4). Using the fact that
|(x —x7)Xcurle| < |x —x7| |curl¢| < hr|curl ¢|, we infer

llp —gradglir = [|(x — xr)x curle|lr < hr|lcurle|lr. (13)
We now focus on the right-hand side of (13). Since curl(grad g) = 0, it holds

curl p = curl ((x — x7)Xx curlc)
= (x —xp)divicarlc) - [(x — xr)- grad](curl c)
—3curlc + [curl c- grad](x — x7)
= -2curlc — [(x — x7)- grad](curl ¢), (14)

where we have (i) used with A = x — x7 and B = curl ¢ the vector calculus identity curl(AxXB) =
A(div B)—[A- grad|B—(div A)B+[B- grad]A, (ii) used the fact that the divergence of the curl is zero in
the cancellation, and (iii) observed that [curl ¢- grad](x — x7) = curl ¢ to conclude. Multiplying (14)
by — curl ¢ and integrating over T, we get

1 2
—(curlp,curle), =2|| curl¢||Z + (x — x7, grad (%) )y
1 2 1 2
= 5l curlellf + > 5 (leurl el (x —xr)iponrr) o (15)

Fefr

1
> E||cm~1c||% >0,

where we have used an integration by parts formula to pass to the second line, and the fact that T is
star-shaped with respect to x7 to conclude. From (15) and a Cauchy—Schwarz inequality, we infer

lcurl ¢l < 2| curlplly. (16)

Plugging (16) into (13), (12) follows. m]

We equip the space Xfl” with the seminorm || - ||x ;, defined by

2 . 2 -1 k+1 2
v, l%, = leurlyvilly + >° > hplal e (ve,r(ve) = ve) 17, (17)
TeT, FeFr
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and we define the following discrete counterpart of Ho(curl; Q) N H(div’; Q):
i) = fw, e XAy 1 (Wi GElg, o =0 Vg, e Yi) (18)
Then, the following discrete Weber inequality holds.

Theorem 3 (Discrete Weber inequality). There exists a constant cw > 0 independent of h such that,

forally, € Xlﬂ)l, one has

Vil < ewlly, 1 - (19)
Proof. Lety, € X’ﬂ)l. Since v;, € P**1(7;;R3) ¢ L(Q;R?) and 0Q is connected, we can write
v, = grad ¢ + curl y, (20)

for some ¢ € Hy(€), and some ¢ € H'(Q;R?) such that [, ¢ = 0 and divyy = 0; see, e.g., [2,
Proposition 3.7.1 and Theorem 3.4.1]. Furthermore,

¥z @rs) s [l curl . 21

Since the decomposition (20) of v, is L?(Q; R?)-orthogonal, it holds

Ivallg, = Il grad lig + || curl yrllg =: 1y + L. (22)
For the first term in (22), setting @, = 1’;,1190 € _ﬁj)l, we have
11 = (v, grad ¢)g = (v, 7" (grad ¢))g = (v, Glf,“gh)g =0, (23)

where we have used the fact that (curl ¥, grad ¢)q = 0, that v, € PX*1(7;;R3), the commutation
property (9) of Gfl“, and the fact that v, € Xﬁf.
Let us now estimate the second term in (22). It holds

I, = (v, curly), = Z (v, curly 1),

TeT,
= Z ((curlvT,x//T)T— Z (¢|F><nT,F,VT|F)F)
TeTy FeFr
= Z ((CUI'IVT,‘PT)T— Z (VT,F(lﬁXnT,Fl?’T,F(VT)—VF)F),
TeT, FeFr

where we have used the fact that ( grad ¢, curl ) o = Ointhe first line, an integration by parts formula
on each mesh element T’ € 7, in the second line, and the fact that the jumps of ¢ € H'(Q;R?) vanish
on interfaces along with vp = 0 for all F € 7—;}’ to insert vg into the second term in the third line.
Applying Cauchy—Schwarz inequalities to the right-hand side, we obtain

1/2
< ( > (heurdvrliz + 3 h;‘||yT,F<vT>—vF||%))

TeT, FeFr
12
x(z (IZ 23 hF||¢|Fan,F||,%)) en

T€7;, FETT



We focus on the first factor on the right-hand side of (24). For T € 7, and F € ¥, decomposing
vy € PKYI(T;R3) along (4) as v = grad g + (x — x7) X curl ¢ with g € P**(T) and ¢ € P*+*1(T; RY),
inserting into the norm + [yT, rlgradg) + n'ngr}, ('yT F(VT))], and using the triangle inequality, we
infer, since vp € g’;“ and y, p(grad g) = grad (g|r) € Gk,

D W e s ) = velE £ Y b Il E (v s (vr) = vE) I

TE(]LFETT TE(]ZFE'T_T

+ > D hE v (vr - gradg) I}
TE%FETT

+ > D TG (e p (v — grad @) 7. (25)
TeTnFeFr

Using the LZ(F ; Rz)—boundedness of n'g},, a discrete trace inequality (cf., e.g., [15, Lemma 1.32]),
and Lemma 2 with p = vy, we infer

DD e (vr) = velly

TeT, FeFr

< > (ileurtvrlf + 3 h Ixh (e r ) = Vi) 1) 26)

TeT, Fe¥r

Now, for the second factor on the right-hand side of (24), using the fact that ||z Xn7 F| < ¢ |,
a continuous trace inequality (cf., e.g., [15, Lemma 1.31]), the fact that hy < diam(Q) forall T € 7y,
and concluding with (21), one has

1/2
(Z (IZED) thmFan,Fn%)) S W llozs) < lleurly . 27

TeT, Fe¥r

Plugging (26) and (27) into (24), and recalling the definition (17) of the || - ||x.,-seminorm yields

< M1y, lIx.nll carlylla < [y, Ix.n1vallo,

where we have used the L*(Q; R?)-orthogonal decomposition (20) in the last bound. We conclude by
combining (22), (23), and this last estimate. O
Remark 4 (Control of element unknowns). A direct proof of the fact that, for all v, € X’;;BI,
lv, llx,n = 0 implies ||vhlla = O can be obtained as follows. The volumetric term in (17) first yields
that, for any T € T, curl(vy7) = 0 in T, meaning that v, r = grad g for some g € PK*2(T) by
Lemma 2. The boundary term in (17) then yields the continuity of the tangential component of vy,
at interfaces, as well as nx(vyxn) = 0 on 0Q. Hence, vi, € Hy(curl; Q) and curlv, = 0 in Q.
Since v, € Xht)l, we also have v, € H(div’; Q) by the commutation property (9). Finally, by the
continuous first Weber inequality (3), ||vh|la = 0. Note that this result, as opposed to the quantitative
result of Theorem 3, is insensitive to the regularity of the mesh. As such, it could be stated under the
sole assumption that My, is a polyhedral mesh in the sense of [15, Definition 1.4] with star-shaped
elements. Note also that imposing v, € H(div’; Q) as we do is actually not necessary. In view of
the above analysis, it is sufficient to impose that vy, be orthogonal to the gradient of any function in

P 2(7,) N Cg (Q). This is the approach pursued in [9] on tetrahedral meshes.

Corollary 5 Norm || - ||x.»). The map || - ||x.n defines a norm on Xk”



Proof. This is a direct consequence of Theorem 3 and of the definition (17). For v, € Xﬁ)l’ if
v, lixn =0, then v, = 0,i.e. vy = 0forall T € 7. Then, for all F € 7, ||7r"Jrl vellr = IVElF =

i.e.vp =0, whencey, =0,. O

Corollary 6 (Generalized discrete Weber inequality). Let d, : Xﬁ” X Yk” — R be a symmetric

k+1

positive semi-definite bilinear form such that, for all ¢ € Hé (Q), letting P, = Ik”(p €Yo

di(@,. 9,)" < Il grad pllo. (28)
Then, there is cw > 0 independent of h s.t., for all (v,,1;) € Xk“XYkJrl satisfying
_ (Vh, szﬂﬂh)g + dh(zh’ gh) =0 Vq € Y’ZJE)I, (29)

one has

]/2
Ivilla < e (Iv, 13, + due,my) (30)

Proof. We follow the steps of the proof of Theorem 3. If (v,,1,) € Xk”xYk” satisfies (29), then
(23) becomes

I = (v grad @)o = (vi, G '@, ) = dn(1,, @, )-
By the Cauchy—Schwarz inequality and (28), we infer

Ii < du(ry,, 1)l grad ¢llo < di(r,. 1) Vil (31)

where we have used the L*(Q; R?)-orthogonal decomposition (20) in the last bound. The rest of the
proof is unchanged provided we substitute (31) to (23). m|

Two additional remarks are in order.

Remark 7 (Topological assumptions on the domain). The first Weber inequality (3) is actually valid
under the sole topological assumption that the boundary of Q is connected, so that its second Betti
number is zero. The same holds for the discrete Weber inequalities of Theorem 3 and Corollary 6
(and, incidentally, this is also the case for discrete Weber inequalities on spaces with conforming
unknowns, see [14, Theorem 19]). In other words, one does not need to assume, as we do, that
Q is topologically trivial to prove these results. This last assumption is however necessary in the
applicative Section 3 to have equivalence (i) between Problems (32) and (33) in field formulation,
and (ii) between Problems (54) and (55) (in the class of potentials satisfying the Coulomb gauge) in
vector potential formulation when div f = 0.

Remark 8 (Star-shapedness assumption). The star-shapedness assumption of the mesh elements is
crucial to prove Theorem 3 (and Corollary 6) through Lemma 2 (where it is used to infer a sign
for the rightmost term in the second line of (15)). However, when the face unknowns vg are rather
k+1 2 k 1 k+1
taken in the full polynomial space P**'(F;R?) (and, correspondingly, n'; . is replaced by n';""),
this assumption can be relaxed. Indeed, the discrete Weber inequality reads in this case: For all

n € X,];Ji)l, one has (note that y . (V1) € P 1(F;R?))

1/2

2 -1 2
IVallo < ew |lleurlvilly + >° > bl pvr) = velE|
TeT, FeFr

which can be proven without resorting to Lemma 2, just using (24).



3 Application to magnetostatics

In this section, we design and analyze HHO methods for the discretization of the magnetostatic
equations. Their analysis leverages the discrete Weber inequality of Theorem 3 and its generalization
pointed out in Corollary 6. We work on regular (polyhedral) mesh sequences (M, )0 in the sense
of [15, Definition 1.9], which are characterized by the fact that the sequence of mesh regularity
parameters is bounded from below by a strictly positive real number.

3.1 Field formulation

3.1.1 The model

The (first-order) field formulation of the magnetostatic pro-blem consists in finding the magnetic field
u : Q — R3 such that

curlu = f in Q, (32a)
divu =0 in Q, (32b)
nx(uxn) =0 on 09, (32¢)

where the current density f : Q — R3 is such that div f = 0in Q and f-n = 0 on Q. We consider
the following equivalent (cf. Remark 7) weak formulation of Problem (32), originally introduced
in [21, Eq. (58)] (see also [20]): Find (u, p) € Hy(curl; Q) X Hg (Q) s.t.

a(u,v) + b(v,p) = (f,curlv)q Vv € Hy(curl; Q), (33a)
—b(u,q) + c(p,q) =0 Vg € Hy(Q), (33b)

where the bilinear forms a : H(curl; Q) x H(curl; Q) — R, b : H(curl; Q) x H'(Q) — R, and
c: H'(Q) x H'(Q) — R are given by

a(w,v) := (curlw, curlv)q, b(w, q) := (w, grad q)q, c(r,q) :=(r,q)a. (34)

The pressure p : Q — R acts as the Lagrange multiplier of the divergence-free constraint on
the magnetic induction. Testing (33a) with v = grad p € H(curl; Q), it is inferred that p = 0
in Q. Using the decomposition (2), Problem (33) can then be equivalently rewritten: Find u €
H(curl; Q) N H(div’; Q) s.t.

a(u,n) = (f,curly)q  Vn € Hy(curl; Q) N H(div’; Q),

whose well-posedness is a direct consequence of the first Weber inequality (3) and of the Lax—Milgram
lemma.

Remark 9 (Improved stability). Here, we take advantage of the fact that the pressure p is identically
zero as a consequence of (33a) to consider a weak formulation of Problem (32) that features the
bilinear contribution ¢ defined in (34), which actually defines a norm on Hé (Q). Mirroring this
strategy at the discrete level enables to improve the stability of the method (cf. Lemma 12) without
Jjeopardizing its convergence properties. At the opposite, in the model of Section 3.2 below, the
pressure may be nonzero and one cannot add the same contribution without modifying the model under
consideration. At the discrete level, one can then only prove a weaker stability result (cf. Lemma 21).



3.1.2 The HHO method

We analyze in this section the HHO method for Problem (33) we have briefly introduced in [7]. This
HHO method is based on the hybrid spaces introduced in Section 2.2. The discrete counterparts of
the bilinear forms (34) are the bilinear forms a; : X}*' x Xf*! - R, b, : X{*! x Y&*! - R, and
cp : YR x YT — R such that

ap(w,,v,) = (curl,wy, curl,vy), +sp(w,,v,), (35a)

ba(W,.q,) == (Wa, G,*'q, ) o (35b)

Ch(rh, ) = (th, Qn)a + Z Z hr(tr, qF)F, (35¢)
TeT, FEFr

where G’,‘IJrl : XI;[H — PK*1(7;,; R?) is the gradient reconstruction operator introduced in Section 2.3,
and's;, : X! x X1 — Ris the stabilization bilinear form such that

Sh(Wh, Vh) - Z Z 7rkg+}? ‘}IT,F(WT) - WF), ﬂkg-t—ll? (YT,F(VT) - VF))F- (36)
TeT, FeFr

The HHO method for Problem (33) then reads: Find (u,, P, ) e Xk+l X Yk+1 s.t.
an (W, ¥,) +ba(y,,p ) = (f,curlyvi)o - Vy, € ), G (37a)
by (W, q,) +cnlp,.q,) = Vg, € Y50 (37b)

Note that, contrary to p, the discrete pressure P, is in general nonzero, as a consequence of the fact

that the global discrete gradient Gk“p is not irrotational.

Remark 10 (Curl reconstruction). As opposed to what is done in HHO or HDG methods for second-
order problems (see Section 3.2 below), we here take advantage of the fact that the problem is
first-order to avoid (locally) reconstructing a discrete curl operator. Doing so, (i) it is possible to
consider a smaller local space of face unknowns (that does not need to contain P*(F;R?)) for k > 1
(cf. [7, Table 1]), and (ii) there is no need to solve a local problem on each mesh element (which may
become, for a sequential implementation, rather costly in 3D for large polynomial degrees).

Letting Z;*' == Xj*' x Y3+ and Zi4' = X[4' x Y4, Problem (37) can be equivalently
rewritten: Find (uh,p )€ Zk+l such that

An(@,p, ) (¥,q,)) = (freurlyvi)a ¥ (v,,9,) € Zyy), (38)
where the bilinear form Ay, : Z*!' x ZM*! — R is defined by
An((W),.1). (%> 9,)) = an(W,, ¥,) + ba(¥,,. 1) = bWy, g, ) + ea(ry. q, ). (39)
For future use, we also let
zZkil {(wh, n) € Zio - —by(w,.q ) +en(n,q ) =0 Vg, € Yk“} (40)

:{(wh,rh)ezk“ L An((W),1).(0,.9,)) =0 Va, eY"”}.
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3.1.3 Stability analysis

We recall that X’,i“ is equipped with the seminorm || - ||x 5 defined by (17), which is such that
Il lIxn = an(--)">. We equip Xﬁ“ with the norm || - |ly;, := cp(--)"* and Zi” with the seminorm

2 2\
Nl = (I, 1B+ e, 13,) (1)

Lemma 11 (Norm || - ||z.n). The map || - ||z. defines a norm on Zﬁ)].

k+1
=h,0°

(W), 1)llzen = O implies (W, 1,) = (0,,0,). Let (w,,1,) € Zi'' be such that [|(W,,1,)llzn = 0.

Proof. The seminorm property being evident, it suffices to prove that, for all (w,.r,) € Z

Then, ||w,|lx» = 0 and [|t,[ly,» = 0. Since || - [ly,» is a norm on XIZH’ the second relation implies
r, = 0,. Now, owing to definitions (40), (35b), and (18), since (Eh’ r,) € Zﬁ)l and 1, = 0,, we have

€ Xﬁ;l. By Corollary 5, this implies w, =0, . |
Lemma 12 (Well-posedness). For all z, € Z"‘Jrl

Iz, 117, = An (2. 2,). (42)

Hence, Problem (37) is well-posed, and the following a priori bound holds:

1w, p )z < [1flle- (43)

Proof. The identity (42) is a direct consequence of (39) and (41) along with the definitions of || - ||x.»
and || - |ly,». To prove well-posedness, since the system associated to Problem (37) is square, it is
sufficient to prove injectivity. Assume that Ah((uh,p ) (V5 q, )) = 0 for all (Vh,q ) e ZkJr1 Taking

(Vh, ) =(0,.9 h) and using (40), we first infer that (uh, ) € Zk“ Taking (vh,q ) = (uh, ) and
using (42) we then get

1w, p Iz, = An((,p, ) (W,.p,)) =0,

which, by Lemma 11, eventually yields (u,, p ) =(0,,,0,). The a priori bound (43) directly follows
from (42) with z, = (uh,p ), (38), the Cauchy—Schwarz inequality, and the fact that [|u, |lx, <

[l p )z o

3.1.4 Error analysis

We recall that (u,p) € Hy(curl; Q) x Hé(Q) denotes the unique solution to Problem (33). We
assume that u possesses the additional regularity # € H'(Q;R?), and we let u, = 1§+hlu € Xﬁ)l and

—

p, = IkJrl WD € Y"‘+1 In the spirit of [13] (see also [15, Appendix A]), we estimate the errors

—

k+1 . = k+1 —
Xio 28, =1, —U, Y0 ®€ =P, P, (44)

where (u,, P, ) € XkJrl X Y"‘Jrl is the unique solution to Problem (37). Remark that, since p = 0 in Q,
we actually have p, = =0, and € =D, Recalling (38) and (39), the errors (e, €,,) € Z"Jrl solve

Ah ((gh’ gh)’ (!}p ﬂh)) = 1h(!h) + mh(ﬂh) V(!h’ gh) € Z]];j(-)19 (45)
where we have defined the consistency errors
In(v,) := (f, curlyvi)a — an (W, v,,), (46a)

mi(g,) = br(T,, g, ). (46b)

11



Theorem 13 (Energy-error estimate). Assume that
u € Hy(curl; Q) n H'(Q;R?) n H**2(7;,; RY).
Then, there holds, with (e, €,,) € Z’,;I)l defined by (44),

1/2

2(k+1
e ellzn < | D mr Pl g | (47)
TeT,

Proof. Since (e, €,) € _ﬁ}l, by (42) with z, = (e, €,,) and (45), we infer

(e, € )llzn < max (In(v,) + myu(q, ). (43)
e W, 2L I =l =h

Let us first focus on I;(v,,) for v, € X’ﬂ)l. By the definition (46a) of 1, the fact that f = curlu
in Q, and the definition (7a) of 1’;&1 u, there holds

(v, = |(curlu — curly (7} u), curl,vy) o — sp(@,, v,)|

1/2
< (Il curtu - curly (™ )1 + 0@, 8,)) 11y,

where we have used the triangle/Cauchy—Schwarz inequalities and the definition (17) of ||v, [x,» to
pass to the second line. The quantity || curl u# — curlh(7r’;l“u)||(22 is estimated using the approxima-
tion properties of JTIZH (see, e.g., [15, Theorem 1.45]). For the quantity s,(u,,u, ), recalling the

definition (36) of s;, and using the L?*(F;R?)-boundedness of 7kl we have

G.F’
= = -1 1 1 2
sn@,T,) = >, > hp Il p (v p (e ) - )17
TeT, FeFr
-1 1 2 2(k+1 2
< 0 > e @) —w)ielE s D R g gy (49)
TeT, FeFr TeT,

where, for all T € 7}, we have used the approximation properties of &
the different estimates, we get

?1 on the faces of 7. Gathering

1/2
2(k+1
(vl < (Z O enrzsy | 19,k (50)
TeT,

Let us now focus on mh(qh) for q, € X]ZBI- Starting from (46b), performing an element-by-

element integration by parts in (8), and using the fact that gradqr € g’;—l c PMITR3), we
infer

mh(ﬂh) = Z ((gradqr,mT)T + Z (ﬂ1}+l(u|T)|F'nT,F, qr —qT|F)F

TeT, Fefr
k+1
- Z Z (Gr7" (7)) = w)ipon7, . QF = AriF) o
TE7;1 FE?‘—T

where the last identity follows from another element-by-element integration by parts, and from the
fact that dive = 0 in Q, and that u € H'(Q;R?) along with qr = 0 for all F € . By the triangle
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and Cauchy—Schwarz inequalities, one then gets

1/2
Ima@ )l < | >, D, h;1||<n§+‘(u|T>—u>|F||%)

TeT, FeFr

1/2
X(Z Z hellar —aqrirllE| - (51)

TE(]L FETT

Using, for all T € 7, the approximation properties of 7r§+1 on the faces of T for the first factor on

the right-hand side, and the triangle inequality along with a discrete trace inequality (see, e.g., [15,
Lemma 1.32]) for the second factor, we infer

I/2
2(k
|mh(9h)| S Z hT( +1)|u|T|§_Ik+2(T;R3)) ||9h||Y,h' (52)
TeT,
Plugging (50) and (52) into (48) for (v,,,q, ) such that ||(¥,,,q,)llz.» = 1, finally yields (47). O

3.1.5 Numerical results
Let the domain Q be the unit cube (0, 1)>. We consider Problem (32) with exact solution

cos(mxy) cos(mrx3)
u(xy, xp, x3) :=| cos(mxy)cos(mxz) |. (53)
cos(mxy) cos(mxy)

Clearly, the magnetic field u satisfies (32b). The current density f is set according to (32a), and
the zero tangential boundary condition (32c) is replaced by the nonhomogeneous boundary condition
stemming from (53).

We solve the discrete Problem (37) with amended right-hand side accounting for the nonho-
mogeneous boundary condition on two refined mesh sequences, of respectively cubic and regular
tetrahedral meshes. For each problem, the element unknowns for both the magnetic field and the
pressure are locally eliminated using a Schur complement technique. This step is fully paralleliz-
able. The resulting (condensed) global linear system is solved using the SparseL.U direct solver of
the Eigen library, on an Intel Xeon E-2176M 2.70GHzx12 with 16Go of RAM (and up to 150Go
of swap). For k € {0, 1,2}, we depict on Figures 1 and 2, repectively for the cubic and (regular)

tetrahedral mesh families, the relative energy-error |lu, — 1]{;}" IIx.n/ ||1§;}u llx. (first line) and L2-

error ||uy, — n;‘l“u llo/ ||7r;‘l+1u |lo (second line) as functions of (i) the meshsize (left column), (ii) the

solution time in seconds, i.e. the time needed to solve the (condensed) global linear system (middle
column), and (iii) the number of (interface) degrees of freedom (DoF) (right column). For the two
mesh families, we obtain, as predicted by Theorem 13, an energy-error convergence rate of order
k + 1. We also observe a convergence rate of order k + 2 for the L?-error. We remark that, whenever
the solution is smooth enough (at least locally), raising the polynomial degree is computationally
much more efficient than refining the mesh to increase the accuracy.

3.2 Vector potential formulation
3.2.1 The model

The (second-order) vector potential formulation of the magnetostatic problem consists, in its gener-
alized form, in finding the magnetic vector potential # : Q — R and the pressure p : Q — R such

13
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that

curl(curlu) + gradp = f in Q, (54a)
divu =0 in Q, (54b)

nx(uxn) =0 on 0€, (54c¢)

p=0 on 0Q, (544)

where the current density f : Q — R? is no longer assumed to be divergence-free, whence the
introduction of the pressure term in (54a). When div f = 0in Q, p = 0in Q and, letting b := curl u,
Problem (54) is then equivalent, in the class of vector potentials satisfying the Coulomb gauge, to the
following problem (cf. Remark 7):

curlb = f inQ, divb =0 inQ, b-n =0 onoQ. (55)

The field u is then the vector potential associated to the magnetic induction b. Assuming f €
L*(Q;R?), we consider the following equivalent weak formulation of Problem (54): Find (u, p) €
Hy(curl; Q) x H)(Q) s.t.

a(u,v) +b(v,p) = (f,v)a Vv € Ho(curl; Q), (56a)
b(u,q) =0 Vg € Hy(Q), (56b)
where the bilinear forms a : H(curl; Q) x H(curl; Q) — R and b : H(curl; Q) x H'(Q) — R are

defined in (34). Using the decomposition (2), Problem (56) can be equivalently rewritten under the
following fully decoupled form: Find u € Ho(curl; Q) N H(div®; Q) and p € H(; (Q) s.t.

a(u,n) = (f, n)a ¥ n € Ho(curl; Q) N H(div’; Q),
b(gradé,p) = (f.grad&)q V£ € Hy(Q),

whose well-posedness directly follows from the first Weber inequality (3) and from the Lax—Milgram
lemma.

Remark 14 (Divergence-free current density). When div f = 0 in Q, since it implies p = 0, one can
consider adding to Problem (56) the bilinear contribution c defined in (34). Mirroring this strategy at
the discrete level improves the stability of the method without jeopardizing its convergence properties
(cf. Remark 9).

3.2.2 The HHO method

We consider the hybrid spaces introduced in Section 2.2, up to a slight modification of the space XZ“
defined in (5a). To this end, we introduce, for any F € ¥, and any g € N, the space

P = PU(F;R?) ® grad, (P1*3(F)),

with P4*2(F) denoting the space of homogeneous polynomials of degree ¢ + 2 on F. Consistently
with our notation so far, we let ﬂ;l;r[l: denote the L?(F; R?)-orthogonal projector onto SD%H. With this
new space at hand, we define

(58)

vr € PKYYTIRY) VT e 7,
vp € PEH VF e Tl

Xﬁl = {Xh = ((vD)res VF)Fes,) -
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that is from now on meant to replace the space X Xk“ . The space Xﬁ“ keeps the same definition (5b).

We also introduce the spaces Xg;lo and Xg;lo, that are respectively obtained through definitions (6)

and (18), up to the replacement therein of X}*! by X’ﬁl, and of X"Jrl by X’ﬁllo Finally, we define
k+1

the interpolator IX, wn : H'(Q;RY) — XkJrl as in formula (7a), up to the replacement of the projector

k+1 by ﬂ.k+1
Remark 15 (Validity of the results of Section 2.4). For all F € Fy, there holds
gk+1 7)]}(;1 C Pk+1(F;R2).

It can be checked that, up to the replacement of the orthogonal projector 7rkg+}, onto g’;“ by the
k+1

pp Oonto SDI;H, all the results in Section 2.4 remain valid when Xk+1 is
replaced by X’g“ as defined in (58), including the discrete Weber inequality of Theorem 3 and its
generalization of Corollary 6 (observe that the crucial estimates (25)—(26) still hold true under these
changes).

orthogonal projector

We define the bilinear forms ay, X'ﬁl X’ﬁl — R, by : X'ﬁl X Y — R, and d, :
Y+ x Y&+ — R such that

ah(ﬂh’ !h) = (Ciﬂh’ Ci!h)ﬂ + Sh(ﬂh’ !h)e (593)

ba(W,,4,) = (Wh, G714, ) o (59b)

dn(xy, ﬂh) = Z Z he (tF =17\, AF = A7 |F) s (59¢)
TeT, FeFr

where Gk *1 Yk 1 P**1(7;; R3) is the gradient reconstruction operator introduced in Section 2.3

and sy, : X’ﬁl X Xg;l — R is the stabilization bilinear form such that

sh(Wp» ¥),) = Z Z h; (”I;)+}V(VTF(WT)—WF) ”I;;HVTF(VT)_VF))F- (60)
TeT, FeFr

In (59a), C), ke Xk“ — Ck (with Ck defined in Section 2.2) is the global discrete curl reconstruction

operator such that its local restrlctlon Cr k X’ﬁ‘J’T1 - Ck toany T € 7}, solves the following well-posed

problem: For all v,. € X§+T1,

(Chvpo W)y = (v, curl w)r + Z (VE, Ve p(WXnr p))p  ¥Yw € C.. 61)
Fe¥fr

With this definition at hand, one can prove the following commutation property.

Lemma 16 (Commutation property). For all v € H'(Q;R?3), it holds

C’;lllgﬁlhv = n'é’h(curl V), (62)

where we remind the reader that ﬂ’é , IS the L*(Q; R3)-orthogonal projector onto C’frh .

Proof. Forv € H'(Q;R?), let v, = I’gﬂlhv Then, for any T’ € 7p,,

v = (7510, (B e 0) gy )
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Plugging v, into (61) and using the fact that curl w € P*I(T;R3) ¢ PM1(T;R3) and Yo r(WXnr F) €
P*(F;R?) c P’f;’l for all F € ¥ to remove the projectors, one gets, for all w € ck,

(C]’IC"XT’ W)T = (V|T, curl W)T + Z (V|F, W|FXnT’F)F. (63)
Fe¥Fr
Integrating by parts the right-hand side of (63), we readily infer the result. O

Remark 17 (Variant on C ];l). An alternative choice consists in reconstructing the discrete curl in
PX(T5; R3), which requires to solve larger local problems for k > 1 (for example, C% has dimension 26,

whereas P>(T;R3) has dimension 30). In this case, the commutation property (62) reads C ’;1’;&1 BV =

ﬂlfl(curl v). This is the approach pursued in the HDG literature [26, 10]. The numerical tests we have
performed (not reported here) indicate that, interestingly, reconstructing the discrete curl in P*(7y,; R3)
instead of C’%l , besides being computationally more expensive, in addition often deteriorates the
accuracy of the approximation.

The HHO method for Problem (56) reads: Find (u,,,p, ) € Xk X’;;[)l s.t.

#,1,0
an (W, v,) +bp(v,,p,) = (fivida Yy, e Xiil (64a)
~by(w,,q,) +dn(p,.q,) =0 Vg, € Y54 (64b)

Note that, as opposed to u and p in Problem (56), one cannot efficiently solve for u, and P,
independently in Problem (64) as the curl-grad orthogonality is lost at the discrete level.

Problem (64) can be equivalently rewritten: Find (u,, Bh) € Z’g’;}o = X’ﬁ:o X X’;l})l s.t.

An((w,p,). (¥9,) = (f.vie  Y(¥,.9,) € Zg3,, (65)

where the bilinear form Ay, : Z’g;l X Z’ﬁl — R is defined by

An((W),.1). (%, 9,)) = an (W, ¥,) + ba(¥,,. 1) = bWy, g, ) + di(y. g )- (66)
We also let, in analogy with (40),

Zyhh = {(yh, 1) € Zyhly  —ba(w, g ) +di(r,.q,) =0 Vg, € X’;,j;;} (67)

= {(Eh’ r,) € Zg;lo A ((Eh» 1) (0, ﬂh)) =0 Vﬂh € Xflt)l} .

3.2.3 Stability analysis

We equip X5*! and Y/*! with the seminorms

_ﬁ’h
1/
Iyl = (Il curlowili3 + 54w, w,)) (682)
1/2
Iy g o= ( > B llgradrr |} + iy, zh)) . (68b)
TeT,

One can easily verify that || - [ly 4, defines a norm on Xﬁ)l. We now equip Zﬁl with the seminorm

2 2 /
10w 2z o= (190, g + Nl ) - (69)
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Lemma 18 (Norm || - ||z 4 ). The map || - ||z 4 » defines a norm on Z'ﬁlo.

Proof. The seminorm property is evident, so we only need to prove that, for all (w,,r,) € Z’ﬁlo,
k+1 )

l(w,,.t,)llz4n = O implies (w,,r,) = (0,,0,). Let (w,.r,) € Z;7 ' be such that [[(w,,1,)llz4r = 0.

#,,0
Then, ||w, llx 4, = 0and ||r,|ly,y, = 0. Since || - [ly,4 is a norm on X’Zj)l, we directly get from the
second relation that r, = 0,. Now, owing to the definitions (67) of Zlﬁ,l()’ (59b) of by, and to the
fact that X’g’;}o is defined as in (18) with Xi})l replaced by Xﬁl}o, we infer from (w,,r,) € Z’g}:o and
r, =0, thatw, € Xlﬁlo' By Corollary 5 and Remark 15, || - |lx 4, defines a norm on X’g;lo, hence
w,=0,. h h o
We now state some preliminary results for the stability analysis of Problem (64).

Lemma 19 (Equivalences of seminorms). It holds
”Eh”;(,ﬁ,h < ap(Wy,, w,) < Hﬂh”)z(,ﬁ,h Vw, € Xglla (70a)
Iyl S O BFIGE Ep I + dalryry) < I Mg, Vo, € X5 (70b)

TeT,

Proof. Let us prove (70a). Let w, € X’ﬁl, and T € ;. By the definition (61) of CX., testing with

w = curl wr, integrating by parts, and using the fact that y . (curl wrxnr,r) € PK(F;R?) c PXH,
we infer

| curl wr |7 = (C5-w,., curl wr)r

+ Z (7[};;117 (yT,F(WT) - WF)’ '}/T’F(Clll'l WTan’F))F'
Fe¥Fr

By the Cauchy—Schwarz inequality, a discrete trace inequality (see, e.g., [15, Lemma 1.32]), and
recalling the definition (59a) of aj, we get || curl, wy, ||§22 < ap(w,,, w,), and the first inequality in (70a)
follows by adding s,(w,,w,) to both sides. To prove the second inequality, we test (61) with
w=C I;"ET to write

IC7w, 7 = (eurl wr, Crw,)r

- Z (”];;,;7 (7T,F(WT) - WF)’ 7T,F(C]7("ET><"T,F))F’
Fefr

and we conclude by the same kind of arguments.
The proof of (70b) is similar and is omitted for the sake of brevity. O

Lemma 20 (Control of G]ZH)' For all (w,,1,) € Z’ﬁl, there exists V) € nglo satisfying

2 2 2 k+1 2
VIS + 1955 0n S D PTIGE 711,
TeT,

such that it holds

D RHIGE e IF < An (W1, (v7.0,)) + 1w, 15 (71)
TeT,
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Proof. Let(w,.1,) € Zk“ We define v} € X'g;lo such that

v} = 2G5y, forall T € 7, and vk := 0 for all F € 7. (72)

We immediately verify, since Ay < diam(Q)forall T € 7y, that there holds ||V]:||§22 < Xreq, h%HG]}”gTH%.
From the definitions (72) of v , (59Db) of by, and (66) of Aj,, we infer

Z h%”GI%HIT”% = bh(!Z, Ih) = Ah((ﬂh’ Eh)’ (X;’ Qh)) - ah(ﬂh’ X;)
TeT,

The Cauchy—-Schwarz inequality followed by the second inequality in (70a) then yield

Z WG e 117 < An((Wy 1) (V1 0,)) + 11w, lx o 195 N o (73)
T<T,

Using the definitions (72) and (68a) of, respectively, !Z and || - |lx 4 . it holds

2 2 -1 k+1
I¥illg e, = O [Hewrtvilif + > htllah (v r () 17

T€771 FGTT
-2 2 2 k+1 2
< > RPIVEIE = D RpIlGE eI, (74)
TeT, TeT,

where we have used the L?(F;R?)-boundedness of 71"‘*},, as well as an inverse inequality together
with a discrete trace inequality (see, e.g., [15, Lemmas 1.28 and 1.32]). Starting from (73), and
using (74) combined with Young’s inequality for the last term in the right-hand side eventually yields

the expected result. |

We are now in position to show well-posedness for Problem (64).

Zk+1

Lemma 21 (Well-posedness). For all z, € Z,

. k+1 . .
there exists v € Xﬁzo satisfying ||vy|la +

||V IIx. hn S ||Zh||Z 45 such that it holds

12411755, S An(Z452,) + An(zy (v, 0,)). (75)

Hence, Problem (64) is well-posed, and the following a priori bound holds:

(. p )iz gn S [1f llo- (76)

Proof. Letz, = (w,,1,) € Z"‘Jrl By the first inequality in (70a) and (66), one has

W, 1% g, + dn (o) S (W, W) + di(y, 1) = An(Z,,2,). (77)

By Lemma 20 combined with (77), one also has

DT RNIGE 17 < An(zy, (V),0,) + An(2)2,), (78)
TeT,

for some v € X’g“ such that [[vy ]l + [V} lIxgn < lIt,llv.gn < 112, llz,4,,, Where we have used the
second inequality in (70b) and (69). Summing (77) and (78), and using the first inequality in (70b),
we infer (75). To prove well-posedness, since the system associated to Problem (64) is square, it is
sufficient to prove injectivity. Assume that Ay, ((u,, p,): (¥ ﬂh)) = 0forall (v,,q,) € Zl&zlo Taking
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(Vs gh) =(0,, gh) and using (67), we first infer that (u,, Eh) € leﬁ,lw Taking (v, gh) = (u, Eh) and

(v, gh) = (v},0,,), and using (75), we then get

”(Hh’ Bh)”%,ﬂ,h < Ap ((Eh’ Bh)’ (Eh’ Eh)) + Ap ((Eh’ Bh)’ (!Z’ (—)h)) =0,

which, by Lemma 18, eventually yields (u,, ph) =(0,,0,). To prove the a priori bound (76), we take
z, = (u,, ph) in (75) and we use (65). We get, by Cauchy—Schwarz inequality,

1w P74 S (Frwnda+ (F Ve < If lla(luxlla + 1V ll)-

The conclusion follows from the fact that ”VZHQ < l(u, ph)llz,#,h, and from the combination of
Remark 15 with the generalized discrete Weber inequality (30) of Corollary 6 applied to (u,, ph)
satisfying (29) (one can easily check that dj, satisfies (28)). o

3.2.4 Error analysis
We recall that (u, p) € Hy(curl; Q) x Hé () denotes the unique solution to Problem (56). We assume

that u possesses the additional regularity u € H'(Q;R?), and we let u, := llgﬁl LU € Xlﬁlo and

P, = I p € Y} ! We define the errors

k+1 . - k+1 e _
Xino28 =1, -u, Y0 € =P, ~ P, (79)

where (u,, ph) € Xﬁlo X X’ﬁ)l is the unique solution to Problem (64). Recalling (65) and (66), the

Zk+1

Zyo solve

errors (e, €,) €
An((€, ) (v,,0,)) = la(v,) +mala,) Y (v,.q,) € Zg), (80)
where we have defined the consistency errors

1h(!h) = (fs Vh)Q - ah(gh’ Xh) - bh(!ha Eh)’ (813)
my(q, ) = ba(W.q,) - du(p,. g, )- (81b)
Theorem 22 (Energy-error estimate). Assume that
u € Ho(curl; Q) N H'(Q;RY) n H*2(7,;R?),  p e HJ(Q)n H*'(T).

Then, there holds, with (gh, €,) € Zk“ defined by (79),

#,h,0
1/2
2(k+1
”(Eh,ﬁh)lll,ﬂ,h S Z hT( ) (|u|T|iI’<+2(T;R3) + |p|T|12qk+1(T))] . (82)
TeT,

Proof. Since (&), €,) € Zy !, by (75) withz,, = (e, €,) (note that (v};, 0,) € Z3 ' and (v}, 0,)llzp.n =

¥ x5 < 11Z,llz,,) and (80), we infer

[[CRY] FATIS max (Ia(v;,) + ma(q,))- (83)
(¥),-9, ) €Z 4 0 103, )z, .00 =1 g —h
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Let us first focus on I,(v, ) for v, € X]ﬁlo' By (81a), the fact that f = curl(curl #) + grad p in

Q, and element-by-element integration by parts, there holds

In(v,) = Z (curl(ur), curl vy ), —Z (curl(u|T)|F><nT,F,VT|F)F]
TeT | Fefr

+ (gradp, Vh)Q - ah(Eh’Xh) - bh(Zh’Eh)

= Z (curl(ur), curl vr),. (84)
TeT,

= (ver(eurl@r)xnr p), v (V) - VF)F) — an(W,, v,),
FE?’T

where we have used the fact that the tangential component of curl u is continuous across interfaces
(as a consequence of the fact that curlu € H(curl; Q) N H'(7;;R?)) along with vi = 0 for all
F e ?'hb to insert v into the boundary term, together with the fact that ( grad p, vh)Q = bn(v), Eh) as

a consequence of the commutation property (9). Using the definitions (59a) of a; and (61) of C§ for
T € 95, (testing with w = CI}ET), and integrating by parts, it holds

(CFur. curlvr),

an(l, v,) = )

TeT,

= D er(CE R X E), Y () = VE) | +50(@,,¥,). (85)

Fefr

Since, by Lemma 16, CI}ET = ﬂIE,T ( curl(u |T)) for all T € 7, a combination of (84) and (85) yields
(recall that vz € P**1(T; R?))

W)= 3 D (rer (ks p(eurl(u) - curl)xnr. i),y p(vi) = vi)
TeT, FeFr

- Sh(ﬁhv !h)

Applying the triangle and Cauchy—Schwarz inequalities, we get

)l < >, > (e (eurl(e ) - curl(ur)) o lle 172 (vr) = VeIl
TeT, Fer (86)

+ Sp (Eh’ Eh)l/zsh (!he Xh)l/z'

Let us focus on || (n"&T(curl(u ir))—curl(u 7)) F || for F € Fr. Adding/subtracting curl(n”}+1 (7)),

using a triangle inequality, a discrete trace inequality (see, e.g., [15, Lemma 1.32]) on n’é’T(curl(u i)~

curl(:r’;Jrl (u|7)), and the approximation properties of ﬂ’}”

1.45]) for curl(yr’}”(u ir)) — curl(u 1), we infer

on mesh faces (see, e.g., [15, Theorem

21| (7%, (curd(u 7)) - curl(u 7)) e < 7 (curd(u ) — curl(ur) i

k+1 k+1
+ [l curl(u ) — curl(es™ )iy + W5+ [u gz ey

where we have used yet another triangle inequality. The second term on the right-hand side is readily
estimated using again the approximation properties of 7r§+1. As far as the first term is concerned, it
holds

||7r'E,T(curl(u i) —curl(ur)|lr = min || curl p — curl(u 7)l|r,
4 pEPk+1(T;R3)
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which finally yields

1
P21 (7%, 7 (curd(u 7)) - curl(u ) pllE S W iz e g

Plugging this last estimate into (86), applying a discrete Cauchy—Schwarz inequality, and using (26)
as well as (49) (with ﬂ'k+l instead of ﬂk+1 ), we infer

1/2

2(k

1 (v,)l S ( Z 1 +l)|u|T|H,\+z(T R%)) 19, Ilx..1- (87)
TeT,

Let us now focus on mh(q ) for q, € Yk+1 Recalling (51), one can readily infer

1/2
bW, q,)l < (Z R T R3)) di(q,,9,)" (88)
TeT,

Now, applying the Cauchy—Schwarz inequality, recalling the definition (59c) of dj, noticing that
ﬂ;(pu")u? = ﬂk+1(7rT(p|T)|F) for all T € 7, and F € F7, and using the L?(F)-boundedness of 7Z'k+l,
one has

1dn®,.9,)I < du(p,.B,)" dn(g,.q,)"

1/2
< (Z Z hFII(p—ﬂi(MT))IF“%) dh(ﬂh’ﬂh)l/z'

TeT, FeFr

By the approximation properties of n% on mesh faces (see, e.g., [15, Theorem 1.45]),

1/2
|dn (B, g,)l < (Z h2<"“>|p|T|HM(T)) di(q,,9,)". (89)
TeT,

Gathering (88)—(89), and recalling the definition (81b) of my, (qh), finally yields

1/2
|mh(ﬂh)| < ( Z h?w(k-H) (IuITI?_Ikﬂ(T;R}) + |P|T|§1k+1(7))) ||ﬂh”Y,ﬂ,h' (90)
TeT,
Plugging (87) and (90) into (83) for (Vh, ) such that [|(v,,, q, Mizg, = 1 finally yields (82). O

Remark 23 (The tetrahedral case). On matching tetrahedral meshes, according to Lemma 1, || G;‘l” Jla
defines a norm on X’,;’Bl. Hence, in this case, and as already pointed out in [10], one can consider
a modified version of Problem (64) in which dy, is removed, without jeopardizing well-posedness.
Doing so, it holds u,, € X’f and, as a by-product of the commutation property (9), u, € H (div’; Q).
Furthermore, a close inspection of the proof of Theorem 22 shows that, in this case, one ends up with
an energy-error estimate that is free of pressure contribution. This allows one to reproduce at the
discrete level the following structure of Problem (54). When the current density f is given by the
gradient of some function € H (Q), then u = 0 and p = . At the discrete level, when f = grad y,

one then gets u, = 0, and p, = Ik+lzj/ (note that this can be observed in practice up to machine
precision only if the computatlon of the right-hand side is also performed up to machine precision).
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3.2.5 Numerical results

Let the domain Q be the unit cube (0, 1)3. We consider Problem (54) with exact solution

sin(7rx,) sin(7rx3)
u(xy, xp, x3) :=| sin(zwxy)sin(mrxz) |, p(x1, x2, x3) := sin(zrxy) sin(mwxy) sin(mwxz).
sin(7rx;) sin(7rx,)

Clearly, the magnetic vector potential # and the pressure p satisfy (54b), (54c), and (54d). The current
density f is set according to (54a).

As in Section 3.1.5, we solve the discrete Problem (64) on two refined mesh sequences, of
respectively cubic and regular tetrahedral meshes. On tetrahedral meshes, following Remark 23, we
actually solve a modifed version of Problem (64) in which dj, is removed. As expected, it does not
jeopardize well-posedness, nor convergence. The numerical tests show that removing d; leads to a
slightly more accurate approximation of the magnetic vector potential, but a slightly less accurate
approximation of the pressure. For each problem, the element unknowns for both the magnetic vector
potential and the pressure are locally eliminated using a Schur complement technique. This step is
fully parallelizable. The resulting (condensed) global linear system is solved using the SparseL.U direct
solver of the Eigen library, on an Intel Xeon E-2176M 2.70GHzx12 with 16Go of RAM (and up to
150Go of swap). For k € {0, 1,2}, we depict on Figures 3 and 4, respectively for the cubic and (regular)
tetrahedral mesh families, the relative energy-error |lu, — !I;(Tﬁl, Jullxgn/ &R wllx g, (first line), L

=X, Hh
k+1 k+1 _Ik+1 Ik+1

error [lu, =k ul|o /|75 * ul|q (second line), and L2-like-error Ip, =13 Pllv.gn/ Iy, Pllygn (third
line) as functions of (i) the meshsize (left column), (ii) the solution time in seconds, i.e. the time needed
to solve the (condensed) global linear system (middle column), and (iii) the number of (interface)
DoF (right column). On tetrahedral meshes, since we remove the contribution d;, we replace the
L?-like-error measure || P, - llyhl Plly,4n by the measure

1/2

lp, &5 pllen = | > WG (b, - () IF |
TeT,

that remains meaningful for £ = 0. For the two mesh families, we obtain, as predicted by Theorem 22,
a convergence rate of the energy-error on the magnetic vector potential and of the L2-like-error on
the pressure of order k + 1. We also observe a convergence rate of order k + 2 for the L>-error on the
magnetic vector potential.
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