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Abstract
We prove a discrete version of the first Weber inequality on three-dimensional hybrid spaces

spanned by vectors of polynomials attached to the elements and faces of a polyhedral mesh. We
then introduce twoHybridHigh-Ordermethods for the approximation of themagnetostaticmodel,
in both its (first-order) field and (second-order) vector potential formulations. These methods are
applicable on general polyhedral meshes with star-shaped elements, and allow for arbitrary orders
of approximation. Leveraging the previously established discrete Weber inequality, we perform
a comprehensive analysis of the two methods. We finally validate them on a set of test-cases.
Keywords: Weber inequalities; Hybrid spaces; Polyhedral meshes; Hybrid High-Order methods;
Magnetostatics
MSC2010 classification: 65N08, 65N12, 65N30

1 Introduction

Let Ω ⊂ R3 denote an open, bounded, and connected polyhedral domain. In the study of problems
in electromagnetism, Weber inequalities [2929] constitute a very powerful tool. They can be viewed
as a generalization of the celebrated Poincaré inequality to the case of vector fields belonging to
H(curl;Ω)∩H(div;Ω), and featuring either vanishing tangential component (first Weber inequality),
or vanishing normal component (second Weber inequality) on the boundary ∂Ω of the domain. We
refer the reader to [22, Theorems 3.4.3 and 3.5.3] for a general (from a topological viewpoint) statement
of Weber inequalities.

Let us denote by n the unit normal vector field on ∂Ω pointing out of Ω. From now on, we
assume that Ω is topologically trivial (a sufficient condition is that it be simply-connected), and that
∂Ω is connected. Under these assumptions, the first and second Betti numbers of Ω are both zero,
i.e., Ω does not have tunnels and does not enclose any void. For a deeper insight into the role of the
different topological assumptions we make on the domain, we refer to Remark 77. For any X ⊂ Ω, we
denote by (·, ·)X and | | · | |X the usual inner product and norm on L2(X;Rl), l ∈ {1, 2, 3}. We also let
H0(curl;Ω) := {v ∈ H(curl;Ω) : n×(v×n) = 0 on ∂Ω}, and

H(div0;Ω) := {v ∈ H(div;Ω) : div v = 0 in Ω}
=

{
v ∈ L2(Ω;R3) : (v, grad ϕ)Ω = 0 ∀ϕ ∈ H1

0 (Ω)
}
.
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The following L2(Ω;R3)-orthogonal decomposition holds (cf. [22, Proposition 3.7.2]):

H0(curl;Ω) = grad
(
H1

0 (Ω)
) ⊥
⊕

(
H0(curl;Ω) ∩ H(div0;Ω)

)
. (2)

With the assumptions we have made on the topology of the domain Ω, the first Weber inequality
reads: For any v ∈ H0(curl;Ω) ∩ H(div0;Ω),

‖v‖Ω ≤ CW ‖ curl v‖Ω, (3)

for some constant CW > 0 only depending on the domain Ω. In this work, we derive a discrete
version of the first Weber inequality (33) on (three-dimensional) hybrid spaces spanned by vectors of
polynomials attached to the elements and faces of a (polyhedral) mesh, as they can be encountered in
Hybridizable Discontinuous Galerkin (HDG) [1212] and related [2828] methods, or in Hybrid High-Order
(HHO) [1818, 1717] methods; see [1111] for a discussion highlighting the analogies and differences between
HDG and HHOmethods in the context of scalar variable diffusion. The corresponding result is stated
in Theorem 33. The proof extends the general ideas used in [1515, Lemma 2.15] to derive a discrete
Poincaré inequality on hybrid spaces.

In the second part of this paper, we tackle the HHO approximation of magnetostatics, in both its
(first-order) field formulation and (second-order, generalized) vector potential formulation. Various
discretization methods have been studied in the literature to approximate the magnetostatic equations
(or, more generally, Maxwell equations). Conforming finite element discretizations were originally
proposed (on tetrahedra, essentially) in the seminal work of Nédélec [2424, 2525]; see also [2222], as well
as [11], in which a unified presentation of conforming finite element methods based on notions from
algebraic topology is provided. Nonconforming discretizations include the Discontinuous Galerkin
method of [2727] as well as the HDG method of [2626, 88] and, on general polyhedral meshes, the
variant [2323] of [2626] and the HDG method of [1010]; see also [1919]. Methods that support general
polyhedral meshes and are built upon discrete spaces that mimick the continuity properties of the
spaces appearing in the continuous weak formulation include the Virtual Element methods of [44, 33, 55],
and the fully discrete method of [1414] based on the discrete de Rham sequence of [1616]. All the
HDG methods cited above deal with the approximation of magnetostatics under its (generalized)
vector potential formulation. In this paper, we first study an HHO method (which has been briefly
introduced in [77]) for magnetostatics under its field formulation. We take advantage of the fact that the
corresponding problem is first-order to avoid locally reconstructing a discrete curl operator as it is done
for second-order problems (cf. Remark 1010). Doing so, we propose a computationally inexpensive
and easy-to-implement method. Second, we study an HHO method for magnetostatics under its
(generalized) vector potential formulation, that can be seen as a computationally cheaper variant of
the method introduced in [1010] (cf. Remark 1717). Our two HHO methods are applicable on general
polyhedral meshes with star-shaped elements, and allow for an arbitrary order of approximation
k ≥ 0 with proven energy-error of order k + 1 (cf. Theorems 1313 and 2222). Leveraging the previously
established discrete Weber inequality, we carry out a comprehensive analysis of the methods, and
validate them on a set of test-cases.

The article is organized as follows. In Section 22 we prove the discrete Weber inequality. Then, in
Sections 3.13.1 and 3.23.2 we tackle the HHO approximation of magnetostatics, under its field and vector
potential formulations, respectively.
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2 A discrete Weber inequality on hybrid spaces

2.1 Discrete setting

We consider a polyhedral meshMh = (Th, Fh), that is assumed to belong to a regular mesh sequence
in the sense of [1515, Definition 1.9]. The set Th is a finite collection of nonempty, disjoint, open
polyhedra T (called elements) that are star-shaped with respect to some interior point xT , and such
that Ω =

⋃
T ∈Th T . Concerning the role of the star-shapedness assumption, see Remark 88. The

subscript h refers to the meshsize, defined by h := maxT ∈Th hT , where hT denotes the diameter of
the element T . The set Fh collects the planar mesh faces and, for all T ∈ Th, we denote by FT the set
of faces that lie on the boundary of T . Boundary faces lying on ∂Ω are collected in the set F b

h
, and

we denote by F i
h
B Fh \ F

b
h
the set of interfaces. For all F ∈ Fh, we denote by hF its diameter and,

for all T ∈ Th and all F ∈ FT , nT,F is the unit normal vector to F pointing out of T . We recall that,
sinceMh belongs to a regular mesh sequence, for all T ∈ Th, the quantity card(FT ) is bounded from
above uniformly in h and, for all T ∈ Th and all F ∈ FT , hF is uniformly comparable to hT (cf. [1515,
Lemma 1.12]). In what follows, we will use the notation . to indicate that an estimate is valid up to
a multiplicative constant that may depend on the mesh regularity parameter, the ambient dimension,
and (if need be) the polynomial degree, but that is independent of h.

2.2 Hybrid spaces

Let an integer polynomial degree k ≥ 0 be given. For X ∈ Fh ∪ Th and, respectively, d ∈ {2, 3}, we
denote by Pq(X;Rl), q ∈ N, l ∈ {1, d}, the vector space of d-variate, l-valued polynomial functions
on X of total degree at most q. When l = 1, we may simply write Pq(X). For future use, for any
T ∈ Th, we let Gq

T
:= grad

(
Pq+1(T)

)
and Cq

T
:= curl

(
Pq+1(T ;R3)

)
, and we recall that the following

(nonorthogonal) decomposition holds:

Pq(T ;R3) = Gq
T ⊕ (x − xT )×Cq−1

T , (4)

with the convention that C−1
T := {0}. For any F ∈ Fh, we also let

Gq+1
F

:= gradτ
(
Pq+2(F)

)
⊂ Pq+1(F;R2)

denote the space of (tangential) gradients of polynomials of degree up to q + 2 on F. Finally, for
l ∈ {1, 3}, we define the broken space

Pq(Th;Rl) :=
{
v ∈ L2(Ω;Rl) : v |T ∈ P

q(T ;Rl) ∀T ∈ Th
}

that may be abbreviated into Pq(Th) whenever l = 1, as well as the broken subspaces Gq
Th

:=
gradh

(
Pq+1(Th)

)
and Cq

Th
:= curlh

(
Pq+1(Th;R3)

)
, where gradh (resp. curlh) denotes the usual

broken grad (resp. curl) operator on H1(Th) (resp. H(curl;Th)).
We introduce the following (global) hybrid spaces:

Xk+1
h

:=

{
vh =

(
(vT )T ∈Th, (vF )F ∈Fh

)
:

vT ∈ Pk+1(T ;R3) ∀T ∈ Th

vF ∈ Gk+1
F ∀F ∈ Fh

}
, (5a)

Yk+1
h

:=

{
q
h
=

(
(qT )T ∈Th, (qF )F ∈Fh

)
:

qT ∈ Pk(T) ∀T ∈ Th

qF ∈ Pk+1(F) ∀F ∈ Fh

}
, (5b)

as well as their subspaces incorporating homogeneous essential boundary conditions:

Xk+1
h,0 :=

{
vh ∈ Xk+1

h : vF = 0 ∀F ∈ F b
h

}
,

Yk+1
h,0 :=

{
q
h
∈ Yk+1

h : qF = 0 ∀F ∈ F b
h

}
.

(6)
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Given a mesh element T ∈ Th, we respectively denote by Xk+1
T and Yk+1

T the restrictions of Xk+1
h and

Yk+1
h to T , and by vT :=

(
vT , (vF )F ∈FT

)
∈ Xk+1

T and q
T

:=
(
qT , (qF )F ∈FT

)
∈ Yk+1

T the respective
restrictions of generic vectors of polynomials vh ∈ Xk+1

h and q
h
∈ Yk+1

h . Also, we let vh and qh (not
underlined) be the broken polynomial functions in Pk+1(Th;R3) and in Pk(Th) such that

(vh) |T := vT and (qh) |T := qT for all T ∈ Th .

Finally, we define the interpolators Ik+1
X,h : H1(Ω;R3) → Xk+1

h and Ik+1
Y,h : H1(Ω) → Yk+1

h such
that, for all v ∈ H1(Ω;R3) and all q ∈ H1(Ω),

Ik+1
X,h v :=

( (
πk+1
T (v |T )

)
T ∈Th

,
(
πk+1
G,F

(
γτ,F (v)

) )
F ∈Fh

)
, (7a)

Ik+1
Y,h q :=

( (
πkT (q |T )

)
T ∈Th

,
(
πk+1
F (q |F )

)
F ∈Fh

)
, (7b)

where (i) for any X ⊆ Ω, and any F ∈ Fh such that F ⊂ X , γτ,F (v) ∈ L2(F;R2) denotes the
tangential trace on F of v ∈ H1(X;R3), (ii) for X ∈ Fh ∪ Th (and, respectively, d ∈ {2, 3}), πqX
(resp. πq

X), q ∈ N, denotes the L2-orthogonal projector onto Pq(X) (resp. Pq(X;Rd)), and (iii) πq+1
G,F

stands for the L2(F;R2)-orthogonal projector ontoGq+1
F . We also introduce here, forS ∈ {G,C}, the

notation πq

S,T for the L2(T ;R3)-orthogonal projector onto Sq
T . We will also make use of the global

L2- orthogonal projectors πq
h
, πq

h
and πq

S,h onto, respectively, Pq(Th), Pq(Th;R3) and Sq
Th
.

2.3 Gradient reconstruction in Yk+1
h

We define the global discrete gradient reconstruction operator Gk+1
h : Yk+1

h → Pk+1(Th;R3) such
that its local restriction Gk+1

T : Yk+1
T → Pk+1(T ;R3) to any T ∈ Th solves the following well-posed

problem: For all q
T
∈ Yk+1

T ,

(Gk+1
T q

T
, w)T = −(qT , div w)T +

∑
F ∈FT

(qF, w |F ·nT,F )F ∀w ∈ Pk+1(T ;R3). (8)

We note the following commutation property (see, e.g., [1515, Section 4.2.1]): For all q ∈ H1(Ω), it
holds

Gk+1
h Ik+1

Y,h q = πk+1
h (grad q). (9)

We also have the following result in the tetrahedral case.

Lemma 1 (Norm ‖Gk+1
h · ‖Ω). Let Th be a matching tetrahedral mesh. Then, the map ‖Gk+1

h · ‖Ω

defines a norm on Yk+1
h,0 .

Proof. Let Th be a matching tetrahedral mesh, and let q
h
∈ Yk+1

h,0 be such that ‖Gk+1
h q

h
‖Ω = 0. Then,

for all T ∈ Th, enforcing Gk+1
T q

T
= 0 in the definition (88) of this quantity and integrating by parts, we

obtain (
grad qT , w

)
T +

∑
F ∈FT

(
qF − qT |F, w |F ·nT,F

)
F = 0 ∀w ∈ Pk+1(T ;R3). (10)

Let Nk
T := Gk−1

T ⊕ (x − xT )×Ck−1
T denote the Nédélec space of the first kind of degree k on T

(cf. [2424]), and let w ∈ Pk+1(T ;R3) be s.t.

(w, p)T = (grad qT , p)T ∀p ∈ Nk
T , (11a)

(w |F ·nT,F, r)F = (qF − qT |F, r)F ∀r ∈ Pk+1(F), ∀F ∈ FT . (11b)

4



The system (1111) uniquely defines w as a function of the Nédélec space of the second kind of
degree k + 1 on T , that is Pk+1(T ;R3) (cf. [2525, 66]). Testing (1010) with w, and using the fact that
grad qT ∈ Gk−1

T ⊂ Nk
T and that qF − qT |F ∈ Pk+1(F) for all F ∈ FT , we infer from (1111) that

‖ grad qT ‖2T +
∑

F ∈FT ‖qF − qT |F ‖2F = 0. Reproducing the same reasoning on all T ∈ Th, and using
the fact that q

h
belongs to the space Yk+1

h,0 with strongly enforced boundary conditions, finally yields
q
h
= 0h. �

2.4 Discrete Weber inequality

We begin with a preliminary technical result.

Lemma 2. Let T ∈ Th. For all p ∈ Pq(T ;R3) such that p = grad g + (x − xT ) × curl c with
g ∈ Pq+1(T) and c ∈ Pq(T ;R3), it holds

‖p − grad g‖T ≤ 2hT ‖ curl p‖T . (12)

Proof. The decomposition p = grad g + (x − xT ) × curl c follows from (44). Using the fact that
|(x − xT )× curl c | ≤ |x − xT | | curl c | ≤ hT | curl c |, we infer

‖p − grad g‖T = ‖(x − xT )× curl c‖T ≤ hT ‖ curl c‖T . (13)

We now focus on the right-hand side of (1313). Since curl
(
grad g

)
= 0, it holds

curl p = curl
(
(x − xT )× curl c

)
=((((((((((
(x − xT ) div(curl c) − [(x − xT )· grad](curl c)
− 3 curl c + [curl c· grad](x − xT )

= −2 curl c − [(x − xT )· grad](curl c), (14)

where we have (i) used with A = x − xT and B = curl c the vector calculus identity curl(A×B) =
A(div B)−[A· grad]B−(div A)B+[B· grad]A, (ii) used the fact that the divergence of the curl is zero in
the cancellation, and (iii) observed that [curl c· grad](x − xT ) = curl c to conclude. Multiplying (1414)
by − curl c and integrating over T , we get

−
(
curl p, curl c

)
T = 2‖ curl c‖2T +

(
x − xT , grad

(
| curl c |2

2

) )
T

=
1
2
‖ curl c‖2T +

∑
F ∈FT

1
2
(
| curl c |2

|F, (x − xT ) |F ·nT,F
)
F

≥
1
2
‖ curl c‖2T ≥ 0,

(15)

where we have used an integration by parts formula to pass to the second line, and the fact that T is
star-shaped with respect to xT to conclude. From (1515) and a Cauchy–Schwarz inequality, we infer

‖ curl c‖T ≤ 2‖ curl p‖T . (16)

Plugging (1616) into (1313), (1212) follows. �

We equip the space Xk+1
h with the seminorm ‖ · ‖X,h defined by

‖vh ‖
2
X,h := ‖ curlhvh ‖2Ω +

∑
T ∈Th

∑
F ∈FT

h−1
F ‖π

k+1
G,F

(
γτ,F (vT ) − vF

)
‖2F, (17)
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and we define the following discrete counterpart of H0(curl;Ω) ∩ H(div0;Ω):

Xk+1
h,0 :=

{
wh ∈ Xk+1

h,0 :
(
wh, G

k+1
h q

h

)
Ω
= 0 ∀q

h
∈ Yk+1

h,0

}
. (18)

Then, the following discrete Weber inequality holds.

Theorem 3 (Discrete Weber inequality). There exists a constant cW > 0 independent of h such that,
for all vh ∈ X

k+1
h,0 , one has

‖vh ‖Ω ≤ cW‖vh ‖X,h . (19)

Proof. Let vh ∈ X
k+1
h,0 . Since vh ∈ Pk+1(Th;R3) ⊂ L2(Ω;R3) and ∂Ω is connected, we can write

vh = grad ϕ + curlψ, (20)

for some ϕ ∈ H1
0 (Ω), and some ψ ∈ H1(Ω;R3) such that

∫
Ω
ψ = 0 and divψ = 0; see, e.g., [22,

Proposition 3.7.1 and Theorem 3.4.1]. Furthermore,

‖ψ‖H1(Ω;R3) . ‖ curlψ‖Ω. (21)

Since the decomposition (2020) of vh is L2(Ω;R3)-orthogonal, it holds

‖vh ‖2Ω = ‖ grad ϕ‖2
Ω
+ ‖ curlψ‖2

Ω
=: I1 + I2. (22)

For the first term in (2222), setting ϕ
h

:= Ik+1
Y,h ϕ ∈ Yk+1

h,0 , we have

I1 = (vh, grad ϕ)Ω = (vh, πk+1
h (grad ϕ))Ω =

(
vh, Gk+1

h ϕ
h

)
Ω
= 0, (23)

where we have used the fact that (curlψ, grad ϕ)Ω = 0, that vh ∈ Pk+1(Th;R3), the commutation
property (99) of Gk+1

h , and the fact that vh ∈ X
k+1
h,0 .

Let us now estimate the second term in (2222). It holds

I2 =
(
vh, curlψ

)
Ω
=

∑
T ∈Th

(
vT , curlψ |T

)
T

=
∑
T ∈Th

((
curl vT ,ψ |T

)
T −

∑
F ∈FT

(
ψ |F×nT,F, vT |F

)
F

)
=

∑
T ∈Th

((
curl vT ,ψ |T

)
T −

∑
F ∈FT

(
γτ,F (ψ×nT,F ), γτ,F (vT ) − vF

)
F

)
,

where we have used the fact that
(
grad ϕ, curlψ

)
Ω
= 0 in the first line, an integration by parts formula

on each mesh element T ∈ Th in the second line, and the fact that the jumps of ψ ∈ H1(Ω;R3) vanish
on interfaces along with vF = 0 for all F ∈ F b

h
to insert vF into the second term in the third line.

Applying Cauchy–Schwarz inequalities to the right-hand side, we obtain

I2 ≤

( ∑
T ∈Th

(
‖ curl vT ‖2T +

∑
F ∈FT

h−1
F ‖γτ,F (vT ) − vF ‖2F

))1/2

×

( ∑
T ∈Th

(
‖ψ |T ‖

2
T +

∑
F ∈FT

hF ‖ψ |F×nT,F ‖
2
F

))1/2

. (24)
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We focus on the first factor on the right-hand side of (2424). For T ∈ Th and F ∈ FT , decomposing
vT ∈ Pk+1(T ;R3) along (44) as vT = grad g+ (x − xT )×curl c with g ∈ Pk+2(T) and c ∈ Pk+1(T ;R3),
inserting into the norm ±

[
γτ,F (grad g) + πk+1

G,F
(
γτ,F (vT )

) ]
, and using the triangle inequality, we

infer, since vF ∈ Gk+1
F and γτ,F (grad g) = gradτ(g |F ) ∈ Gk+1

F ,∑
T ∈Th

∑
F ∈FT

h−1
F ‖γτ,F (vT ) − vF ‖2F .

∑
T ∈Th

∑
F ∈FT

h−1
F ‖π

k+1
G,F

(
γτ,F (vT ) − vF

)
‖2F

+
∑
T ∈Th

∑
F ∈FT

h−1
F ‖γτ,F

(
vT − grad g

)
‖2F

+
∑
T ∈Th

∑
F ∈FT

h−1
F ‖π

k+1
G,F

(
γτ,F (vT − grad g)

)
‖2F . (25)

Using the L2(F;R2)-boundedness of πk+1
G,F , a discrete trace inequality (cf., e.g., [1515, Lemma 1.32]),

and Lemma 22 with p = vT , we infer∑
T ∈Th

∑
F ∈FT

h−1
F ‖γτ,F (vT ) − vF ‖2F

.
∑
T ∈Th

(
‖ curl vT ‖2T +

∑
F ∈FT

h−1
F ‖π

k+1
G,F

(
γτ,F (vT ) − vF

)
‖2F

)
. (26)

Now, for the second factor on the right-hand side of (2424), using the fact that |ψ |F×nT,F | ≤ |ψ |F |,
a continuous trace inequality (cf., e.g., [1515, Lemma 1.31]), the fact that hT ≤ diam(Ω) for all T ∈ Th,
and concluding with (2121), one has( ∑

T ∈Th

(
‖ψ |T ‖

2
T +

∑
F ∈FT

hF ‖ψ |F×nT,F ‖
2
F

))1/2

. ‖ψ‖H1(Ω;R3) . ‖ curlψ‖Ω. (27)

Plugging (2626) and (2727) into (2424), and recalling the definition (1717) of the ‖ · ‖X,h-seminorm yields

I2 . ‖vh ‖X,h ‖ curlψ‖Ω ≤ ‖vh ‖X,h ‖vh ‖Ω,

where we have used the L2(Ω;R3)-orthogonal decomposition (2020) in the last bound. We conclude by
combining (2222), (2323), and this last estimate. �

Remark 4 (Control of element unknowns). A direct proof of the fact that, for all vh ∈ X
k+1
h,0 ,

‖vh ‖X,h = 0 implies ‖vh ‖Ω = 0 can be obtained as follows. The volumetric term in (1717) first yields
that, for any T ∈ Th, curl(vh |T ) = 0 in T , meaning that vh |T = grad g for some g ∈ Pk+2(T) by
Lemma 22. The boundary term in (1717) then yields the continuity of the tangential component of vh
at interfaces, as well as n×(vh×n) = 0 on ∂Ω. Hence, vh ∈ H0(curl;Ω) and curl vh = 0 in Ω.
Since vh ∈ X

k+1
h,0 , we also have vh ∈ H(div0;Ω) by the commutation property (99). Finally, by the

continuous first Weber inequality (33), ‖vh ‖Ω = 0. Note that this result, as opposed to the quantitative
result of Theorem 33, is insensitive to the regularity of the mesh. As such, it could be stated under the
sole assumption thatMh is a polyhedral mesh in the sense of [1515, Definition 1.4] with star-shaped
elements. Note also that imposing vh ∈ H(div0;Ω) as we do is actually not necessary. In view of
the above analysis, it is sufficient to impose that vh be orthogonal to the gradient of any function in
Pk+2(Th) ∩ C0

0 (Ω). This is the approach pursued in [99] on tetrahedral meshes.

Corollary 5 (Norm ‖ · ‖X,h). The map ‖ · ‖X,h defines a norm on Xk+1
h,0 .
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Proof. This is a direct consequence of Theorem 33 and of the definition (1717). For vh ∈ X
k+1
h,0 , if

‖vh ‖X,h = 0, then vh = 0, i.e. vT = 0 for all T ∈ Th. Then, for all F ∈ Fh, ‖πk+1
G,FvF ‖F = ‖vF ‖F = 0,

i.e. vF = 0, whence vh = 0h. �

Corollary 6 (Generalized discrete Weber inequality). Let dh : Yk+1
h × Yk+1

h → R be a symmetric
positive semi-definite bilinear form such that, for all ϕ ∈ H1

0 (Ω), letting ϕh
:= Ik+1

Y,h ϕ ∈ Yk+1
h,0 ,

dh(ϕ
h
,ϕ

h
)

1/2 . ‖ grad ϕ‖Ω. (28)

Then, there is cW > 0 independent of h s.t., for all (vh, rh) ∈ Xk+1
h,0 ×Yk+1

h,0 satisfying

−
(
vh, Gk+1

h q
h

)
Ω
+ dh(rh, qh) = 0 ∀q

h
∈ Yk+1

h,0 , (29)

one has
‖vh ‖Ω ≤ cW

(
‖vh ‖

2
X,h + dh(rh, rh)

)1/2
. (30)

Proof. We follow the steps of the proof of Theorem 33. If (vh, rh) ∈ Xk+1
h,0 ×Yk+1

h,0 satisfies (2929), then
(2323) becomes

I1 = (vh, grad ϕ)Ω =
(
vh, Gk+1

h ϕ
h

)
Ω
= dh(rh,ϕh

).

By the Cauchy–Schwarz inequality and (2828), we infer

I1 . dh(rh, rh)
1/2‖ grad ϕ‖Ω ≤ dh(rh, rh)

1/2‖vh ‖Ω, (31)

where we have used the L2(Ω;R3)-orthogonal decomposition (2020) in the last bound. The rest of the
proof is unchanged provided we substitute (3131) to (2323). �

Two additional remarks are in order.

Remark 7 (Topological assumptions on the domain). The first Weber inequality (33) is actually valid
under the sole topological assumption that the boundary of Ω is connected, so that its second Betti
number is zero. The same holds for the discrete Weber inequalities of Theorem 33 and Corollary 66
(and, incidentally, this is also the case for discrete Weber inequalities on spaces with conforming
unknowns, see [1414, Theorem 19]). In other words, one does not need to assume, as we do, that
Ω is topologically trivial to prove these results. This last assumption is however necessary in the
applicative Section 33 to have equivalence (i) between Problems (3232) and (3333) in field formulation,
and (ii) between Problems (5454) and (5555) (in the class of potentials satisfying the Coulomb gauge) in
vector potential formulation when div f ≡ 0.

Remark 8 (Star-shapedness assumption). The star-shapedness assumption of the mesh elements is
crucial to prove Theorem 33 (and Corollary 66) through Lemma 22 (where it is used to infer a sign
for the rightmost term in the second line of (1515)). However, when the face unknowns vF are rather
taken in the full polynomial space Pk+1(F;R2) (and, correspondingly, πk+1

G,F is replaced by πk+1
F ),

this assumption can be relaxed. Indeed, the discrete Weber inequality reads in this case: For all
vh ∈ X

k+1
h,0 , one has (note that γτ,F (vT ) ∈ P

k+1(F;R2))

‖vh ‖Ω ≤ cW

(
‖ curlhvh ‖2Ω +

∑
T ∈Th

∑
F ∈FT

h−1
F ‖γτ,F (vT ) − vF ‖2F

)1/2

,

which can be proven without resorting to Lemma 22, just using (2424).
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3 Application to magnetostatics

In this section, we design and analyze HHO methods for the discretization of the magnetostatic
equations. Their analysis leverages the discrete Weber inequality of Theorem 33 and its generalization
pointed out in Corollary 66. We work on regular (polyhedral) mesh sequences (Mh)h>0 in the sense
of [1515, Definition 1.9], which are characterized by the fact that the sequence of mesh regularity
parameters is bounded from below by a strictly positive real number.

3.1 Field formulation

3.1.1 The model

The (first-order) field formulation of the magnetostatic pro-blem consists in finding the magnetic field
u : Ω→ R3 such that

curl u = f in Ω, (32a)
div u = 0 in Ω, (32b)

n×(u×n) = 0 on ∂Ω, (32c)

where the current density f : Ω→ R3 is such that div f = 0 in Ω and f ·n = 0 on ∂Ω. We consider
the following equivalent (cf. Remark 77) weak formulation of Problem (3232), originally introduced
in [2121, Eq. (58)] (see also [2020]): Find (u, p) ∈ H0(curl;Ω) × H1

0 (Ω) s.t.

a(u, v) + b(v, p) = ( f , curl v)Ω ∀v ∈ H0(curl;Ω), (33a)
−b(u, q) + c(p, q) = 0 ∀q ∈ H1

0 (Ω), (33b)

where the bilinear forms a : H(curl;Ω) × H(curl;Ω) → R, b : H(curl;Ω) × H1(Ω) → R, and
c : H1(Ω) × H1(Ω) → R are given by

a(w, v) := (curl w, curl v)Ω, b(w, q) := (w, grad q)Ω, c(r, q) := (r, q)Ω. (34)

The pressure p : Ω → R acts as the Lagrange multiplier of the divergence-free constraint on
the magnetic induction. Testing (33a33a) with v = grad p ∈ H0(curl;Ω), it is inferred that p = 0
in Ω. Using the decomposition (22), Problem (3333) can then be equivalently rewritten: Find u ∈
H0(curl;Ω) ∩ H(div0;Ω) s.t.

a(u, η) = ( f , curl η)Ω ∀η ∈ H0(curl;Ω) ∩ H(div0;Ω),

whosewell-posedness is a direct consequence of the firstWeber inequality (33) and of the Lax–Milgram
lemma.

Remark 9 (Improved stability). Here, we take advantage of the fact that the pressure p is identically
zero as a consequence of (33a33a) to consider a weak formulation of Problem (3232) that features the
bilinear contribution c defined in (3434), which actually defines a norm on H1

0 (Ω). Mirroring this
strategy at the discrete level enables to improve the stability of the method (cf. Lemma 1212) without
jeopardizing its convergence properties. At the opposite, in the model of Section 3.23.2 below, the
pressuremay be nonzero and one cannot add the same contributionwithoutmodifying themodel under
consideration. At the discrete level, one can then only prove a weaker stability result (cf. Lemma 2121).
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3.1.2 The HHO method

We analyze in this section the HHO method for Problem (3333) we have briefly introduced in [77]. This
HHO method is based on the hybrid spaces introduced in Section 2.22.2. The discrete counterparts of
the bilinear forms (3434) are the bilinear forms ah : Xk+1

h × Xk+1
h → R, bh : Xk+1

h × Yk+1
h → R, and

ch : Yk+1
h × Yk+1

h → R such that

ah(wh, vh) :=
(
curlhwh, curlhvh

)
Ω
+ sh(wh, vh), (35a)

bh(wh, qh) :=
(
wh, G

k+1
h q

h

)
Ω
, (35b)

ch(rh, qh) := (rh, qh)Ω +
∑
T ∈Th

∑
F ∈FT

hF (rF, qF )F, (35c)

where Gk+1
h : Yk+1

h → Pk+1(Th;R3) is the gradient reconstruction operator introduced in Section 2.32.3,
and sh : Xk+1

h × Xk+1
h → R is the stabilization bilinear form such that

sh(wh, vh) :=
∑
T ∈Th

∑
F ∈FT

h−1
F

(
πk+1
G,F

(
γτ,F (wT ) − wF

)
, πk+1

G,F
(
γτ,F (vT ) − vF

) )
F . (36)

The HHO method for Problem (3333) then reads: Find (uh, ph) ∈ Xk+1
h,0 × Yk+1

h,0 s.t.

ah(uh, vh) + bh(vh, ph) = ( f , curlhvh)Ω ∀vh ∈ Xk+1
h,0 , (37a)

−bh(uh, qh) + ch(p
h
, q

h
) = 0 ∀q

h
∈ Yk+1

h,0 . (37b)

Note that, contrary to p, the discrete pressure p
h
is in general nonzero, as a consequence of the fact

that the global discrete gradient Gk+1
h p

h
is not irrotational.

Remark 10 (Curl reconstruction). As opposed to what is done in HHO or HDG methods for second-
order problems (see Section 3.23.2 below), we here take advantage of the fact that the problem is
first-order to avoid (locally) reconstructing a discrete curl operator. Doing so, (i) it is possible to
consider a smaller local space of face unknowns (that does not need to contain Pk(F;R2)) for k ≥ 1
(cf. [77, Table 1]), and (ii) there is no need to solve a local problem on each mesh element (which may
become, for a sequential implementation, rather costly in 3D for large polynomial degrees).

Letting Zk+1
h

:= Xk+1
h × Yk+1

h and Zk+1
h,0 := Xk+1

h,0 × Yk+1
h,0 , Problem (3737) can be equivalently

rewritten: Find (uh, ph) ∈ Zk+1
h,0 such that

Ah

(
(uh, ph), (vh, qh)

)
= ( f , curlhvh)Ω ∀ (vh, qh) ∈ Zk+1

h,0 , (38)

where the bilinear form Ah : Zk+1
h × Zk+1

h → R is defined by

Ah

(
(wh, rh), (vh, qh)

)
:= ah(wh, vh) + bh(vh, rh) − bh(wh, qh) + ch(rh, qh). (39)

For future use, we also let

Zk+1
h,0 :=

{
(wh, rh) ∈ Zk+1

h,0 : −bh(wh, qh) + ch(rh, qh) = 0 ∀q
h
∈ Yk+1

h,0

}
(40)

=
{
(wh, rh) ∈ Zk+1

h,0 : Ah

(
(wh, rh), (0h, qh)

)
= 0 ∀q

h
∈ Yk+1

h,0

}
.
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3.1.3 Stability analysis

We recall that Xk+1
h is equipped with the seminorm ‖ · ‖X,h defined by (1717), which is such that

‖ · ‖X,h = ah(·, ·)1/2. We equip Yk+1
h with the norm ‖ · ‖Y,h := ch(·, ·)1/2 and Zk+1

h with the seminorm

‖(wh, rh)‖Z,h :=
(
‖wh ‖

2
X,h + ‖rh ‖

2
Y,h

)1/2
. (41)

Lemma 11 (Norm ‖ · ‖Z,h). The map ‖ · ‖Z,h defines a norm on Zk+1
h,0 .

Proof. The seminorm property being evident, it suffices to prove that, for all (wh, rh) ∈ Z
k+1
h,0 ,

‖(wh, rh)‖Z,h = 0 implies (wh, rh) = (0h, 0h). Let (wh, rh) ∈ Z
k+1
h,0 be such that ‖(wh, rh)‖Z,h = 0.

Then, ‖wh ‖X,h = 0 and ‖rh ‖Y,h = 0. Since ‖ · ‖Y,h is a norm on Yk+1
h , the second relation implies

rh = 0h. Now, owing to definitions (4040), (35b35b), and (1818), since (wh, rh) ∈ Z
k+1
h,0 and rh = 0h, we have

wh ∈ X
k+1
h,0 . By Corollary 55, this implies wh = 0h. �

Lemma 12 (Well-posedness). For all zh ∈ Zk+1
h ,

‖zh ‖
2
Z,h = Ah

(
zh, zh

)
. (42)

Hence, Problem (3737) is well-posed, and the following a priori bound holds:

‖(uh, ph)‖Z,h ≤ ‖ f ‖Ω. (43)

Proof. The identity (4242) is a direct consequence of (3939) and (4141) along with the definitions of ‖ · ‖X,h
and ‖ · ‖Y,h. To prove well-posedness, since the system associated to Problem (3737) is square, it is
sufficient to prove injectivity. Assume that Ah

(
(uh, ph), (vh, qh)

)
= 0 for all (vh, qh) ∈ Zk+1

h,0 . Taking
(vh, qh) = (0h, qh) and using (4040), we first infer that (uh, ph) ∈ Z

k+1
h,0 . Taking (vh, qh) = (uh, ph) and

using (4242), we then get
‖(uh, ph)‖

2
Z,h = Ah

(
(uh, ph), (uh, ph)

)
= 0,

which, by Lemma 1111, eventually yields (uh, ph) = (0h, 0h). The a priori bound (4343) directly follows
from (4242) with zh = (uh, ph), (3838), the Cauchy–Schwarz inequality, and the fact that ‖uh ‖X,h ≤

‖(uh, ph)‖Z,h. �

3.1.4 Error analysis

We recall that (u, p) ∈ H0(curl;Ω) × H1
0 (Ω) denotes the unique solution to Problem (3333). We

assume that u possesses the additional regularity u ∈ H1(Ω;R3), and we let ûh
:= Ik+1

X,h u ∈ Xk+1
h,0 and

p̂
h

:= Ik+1
Y,h p ∈ Yk+1

h,0 . In the spirit of [1313] (see also [1515, Appendix A]), we estimate the errors

Xk+1
h,0 3 eh := uh − ûh, Yk+1

h,0 3 εh := p
h
− p̂

h
, (44)

where (uh, ph) ∈ Xk+1
h,0 ×Yk+1

h,0 is the unique solution to Problem (3737). Remark that, since p = 0 in Ω,
we actually have p̂

h
= 0h and εh = p

h
. Recalling (3838) and (3939), the errors (eh, εh) ∈ Zk+1

h,0 solve

Ah

(
(eh, εh), (vh, qh)

)
= lh(vh) +mh(q

h
) ∀(vh, qh) ∈ Zk+1

h,0 , (45)

where we have defined the consistency errors

lh(vh) := ( f , curlhvh)Ω − ah (̂uh, vh), (46a)
mh(q

h
) := bh (̂uh, qh). (46b)
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Theorem 13 (Energy-error estimate). Assume that

u ∈ H0(curl;Ω) ∩ H1(Ω;R3) ∩ Hk+2(Th;R3).

Then, there holds, with (eh, εh) ∈ Zk+1
h,0 defined by (4444),

‖(eh, εh)‖Z,h .

( ∑
T ∈Th

h2(k+1)
T |u |T |

2
Hk+2(T ;R3)

)1/2

. (47)

Proof. Since (eh, εh) ∈ Zk+1
h,0 , by (4242) with zh = (eh, εh) and (4545), we infer

‖(eh, εh)‖Z,h ≤ max
(vh,qh )∈Z

k+1
h,0 , ‖(vh,qh ) ‖Z,h=1

(
lh(vh) +mh(q

h
)
)
. (48)

Let us first focus on lh(vh) for vh ∈ Xk+1
h,0 . By the definition (46a46a) of lh, the fact that f = curl u

in Ω, and the definition (7a7a) of Ik+1
X,h u, there holds

|lh(vh)| =
�� ( curl u − curlh(πk+1

h u), curlhvh
)
Ω
− sh (̂uh, vh)

��
≤

(
‖ curl u − curlh(πk+1

h u)‖2
Ω
+ sh (̂uh, ûh)

)1/2
‖vh ‖X,h,

where we have used the triangle/Cauchy–Schwarz inequalities and the definition (1717) of ‖vh ‖X,h to
pass to the second line. The quantity ‖ curl u − curlh(πk+1

h
u)‖2

Ω
is estimated using the approxima-

tion properties of πk+1
h

(see, e.g., [1515, Theorem 1.45]). For the quantity sh (̂uh, ûh), recalling the
definition (3636) of sh and using the L2(F;R2)-boundedness of πk+1

G,F , we have

sh (̂uh, ûh) =
∑
T ∈Th

∑
F ∈FT

h−1
F ‖π

k+1
G,F

(
γτ,F (π

k+1
T (u |T ) − u)

)
‖2F

≤
∑
T ∈Th

∑
F ∈FT

h−1
F ‖(π

k+1
T (u |T ) − u) |F ‖

2
F .

∑
T ∈Th

h2(k+1)
T |u |T |

2
Hk+2(T ;R3)

, (49)

where, for all T ∈ Th, we have used the approximation properties of πk+1
T on the faces of T . Gathering

the different estimates, we get

|lh(vh)| .

( ∑
T ∈Th

h2(k+1)
T |u |T |

2
Hk+2(T ;R3)

)1/2

‖vh ‖X,h . (50)

Let us now focus on mh(q
h
) for q

h
∈ Yk+1

h,0 . Starting from (46b46b), performing an element-by-
element integration by parts in (88), and using the fact that grad qT ∈ Gk−1

T ⊂ Pk+1(T ;R3), we
infer

mh(q
h
) =

∑
T ∈Th

(
(grad qT , u |T )T +

∑
F ∈FT

(
πk+1
T (u |T ) |F ·nT,F, qF − qT |F

)
F

)
=

∑
T ∈Th

∑
F ∈FT

(
(πk+1

T (u |T ) − u) |F ·nT,F, qF − qT |F
)
F,

where the last identity follows from another element-by-element integration by parts, and from the
fact that div u = 0 in Ω, and that u ∈ H1(Ω;R3) along with qF = 0 for all F ∈ F b

h
. By the triangle
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and Cauchy–Schwarz inequalities, one then gets

|mh(q
h
)| ≤

( ∑
T ∈Th

∑
F ∈FT

h−1
F ‖(π

k+1
T (u |T ) − u) |F ‖

2
F

)1/2

×

( ∑
T ∈Th

∑
F ∈FT

hF ‖qF − qT |F ‖2F

)1/2

. (51)

Using, for all T ∈ Th, the approximation properties of πk+1
T on the faces of T for the first factor on

the right-hand side, and the triangle inequality along with a discrete trace inequality (see, e.g., [1515,
Lemma 1.32]) for the second factor, we infer

|mh(q
h
)| .

( ∑
T ∈Th

h2(k+1)
T |u |T |

2
Hk+2(T ;R3)

)1/2

‖q
h
‖Y,h . (52)

Plugging (5050) and (5252) into (4848) for (vh, qh) such that ‖(vh, qh)‖Z,h = 1, finally yields (4747). �

3.1.5 Numerical results

Let the domain Ω be the unit cube (0, 1)3. We consider Problem (3232) with exact solution

u(x1, x2, x3) := ©­«
cos(πx2) cos(πx3)

cos(πx1) cos(πx3)

cos(πx1) cos(πx2)

ª®¬ . (53)

Clearly, the magnetic field u satisfies (32b32b). The current density f is set according to (32a32a), and
the zero tangential boundary condition (32c32c) is replaced by the nonhomogeneous boundary condition
stemming from (5353).

We solve the discrete Problem (3737) with amended right-hand side accounting for the nonho-
mogeneous boundary condition on two refined mesh sequences, of respectively cubic and regular
tetrahedral meshes. For each problem, the element unknowns for both the magnetic field and the
pressure are locally eliminated using a Schur complement technique. This step is fully paralleliz-
able. The resulting (condensed) global linear system is solved using the SparseLU direct solver of
the Eigen library, on an Intel Xeon E-2176M 2.70GHz×12 with 16Go of RAM (and up to 150Go
of swap). For k ∈ {0, 1, 2}, we depict on Figures 11 and 22, repectively for the cubic and (regular)
tetrahedral mesh families, the relative energy-error ‖uh − Ik+1

X,h u‖X,h/‖I
k+1
X,h u‖X,h (first line) and L2-

error ‖uh − π
k+1
h

u‖Ω/‖π
k+1
h

u‖Ω (second line) as functions of (i) the meshsize (left column), (ii) the
solution time in seconds, i.e. the time needed to solve the (condensed) global linear system (middle
column), and (iii) the number of (interface) degrees of freedom (DoF) (right column). For the two
mesh families, we obtain, as predicted by Theorem 1313, an energy-error convergence rate of order
k + 1. We also observe a convergence rate of order k + 2 for the L2-error. We remark that, whenever
the solution is smooth enough (at least locally), raising the polynomial degree is computationally
much more efficient than refining the mesh to increase the accuracy.

3.2 Vector potential formulation

3.2.1 The model

The (second-order) vector potential formulation of the magnetostatic problem consists, in its gener-
alized form, in finding the magnetic vector potential u : Ω → R3 and the pressure p : Ω → R such

13



‖
u h
−

Ik
+

1
X
,h
u
‖ X

,h

‖
Ik
+

1
X
,h
u
‖ X

,h

10−1.2 10−1 10−0.810−0.610−0.4
10−3

10−2

10−1

100

1

1

1

2

1

3

10−410−310−210−1100 101 102 103
10−3

10−2

10−1

100

k = 0 k = 1 k = 2

102 103 104 105
10−3

10−2

10−1

100

1

1/3

1

2/3

1

1

‖
u h
−
π
k
+

1
h

u
‖ Ω

‖
π
k
+

1
h

u
‖ Ω

10−1.2 10−1 10−0.810−0.610−0.4

10−4

10−3

10−2

10−1

1

2

1

3

1

4

Meshsize
10−410−310−210−1100 101 102 103

10−4

10−3

10−2

10−1

Solution time (s)
102 103 104 105

10−4

10−3

10−2

10−1

1

2/3

1

1

1

4/3

Number of DoF

Figure 1: Errors vs. h, solution time and number of DoF on cubic meshes.
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Figure 2: Errors vs. h, solution time and number of DoF on tetrahedral meshes.
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that

curl
(
curl u

)
+ grad p = f in Ω, (54a)

div u = 0 in Ω, (54b)
n×(u×n) = 0 on ∂Ω, (54c)

p = 0 on ∂Ω, (54d)

where the current density f : Ω → R3 is no longer assumed to be divergence-free, whence the
introduction of the pressure term in (54a54a). When div f = 0 in Ω, p = 0 in Ω and, letting b := curl u,
Problem (5454) is then equivalent, in the class of vector potentials satisfying the Coulomb gauge, to the
following problem (cf. Remark 77):

curl b = f in Ω, div b = 0 in Ω, b·n = 0 on ∂Ω. (55)

The field u is then the vector potential associated to the magnetic induction b. Assuming f ∈
L2(Ω;R3), we consider the following equivalent weak formulation of Problem (5454): Find (u, p) ∈
H0(curl;Ω) × H1

0 (Ω) s.t.

a(u, v) + b(v, p) = ( f , v)Ω ∀v ∈ H0(curl;Ω), (56a)
b(u, q) = 0 ∀q ∈ H1

0 (Ω), (56b)

where the bilinear forms a : H(curl;Ω) × H(curl;Ω) → R and b : H(curl;Ω) × H1(Ω) → R are
defined in (3434). Using the decomposition (22), Problem (5656) can be equivalently rewritten under the
following fully decoupled form: Find u ∈ H0(curl;Ω) ∩ H(div0;Ω) and p ∈ H1

0 (Ω) s.t.

a(u, η) = ( f , η)Ω ∀ η ∈ H0(curl;Ω) ∩ H(div0;Ω),
b(grad ξ, p) = ( f , grad ξ)Ω ∀ ξ ∈ H1

0 (Ω),

whose well-posedness directly follows from the first Weber inequality (33) and from the Lax–Milgram
lemma.

Remark 14 (Divergence-free current density). When div f = 0 in Ω, since it implies p ≡ 0, one can
consider adding to Problem (5656) the bilinear contribution c defined in (3434). Mirroring this strategy at
the discrete level improves the stability of the method without jeopardizing its convergence properties
(cf. Remark 99).

3.2.2 The HHO method

We consider the hybrid spaces introduced in Section 2.22.2, up to a slight modification of the space Xk+1
h

defined in (5a5a). To this end, we introduce, for any F ∈ Fh and any q ∈ N, the space

Pq+1
F

:= Pq(F;R2) ⊕ gradτ
(
P̃q+2(F)

)
,

with P̃q+2(F) denoting the space of homogeneous polynomials of degree q + 2 on F. Consistently
with our notation so far, we let πq+1

P,F denote the L2(F;R2)-orthogonal projector ontoPq+1
F . With this

new space at hand, we define

Xk+1
],h

:=

{
vh =

(
(vT )T ∈Th, (vF )F ∈Fh

)
:

vT ∈ Pk+1(T ;R3) ∀T ∈ Th

vF ∈ Pk+1
F ∀F ∈ Fh

}
, (58)
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that is from now on meant to replace the space Xk+1
h . The space Yk+1

h keeps the same definition (5b5b).
We also introduce the spaces Xk+1

],h,0 and Xk+1
],h,0, that are respectively obtained through definitions (66)

and (1818), up to the replacement therein of Xk+1
h by Xk+1

],h
, and of Xk+1

h,0 by Xk+1
],h,0. Finally, we define

the interpolator Ik+1
X,],h : H1(Ω;R3) → Xk+1

],h
as in formula (7a7a), up to the replacement of the projector

πk+1
G,F by πk+1

P,F .

Remark 15 (Validity of the results of Section 2.42.4). For all F ∈ Fh, there holds

Gk+1
F ⊂ Pk+1

F ⊂ Pk+1(F;R2).

It can be checked that, up to the replacement of the orthogonal projector πk+1
G,F onto Gk+1

F by the
orthogonal projector πk+1

P,F onto Pk+1
F , all the results in Section 2.42.4 remain valid when Xk+1

h is
replaced by Xk+1

],h
as defined in (5858), including the discrete Weber inequality of Theorem 33 and its

generalization of Corollary 66 (observe that the crucial estimates (2525)–(2626) still hold true under these
changes).

We define the bilinear forms ah : Xk+1
],h
× Xk+1

],h
→ R, bh : Xk+1

],h
× Yk+1

h → R, and dh :
Yk+1
h × Yk+1

h → R such that

ah(wh, vh) :=
(
Ck

hwh,C
k
hvh

)
Ω
+ sh(wh, vh), (59a)

bh(wh, qh) :=
(
wh, G

k+1
h q

h

)
Ω
, (59b)

dh(rh, qh) :=
∑
T ∈Th

∑
F ∈FT

hF
(
rF − rT |F, qF − qT |F

)
F, (59c)

where Gk+1
h : Yk+1

h → Pk+1(Th;R3) is the gradient reconstruction operator introduced in Section 2.32.3
and sh : Xk+1

],h
× Xk+1

],h
→ R is the stabilization bilinear form such that

sh(wh, vh) :=
∑
T ∈Th

∑
F ∈FT

h−1
F

(
πk+1
P,F

(
γτ,F (wT ) − wF

)
, πk+1

P,F
(
γτ,F (vT ) − vF

) )
F . (60)

In (59a59a), Ck
h : Xk+1

],h
→ Ck

Th
(with Ck

Th
defined in Section 2.22.2) is the global discrete curl reconstruction

operator such that its local restriction Ck
T : Xk+1

],T
→ Ck

T to any T ∈ Th solves the following well-posed
problem: For all vT ∈ Xk+1

],T
,(

Ck
TvT , w

)
T = (vT , curl w)T +

∑
F ∈FT

(
vF, γτ,F (w×nT,F )

)
F ∀w ∈ Ck

T . (61)

With this definition at hand, one can prove the following commutation property.

Lemma 16 (Commutation property). For all v ∈ H1(Ω;R3), it holds

Ck
hIk+1

X,],hv = π
k
C,h(curl v), (62)

where we remind the reader that πk
C,h is the L2(Ω;R3)-orthogonal projector onto Ck

Th
.

Proof. For v ∈ H1(Ω;R3), let vh := Ik+1
X,],hv. Then, for any T ∈ Th,

vT =
(
πk+1
T (v |T ),

(
πk+1
P,F

(
γτ,F (v)

) )
F ∈FT

)
.
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Plugging vT into (6161) and using the fact that curl w ∈ Pk−1(T ;R3) ⊂ Pk+1(T ;R3) andγτ,F (w×nT,F ) ∈
Pk(F;R2) ⊂ Pk+1

F for all F ∈ FT to remove the projectors, one gets, for all w ∈ Ck
T ,(

Ck
TvT , w

)
T = (v |T , curl w)T +

∑
F ∈FT

(
v |F, w |F×nT,F

)
F . (63)

Integrating by parts the right-hand side of (6363), we readily infer the result. �

Remark 17 (Variant on Ck
h). An alternative choice consists in reconstructing the discrete curl in

Pk(Th;R3), which requires to solve larger local problems for k ≥ 1 (for example, C2
T has dimension 26,

whereas P2(T ;R3) has dimension 30). In this case, the commutation property (6262) reads Ck
hIk+1

X,],hv =

πk
h
(curl v). This is the approach pursued in the HDG literature [2626, 1010]. The numerical tests we have

performed (not reported here) indicate that, interestingly, reconstructing the discrete curl inPk(Th;R3)

instead of Ck
Th
, besides being computationally more expensive, in addition often deteriorates the

accuracy of the approximation.

The HHO method for Problem (5656) reads: Find (uh, ph) ∈ Xk+1
],h,0 × Yk+1

h,0 s.t.

ah(uh, vh) + bh(vh, ph) = ( f , vh)Ω ∀vh ∈ Xk+1
],h,0, (64a)

−bh(uh, qh) + dh(p
h
, q

h
) = 0 ∀q

h
∈ Yk+1

h,0 . (64b)

Note that, as opposed to u and p in Problem (5656), one cannot efficiently solve for uh and p
h

independently in Problem (6464) as the curl-grad orthogonality is lost at the discrete level.
Problem (6464) can be equivalently rewritten: Find (uh, ph) ∈ Zk+1

],h,0 := Xk+1
],h,0 × Yk+1

h,0 s.t.

Ah

(
(uh, ph), (vh, qh)

)
= ( f , vh)Ω ∀ (vh, qh) ∈ Zk+1

],h,0, (65)

where the bilinear form Ah : Zk+1
],h
× Zk+1

],h
→ R is defined by

Ah

(
(wh, rh), (vh, qh)

)
:= ah(wh, vh) + bh(vh, rh) − bh(wh, qh) + dh(rh, qh). (66)

We also let, in analogy with (4040),

Zk+1
],h,0 :=

{
(wh, rh) ∈ Zk+1

],h,0 : −bh(wh, qh) + dh(rh, qh) = 0 ∀q
h
∈ Yk+1

h,0

}
(67)

=
{
(wh, rh) ∈ Zk+1

],h,0 : Ah

(
(wh, rh), (0h, qh)

)
= 0 ∀q

h
∈ Yk+1

h,0

}
.

3.2.3 Stability analysis

We equip Xk+1
],h

and Yk+1
h with the seminorms

‖wh ‖X,],h :=
(
‖ curlhwh ‖

2
Ω
+ sh(wh,wh)

)1/2
, (68a)

‖rh ‖Y,],h :=

( ∑
T ∈Th

h2
T ‖ grad rT ‖2T + dh(rh, rh)

)1/2

. (68b)

One can easily verify that ‖ · ‖Y,],h defines a norm on Yk+1
h,0 . We now equip Zk+1

],h
with the seminorm

‖(wh, rh)‖Z,],h :=
(
‖wh ‖

2
X,],h + ‖rh ‖

2
Y,],h

)1/2
. (69)
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Lemma 18 (Norm ‖ · ‖Z,],h). The map ‖ · ‖Z,],h defines a norm on Zk+1
],h,0.

Proof. The seminorm property is evident, so we only need to prove that, for all (wh, rh) ∈ Z
k+1
],h,0,

‖(wh, rh)‖Z,],h = 0 implies (wh, rh) = (0h, 0h). Let (wh, rh) ∈ Z
k+1
],h,0 be such that ‖(wh, rh)‖Z,],h = 0.

Then, ‖wh ‖X,],h = 0 and ‖rh ‖Y,],h = 0. Since ‖ · ‖Y,],h is a norm on Yk+1
h,0 , we directly get from the

second relation that rh = 0h. Now, owing to the definitions (6767) of Zk+1
],h,0, (59b59b) of bh, and to the

fact that Xk+1
],h,0 is defined as in (1818) with Xk+1

h,0 replaced by Xk+1
],h,0, we infer from (wh, rh) ∈ Z

k+1
],h,0 and

rh = 0h that wh ∈ X
k+1
],h,0. By Corollary 55 and Remark 1515, ‖ · ‖X,],h defines a norm on Xk+1

],h,0, hence
wh = 0h. �

We now state some preliminary results for the stability analysis of Problem (6464).

Lemma 19 (Equivalences of seminorms). It holds

‖wh ‖
2
X,],h . ah(wh,wh) . ‖wh ‖

2
X,],h ∀wh ∈ Xk+1

],h
, (70a)

‖rh ‖
2
Y,],h .

∑
T ∈Th

h2
T ‖G

k+1
T rT ‖

2
T + dh(rh, rh) . ‖rh ‖

2
Y,],h ∀rh ∈ Yk+1

h . (70b)

Proof. Let us prove (70a70a). Let wh ∈ Xk+1
],h

, and T ∈ Th. By the definition (6161) of Ck
T , testing with

w = curl wT , integrating by parts, and using the fact that γτ,F (curl wT×nT,F ) ∈ P
k(F;R2) ⊂ Pk+1

F ,
we infer

‖ curl wT ‖
2
T =

(
Ck
TwT , curl wT )T

+
∑
F ∈FT

(
πk+1
P,F

(
γτ,F (wT ) − wF

)
, γτ,F (curl wT×nT,F )

)
F .

By the Cauchy–Schwarz inequality, a discrete trace inequality (see, e.g., [1515, Lemma 1.32]), and
recalling the definition (59a59a) of ah, we get ‖ curlhwh ‖

2
Ω
. ah(wh,wh), and the first inequality in (70a70a)

follows by adding sh(wh,wh) to both sides. To prove the second inequality, we test (6161) with
w = Ck

TwT to write

‖Ck
TwT ‖

2
T =

(
curl wT ,C

k
TwT )T

−
∑
F ∈FT

(
πk+1
P,F

(
γτ,F (wT ) − wF

)
, γτ,F (C

k
TwT×nT,F )

)
F,

and we conclude by the same kind of arguments.
The proof of (70b70b) is similar and is omitted for the sake of brevity. �

Lemma 20 (Control of Gk+1
h ). For all (wh, rh) ∈ Zk+1

],h
, there exists v?

h
∈ Xk+1

],h,0 satisfying

‖v?h ‖
2
Ω
+ ‖v?h ‖

2
X,],h .

∑
T ∈Th

h2
T ‖G

k+1
T rT ‖

2
T ,

such that it holds ∑
T ∈Th

h2
T ‖G

k+1
T rT ‖

2
T . Ah

(
(wh, rh), (v

?
h, 0h)

)
+ ‖wh ‖

2
X,],h . (71)
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Proof. Let (wh, rh) ∈ Zk+1
],h

. We define v?
h
∈ Xk+1

],h,0 such that

v?T := h2
TG

k+1
T rT for all T ∈ Th and v?F := 0 for all F ∈ Fh. (72)

We immediately verify, since hT ≤ diam(Ω) for allT ∈ Th, that there holds ‖v?h ‖
2
Ω
.

∑
T ∈Th h2

T ‖G
k+1
T rT ‖

2
T .

From the definitions (7272) of v?
h
, (59b59b) of bh, and (6666) of Ah, we infer∑

T ∈Th

h2
T ‖G

k+1
T rT ‖

2
T = bh(v?h, rh) = Ah

(
(wh, rh), (v

?
h, 0h)

)
− ah(wh, v

?
h ).

The Cauchy–Schwarz inequality followed by the second inequality in (70a70a) then yield∑
T ∈Th

h2
T ‖G

k+1
T rT ‖

2
T . Ah

(
(wh, rh), (v

?
h, 0h)

)
+ ‖wh ‖X,],h ‖v

?
h ‖X,],h . (73)

Using the definitions (7272) and (68a68a) of, respectively, v?
h
and ‖ · ‖X,],h, it holds

‖v?h ‖
2
X,],h =

∑
T ∈Th

(
‖ curl v?T ‖

2
T +

∑
F ∈FT

h−1
F ‖π

k+1
P,F

(
γτ,F (v?T )

)
‖2F

)
.

∑
T ∈Th

h−2
T ‖v

?
T ‖

2
T =

∑
T ∈Th

h2
T ‖G

k+1
T rT ‖

2
T , (74)

where we have used the L2(F;R2)-boundedness of πk+1
P,F , as well as an inverse inequality together

with a discrete trace inequality (see, e.g., [1515, Lemmas 1.28 and 1.32]). Starting from (7373), and
using (7474) combined with Young’s inequality for the last term in the right-hand side eventually yields
the expected result. �

We are now in position to show well-posedness for Problem (6464).

Lemma 21 (Well-posedness). For all zh ∈ Zk+1
],h

, there exists v?
h
∈ Xk+1

],h,0 satisfying ‖v?
h
‖Ω +

‖v?
h
‖X,],h . ‖zh ‖Z,],h such that it holds

‖zh ‖
2
Z,],h . Ah

(
zh, zh

)
+ Ah

(
zh, (v

?
h, 0h)

)
. (75)

Hence, Problem (6464) is well-posed, and the following a priori bound holds:

‖(uh, ph)‖Z,],h . ‖ f ‖Ω. (76)

Proof. Let zh = (wh, rh) ∈ Zk+1
],h

. By the first inequality in (70a70a) and (6666), one has

‖wh ‖
2
X,],h + dh(rh, rh) . ah(wh,wh) + dh(rh, rh) = Ah

(
zh, zh

)
. (77)

By Lemma 2020 combined with (7777), one also has∑
T ∈Th

h2
T ‖G

k+1
T rT ‖

2
T . Ah

(
zh, (v

?
h, 0h)

)
+ Ah

(
zh, zh

)
, (78)

for some v?
h
∈ Xk+1

],h,0 such that ‖v?
h
‖Ω + ‖v?h ‖X,],h . ‖rh ‖Y,],h ≤ ‖zh ‖Z,],h, where we have used the

second inequality in (70b70b) and (6969). Summing (7777) and (7878), and using the first inequality in (70b70b),
we infer (7575). To prove well-posedness, since the system associated to Problem (6464) is square, it is
sufficient to prove injectivity. Assume that Ah

(
(uh, ph), (vh, qh)

)
= 0 for all (vh, qh) ∈ Zk+1

],h,0. Taking
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(vh, qh) = (0h, qh) and using (6767), we first infer that (uh, ph) ∈ Z
k+1
],h,0. Taking (vh, qh) = (uh, ph) and

(vh, qh) = (v
?
h
, 0h), and using (7575), we then get

‖(uh, ph)‖
2
Z,],h . Ah

(
(uh, ph), (uh, ph)

)
+ Ah

(
(uh, ph), (v

?
h, 0h)

)
= 0,

which, by Lemma 1818, eventually yields (uh, ph) = (0h, 0h). To prove the a priori bound (7676), we take
zh = (uh, ph) in (7575) and we use (6565). We get, by Cauchy–Schwarz inequality,

‖(uh, ph)‖
2
Z,],h . ( f , uh)Ω + ( f , v?h )Ω ≤ ‖ f ‖Ω

(
‖uh ‖Ω + ‖v?h ‖Ω

)
.

The conclusion follows from the fact that ‖v?
h
‖Ω . ‖(uh, ph)‖Z,],h, and from the combination of

Remark 1515 with the generalized discrete Weber inequality (3030) of Corollary 66 applied to (uh, ph)
satisfying (2929) (one can easily check that dh satisfies (2828)). �

3.2.4 Error analysis

We recall that (u, p) ∈ H0(curl;Ω)×H1
0 (Ω) denotes the unique solution to Problem (5656). We assume

that u possesses the additional regularity u ∈ H1(Ω;R3), and we let ûh
:= Ik+1

X,],hu ∈ Xk+1
],h,0 and

p̂
h

:= Ik+1
Y,h p ∈ Yk+1

h,0 . We define the errors

Xk+1
],h,0 3 eh := uh − ûh, Yk+1

h,0 3 εh := p
h
− p̂

h
, (79)

where (uh, ph) ∈ Xk+1
],h,0 × Yk+1

h,0 is the unique solution to Problem (6464). Recalling (6565) and (6666), the
errors (eh, εh) ∈ Zk+1

],h,0 solve

Ah

(
(eh, εh), (vh, qh)

)
= lh(vh) +mh(q

h
) ∀ (vh, qh) ∈ Zk+1

],h,0, (80)

where we have defined the consistency errors

lh(vh) := ( f , vh)Ω − ah (̂uh, vh) − bh(vh, p̂h), (81a)

mh(q
h
) := bh (̂uh, qh) − dh (̂p

h
, q

h
). (81b)

Theorem 22 (Energy-error estimate). Assume that

u ∈ H0(curl;Ω) ∩ H1(Ω;R3) ∩ Hk+2(Th;R3), p ∈ H1
0 (Ω) ∩ Hk+1(Th).

Then, there holds, with (eh, εh) ∈ Zk+1
],h,0 defined by (7979),

‖(eh, εh)‖Z,],h .

[ ∑
T ∈Th

h2(k+1)
T

(
|u |T |

2
Hk+2(T ;R3)

+ |p |T |2Hk+1(T )

)] 1/2

. (82)

Proof. Since (eh, εh) ∈ Zk+1
],h,0, by (7575)with zh = (eh, εh) (note that (v

?
h
, 0h) ∈ Zk+1

],h,0 and ‖(v
?
h
, 0h)‖Z,],h =

‖v?
h
‖X,],h . ‖zh ‖Z,],h) and (8080), we infer

‖(eh, εh)‖Z,],h . max
(vh,qh )∈Z

k+1
],h,0, ‖(vh,qh ) ‖Z, ],h=1

(
lh(vh) +mh(q

h
)
)
. (83)
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Let us first focus on lh(vh) for vh ∈ Xk+1
],h,0. By (81a81a), the fact that f = curl(curl u) + grad p in

Ω, and element-by-element integration by parts, there holds

lh(vh) =
∑
T ∈Th

[ (
curl(u |T ), curl vT

)
T −

∑
F ∈FT

(
curl(u |T ) |F×nT,F, vT |F

)
F

]
+

(
grad p, vh

)
Ω
− ah (̂uh, vh) − bh(vh, p̂h)

=
∑
T ∈Th

((
curl(u |T ), curl vT

)
T (84)

−
∑
F ∈FT

(
γτ,F

(
curl(u |T )×nT,F

)
, γτ,F (vT ) − vF

)
F

)
− ah (̂uh, vh),

where we have used the fact that the tangential component of curl u is continuous across interfaces
(as a consequence of the fact that curl u ∈ H(curl;Ω) ∩ H1(Th;R3)) along with vF = 0 for all
F ∈ F b

h
to insert vF into the boundary term, together with the fact that

(
grad p, vh

)
Ω
= bh(vh, p̂h) as

a consequence of the commutation property (99). Using the definitions (59a59a) of ah and (6161) of Ck
T for

T ∈ Th (testing with w = Ck
T ûT ), and integrating by parts, it holds

ah (̂uh, vh) =
∑
T ∈Th

[ (
Ck
T ûT , curl vT

)
T

−
∑
F ∈FT

(
γτ,F (C

k
T ûT×nT,F ), γτ,F (vT ) − vF

)
F

]
+ sh (̂uh, vh). (85)

Since, by Lemma 1616, Ck
T ûT = π

k
C,T

(
curl(u |T )

)
for all T ∈ Th, a combination of (8484) and (8585) yields

(recall that vT ∈ Pk+1(T ;R3))

lh(vh) =
∑
T ∈Th

∑
F ∈FT

(
γτ,F

(
(πk

C,T (curl(u |T )) − curl(u |T ))×nT,F
)
, γτ,F (vT ) − vF

)
F

− sh (̂uh, vh).

Applying the triangle and Cauchy–Schwarz inequalities, we get

|lh(vh)| ≤
∑
T ∈Th

∑
F ∈FT

‖
(
πk
C,T (curl(u |T )) − curl(u |T )

)
|F ‖F ‖γτ,F (vT ) − vF ‖F

+ sh (̂uh, ûh)
1/2sh(vh, vh)

1/2.

(86)

Let us focus on ‖
(
πk
C,T (curl(u |T ))−curl(u |T )

)
|F ‖F for F ∈ FT . Adding/subtracting curl(πk+1

T (u |T )),
using a triangle inequality, a discrete trace inequality (see, e.g., [1515, Lemma1.32]) on πk

C,T (curl(u |T ))−
curl(πk+1

T (u |T )), and the approximation properties of πk+1
T on mesh faces (see, e.g., [1515, Theorem

1.45]) for curl(πk+1
T (u |T )) − curl(u |T ), we infer

h
1/2
F ‖

(
πk
C,T (curl(u |T )) − curl(u |T )

)
|F ‖F . ‖π

k
C,T (curl(u |T )) − curl(u |T )‖T

+ ‖ curl(u |T ) − curl(πk+1
T (u |T ))‖T + hk+1

T |u |T |Hk+2(T ;R3),

where we have used yet another triangle inequality. The second term on the right-hand side is readily
estimated using again the approximation properties of πk+1

T . As far as the first term is concerned, it
holds

‖πk
C,T (curl(u |T )) − curl(u |T )‖T = min

p∈Pk+1(T ;R3)
‖ curl p − curl(u |T )‖T ,
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which finally yields

h
1/2
F ‖

(
πk
C,T (curl(u |T )) − curl(u |T )

)
|F ‖F . hk+1

T |u |T |Hk+2(T ;R3).

Plugging this last estimate into (8686), applying a discrete Cauchy–Schwarz inequality, and using (2626)
as well as (4949) (with πk+1

P,F instead of πk+1
G,F ), we infer

|lh(vh)| .

( ∑
T ∈Th

h2(k+1)
T |u |T |

2
Hk+2(T ;R3)

)1/2

‖vh ‖X,],h . (87)

Let us now focus on mh(q
h
) for q

h
∈ Yk+1

h,0 . Recalling (5151), one can readily infer

|bh (̂uh, qh)| .

( ∑
T ∈Th

h2(k+1)
T |u |T |

2
Hk+2(T ;R3)

)1/2

dh(q
h
, q

h
)

1/2. (88)

Now, applying the Cauchy–Schwarz inequality, recalling the definition (59c59c) of dh, noticing that
πkT (p |T ) |F = π

k+1
F (π

k
T (p |T ) |F ) for all T ∈ Th and F ∈ FT , and using the L2(F)-boundedness of πk+1

F ,
one has

|dh (̂p
h
, q

h
)| ≤ dh (̂p

h
, p̂

h
)

1/2 dh(q
h
, q

h
)

1/2

≤

( ∑
T ∈Th

∑
F ∈FT

hF ‖(p − πkT (p |T )) |F ‖
2
F

)1/2

dh(q
h
, q

h
)

1/2.

By the approximation properties of πkT on mesh faces (see, e.g., [1515, Theorem 1.45]),

|dh (̂p
h
, q

h
)| .

( ∑
T ∈Th

h2(k+1)
T |p |T |2Hk+1(T )

)1/2

dh(q
h
, q

h
)

1/2. (89)

Gathering (8888)–(8989), and recalling the definition (81b81b) of mh(q
h
), finally yields

|mh(q
h
)| .

( ∑
T ∈Th

h2(k+1)
T

(
|u |T |

2
Hk+2(T ;R3)

+ |p |T |2Hk+1(T )

))1/2

‖q
h
‖Y,],h . (90)

Plugging (8787) and (9090) into (8383) for (vh, qh) such that ‖(vh, qh)‖Z,],h = 1 finally yields (8282). �

Remark23 (The tetrahedral case). Onmatching tetrahedralmeshes, according to Lemma11, ‖Gk+1
h ·‖Ω

defines a norm on Yk+1
h,0 . Hence, in this case, and as already pointed out in [1010], one can consider

a modified version of Problem (6464) in which dh is removed, without jeopardizing well-posedness.
Doing so, it holds uh ∈ X

k+1
],h,0 and, as a by-product of the commutation property (99), uh ∈ H(div0;Ω).

Furthermore, a close inspection of the proof of Theorem 2222 shows that, in this case, one ends up with
an energy-error estimate that is free of pressure contribution. This allows one to reproduce at the
discrete level the following structure of Problem (5454). When the current density f is given by the
gradient of some function ψ ∈ H1

0 (Ω), then u = 0 and p = ψ. At the discrete level, when f = gradψ,
one then gets uh = 0h and p

h
= Ik+1

Y,hψ (note that this can be observed in practice up to machine
precision only if the computation of the right-hand side is also performed up to machine precision).
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3.2.5 Numerical results

Let the domain Ω be the unit cube (0, 1)3. We consider Problem (5454) with exact solution

u(x1, x2, x3) := ©­«
sin(πx2) sin(πx3)

sin(πx1) sin(πx3)

sin(πx1) sin(πx2)

ª®¬ , p(x1, x2, x3) := sin(πx1) sin(πx2) sin(πx3).

Clearly, the magnetic vector potential u and the pressure p satisfy (54b54b), (54c54c), and (54d54d). The current
density f is set according to (54a54a).

As in Section 3.1.53.1.5, we solve the discrete Problem (6464) on two refined mesh sequences, of
respectively cubic and regular tetrahedral meshes. On tetrahedral meshes, following Remark 2323, we
actually solve a modifed version of Problem (6464) in which dh is removed. As expected, it does not
jeopardize well-posedness, nor convergence. The numerical tests show that removing dh leads to a
slightly more accurate approximation of the magnetic vector potential, but a slightly less accurate
approximation of the pressure. For each problem, the element unknowns for both the magnetic vector
potential and the pressure are locally eliminated using a Schur complement technique. This step is
fully parallelizable. The resulting (condensed) global linear system is solved using the SparseLUdirect
solver of the Eigen library, on an Intel Xeon E-2176M 2.70GHz×12 with 16Go of RAM (and up to
150Goof swap). For k ∈ {0, 1, 2}, we depict on Figures 33 and 44, respectively for the cubic and (regular)
tetrahedral mesh families, the relative energy-error ‖uh − Ik+1

X,],hu‖X,],h/‖I
k+1
X,],hu‖X,],h (first line), L2-

error ‖uh−π
k+1
h

u‖Ω/‖π
k+1
h

u‖Ω (second line), and L2-like-error ‖p
h
− Ik+1

Y,h p‖Y,],h/‖Ik+1
Y,h p‖Y,],h (third

line) as functions of (i) themeshsize (left column), (ii) the solution time in seconds, i.e. the time needed
to solve the (condensed) global linear system (middle column), and (iii) the number of (interface)
DoF (right column). On tetrahedral meshes, since we remove the contribution dh, we replace the
L2-like-error measure ‖p

h
− Ik+1

Y,h p‖Y,],h by the measure

‖p
h
− Ik+1

Y,h p‖G,h :=

( ∑
T ∈Th

h2
T ‖G

k+1
T

(
p
T
− Ik+1

Y,T (p |T )
)
‖2T

)1/2

,

that remains meaningful for k = 0. For the two mesh families, we obtain, as predicted by Theorem 2222,
a convergence rate of the energy-error on the magnetic vector potential and of the L2-like-error on
the pressure of order k + 1. We also observe a convergence rate of order k + 2 for the L2-error on the
magnetic vector potential.

Acknowledgments

The authors thank Lorenzo Botti (University of Bergamo) for giving them access to his 3D C++ code
SpaFEDTe (https://github.com/SpaFEDTe/spafedte.github.comhttps://github.com/SpaFEDTe/spafedte.github.com).

References

[1] D. N. Arnold. Finite element exterior calculus, volume 93 of CBMS-NSF Regional Conference
Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2018.

[2] F. Assous, P. Ciarlet Jr., and S. Labrunie. Mathematical foundations of computational electro-
magnetism, volume 198 of Applied Mathematical Sciences. Springer, Cham, 2018.

23

https://github.com/SpaFEDTe/spafedte.github.com


‖
u h
−

Ik
+

1
X
,]
,h
u
‖ X

,]
,h

‖
Ik
+

1
X
,]
,h
u
‖ X

,]
,h

10−1.2 10−1 10−0.810−0.610−0.4

10−1

100

1

1

1

2

1

3

10−310−210−1 100 101 102 103 104

10−1

100

k = 0 k = 1 k = 2

102 103 104 105

10−1

100

1

1/3

1

2/3

1

1

‖
u h
−
π
k
+

1
h

u
‖ Ω

‖
π
k
+

1
h

u
‖ Ω

10−1.2 10−1 10−0.810−0.610−0.4

10−3

10−2

10−1

100

1

2

1

3

1

4

10−310−210−1 100 101 102 103 104

10−3

10−2

10−1

100

102 103 104 105

10−3

10−2

10−1

100

1

2/3

1

1

1

4/3

‖
p h
−

Ik
+

1
Y
,h
p
‖ Y

,]
,h

‖
Ik
+

1
Y
,h
p
‖ Y

,]
,h

10−1.2 10−1 10−0.810−0.610−0.4

10−2

10−1

100

1

1

1

2

1

3

Meshsize
10−310−210−1 100 101 102 103 104

10−2

10−1

100

Solution time (s)
102 103 104 105

10−2

10−1

100

1

1/3

1

2/3

1

1

Number of DoF

Figure 3: Errors vs. h, solution time and number of DoF on cubic meshes.

[3] L. Beirão daVeiga, F. Brezzi, F.Dassi, L.D.Marini, andA.Russo. A family of three-dimensional
virtual elements with applications to magnetostatics. SIAM J. Numer. Anal., 56(5):2940–2962,
2018.

[4] L. Beirão da Veiga, F. Brezzi, F. Dassi, L. D.Marini, and A. Russo. Lowest-order virtual element
approximation of magnetostatic problems. Comput. Methods Appl. Mech. Engrg., 332:343–362,
2018.

[5] L. Beirão da Veiga, F. Brezzi, L. D.Marini, and A. Russo. Virtual element approximations of the
vector potential formulation of magnetostatic problems. SMAI J. Comput. Math., 4:399–416,
2018.

[6] F. Brezzi, J. Douglas Jr., and L. D. Marini. Two families of mixed finite elements for second
order elliptic problems. Numer. Math., 47(2):217–235, 1985.

[7] F. Chave, D. A. Di Pietro, and S. Lemaire. A three-dimensional Hybrid High-Order method for
magnetostatics. In Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects,
Examples, volume 323 of Springer Proceedings in Mathematics & Statistics, pages 255–263.
Springer, Cham, 2020.

[8] G. Chen, J. Cui, and L. Xu. Analysis of a hybridizable discontinuous Galerkin method for the
Maxwell operator. ESAIM: Math. Model. Numer. Anal., 53(1):301–324, 2019.

[9] G. Chen, P. Monk, and Y. Zhang. HDG and CG methods for the indefinite time-harmonic
Maxwell’s equations under minimal regularity. Submitted, 2020.

24



‖
u h
−

Ik
+

1
X
,]
,h
u
‖ X

,]
,h

‖
Ik
+

1
X
,]
,h
u
‖ X

,]
,h

10−1.410−1.2 10−1 10−0.810−0.610−0.4

10−1

100

1

1

1

2

1

3

10−3 10−2 10−1 100 101 102 103

10−1

100

k = 0 k = 1 k = 2

103 104 105

10−1

100

1

1/3

1

2/3

1

1

‖
u h
−
π
k
+

1
h

u
‖ Ω

‖
π
k
+

1
h

u
‖ Ω

10−1.410−1.2 10−1 10−0.810−0.610−0.4

10−3

10−2

10−1

100

1

2

1

3

1

4

10−3 10−2 10−1 100 101 102 103

10−3

10−2

10−1

100

103 104 105

10−3

10−2

10−1

100

1

2/3

1

1

1

4/3

‖
p h
−

Ik
+

1
Y
,h
p
‖ G

,h

‖
Ik
+

1
Y
,h
p
‖ G

,h

10−1.410−1.2 10−1 10−0.810−0.610−0.4

10−1

100

101

1

1

1

2

1

3

Meshsize
10−3 10−2 10−1 100 101 102 103

10−1

100

101

Solution time (s)
103 104 105

10−1

100

101

1

1/3

1

2/3

1

1

Number of DoF

Figure 4: Errors vs. h, solution time and number of DoF on tetrahedral meshes.

[10] H. Chen, W. Qiu, K. Shi, and M. Solano. A superconvergent HDG method for the Maxwell
equations. J. Sci. Comput., 70(3):1010–1029, 2017.

[11] B. Cockburn, D. A. Di Pietro, and A. Ern. Bridging the Hybrid High-Order and Hybridizable
Discontinuous Galerkin methods. ESAIM: Math. Model. Numer. Anal., 50(3):635–650, 2016.

[12] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discontinuous
Galerkin, mixed, and continuous Galerkin methods for second-order elliptic problems. SIAM J.
Numer. Anal., 47(2):1319–1365, 2009.

[13] D. A. Di Pietro and J. Droniou. A third Strang lemma and an Aubin–Nitsche trick for schemes
in fully discrete formulation. Calcolo, 55(40), 2018.

[14] D. A. Di Pietro and J. Droniou. An arbitrary-order method for magnetostatics on polyhedral
meshes based on a discrete de Rham sequence. Submitted, 5 2020.

[15] D. A. Di Pietro and J. Droniou. The Hybrid High-Order method for polytopal meshes. Design,
analysis, and applications. Number 19 in Modeling, Simulation and Applications. Springer
International Publishing, 2020.

[16] D. A. Di Pietro, J. Droniou, and F. Rapetti. Fully discrete polynomial de Rham sequences of
arbitrary degree on polygons and polyhedra. Math. Models Methods Appl. Sci., 2020. Accepted
for publication.

[17] D. A. Di Pietro and A. Ern. A Hybrid High-Order locking-free method for linear elasticity on
general meshes. Comput. Methods Appl. Mech. Engrg., 283:1–21, 2015.

25



[18] D. A. Di Pietro, A. Ern, and S. Lemaire. An arbitrary-order and compact-stencil discretization
of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl.
Math., 14(4):461–472, 2014.

[19] S. Du and F.-J. Sayas. A unified error analysis of Hybridizable Discontinuous Galerkin methods
for the static Maxwell equations. SIAM J. Numer. Anal., 58(2):1367–1391, 2020.

[20] H. Kanayama, H. Motoyama, K. Endo, and F. Kikuchi. Three-dimensional magnetostatic
analysis using Nédélec’s elements. IEEE Trans. Magn., 26(2):682–685, 1990.

[21] F. Kikuchi. Mixed formulations for finite element analysis of magnetostatic and electrostatic
problems. Japan J. Appl. Math., 6(2):209–221, 1989.

[22] P.Monk. Finite elementmethods forMaxwell’s equations. NumericalMathematics and Scientific
Computation. Oxford University Press, New York, 2003.

[23] L. Mu, J. Wang, X. Ye, and S. Zhang. A weak Galerkin finite element method for the Maxwell
equations. J. Sci. Comput., 65(1):363–386, 2015.

[24] J.-C. Nédélec. Mixed finite elements in R3. Numer. Math., 35(3):315–341, 1980.

[25] J.-C. Nédélec. A new family of mixed finite elements in R3. Numer. Math., 50(1):57–81, 1986.

[26] N. C. Nguyen, J. Peraire, and B. Cockburn. Hybridizable discontinuous Galerkin methods for
the time-harmonic Maxwell’s equations. J. Comput. Phys., 230(19):7151–7175, 2011.

[27] I. Perugia, D. Schötzau, and P. Monk. Stabilized interior penalty methods for the time-harmonic
Maxwell equations. Comput. Methods Appl. Mech. Engrg., 191(41–42):4675–4697, 2002.

[28] J. Wang and X. Ye. A weak Galerkin finite element method for second-order elliptic problems.
J. Comput. Appl. Math., 241:103–115, 2013.

[29] C. Weber. A local compactness theorem for Maxwell’s equations. Math. Methods Appl. Sci.,
2(1):12–25, 1980.

26


	Introduction
	A discrete Weber inequality on hybrid spaces
	Discrete setting
	Hybrid spaces
	Gradient reconstruction in  Yhk+1 
	Discrete Weber inequality

	Application to magnetostatics
	Field formulation
	The model
	The HHO method
	Stability analysis
	Error analysis
	Numerical results

	Vector potential formulation
	The model
	The HHO method
	Stability analysis
	Error analysis
	Numerical results



