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1 INTRODUCTION 
In the field of underwater source localization, inversion remains the reference baseline. This 
approach consists of making a comparison between an analytical model of the expected acoustic 
pressure measured by an array antenna and the real captured one. By definition, the models are 
however limited to the knowledge available on the propagating medium while the propagated 
acoustic signal is subject to natural unpredictable ocean fluctuations. For instance, the internal 
waves may create spatio-temporal dynamics of the sound velocity, which introduces strong 
perturbations of the wave front1. The unpredictable acoustic wave echo due to a random seabed 
may produce such wave perturbations as well. The difficulty to integrate the random aspects of 
these natural phenomena into a physical model is the main source of the coherence loss observed 
in practice between sensors of a same antenna. In the literature, a lot of studies characterize a 
region in the ocean by analyzing the observed loss of coherence2,3,6. Some experiments have also 
been carried out in a tank to reproduce the loss of coherence on a measured signal, with the 
objective of proposing new processing methods12,13. 

In this paper, we are interested in the investigation of some processing methods that automatically 
correct the loss of coherence from the interpretation of the observed signal in situ. Among the 
various approaches we can think of, machine-learning techniques stand for an appropriate solution 
to deal with any losses of coherence10 as they do not require any prior knowledge on the 
propagating medium but learn it instead. These techniques however require consistent training 
databases that may prevent their use in embedded acquisition systems. In this paper, we propose a 
new inversion method exploiting statistical knowledge on the acquired pressure field. If the 
perturbation is considered to be a stationary random process, the random characteristics are not 
depending on the time or, equivalently, the snapshot index. In that case, we can infer some 
parameters of the process, under an additional Gaussian assumption. Knowing the covariance 
matrix, it is consequently possible to cancel out any effects of the coherence loss8,11. But, the 
random ocean fluctuations make this random process not stationary in practice, leading to both 
spatial and temporal perturbation of the acoustic field. As a consequence, the coherence loss will 
not be the same from one snapshot, e.g. one time, to another. In a recent paper, this problem is 
addressed by a mixture model that classifies each snapshot according to two classes: “coherent” or 
“not coherent”7. This can be interpreted as a snapshot weighting method which gives a higher 
weight to those coherent snapshots. The problem may also be addressed from the point of view of 
sub-antenna processing4. In such a case, we suppose that each sub-antenna of each snapshot is 
locally coherent, thus, each sub-antenna independently applies a conventional localization method, 
such as a beamforming method. 

In this paper, we propose a decision model that combines both the idea of sub-antenna processing 
and the concept of snapshot weighting. Unlike Cox’s works4, our sub-antenna structure is not based 
on adjacent antenna pieces, each sub-antenna results from a sliding Gaussian function instead. In 
addition, unlike Ge’s works7, we make the hypothesis that we know neither the signal power nor the 
noise power, and also, that we do not know the prior probability distribution of a coherent snapshot. 
Instead, we make use of the so-called “Mutual Coherence Function” to identify how coherent is a 
measured snapshot. In order to model the loss of coherence, we exploit a multiplicative noise, as 
recommended by Flatté5. This type of noise is indeed well-suited to model a perturbation attached 
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to an incoming wave, noticing that a multiplicative noise on the expected pressured field leads to an 
additive noise on the incoming wave phase. In the experiments, we show that our spatio-temporal 
weighting approach may outperform a conventional beam-former and some other baselines. 
 
The paper is organized as follows. In section 2 we present the model used to characterize the 
coherent loss, in section 3 we present the model of source localization, in section 4 we propose 
experimental comparisons with baseline references, and we finally conclude in section 5. 
 
 
2 MODEL OF LOSS OF COHERENCE 
In this paper, we restrict our study to a single monochromatic source. Formally, let f be the emitting 
frequency of the source and θ its position. Note that this position may be the direction of arrival of 
plane waves or the {range, elevation} coordinates of spherical waves. Let "#(%) ∈ ℂ be the Fourier 
representation of the emitted signal at the frequency ) at time +. Considering an array composed of 
, sensors, the model of a coherent received signal usually takes the following form: 

 -# = "#(%)/(%) + 1# (1) 
Where -# ∈ ℂ2×4 denotes a snapshot, i.e. a Fourier representation of the captured signal at 
frequency ) at time +, and /(%) ∈ ℂ2×4 denotes a physical model of -#. For instance, when the 
source is far enough, we consider that the acoustic propagation can take the form of a plane wave:  

 /(%) = 56789:∆ <=>(?)
 , 6789:8∆ <=>(?)

 , … , 6789:2∆<=>(?)
 #

$
 (2) 

Where .$ stands for the transpose operator, & denotes the sound celerity and ∆ the distance 
between two consecutive sensors. The white additive noise 1# ∈ ℂ2×4 represents some electrical 
noise that follows a multivariate complex normal distribution: '(1#) = ()(*, +#8,2), with zero mean 
and a diagonal covariance matrix +#8,2, with +# ∈ ℝ proportional to the noise power and ,2 ∈ ℝ2×2 
the identity matrix. In this paper, we assume that we do not know +#. 
 
Let .# ∈ ℂ2×4 be a random vector modeling the loss of coherence due to the fluctuations of the 
propagating medium. We assume that it is distributed according to a zero-mean multivariate 
complex normal distribution of covariance matrix /# ∈ ℝ2×2 : '(.#) = ()(*, /#). In comparison to 
the white noise 1# that has independent components, the components of .# are assumed to be 
statistically dependent. Formally, it is implemented into the observation model (1) as a multiplicative 
noise:  

 -# = "#(%)0/(%) × .#1 + 1# (3) 
Where the operator × denotes an element-by-element vector multiplication. 
 
Let us now consider some more interpretations. The model of multiplicative noise is not new in the 
literature. Flatté has considered this model to study and statistically characterize different regimes 
of fluctuations5. De facto, multiplicative complex noise is well-suited to model additive phase noise 
(and some kind of attenuation) on incoming waves. Here, we assume a not-diagonal covariance 
matrix /#, such that we are able to statistically model the sensor dependencies. In practice, it is 
possible to relate the elements of /# to the local coherence length of the fluctuation, say 2 , so that 
it validates the effectively observed correlation between two sensors of the array, depending on 
their distance. Hence each element /#(34, 38) of the covariance matrix is Gaussian-like expressed 
as:  

 /#(34, 38) = 6
45.6(78479)9

:;9  (4) 
 
The way the signal is coherent in time and space is then directly modeled by the way the sensors 
are correlated. In figure 1, we show three realizations of three different random processes that we 
have simulated. In this figure, we plot the phase of the coherence loss arg (.#) for each sensor of 
each snapshot. For instance, in figure 1-a, by changing the covariance matrix /# at each snapshot, 
we have been able to generate a loss of coherence that is not stationary, the coherence loss being 
spatially constant. In figure 1-b, we have simulated a loss of coherence from a single covariance 
matrix /#, making the realization stationary, but the loss of coherence is not spatially constant in the 

112



Proceedings of the Institute of Acoustics 
 
 

Vol. 38. Pt. 3. 2016 
 

array: the first part of the antenna is more coherent than the second part. In figure 1-c, we combine 
the two previous cases: the random process that generate .# is not stationary and the loss of 
coherence is not spatially constant. This paper takes place in the context of the general scenario of 
figure 1-c that involves losses of coherence that are not constant in both space and time. 
 

arg (.#) 

 
(a) 

arg (.#)  

 
(b) 

arg (.#) 

 
(c) 

Figure 1. We plot the phase of the loss of coherence arg (.#) as a function of both the sensor index 
and the snapshot index. Figure 1-a: the random process .# is depending on time and the loss of 
coherence is spatially constant. Figure 1-b: the random process .# is not depending on time and 
the loss of coherence is not spatially constant. Figure 1-c: the random process .# is not depending 
on time and the loss of coherence is not spatially constant. 
 
 
3 MODELS OF SOURCE LOCALIZATION 
3.1 Conventional beamforming 

The conventional beamforming is used for any source signal which is modelled from the expression 
(1). It consists in finding the source position that maximizes the estimated source signal intensity:  

 %? = argmax
?

B|"̂#(%)|8
$

#E4
 (5) 

Where F denotes the number of snapshots. The optimization problem (5) is greedy solved by grid 
search. The estimated source signal intensity is the solution of the square error minimization 
problem:  

 "̂#(%) = argmin
IJ(?)

‖-# − "#(%)/(%)‖8 (6) 
The solution of (6) being given by "̂#(%)=/(%)M-# /(%)N/(%)⁄ , the conventional beam-former thus 
takes the form of:  

 %? = argmax
?

BP /(%)M-#
/(%)N/(%)P

8$

#E4
 (7) 

 
 

3.2 Temporal weighting 

In this part, we consider that the source signal is subject to some loss of coherence accordingly to 
expression (3). In addition, we consider that the loss of coherence .# is random sampled from a 
random process that is not stationary but spatially constant. Examples of such realizations are given 
in figure 1-a. Ge has proposed a method to weight each snapshot contribution7, but it requires to 
know some environmental parameters such as the signal power, the white noise power, and also, 
the prior probability that a snapshot is coherent. Instead, in this paper, the method we investigate is 
not depending of such crucial parameters. We just extend the expression (5), by adding a weighting 
variable Q# that indicates how coherent a snapshot is:  
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 %? = argmax
?

BQ# P
/(%)M-#

/(%)N/(%)P
8$

#E4
 (8) 

The weighting parameter is expressed as follows:  
 Q# = R|S7(-#)| T3 (9) 

Where S7(-#), also called the “Mutual Coherence Function”3,12,13, measures the averaged statistical 
correlation in the complex domain between two sensors separated by 3 sensors:  

 S7(-#) =
∑ -#(V)N-#(V + 3)W

X∑ |-#(V)|8W  X∑ |-#(V + 3)|8W
 (10) 

For a given measured snapshot, if all the sensors are coherent, thus |S7(-#)| = 1 for all 3 and thus 
Q# = 1. On the contrary, in the presence of coherence loss, we observe that |S7(-#)| tends toward 0 
when 3 is increasing, by consequence  Q# tends toward 0. 
 
 
3.3 Spatial weighting 

In this section, we design a sub-antenna model from a weighting vector Z7 ∈ ℝ2×4, where:  

 Z7 = [645.6\
744
] ^

9

, … , 645.6\
742
] ^

9

_
$
 (11) 

The shape of each sub-antenna is therefore drawn from a Gaussian-like function, the parameter ` 
being setting the sub-antenna length. Doing so, we aim to mimicking the front distortion of the 
incoming waves induced by some fluctuations modeled as in (3), the parameter ` playing a similar 
role as the coherence length 2 .. We ensure that each sensor is a centroid of coherence by making 
the Gaussian sliding along the antenna. There are consequently as many sub-antennas as there 
are sensors in the antenna. The beam-former therefore takes into account the contribution of each 
snapshot of each sub-antenna:  

 %? = argmax
?

BBa"̂7,#(%)a
8

$

#E4

2

7E4
 (12) 

Where "̂7,#(%) ∈ ℂ denotes the Fourier representation of this signal in % from the point of view of the 
sub antenna. In addition, we make the major assumption that the sensors are locally coherent. In 
other words, we consider that there is not any loss of coherence in a sub antenna drawn by Z7. 
Accordingly, the model (3) can be rewritten in its coherent form:  

 0b7 × -#1 = "7,#(%)/(%) + 1# (13) 
The estimated source signal intensity is the solution of the square error minimization problem:  

 "̂7#(%) = argmin
IJ(?)

c0b7 × -#1 − "7,#(%)/(%)c
8 (14) 

This leads to the following sub-antenna beam-former:  

 %? = argmin
?

BBP/(%)
M0b7 × -#1

/(%)N/(%) P
8$

#E4

2

7E4
 (15) 

 
 
3.4 Spatio-temporal weighting 

The method we investigate in this section combines both the spatial weighting of section 3.3 and 
the temporal weighting of section 3.2. The proposed beam-former is a combination of equations (8) 
and (15):  

 %? = argmax
?

BBQ7,# P
/(%)M0b7 × -#1

/(%)N/(%) P
8$

#E4

2

7E4
 (16) 

According to section 3.2, the weight Q7,# is a coherence indicator of the +th snapshot received by the 
3th sub-antenna, drawn by the Z7weighting: 

 Q7,# = RaS7(-7,#)a T3 (17) 
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Where S7(-7,#) is defined as in equation (10). This approach allows us to weight each sub-antenna 
according to its observed intrinsic loss of coherence. 
 
In figure 2-b, we give the evaluated dQ7,#e, for all 3, +, for the particular realization of the sampled 
noise .# given in figure 2-a. In this experiment, we have random sampled a snapshot before we 
have added the coherent noise f.#g and computed dQ7,#e by using equation (17). The signal-to-
noise ratio related to the additive white noise 1# is infinite (noiseless case). As expected, the more 
the coherence loss .#, the closer to 0 the weighting parameter Q7,#. On the contrary, when the loss 
of coherence is constant between some sensors, the corresponding weighting parameter is close to 
0. 

arg (.#) 

 
(a) 

Q7,# 

 
(b) 

Figure 2. In figure 2-a, we show arg (.#) the phase of a dynamic random loss of coherence as a 
function of both the snapshot index and the sensor index. In figure 2-b, we show the corresponding 
weighting parameter Q7,#. 
 
 
4 EXPERIMENTS 
4.1 Simulation protocol 

We consider the problem of assessing the direction of arrival (DOA) of a plane wave. The distance 
∆ between two consecutive sensors is chosen such that the Shannon property remains valid: ∆=  

8:. 
In this context, the replica /(%) is given by model (2). We consider an antenna composed of , = 32 
sensors. The inverse problem is solved by searching in a grid 128 possible DOA in j49k , 9kl. We 
consider m = 5000 Monte Carlo iterations to compute an average localization error. More precisely, 
at each iteration p ∈ f0, … , mg, we random sample a DOA %q ∈ j49k , 9kl. Let %?q be the estimated DOA, 
we then compute the normalized localization error and we deduce the mean localization error 
from: k

89r ∑ a%q − %?qar
qE4 . 

 
We generate the received pressure field according to model (3). We consider the following scenario 
where the first snapshot is assumed to be the only one “partly coherent”. This is illustrated in figure 
3-a and b by the covariance matrices used to draw the coherence losses of the snapshots. More 
precisely, the loss .4 of the first snapshot is generated from the covariance matrix /4 that is shown 
in figure 3-a. This covariance matrix is such that the coherence loss is weak (the coherence length 
equals 2 = 10 sensors) on the first part of the antenna, while it is strong on the other part of the 
antenna, with a coherence length of 2 = 0.1 sensors. For the other snapshots, the loss of 
coherence is assumed also strong, with a coherence length of 2 = 0.1 sensors along the antenna. 
The covariance matrix /#, for all + ≠ 1, is shown in figure 3-b. Note that, in order to random sample 
.#, we must ensure that the covariance matrix /# is positive definite. We therefore replace /# by a 
nearest positive one: /# ← u/#

M/#v
4/8 + ,,2. 
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In this paper, the free parameter ` in (11) is empirically set to ` = 4 sensors, whatever the 
coherence length 2 . In this regard, it is worth noticing that the link between both parameters 2  and 
` is not obvious. The first one is part of a probabilistic model, and as such, will be representative of 
an average behavior of the coherence loss, while the other set deterministically the weights given to 
each sensor within the sub-antennas. In practice, this choice of ` = 4, although clearly not optimal, 
was sufficient to get the good results presented in the next subsection. We discuss further possible 
optimization developments of parameter ` in section 4.3. 

/4

 
(a) 

/#y4  

 
(b) 

Figure 3. The loss of coherence .4 associated to the first snapshot is random sampled from the 
covariance /4 shown in figure 3-a. All the next snapshots are generated by using a random loss of 
coherence which is sampled from the covariance matrix /#y4 shown in figure 3-b. 
 
 
4.2 Results 

Figure 4 compares the four localization methods presented in section 3. Each subfigure reports the 
average localization error as a function of a particular parameter. In figures 4-a-c-d, the 
experimental setup is such that the proportion of coherent sensors in the first snapshots is set to 0.5 
according to the covariance matrix in figure 3-a. In figures 4-b-c-d, the signal-to-noise ratio (SNR) of 
the random white noise 1# is set to 20dB. In figures 4-a-b-d, there are F = 10 snapshots. 
 
In figure 4-a, the average localization error is reported as a function of the SNR of the random white 
noise 1#. As expected, the less the SNR the more the localization error, but in a favorable case of 
positive SNR, we find that the spatio-temporal weighting outperforms the other approaches by a 
factor of two. We also notice the improvement brought by a spatial weighting and a temporal 
weighting that both outperform a conventional beam-forming. 
 
In figure 4-b, the localization error is reported as a function of the proportion of coherent sensors in 
the first snapshot. When the proportion is set to 0, none of the sensors are coherent in the first 
snapshot, making the localization task very tough and the error very high. On the contrary, we 
observe a very low localization error when this proportion tends toward one, all the sensors being 
consequently coherent. In between, when the proportion between the number of coherent and not 
coherent sensors is more balanced, the spatio-temporal approach is able to identify the informative 
part which makes the localization error decreased. 
 
In figure 4-c, the localization error is reported as a function of the number of snapshots. We note 
that the spatio-temporal processing drastically outperforms any other approach even if the 
localization error increases when the number of snapshots increases. The reason why the error 
increases as the number of snapshots increases is that all the snapshots we add are fully not 
coherent, as describes in section 4.1. 
 
In figure 4-d, the localization error is reported as a function of the coherence length 2  (equation (4)) 
in the coherent part of the first snapshot. Similarly to the previous results, we note that the proposed 
spatio-temporal outperforms by a factor of two. 
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(a)  

(b) 

 
(c)  

(d) 
Figure 4. We compare the localization performance of the methods presented in section 3. In figure, 
4-a, the average localization error is reported as a function of the Signal to Noise Ratio (SNR) of the 
white noise 1#. In figure 4-b, it is reported as a function of the proportion of coherent sensors in the 
first snapshot. In figure 4-c, it is reported as a function of the number of snapshots. In figure 4-d, it is 
reported as a function of the coherence length 2  in equation (4). 
 
 
4.3 Discussion and perspectives 

On the first hand, the simulation results we have obtained are very encouraging and promising. 
Figure 4 indeed shows that our proposed method outperforms some well-known baselines in the 
scenario that we have considered. On the second hand, it raises numerous questions about both 
the applicability and the perspective of the approach. 
 
The methods, called “spatial weighting” and “spatio-temporal weighting”, respectively presented in 
sections 3.3 and 3.4, are roughly based on sub-antenna processing. The consequence of such a 
smaller antenna is a reduction of the spatial resolution. This may be an issue in multi-source cases. 
Especially, the averaging effect may, if not increase, at least fail to improve the localization error in 
the case of low SNR. As an example, in figure 4-a, in the case of low SNR, there is no improvement 
by using these sub-antenna approaches. We therefore encourage the development of high-resolute 
versions of sub-antenna processing. For instance, a techniques exploiting more prior information on 
the sources, as sparsity, may be adapted in that specific case9. 
 
In this paper, the free parameter ` has been set empirically. Instead, this could be addressed from 
the point of view of an optimization problem that consists of finding the best parameter value, the 
one that matches the best with the data. For instance, a dynamic parameter `7,# that depends on 
both the sensor index and on the snapshot index would be interesting. In the example of figure 1-b, 
a low value should be reached in the noisy part of the antenna, while a high value should be 
reached in the coherent part. Moreover, it should be possible to define the vector Z7 as a discrete 
vector, the objective being to directly optimize its components. For instance, the objective function 
to optimize could be dependent on the Mutual Coherence Function integration (17). 
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Finally, it would be of interest to evaluate the proposed approach on a real dataset acquired in situ. 
The data measurements carried out by Badiey et. al. reveal a huge temperature dynamics and, 
consequently, a spatio-temporal variation of the sound velocity profile1. The effects of such 
observed losses of coherence could be dealt with our proposed approach. To complete this task, it 
is possible to extend the model (2) to broadband signal as well as to multi modal propagated signals 
in shallow water. 
 
 
5 CONCLUSION 
We have proposed a method to deal with the problem of spatio-temporal dynamic fluctuation of a 
propagation channel. This method combines the optimality of the sub-antenna processing as well 
as the idea of weighting the snapshots according to their degree of coherence. 
 
The approach is assessed through various synthetic experimentations paving the way of promising 
developments. Future work will in particular focus on introducing more prior information on each 
sub-antenna processing in order to deal with the multi-source case.  
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