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Abstract

Based on the fifth-order scheme in our previous work (Deng et. al (2019) [28]), a new framework of constructing

very high order discontinuity-capturing schemes is proposed for finite volume method. These schemes, so-called

PnTm − BVD (polynomial of n-degree and THINC function of m-level reconstruction based on BVD algorithm), are

designed by employing high-order upwind-biased interpolations and THINC (Tangent of Hyperbola for INterface

Capturing) functions with adaptive steepness as the reconstruction candidates. The final reconstruction function in

each cell is determined with a multi-stage BVD (Boundary Variation Diminishing) algorithm so as to effectively

control numerical oscillation and dissipation. We devise the new schemes up to eleventh order in an efficient way

by directly increasing the order of the underlying upwind scheme using high order polynomials. The analysis of the

spectral property and accuracy tests show that the new reconstruction strategy well preserves the low-dissipation prop-

erty of the underlying upwind schemes with high-order polynomials for smooth solution over all wave numbers and

realizes n + 1 order convergence rate. The performance of new schemes is examined through widely used benchmark

tests, which demonstrate that the proposed schemes are capable of simultaneously resolving small-scale flow features

with high resolution and capturing discontinuities with low dissipation. With outperforming results and simplicity in

algorithm, the new reconstruction strategy shows great potential as an alternative numerical framework for computing

nonlinear hyperbolic conservation laws that have discontinuous and smooth solutions of different scales.

Keywords: shock capturing, very high order schemes, boundary variation diminishing

1. Introduction

Designing shock-capturing schemes for high speed compressible flows involving complex flow structures of wide

range scales still remains an unresolved issue and attracts a lot of attention in the computational fluid dynamics com-

munity. The coexistence of discontinuities and small-scale flow features poses a big challenge to existing numerical
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schemes. High order and low dissipative schemes are demanded to resolve high-frequency waves and vortices featured

in turbulent flows. However, high order schemes may cause spurious numerical oscillations when solving disconti-

nuities such as shock waves, contacts and material interfaces. With the order increased, a scheme may become less

robust or too oscillatory to use. To suppress numerical oscillations associated with high order interpolation, a common

practice is to introduce certain amount of numerical dissipations by projecting high order interpolation polynomials

to lower order or smoother ones, which is also known as limiting projection. An ideal limiting projection is expected

to have as small as possible numerical dissipation, while still to effectively suppress numerical oscillation around crit-

ical regions. Excessive numerical dissipation introduced in limiting processes tends to undermine the accuracy even

though high order interpolation is employed.

Over the decades, a great deal of efforts has been made to construct high order shock capturing schemes in

finite volume or finite difference framework. Some representative methodologies to design shock capturing schemes

are TVD (Total Variation Diminishing) [1, 2], ENO (Essentially Non-oscillatory) [3, 4, 5, 6], WENO (Weighted

Essentially Non-oscillatory) [7, 8] and MOOD (Multi-dimensional Optimal Order Detection) method [9, 10, 11].

Among these schemes, the WENO family which is built on a weighted average of approximations from all candidate

stencils is supposed to be one of widely-used methods. Lots of contributions have been made so far to improve the

performance of the original WENO scheme. For example, it has been recognized that the classical WENO scheme

generates excessive numerical dissipation that tends to smear out contact discontinuities or jumps in variables across

material interface. Thus, a series of new smoothness indicators have been proposed in [12, 13, 14, 15, 16] where

contributions of the less smooth candidate stencils are optimized to reduce numerical dissipation. Moreover, it is

observed that the spectral property of the WENO schemes is inferior to that of low-dissipation linear scheme with high-

order polynomials. Some recent efforts have been made to improve the spectral property of the WENO schemes. In

[19], a new design strategy named embedded WENO is devised to utilise all adjacent smooth substencils to construct

a desirable interpolation thus to improve the behavior of the spectral property. In spite of these works, there are still

at least three remaining issues in existing high order shock-capturing schemes which need further investigations.

(1) In the vicinity of discontinuities the intrinsic numerical dissipation still persists and pollutes the numerical so-

lution. The resolution of physical features such as contact surfaces, shear waves and material interfaces will

evolve from bad to worse. To obtain a sharp discontinuous solution without numerical oscillations is challenging

for any limiting processes.

(2) The limiting processes may regard high gradients and small-scale flow structures as discontinuities. Excessive

use of limiting processes will undermine the accuracy and make the spectral property of designed schemes

inferior to that of low-dissipation linear scheme. Especially, small-scale flow features in turbulence will be
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smeared out by falsely triggered limiting processes.

(3) Extension schemes to very high order in finite volume or finite difference method may not be efficient and

economical. As stated in [20, 21, 22], the WENO schemes involve more sub-stencils with increasing order.

To evaluate the smoothness indicators is computationally expensive. Moreover, schemes may be less robust as

order is increased. For example, there is a possibility of nonexistence of a smooth stencil when using higher-

order schemes since the stencils used by the higher-order WENO schemes are quite large. Thus, in [21, 23]

a recursive-order-reduction procedure is further adopted to suppress numerical oscillations when using higher-

order WENO schemes.

We have recently developed a new class of shock-capturing schemes [24, 25, 26, 27, 28] which hybrid polyno-

mial based nonlinear reconstructions and the THINC (Tangent of Hyperbola for INterface Capturing) function as the

reconstruction candidates. Realizing that polynomial-based reconstruction may not be suitable for discontinuities, in

[24] a non-polynomial jump-like THINC function is employed to represent the discontinuity. The switch between

WENO and THINC is guided by the BVD (Boundary Variation Diminishing) algorithms, which select reconstruction

functions by minimizing the jumps of the reconstructed values at the cell boundaries. The spectral analysis and nu-

merical experiments [27] reveal that THINC function with properly chosen steepness can outperform most existing

MUSCL schemes for spatial reconstruction. A new scheme, the adaptive THINC-BVD scheme, was then designed

under the BVD principle by employing THINC functions with different sharpnesses to solve both smooth and dis-

continuous solutions [27]. Since THINC is a monotonic and bounded function, the adaptive THINC-BVD scheme is

able to eliminate numerical oscillation without any limiting projection. For better use of the numerical property of

the high order polynomial function, a fifth-order scheme is devised by employing a linear fifth-order upwind scheme

and THINC function with the BVD algorithm in our most recent work [28]. The resulting scheme can retrieve linear

upwind scheme in smooth region and capture sharp discontinuities without numerical oscillations. Our practice so far

shows that the BVD principle can be used as a general and effective paradigm to design new numerical schemes.

In this paper, we propose a new general framework to construct high order shock capture scheme. These schemes,

so-called PnTm − BVD (polynomial of n-degree and THINC function of m-level reconstruction based on BVD algo-

rithm), are designed by employing n + 1 order upwind schemes with high order polynomials and THINC (Tangent of

Hyperbola for INterface Capturing) functions with adaptive steepness as reconstruction candidates. The final recon-

struction function in each cell is determined with multi-stage BVD (Boundary Variation Diminishing) algorithm so as

to effectively control numerical oscillation and dissipation. As shown later in the paper, the proposed PnTm − BVD

schemes have following desirable properties: 1) they solve sharp discontinuities with effectively suppressed numerical

oscillations; 2) they retrieve the underlying linear high-order schemes for smooth solution over all wave numbers, and
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thus substantially reduce numerical dissipation errors for small-scale flow structures; 3) they can be extended to high

order in an efficient way by simply increasing the order of the underlying upwind scheme.

The remainder of this paper is organized as follows. In Section 2, after a brief review of the finite volume method,

the details of the new scheme for spatial reconstruction are presented. The spectral property of the new scheme will

also be presented. In Section 3, the performance of the new scheme will be examined through benchmark tests in 1D

and 2D. Some concluding remarks and prospective are given in Section 4.

2. Numerical methods

2.1. Finite volume method

In this paper, the 1D scalar conservation law in following form is used to introduce the new scheme

∂q
∂t

+
∂ f (q)
∂x

= 0, (1)

where q(x, t) is the solution function and f (q) is the flux function. We divide the computational domain into N non-

overlapping cell elements, Ii : x ∈ [xi−1/2, xi+1/2], i = 1, 2, . . . ,N, with a uniform grid spacing h = ∆x = xi+1/2− xi−1/2.

For a standard finite volume method, the volume-integrated average value q̄i(t) in cell Ii is defined as

q̄i(t) ≈
1

∆x

ˆ xi+1/2

xi−1/2

q(x, t) dx. (2)

The semi-discrete version of Eq. (1) in the finite volume form can be expressed as an ordinary differential equation

(ODE)
∂q̄(t)
∂t

= −
1

∆x
( f̃i+1/2 − f̃i−1/2), (3)

where the numerical fluxes f̃ at cell boundaries can be computed by a Riemann solver

f̃i+1/2 = f Riemann
i+1/2 (qL

i+1/2, q
R
i+1/2). (4)

The remaining main task is how to calculate qL
i+1/2 and qR

i+1/2 through the reconstruction process.

2.2. Reconstruction process

In this subsection, we give the details of how to calculate qL
i+1/2 and qR

i+1/2 using the BVD principle. The proposed

PnTm − BVD schemes are designed by employing linear weight polynomial of n-degree and THINC function of m-

level as the candidate interpolants. The final reconstruction function in each cell is selected from these candidate

interpolants with the BVD algorithm. Next, we introduce the candidate interpolants before the description of the

BVD algorithm.
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2.2.1. Candidate interpolant Pn: linear upwind scheme of n-degree polynomial

A finite volume scheme of (n + 1)th order can be constructed from a spatial approximation for the solution in the

target cell Ii with a polynomial q̃Pn
i (x) of degree n. The n+1 unknown coefficients of the polynomial are determined by

requiring that q̃Pn
i (x) has the same cell average on each cell over an appropriately selected stencil S = {i−n−, . . . , i+n+}

with n− + n+ = n, which is expressed as

1
∆x

ˆ x j+1/2

x j−1/2

q̃Pn
i (x)dx = q̄ j, j = i − n−, i − n− + 1, . . . , i + n+. (5)

To construct 2r − 1 order upwind-biased (UW) finite volume schemes as detailed in [7, 8, 29], the stencil is defined

with n− = n+ = r − 1. The unknown coefficients of polynomial of 2r − 2 degree can be then calculated from (5). With

the polynomial q̃Pn
i (x), high order approximation for reconstructed values at the cell boundaries can be obtained by

qL,Pn
i+ 1

2
= q̃Pn

i (xi+ 1
2
) and qR,Pn

i− 1
2

= q̃Pn
i (xi− 1

2
). (6)

The analysis of [7, 8, 29] shows that in smooth region, the approximation with polynomial (6) can achieve 2r − 1

order accuracy. In this work, we extend the proposed scheme from fifth order (r = 3) to eleventh order (r = 6) by

using polynomials of 4th, 6th, 8th and 10th degree as underlying scheme for smooth solution. In order to facilitate the

implementation of the proposed method, we give the explicit formulas of qL,Pn
i+1/2 and qR,Pn

i−1/2 for (n+1)th-order scheme

as follows,

• 5th-order scheme

qL,P4
i+1/2 =

1
30

q̄i−2 −
13
60

q̄i−1 +
47
60

q̄i +
9

20
q̄i+1 −

1
20

q̄i+2,

qR,P4
i−1/2 =

1
30

q̄i+2 −
13
60

q̄i+1 +
47
60

q̄i +
9

20
q̄i−1 −

1
20

q̄i−2.

(7)

• 7th-order scheme

qL,P6
i+1/2 = −

1
140

q̄i−3 +
5
84

q̄i−2 −
101
420

q̄i−1 +
319
420

q̄i +
107
210

q̄i+1 −
19
210

q̄i+2 +
1

105
q̄i+3,

qR,P6
i−1/2 = −

1
140

q̄i+3 +
5
84

q̄i+2 −
101
420

q̄i+1 +
319
420

q̄i +
107
210

q̄i−1 −
19
210

q̄i−2 +
1

105
q̄i−3.

(8)

• 9th-order scheme

qL,P8
i+1/2 =

1
630

q̄i−4 −
41

2520
q̄i−3 +

199
2520

q̄i−2 −
641

2520
q̄i−1 +

1879
2520

q̄i +
275
504

q̄i+1 −
61
504

q̄i+2 +
11

501
q̄i+3 −

1
504

q̄i+4,

qR,P8
i−1/2 =

1
630

q̄i+4 −
41

2520
q̄i+3 +

199
2520

q̄i+2 −
641

2520
q̄i+1 +

1879
2520

q̄i +
275
504

q̄i−1 −
61
504

q̄i−2 +
11

501
q̄i−3 −

1
504

q̄i−4.

(9)
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• 11th-order scheme

qL,P10
i+1/2 = −

1
2772

q̄i−5 +
61

13860
q̄i−4 −

703
27720

q̄i−3 +
371

3960
q̄i−2 −

7303
27720

q̄i−1 +
20417
27720

q̄i +
15797
27720

q̄i+1 −
4003
27720

q̄i+2

−
947

27720
q̄i+3 +

17
3080

q̄i+4 +
1

2310
q̄i+5,

qR,P10
i−1/2 = −

1
2772

q̄i+5 +
61

13860
q̄i+4 −

703
27720

q̄i+3 +
371

3960
q̄i+2 −

7303
27720

q̄i+1 +
20417
27720

q̄i +
15797
27720

q̄i−1 −
4003
27720

q̄i−2

−
947

27720
q̄i−3 +

17
3080

q̄i−4 +
1

2310
q̄i−5.

(10)

2.2.2. Candidate interpolant Tm: non-polynomial THINC function with m-level steepness

Another candidate interpolation function in our scheme makes use of the THINC interpolation which is a differ-

entiable and monotone Sigmoid function [30, 31]. The piecewise THINC reconstruction function is written as

q̃T
i (x) = q̄min +

q̄max

2

[
1 + θ tanh

(
β

(
x − xi−1/2

xi+1/2 − xi−1/2
− x̃i

))]
, (11)

where q̄min = min(q̄i−1, q̄i+1), q̄max = max(q̄i−1, q̄i+1) − q̄min and θ = sgn(q̄i+1 − q̄i−1). The jump thickness is controlled

by the parameter β, i.e. a small value of β leads to a smooth profile while a large one leads to a sharp jump-like

distribution. The unknown x̃i, which represents the location of the jump center, is computed from constraint condition

q̄i =
1

∆x

ˆ xi+1/2

xi−1/2

q̃T
i (x)dx. More details about the property of THINC function can be referred in our previous work

[27].

Following [27], in this work we use THINC functions with β of m different values to represent different steepness,

to realize non-oscillatory and less-dissipative reconstructions adaptively for various flow structures. A THINC recon-

struction function q̃Tk
i (x) with βk gives the reconstructed values qL,Tk

i+1/2 and qR,Tk
i−1/2, (k = 1, 2, . . . ,m). We will use m up

to three in present study.

2.2.3. The BVD algorithm

The underlying high order upwind schemes (7)-(10) can achieve the targeted optimal order for smooth region.

However, numerical oscillations will appear for discontinuous solutions, such as the shock waves in high speed com-

pressible flow. As aforementioned, in the conventional high resolution schemes, nonlinear limiting projections are

designed to suppress such numerical oscillations in presence of discontinuous solutions. Unfortunately, these limiting

processes usually undermine the accuracy and can hardly retrieve the original high-order linear schemes for smooth

solutions of relatively small scales. An ideal limiting projection should maintain as much as possible the numerical

properties of the scheme that uses the original polynomial of linear weights. In this work, we present a novel re-

construction scheme based on the BVD principle, where the linear high order schemes are directly used for smooth

solutions.
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In [27], a variant BVD algorithm was devised to minimize the total boundary variation (TBV), which implies that

the reconstruction function which fits better with the flow field distribution will give a smaller boundary variation

value. Thus using monotonic interpolations results in smaller boundary variation values in presence of discontinuous

solution, whereas high-order interpolations are preferred to minimize the boundary variations for smooth region. In the

PnTm − BVD schemes presented in this paper, reconstruction function is determined from the candidate interpolants

with k-stage (k = m) BVD algorithm so as to minimize the TBV of the target cell. We denote the reconstruction

function in the target cell Ii after the k-th stage BVD as q̃<k>
i (x).

The k-stage BVD algorithm is formulated as follows.

(I): Initial stage (k = 0):

(I-I) As the first step, use the linear high-order upwind scheme as the base reconstruction scheme and initialize

the reconstructed function as q̃<0>
i (x) = q̃Pn(x)

i .

(II) The intermediate BVD stage (k = 1, . . . ,m − 1):

(II-I) Set q̃<k>
i (x) = q̃<k−1>

i (x)

(II-II) Calculate the TBV values for target cell Ii from the reconstruction of q̃<k>
i (x)

T BV<k>
i =

∣∣∣qL,<k>
i−1/2 − qR,<k>

i−1/2

∣∣∣ +
∣∣∣qL,<k>

i+1/2 − qR,<k>
i+1/2

∣∣∣ (12)

and from the THINC function q̃Tk
i (x) with a steepness βk as

T BVTk
i =

∣∣∣qL,Tk
i−1/2 − qR,Tk

i−1/2

∣∣∣ +
∣∣∣qL,Tk

i+1/2 − qR,Tk
i+1/2

∣∣∣. (13)

(II-III) Modify the reconstruction function for cells i−1, i and i + 1 according to the following BVD algorithm

q̃<k>
j (x) = q̃Tk

j (x), j = i − 1, i, i + 1; if T BVTk
i < T BV<k>

i . (14)

(III) The final BVD stage (k = m):

(III-I) Given the reconstruction functions q̃<m−1>
i (x) from above stage, compute the TBV using the recon-

structed cell boundary values from previous stage by

T BV<m−1>
i =

∣∣∣qL,<m−1>
i−1/2 − qR,<m−1>

i−1/2

∣∣∣ +
∣∣∣qL,<m−1>

i+1/2 − qR,<m−1>
i+1/2

∣∣∣, (15)

and the TBV for THINC function of βm by

T BVTm
i =

∣∣∣qL,Tm
i−1/2 − qR,Tm

i−1/2

∣∣∣ +
∣∣∣qL,Tm

i+1/2 − qR,Tm
i+1/2

∣∣∣. (16)
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(III-II) Determine the final reconstruction function for cell Ii using the BVD algorithm as

q̃<m>
i (x) =


q̃Tm

i ; if T BVTm
i < T BV<m−1>

i ,

q̃<m−1>
i ; otherwise

. (17)

(III-III) Compute the reconstructed values on the left-side of xi+ 1
2

and the right-side of xi− 1
2

respectively by

qL
i+ 1

2
= q̃<m>

i (xi+ 1
2
) and qR

i− 1
2

= q̃<m>
i (xi− 1

2
). (18)

In this study, we propose and test fifth order scheme with P4T2 − BVD, seventh order scheme with P6T3 − BVD,

ninth order scheme with P8T3 − BVD and eleventh order scheme with P10T3 − BVD. According to previous study

in [27], in all tests of the present study we use β1 = 1.1 and β2 = 1.8 for P4T2 − BVD, and β1 = 1.2, β2 = 1.1 and

β3 = 1.8 for PnT3 − BVD(n = 6, 8, 10) schemes.

Remark 1. The multi-stage BVD algorithm enables to reinforce the desired numerical properties at different stages.

In the intermediate stage (k = 1, 2, . . . ,m − 1), the oscillation-free property is realized. The final stage (k = m)

is devised to reduce numerical dissipation to capture sharp discontinuities. The parameter β in the intermediate

stage is fixed to realize the non-oscillatory property, while in the final stage the parameter β can be chosen from

1.6 to 2.2. A larger value will result in a sharper discontinuity.

Remark 2. This work provides a new framework to construct high order shock capturing schemes. As shown above,

extending the scheme from 7th to 11th order is straightforward by simply applying the high order polynomials

of the targeted order as given in (8)-(10). Our numerical experiments shows that higher-order schemes beyond

11th order can be also designed by adding more levels of THINC function and BVD algorithm in the same

spirit.

2.2.4. Spectral property

We study the spectral property of the proposed scheme by using approximate dispersion relation (ADR) analysis

described in [32]. The numerical dissipation of a scheme can be quantified through the imaginary parts of the modified

wavenumber while the numerical dispersion can be quantified with real parts. The spectral properties of different

order schemes are shown in Fig. 1 in which the spectral properties of proposed PnTm − BVD schemes at different

wave numbers are marked by the circles, and the solid lines in the same color represent the spectral properties of the

corresponding high order-linear schemes. It can be seen that the proposed schemes have almost the same spectral

property as their underlying linear upwind schemes even at high wavenumber band. However, for WENO-type high

order schemes, as shown in [32, 18] accuracy is usually undermined at high wavenumber regime although they can

recover to their underlying linear scheme at low wavenumber. The reason is that the WENO smoothness indicators
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Figure 1: Approximate dispersion and dissipation properties for different order schemes. Real parts of modified wavenumber are shown in the left
panel, while imaginary parts are shown in the right. The circles represent the spectral property of proposed PnTm −BVD schemes at different wave
numbers. The solid lines represent the spectral property of corresponding high order upwind schemes in the same color.

tends to mis-interpret high frequency waves as discontinuities. Contrarily, the proposed PnTm − BVD schemes are

designed to reduce numerical dissipations, and thus preserve the high-order upwind schemes even in high wavenumber

regime, which is hardly realized by any existing high resolution scheme based on limiting projections using nonlinear

weighting. It is noteworthy that the ADR analysis method proposed in [32] assumes that the time integration is

exact and ignores the influence of time integration scheme. However, according to the works [33, 34, 35, 36] the time

integration scheme may have strong effects on the overall scheme capability and may change the numerical dissipation

and dispersion property of a scheme. Thus the methods proposed in [33, 36] should be implemented when considering

the influence of time schemes.

3. Numerical results

In this section, some numerical experiments are performed as a demonstration of the proposed schemes. Linear

advection equations and Euler equation systems will be numerically solved. In all examples, the ratio of specific heats

is set to γ = 7/5 and CFL is set to 0.4. Time discretization schemes of the same order as the space-discretization are

applied. In the present work, linear strong-stability-preserving Runge-Kutta algorithms developed in [37] are used.

To solve Euler equations, HLLC (Harten, Lax and van Leer with Contact) Riemann solver [38] is used to calculate

the numerical fluxes. The reconstruction process is carried out in terms of characteristic variables. To solve multi-

dimensional problems, we follow [21] and use simple dimension-wise implementation for 2D Euler equations for

the sake of simplicity. As reported in [39], this simple multi-dimensional implementation is able to give adequate
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Table 1: Numerical errors and convergence rate for linear advection test. Results are computed by the proposed PnTm − BVD schemes.
Schemes Mesh L1 errors L1 order L∞ errors L∞ order

P4T2

10 2.493 × 10−1 3.852 × 10−1

20 1.174 × 10−2 4.41 1.815 × 10−2 4.41
40 3.986 × 10−4 4.88 6.309 × 10−4 4.85
80 1.274 × 10−5 4.97 2.002 × 10−5 4.98

P6T3

10 8.518 × 10−2 1.316 × 10−1

20 9.673 × 10−4 6.46 1.495 × 10−3 6.46
40 8.350 × 10−6 6.86 1.319 × 10−5 6.82
80 6.686 × 10−8 6.96 1.052 × 10−7 6.97

P8T3

10 2.733 × 10−2 4.223 × 10−2

20 8.216 × 10−5 8.38 1.269 × 10−4 8.38
40 1.816 × 10−7 8.82 2.870 × 10−7 8.79
80 3.659 × 10−10 8.96 5.756 × 10−10 8.96

P10T3

10 8.716 × 10−3 1.347 × 10−2

20 7.132 × 10−6 10.26 1.102 × 10−5 10.26
40 4.041 × 10−9 10.79 6.388 × 10−9 10.75
80 2.051 × 10−12 10.94 3.227 × 10−12 10.95

accuracy for problems involving shock waves. It should be noted here that in order to realize truly high-order schemes

for multi-dimensional Euler equations, algorithms introduced in [23, 39, 40] should be adopted.

3.1. Accuracy test for advection of one-dimensional sine wave

In order to evaluate the convergence rate of the proposed PnTm−BVD schemes, an advection test of smooth profile

was conducted on gradually refined grids. The initial smooth distribution was given by

q (x) = sin (2πx) , x ∈ [−1, 1] . (19)

We ran the computation for one period (at t = 2.0) and summarized the numerical errors and the convergence rates

for PnTm − BVD schemes in Table 1. In order to compare with the corresponding high order upwind schemes, we

also summarized numerical errors calculated by high order upwind schemes in Table 2. As expected, the proposed

PnTm − BVD schemes achieved n + 1 order convergence rates when grid elements were gradually refined. Impor-

tantly, we observed that the L1 and L∞ errors from the PnTm − BVD schemes were exactly same as those calculated

by their corresponding high order linear upwind schemes, which was in line with the conclusion from the spectral

property analysis in the previous section. These results confirm that the PnTm−BVD schemes are able to recover their

underlying high order polynomial interpolations for smooth solutions.

In order to evaluate the computational cost of the proposed schemes, we measure the computational time for the

reconstruction process to get interpolated values qL,R with 107 cells using one AMD CPU (AMD Ryzen 2970WX

4.20GHz). We also compare the cost with WENOM []. The measurement is summarized in Table 3. It can be seen

that the proposed PnTm − BVD schemes indeed cost much more than WENO schemes. However, with the order

10



Table 2: Same as table 1, but by the high-order linear upwind schemes.
Schemes Mesh L1 errors L1 order L∞ errors L∞ order

5th order UW

10 2.493 × 10−1 3.852 × 10−1

20 1.174 × 10−2 4.41 1.815 × 10−2 4.41
40 3.986 × 10−4 4.88 6.309 × 10−4 4.85
80 1.274 × 10−5 4.97 2.002 × 10−5 4.98

7th order UW

10 8.518 × 10−2 1.316 × 10−1

20 9.673 × 10−4 6.46 1.495 × 10−3 6.46
40 8.350 × 10−6 6.86 1.319 × 10−5 6.82
80 6.686 × 10−8 6.96 1.052 × 10−7 6.97

9th order UW

10 2.733 × 10−2 4.223 × 10−2

20 8.216 × 10−5 8.38 1.269 × 10−4 8.38
40 1.816 × 10−7 8.82 2.870 × 10−7 8.79
80 3.659 × 10−10 8.96 5.756 × 10−10 8.96

11th order UW

10 8.716 × 10−3 1.347 × 10−2

20 7.132 × 10−6 10.26 1.102 × 10−5 10.26
40 4.041 × 10−9 10.79 6.388 × 10−9 10.75
80 2.051 × 10−12 10.94 3.227 × 10−12 10.95

Table 3: Numerical errors and convergence rate for linear advection test. Results are computed by the proposed PnTm − BVD schemes.
7th order 9th order 11th order

PnTm − BVD 5.25 s 5.33 s 5.41 s
WENOM [] 2.48 s 3.25 s 4.12 s

increased, the cost is almost the same for PnTm − BVD schemes whereas the cost increases significantly for WENO

schemes. To increase the order from seventh- to eleventh-, the PnTm −BVD schemes only change the underlying high

order interpolations without additional complexity as WENO does.

3.2. Accuracy test for advection of a smooth profile containing critical points

We conducted the accuracy test which was more challenging for numerical schemes to distinguish smooth and

non-smooth profiles because the initial distribution contains critical points. It has been reported in [12] that WENO

type schemes do not reach their formal order of accuracy at critical points where the high order derivative does not

simultaneously vanish. Following [12, 21], the initial condition was given by

q (x) = sin(πx −
sin(πx)
π

), x ∈ [−1, 1] . (20)

The computation was conducted for ten period (t = 20). We summarize the numerical errors L1 and L∞ of the

proposed PnTm − BVD in Table 4 and those of the corresponding upwind schemes in Table 5. It can be seen that the

PnTm − BVD schemes are capable of achieving their highest possible order of accuracy in the grid refinement tests.

Compared with their corresponding upwind schemes, the PnTm − BVD schemes almost realize the same L1 and L∞

errors, which demonstrates that PnTm − BVD schemes restore upwind schemes even at critical points. However, as
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Table 4: Numerical errors and convergence rate for advection of a smooth profile containing critical points. Results are calculated by PnTm −BVD
schemes.

Schemes Mesh L1 errors L1 order L∞ errors L∞ order

P4T2

10 1.068 × 10−1 2.263 × 10−1

20 1.497 × 10−2 2.83 3.772 × 10−2 2.58
40 7.138 × 10−4 5.13 1.960 × 10−3 4.27
80 2.327 × 10−5 4.94 6.582 × 10−5 4.90
160 7.334 × 10−7 4.99 2.092 × 10−6 4.98

P6T3

10 7.969 × 10−2 1.306 × 10−1

20 2.539 × 10−3 4.97 6.565 × 10−3 4.31
40 2.610 × 10−5 6.60 8.020 × 10−5 6.36
80 2.135 × 10−7 6.93 6.654 × 10−7 6.91
160 1.691 × 10−9 6.98 5.269 × 10−9 6.98

P8T3

10 3.702 × 10−2 6.049 × 10−2

20 5.008 × 10−4 6.21 1.287 × 10−3 5.55
40 1.413 × 10−6 8.47 4.492 × 10−6 8.16
80 2.975 × 10−9 8.89 9.779 × 10−9 8.84
160 5.942 × 10−12 8.97 1.960 × 10−11 8.96

P10T3

10 1.449 × 10−2 2.837 × 10−2

20 1.222 × 10−4 6.89 3.180 × 10−4 6.48
40 9.755 × 10−8 10.29 3.357 × 10−7 9.89
80 5.472 × 10−11 10.80 1.919 × 10−10 10.77
160 4.032 × 10−14 10.40 1.472 × 10−13 10.35

shown in [12, 21], it is generally difficult for WENO type schemes to recover their underlying high order upwind

schemes particularly around the critical points.

3.3. Advection of complex waves

In order to examine the performance of the proposed scheme in solving profiles of different smoothness, we further

simulated the propagation of a complex wave [8]. The initial profile contains both discontinuities and smooth regions

with different smoothness, which is given by

q (x) =



1
6
[
G (x, β, z − δ) + G (x, β, z + δ) + 4G (x, β, z)

]
if |x + 0.7| ≤ 0.1,

1 if |x + 0.3| ≤ 0.1,

1 − |10 (x − 0.1) | if |x − 0.1| ≤ 0.1,

1
6 [F (x, α, a − δ) + F (x, α, a + δ) + 4F (x, α, a))] if |x − 0.5| ≤ 0.1,

0 otherwise,

, (21)

where functions F and G are defined as

G (x, β, z) = exp
[
−β (x − z)2

]
, F (x, α, a) =

√
max

[
1 − α2 (x − a)2 , 0

]
, (22)
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Table 5: Same as table 4, but by high-order linear upwind schemes.
Schemes Mesh L1 errors L1 order L∞ errors L∞ order

5th order UW

10 1.067 × 10−1 2.265 × 10−1

20 1.793 × 10−2 2.57 3.874 × 10−2 2.55
40 7.138 × 10−4 4.65 1.960 × 10−3 4.30
80 2.327 × 10−5 4.94 6.582 × 10−5 4.90
160 7.334 × 10−7 4.99 2.092 × 10−6 4.98

7th order UW

10 7.969 × 10−2 1.306 × 10−1

20 2.539 × 10−3 4.97 6.565 × 10−3 4.31
40 2.610 × 10−5 6.60 8.020 × 10−5 6.36
80 2.135 × 10−7 6.93 6.654 × 10−7 6.91
160 1.691 × 10−9 6.98 5.269 × 10−9 6.98

9th order UW

10 3.702 × 10−2 6.048 × 10−2

20 5.008 × 10−4 6.21 1.287 × 10−3 5.55
40 1.413 × 10−6 8.47 4.492 × 10−6 8.16
80 2.975 × 10−9 8.89 9.779 × 10−9 8.84
160 5.942 × 10−12 8.97 1.960 × 10−11 8.96

11th order UW

10 1.449 × 10−2 2.837 × 10−2

20 1.222 × 10−4 6.89 3.180 × 10−4 6.48
40 9.755 × 10−8 10.29 3.357 × 10−7 9.89
80 5.472 × 10−11 10.80 1.919 × 10−10 10.77
160 4.032 × 10−14 10.40 1.472 × 10−13 10.35

and the coefficients are

a = 0.5, z = 0.7, δ = 0.005, α = 10.0, β = log2

(
36δ2

)
. (23)

The computation was carried out for one period at t = 2.0 with a 200-cell mesh. The results calculated by the

PnTm − BVD schemes were presented in Fig. 2. It can be seen that all of schemes are free of visible numerical

oscillations and capture sharper discontinuities than conventional high order FVM schemes. With polynomial degree

increased, the extreme points of the initial profile are better resolved. It is also noted that PnTm − BVD schemes

produce almost same results for the discontinuity which is resolved by only four cells. Because the BVD algorithm

can properly choose THINC reconstruction function across discontinuities, increasing order is only effective to the

resolution of smooth regions.

3.4. Sod’s problem

As one of widely used benchmark tests for shock-capturing schemes, the Sod’s problem was employed to test the

performance of present schemes in capturing the shock front, contact discontinuity, as well as the expansion wave.

The initial distribution on computational domain [0, 1] was specified as [41]

(ρ0, u0, p0) =


(1, 0, 1) 0 ≤ x ≤ 0.5

(0.125, 0, 0.1) otherwise
. (24)
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Figure 2: Numerical results for advection of complex waves. The numerical solutions at t = 2.0 with 200 mesh cells are presented.
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The computation was carried out on a mesh of 100 uniform cells up to t = 0.25. The numerical results calculated from

the proposed scheme were shown in Fig. 3 for density fields. From the results, we observe that PnTm −BVD schemes

can solve the contact discontinuity without obvious numerical oscillations. Compared with the results produced by

other high order shock-capturing schemes [8, 12, 13, 14, 18, 19], the results of the proposed schemes are among the

best with the jump contact resolved within only two cells. We also observe that PnTm − BVD schemes of different

orders produce similar results across the contact where the THINC function is selected by the BVD algorithm. We

also mark the cells where THINC function with β = 1.8 is selected in the Fig. 3. It can be seen the BVD algorithm is

able to select the jump-like THINC function across discontinuities.

3.5. Lax’s problem

Shock schemes should be able to deal with the possibility of existing strong discontinuities such as shock waves

and detonation waves [42, 43]. In this subsection, we solved the Lax problem [5] in this subsection. The initial

condition is given by

(ρ0, u0, p0) =


(0.445, 0.698, 3.528) 0 ≤ x ≤ 0.5

(0.5, 0.0, 0.571) otherwise
. (25)

With the same number of cells as in the previous test case, we got the numerical results at t = 0.16. The density field is

plotted presented in Fig. 4. Obviously, the proposed PnTm−BVD schemes obtain accurate solutions without numerical

oscillations. Again, the BVD algorithm chooses the THINC function across the discontinuity, which produces similar

results among PnTm−BVD schemes of different order. Compared with numerical results using very high order WENO

schemes (see the Fig. 8 in [21]), the present results are one of best.

3.6. Shock density wave interaction problem

Here, we simulate the case proposed in [6] containing shocks and complex smooth flow features. The initial

condition is set as

(ρ0, u0, p0) =


(3.857148, 2.629369, 10.333333) , if 0 ≤ x ≤ 0.1,

(1 + 0.2 sin (50x − 25) , 0, 1) , otherwise.
(26)

The numerical solutions at t = 0.18 computed on 200 are shown in Fig. 5, where the reference solution plotted by the

solid line is computed by the classical 5th-order WENO scheme with 2000 mesh cells. With the order increased, the

peak of the waves is resolved more accurately.
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Figure 3: Numerical results of Sod’s problem for density field at t = 0.25 with 100 cells. The cells where THINC function with β = 1.8 is selected
are marked with solid black.
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Figure 4: Numerical results of Lax’s problem for density field at time t = 0.16 with 100 cells.
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Figure 5: Numerical results of shock/density wave interaction problem. The results with 200 mesh cells are shown.
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3.7. Two interacting blast waves

Interactive blast waves involving multiple interactions of strong shocks and rarefaction waves has been introduced

in [44]. The initial distribution is given by

(ρ0, u0, p0) =


(1, 0, 1000) , if 0 ≤ x < 0.1,

(1, 0, 0.01) , if 0.1 ≤ x < 0.9,

(1, 0, 100) , if 0.9 ≤ x < 1.

(27)

Reflective boundary conditions are imposed at the two ends of computational domain. Two blast waves are

generated by the initial jumps and then evolve, associated with violent interactions among different flow structures.

We used 400 mesh cells as used in most literature for this test problem, and depict the numerical density at time

t = 0.038 in Fig. 6 against a reference solution obtained with WENO scheme using a very fine mesh. The solution

produced by very high order WENO type schemes on 400-cell mesh can be found in the Fig. 14 [21] where solutions

are smeared significantly. On the contrary, the proposed PnTm −BVD schemes show overall better resolution and can

capture the left-most contact discontinuity with only three points.

3.8. 2D Riemann problems

Two-dimensional Riemann problems which have been proposed and extensively studied in [45, 46] are employed

to show that the extension of the new scheme to two dimensions can produce accurate, robust and non-oscillatory

solutions for compressible flows of complex structures. With different initial configurations made of 2 × 2 constant

states, the 2D Riemann problems are usually employed as benchmark tests to examine the behavior of numerical

schemes. It has been noted that Kelvin-Helmholtz instability tends to develop along the interfaces between those

states. As reported in [47, 21, 48, 49, 50, 51], capturing the discontinuities with adequate sharpness between different

states is very crucial for the development of Kelvin-Helmholtz instability and small-scale structures which can only

be generated by fine enough grids or very high order schemes.

We used a computational domain of [−0.5, 0.5] × [−0.5, 0.5], and set the initial conditions as follows,

(ρ0, u0, v0, p0) =



(1.0, −0.6259, 0.1, 1.0) x ≤ 0.0, y ≥ 0.0

(0.8, 0.1, 0.1, 1.0) x < 0.0, y < 0.0

(0.5197, 0.1, 0.1, 0.4) x > 0.0, y > 0.0

(1.0, 0.1, −0.6259, 1.0) x > 0.0, y < 0.0

. (28)

A uniform grid made of 800 × 800 cells was employed in all calculations. The numerical results solved by the

proposed schemes were presented in Fig. 7. Compared with the reference solution which can be found in [51], the

new schemes resolve correctly the major flow features. Moreover, the new schemes obtain small-scale structures
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Figure 6: Numerical results of two interacting blast waves problem for density field at t = 0.038 with 400 cells.
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caused by Kelvin-Helmholtz instability, which is a challenging for other high order schemes as reported in [51]. It

can be also observed that the vortical structures become richer as the order of schemes increases, which agrees with

the observations reported in [21] that the number of vortices depends on the order of the scheme and mesh resolution.

3.9. Double Mach Reflection

As a 2D problems involving strong shocks and vortical structures, the double Mach reflection generated by a Mach

10 hypersonic propagating planar shock reflected by a 30◦ ramp [52] is simulated here to evaluate the performance of

the new schemes. This test has been adopted widely to assess the ability of a numerical scheme to capture accurately

both the strong reflected shocks as well as the small-scale structures in the re-circulation zone. Without exact solution,

the numerical dissipation of a numerical scheme can be visually assessed by the richness of vortex structures resulted

from Kelvin-Helmholtz instabilities along the slip line in the re-circulation zone. The numerical schemes with large

numerical viscosity tend to smear out these structures. In our test, the computational domain was [0, 3.2] × [0, 1].

A right-moving Mach 10 shock was imposed with 60◦ angle relative to x-axis. The solution was computed up to

time t = 0.2 with a grid resolution of ∆x = ∆y = 1
200 . The numerical results calculated by the proposed schemes

of different order are shown in Fig. 8. Despite of the existence of strong shock waves, all PnTm − BVD schemes

successfully reproduce essentially non-oscillatory numerical results. The solution quality of the present numerical

results is competitive to other advanced high-resolution schemes, such as [52, 18]. Of particular importance, the

proposed schemes obtain well developed vortex structures along the slip line, which demonstrates the robust and

low-dissipation property of the schemes.

3.10. 2D shock-entropy wave interaction problem

In this subsection, we simulated the 2D shock entropy wave interaction problem which is usually used as one of

simplest models for flow interactions involved in compressible turbulence. Similar to that specified in [16], the initial

condition is given by

(ρ0, u0, v0, p0) =


(3.85714, 2.62936, 0, 10.33333) , if x ≤ −4,

(1 + 0.2 sin (14x cos θ + 14y sin θ) , 0, 0, 1) , otherwise.
(29)

with θ = π/6 which is the angle of the initial sine wave front with respect to the x axis. The computational domain

is [−5, 5] × [−1, 1] with periodic conditions in y direction. The mesh size of h = 1/40 was used for simulation. We

conducted the computation until t = 1.8. The numerical results calculated by PnTm−BVD schemes of different orders

are presented in Fig. 9. We also calculated the reference solution by the original WENO scheme with a finer mesh

in Fig. 10(a). With the order increased, it can be seen that the high-frequency density field is better resolved. We

plot the density distribution along y = 0.0 cross section in Fig. 10(b). Similar to the 1D case, with a higher order
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Figure 7: Numerical solutions of density field for 2D Riemann problems.
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(a) P4T2 (b) P6T3
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Figure 8: Numerical solutions for double Mach 10 refection problem. The figures show the enlarged re-circulation zone.
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(a) P4T2 (b) P6T3

(c) P8T3 (d) P10T3

Figure 9: Numerical solution for the 2D shock-entropy wave interaction problem. The density contours calculated by PnTm − BVD schemes of
different orders are presented.

reconstruction, the scheme captures the extreme points more accurately with less numerical dissipation. From this

case, it is obviously that very high order schemes are preferred to simulate problems involving small-scale structures

which are common in shock-turbulence problems.

3.11. Shock vortex interaction

In this subsection, a shock-vortex interaction test is simulated. This problem is originally proposed in [53] and

reported in [47]. As stated in [47], this test is considered as a more realistic benchmark test for evaluating high order

numerical schemes since it involves smooth vortical flow structures and discontinuous shock waves. The computation

domain is [0, 2] × [0, 1] with mesh size of h = 1/100. The reflection boundary condition is prescribed on the top and

bottom boundaries. A stationary Mach 1.5 planar shock normal to x direction and a vortex are placed at x = 0.5 and
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Figure 10: Reference solution for the 2D shock-entropy wave interaction problem (left panel) and the density distribution along y=0 cross section
by different order schemes (right panel).

(xc, yc) = (0.25, 0.5) respectively. The distribution of angular velocity inside the vortex is calculated as

uφ =


um

r
a

for r ≤ a

um
a

a2 − b2 (r −
b2

r
) for a ≤ r ≤ b

0 otherwise

, (30)

where r =
√

(x − xc)2 + (y − yc)2. The strength of the vortex is described with MV = um/c0 in which c0 is the sound

speed in upstream of the shock. The specific values of these parameters are MV = 0.9, a = 0.075 and b = 0.175.

The results of density gradient field are presented in the Fig. 11. All schemes produce essentially non-oscillatory

results. With order increased, the vortex after interacting with the shock begins to split, which agrees well with the

numerical simulation in Fig. 9 of [54]. From the observation in [54], the splitting of the vortex can only be resolved

with less dissipative scheme. It verifies hence that the high order schemes presented in this paper are able to obtain

high resolution results for problems involving shock waves and smooth vortical features.

4. Concluding remarks

In this study, a new type of very high order reconstruction schemes, so-called PnTm − BVD, is proposed in the

finite volume framework. The new scheme hybridizes polynomial of degree n and THINC function with m-level

steepness. The effective reconstruction function in each cell is determined by the BVD algorithm which minimizes

the numerical dissipation. High order accuracy can be realized in an efficient and straightforward way by directly
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Figure 11: Numerical Schlieren images obtained by the proposed PnTm − BVD schemes of different orders. The computation was conducted with
a mesh spacing of h = 1/100.

increasing the degree of polynomial. We extend the new scheme to eleventh order in present study. The spectral

analysis and numerical tests show that the PnTm − BVD schemes can retrieve the underlying low-dissipation linear

schemes over all wave numbers for smooth solutions. The benchmark tests verify that the proposed schemes can

capture sharp discontinuities with numerical oscillations effectively suppressed. Moreover, as the order is increased,

small-scale flow features can be resolved with much less numerical dissipation. Thus this work provides an innovative

and practical alternative approach for spatial reconstructions of very high order for finite volume method to solve

hyperbolic conservative systems that contain discontinuous and smooth solutions of various scales. In future works,

we will apply the proposed schemes to complex systems including acoustic waves, turbulence and moving interfaces.

For example, one of our recent work [55] shows the PnTm−BVD is able to achieve promising results for compressible

turbulence flow.
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