
HAL Id: hal-02892363
https://hal.science/hal-02892363v1

Submitted on 7 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random Forest for Dissimilarity-based Multi-view
Learning

Simon Bernard, Hongliu Cao, Robert Sabourin, Laurent Heutte

To cite this version:
Simon Bernard, Hongliu Cao, Robert Sabourin, Laurent Heutte. Random Forest for Dissimilarity-
based Multi-view Learning. Handbook of Pattern Recognition and Computer Vision, 6, World Scien-
tific, pp.119-138, 2020, �10.1142/9789811211072_0007�. �hal-02892363�

https://hal.science/hal-02892363v1
https://hal.archives-ouvertes.fr

Random Forest for Dissimilarity-based
Multi-view Learning

Simon Bernard1, Hongliu Cao1,2,
Robert Sabourin2, Laurent Heutte1

1 Normandie Univ, UNIROUEN, UNIHAVRE, INSA Rouen,
LITIS, 76000 Rouen, France

2 LIVIA, École de Technologie Supérieure (ÉTS),
Université du Québec, Montreal, QC, Canada

simon.bernard@univ-rouen.fr, caohongliu@gmail.com,
robert.sabourin@etsmtl.ca, laurent.heutte@univ-rouen.fr

Abstract

Many classification problems are naturally multi-view in the sense their
data are described through multiple heterogeneous descriptions. For such
tasks, dissimilarity strategies are effective ways to make the different de-
scriptions comparable and to easily merge them, by (i) building inter-
mediate dissimilarity representations for each view and (ii) fusing these
representations by averaging the dissimilarities over the views. In this
work, we show that the Random Forest proximity measure can be used
to build the dissimilarity representations, since this measure reflects sim-
ilarities between features but also class membership. We then propose a
Dynamic View Selection method to better combine the view-specific dis-
similarity representations. This allows to take a decision, on each instance
to predict, with only the most relevant views for that instance. Experi-
ments are conducted on several real-world multi-view datasets, and show
that the Dynamic View Selection offers a significant improvement in per-
formance compared to the simple average combination and two state-of-
the-art static view combinations.

1 Introduction
In many real-world pattern recognition problems, the available data are complex
in that they cannot be described by a single numerical representation. This
may be due to multiple sources of information, as for autonomous vehicles for
example, where multiple sensors are jointly used to recognize the environment[1].
It may also be due to the use of several feature extractors, such as in image
recognition tasks, often based on multiple representations of features, such as
color, shape, texture descriptors, etc.[2]

Learning from these types of data is called multi-view learning and each
modality/set of features is called a view. For this type of task, it is assumed

1

that the views convey different types of information, each of which can con-
tribute to the pattern recognition task. Therefore, the challenge is generally
to carry out the learning task taking into account the complementarity of the
views. However, the difficulty with this is that these views can be very differ-
ent from each other in terms of dimension, nature and meaning, and therefore
very difficult to compare or merge. In a recent work[2], we proposed to use
dissimilarity strategies to overcome this issue. The idea is to use a dissimilar-
ity measure to build intermediate representations from each view separately,
and to merge them afterward. By describing the instances with their dissimi-
larities to other instances, the merging step becomes straightforward since the
intermediate dissimilarity representations are fully comparable from one view
to another.

For using dissimilarities in multi-view learning, two questions must be ad-
dressed: (i) how to measure and exploit the dissimilarity between instances for
building the intermediate representation? and (ii) how to combine the view-
specific dissimilarity representations for the final prediction?

In our preliminary work[2], the first question has been addressed with Ran-
dom Forest (RF) classifiers. RF are known to be versatile and accurate classi-
fiers[3, 4] but they are also known to embed a (dis)similarity measure between
instances[5]. The advantage of such a mechanism in comparison to traditional
similarity measures is that it takes the classification/regression task into account
for computing the similarities. For classification for example, the instances that
belong to the same class are more likely to be similar according to this measure.
Therefore, a RF trained on a view can be used to measure the dissimilarities
between instances according to the view, and according to their class member-
ship as well. The way this measure is used to build the per-view intermediate
representations is by calculating the dissimilarity of a given instance x to all
the n training instances. By doing so, x can be represented by a new feature
vector of size n, or in other words in a n-dimensional space where each dimen-
sion is the dissimilarity to one of the training instances. This space is called the
dissimilarity space[6, 7] and is used as the intermediate representation for each
view.

As for the second question, we addressed the combination of the view-specific
dissimilarity representations by computing the average dissimilarities over all the
views. That is to say, for an instance x, all the view-specific dissimilarity vectors
are computed and averaged to obtain a final vector of size n. Each value in this
vector is thus the average dissimilarity between x and one of the n training
instances over the views. This is a simple, yet meaningful way to combine the
information conveyed by each view. However, one could find it a little naive
when considering the true rationale behind multi-view learning. Indeed, even
if the views are expected to be complementary to each other, they are likely to
contribute in very different ways to the final decision. One view in particular is
likely to be less informative than another, and this contribution is even likely
to be very different from an instance to predict to another. In that case, it is
desirable to estimate and take this importance into account when merging the
view-specific representations. This is the goal we follow in the present work.

In a nutshell, our preliminary work[2] has validated the generic framework
explained above, with the two following key steps: (i) building the dissimilar-
ity space with the RF dissimilarity mechanism and (ii) combining the views
afterward by averaging the dissimilarities. In the present work, we deepen the

2

second step by investigating two methods to better combine the view-specific
dissimilarities:

1. combining the view-specific dissimilarities with a static weighted average,
so that the views contribute differently to the final dissimilarity repre-
sentation; in particular, we propose an original weight calculation method
based on an analysis of the RF classifiers used to compute the view-specific
dissimilarities;

2. combining the view-specific dissimilarities with a dynamic combination,
for which the views are solicited differently from one instance to predict
to another; this dynamic combination is based on the definition of a region
of competence for which the performance of the RF classifiers is assessed
and used for a view selection step afterward.

The rest of this chapter is organized as follows. The Random Forest dissimi-
larity measure is firstly explained in Section 2. The way it is used for multi-view
classification is detailed in Section 3. The different strategies for combining the
dissimilarity representations are given in Section 4, along with our two proposals
for static and dynamic view combinations. Finally, the experimental validation
is presented in Section 5.

2 Random Forest Dissimilarity
To fully understand the way a RF classifier can be used to compute dissimilar-
ities between instances, it is first necessary to understand how an RF is built
and how it gives a prediction for each new instance.

2.1 Random Forest
In this work, the name ”Random Forest” refers to the Breiman’s reference
method[3]. Let us briefly recall its procedure to build a forest of M Decision
Trees, from a training set T . First, a bootstrap sample is built by random draw
with replacement of n instances, amongst the n training instances available in
T . Each of these bootstrap samples is then used to build one tree. During this
induction phase, at each node of the tree, a splitting rule is designed by select-
ing a feature over mtry features randomly drawn from the m available features.
The feature retained for the splitting rule at a given node is the one among the
mtry that maximizes the splitting criterion. At last, the trees in RF classifiers
are grown to their maximum depth, that is to say when all their terminal nodes
(also called leaves) are pure. The resulting RF classifier is typically noted as:

H(x) = {hk(x), k = 1, . . . ,M} (1)

where hk(x) is the kth Random Tree of the forest, built using the mechanisms
explained above[3, 8]. Note however that there exist many other RF learning
methods that differ from the Breiman’s method by the use of different random-
ization techniques for growing the trees[9].

For predicting the class of a given instance x with a Random Tree, x goes
down the tree structure from its root to one of its leaves. The descending path

3

followed by x is determined by successive tests on the values of its features, one
per node along the path. The prediction is given by the leaf in which x has
landed. More information about this procedure can be found in the recently
published RF reviews[10, 8, 9]. The key point here is that, if two test instances
land in the same terminal node, they are likely to belong to the same class and
they are also likely to share similarities in their feature vectors, since they have
followed the same descending path. This is the main motivation behind using
RF for measuring dissimilarities between instances.

Note that the final prediction of a RF classifier is usually obtained via ma-
jority voting over the component trees. Here again, there exist alternatives to
majority voting[9], but this latter remains the most used as far as we know.

2.2 Using Random Forest for measuring dissimilarities
The RF dissimilarity measure is the opposite measure of the RF proximity (or
similarity) measure defined in Breiman’s work[3, 10, 2], the latter being noted
pH(xi,xj) in the following.

The RF dissimilarity measure is inferred from a RF classifier H, learned from
T . Let us firstly define the dissimilarity measure inferred by a single Random
Tree hk, noted dk: let Lk denote the set of leaves of hk, and let lk(x) denote
a function from the input domain X to Lk, that returns the leaf of hk where
x lands when one wants to predict its class. The dissimilarity measure dk is
defined as in Equation 2: if two training instances xi and xj land in the same
leaf of hk, then the dissimilarity between both instances is set to 0, else it is
equal to 1.

dk(xi,xj) =

{
0, if lk(xi) = lk(xj)
1, otherwise

(2)

The dk measure is the strict opposite of the tree proximity measure pk[3, 10],
i.e. dk(xi,xj) = 1− pk(xi,xj).

Now, the measure dH(xi,xj) derived from the whole forest consists in calcu-
lating dk for each tree in the forest, and in averaging the resulting dissimilarity
values over the M trees, as follows:

dH(xi,xj) =
1

M

M∑
k=1

dk(xi,xj) (3)

Similarly to the way the predictions are given by a forest, the rationale is that
the accuracy of the dissimilarity measure dH relies essentially on the averaging
over a large number of trees. Moreover, this measure is a pairwise function dH :
X × X → R+ that satisfies the reflexivity property (dH(xi,xi) = 0), the non-
negativity property (dH(xi,xj) ≥ 0) and the symmetry property (dH(xi,xj) =
dH(xj ,xi)). Note however that it does not satisfy the last two properties of the
distance functions, namely the definiteness property (dH(xi,xj) = 0 does not
imply xi = xj) and the triangle inequality (dH(xi,xk) is not necessarily less or
equal to dH(xi,xj) + dH(xj ,xk)).

As far as we know, only few variants of this measure have been proposed in
the literature[5, 11]. These variants differ from the measure explained above in
the way they infer the dissimilarity value from a tree structure. The motivation
is to design a finer way to measure the dissimilarity than the coarse binary value

4

given in Equation 2. This coarse value may seem intuitively too superficial to
measure dissimilarities, especially considering that a tree structure can provide
richer information about the way two instances are similar to each other.

The first variant[5] modifies the pH measure by using the path length from
one leaf to another when two instances land in different leaf nodes. In this way,
pk(xi,xj) does not take its value in {0, 1} anymore but is computed as follows:

pH(xi,xj) =
1

M

M∑
k=1

pk(xi,xj) =
1

M

M∑
k=1

1

exp (w.gijk)
(4)

where, gijk is the number of tree branches between the two terminal nodes
occupied by xi and xj in the kth tree of the forest, and where w is a parameter to
control the influence of g in the computation. When lk(xi) = lk(xj), dk(xi,xj)
is still equal to 0, but in the opposite situation the resulting value is in]0, 1].

A second variant[11], noted RFD in the following, leans on a measure of
instance hardness, namely the κ-Disagreeing Neighbors (κDN) measure[12], that
estimates the intrinsic difficulty to predict an instance as follows:

κDN(xi) =
|xk : xk ∈ κNN(xi) ∩ yk 6= yi|

κ
(5)

where κNN(xi) is the set of the κ nearest neighbors of xi. This value is used
for measuring the dissimilarity d̂k(x,xi), between any instance x to any of the
training instances xi, as follows:

d̂k(x,xi) =

∑M
k=1(1− κDNk(xi))× dk(x,xi)∑M

k=1(1− κDNk(xi))
(6)

where κDNk(xi)) is the κDN measure computed in the subspace formed by the
sole features used in the kth tree of the forest.

Any of these variants could be used to compute the dissimilarities in our
framework. However, we choose to use the RFD variant in the following, since
it has been shown to give very good results when used for building dissimilarity
representations for multi-view learning[11].

3 The dissimilarity representation for multi-view
learning

3.1 The dissimilarity space
Among the different dissimilarity strategies for classification, the most popular
is the dissimilarity representation approach[6]. It consists in using a set R of m
reference instances, to build a n×m dissimilarity matrix. The elements of this
matrix are the dissimilarities between the n training instances in T and the m
reference instances in R:

D(T,R) =

d(x1,p1) d(x1,p2) . . . d(x1,pm)
d(x2,p1) d(x2,p2) . . . d(x2,pm)

.
d(xn,p1) d(xn,p2) . . . d(xn,pm)

 (7)

5

where d stands for a dissimilarity measure, xi are the training instances and pj

are the reference instances. Even if T and R can be disjoint sets of instances,
the most common is to take R as a subset of T , or even as T itself. In this work,
for simplification purpose, and to avoid the selection of reference instances from
T , we choose R = T . As a consequence the dissimilarity matrix D is always a
symmetric n× n matrix.

Once such a squared dissimilarity matrix is built, there exist two main ways
to use it for classification: the embedding approach and the dissimilarity space
approach[6]. The embedding approach consists in embedding the dissimilarity
matrix in a Euclidean vector space such that the distances between the objects
in this space are equal to the given dissimilarities. Such an exact embedding is
possible for every symmetric dissimilarity matrix with zeros on the diagonal[6].
In practice, if the dissimilarity matrix can be transformed in a positive semi-
definite (p.s.d.) similarity matrix, this can be done with kernel methods. This
p.s.d. matrix is used as a pre-computed kernel, also called a kernel matrix. This
method has been successfully applied with RFD along with SVM classifiers[13,
2].

The second approach, the dissimilarity space strategy, is more versatile and
does not require the dissimilarity matrix to be transformed into a p.s.d. sim-
ilarity matrix. It simply consists in using the dissimilarity matrix as a new
training set. Indeed, each row i of the matrix D can be seen as the projection
of a training instance xi into a dissimilarity space, where the jth dimension is
the dissimilarity with the training instance xj . As a consequence, the matrix
D(T, T) can be seen as the projection of the training set T into this dissimilar-
ity space, and can be fed afterward to any learning procedure. This method is
much more straightforward than the embedding approach as it can be used with
any dissimilarity measurement, regardless its reflexivity or symmetry properties,
and without transforming it into a p.s.d. similarity matrix.

In the following, the dissimilarity matrices built with the RFD measure are
called RFD matrices and are noted DH for short. It can be proven that the
matrices derived from the initial RF proximity measure[3, 10] are p.s.d and can
be used as pre-computed kernels in SVM classifiers[2], following the embedding
approach. However, the proof does not apply if the matrices are obtained using
the RFD measure[11]. This is the main reason we use the dissimilarity space
strategy in this work, as it allows more flexibility.

3.2 Using dissimilarity spaces for multi-view learning
In traditional supervised learning tasks, each instance is described by a single
vector of m features. For multi-view learning tasks, each instance is described
by Q different vectors. As a consequence, the task is to infer a model h:

h : X (1) ×X (2) × · · · × X (Q) → Y (8)

where the X (q) are the Q input domains, i.e. the views. These views are
generally of different dimensions, noted m1 to mQ. For such learning tasks, the
training set T is actually made up with Q training subsets:

T (q) =
{
(x

(q)
1 , y1), (x

(q)
2 , y2), . . . , (x

(q)
n , yn)

}
,∀q = 1..Q (9)

6

The key principle of the proposed framework is to compute the RFD matrices
D

(q)
H from each of the Q training subsets T (q). For that purpose, each T (q) is fed

to the RF learning procedure, resulting in Q RF classifiers noted H(q),∀q = 1..Q.
The RFD measure is then used to compute the Q RFD matrices D(q)

H ,∀q = 1..Q.
Once these RFD matrices are built, they have to be merged in order to

build the joint dissimilarity matrix DH that will serve as a new training set
for an additional learning phase. This additional learning phase can be realized
with any learning algorithm, since the goal is to address the classification task.
For simplicity and because they are as accurate as they are versatile, the same
Random Forest method used to calculate the dissimilarities is also used in this
final learning stage.

Regarding the merging step, which is the main focus of the present work, it
can be straightforwardly done by a simple average of the Q RFD matrices:

DH =
1

Q

Q∑
q=1

D
(q)
H (10)

The whole RFD based multi-view learning procedure is summarized in Algo-
rithm 1 and illustrated in Figure 1.

Algorithm 1: The RFD multi-view learning procedure
Input: T (q), ∀q = 1..Q: the Q training sets, composed of n instances
Input: RF (.): The Breiman’s RF learning procedure
Input: RFD(., .|.): the RFD dissimilarity measure
Output: H(q): Q RF classifiers
Output: Hfinal: the final RF classifier

1 for q = 1..Q do
2 H(q) = RF (T (q))

// Build the n× n RFD matrix D
(q)
H :

3 forall xi ∈ T (q) do
4 forall xj ∈ T (q) do
5 D

(q)
H [i, j] = RFD(xi,xj |H(q))

6 end
7 end
8 end

// Build the n× n average RFD matrix DH:
9 DH = 1

Q

∑Q
q=1 D

(q)
H

// Train the final classifier on DH:
10 Hfinal = RF (DH)

As for the prediction phase, the procedure is very similar. For any new
instance x to predict:

1. Compute d
(q)
H (x,xi),∀xi ∈ T (q),∀q = 1..Q, to form Q n-sized dissimilarity

vectors for x. These vectors are the dissimilarity representations for x,
from each of the Q views.

2. Compute dH(x,xi) = 1
Q

∑Q
q=1 d

(q)
H (x,xi),∀i = 1..n, to form the n-sized

vector that corresponds to the projection of x in the joint dissimilarity
space.

7

Figure 1: The RFD framework for multi-view learning.

3. Predict the class of x with the classifier trained on DH .

4 Combining views with weighted combinations
The average dissimilarity is a simple, yet meaningful way to merge the dissimi-
larity representations built from all the views. However, it intrinsically considers
that all the views are equally relevant with regard to the task and that the re-
sulting dissimilarities are as reliable as each other. This is likely to be wrong
from our point of view. In multi-view learning problems, the different views
are meant to be complementary in some ways, that is to say to convey different
types of information regarding the classification task. These different types of
information may not have the same contribution to the final predictions. That
is the reason why it may be important to differentiate these contributions, for
example with a weighted combination in which the weights would be defined
according to the view reliability.

The calculation of these weights can be done following two paradigms: static
weighting and dynamic weighting. The static weighting principle is to weight
the views once for all, with the assumption that the importance of each view
is the same for all the instances to predict. The dynamic weighting principle
on the other way, aims at setting different weights for each instance to predict,
with the assumption that the contribution of each view to the final prediction
is likely to be different from one instance to another.

4.1 Static combination
Given a set of dissimilarity matrices {D(1),D(2), . . . ,D(Q)} built from Q differ-
ent views, our goal is to find the best set of non-negative weights {w(1), w(2),
. . . , w(Q)}, so that the joint dissimilarity matrix is:

D =

Q∑
q=1

w(q)D(q) (11)

8

where w(q) ≥ 0 and
∑Q

q=1 w
(q) = 1.

There exist several ways, proposed in the literature, to compute the weights
of such a static combination of dissimilarity matrices. The most natural one is
to deduce the weights from a quality score measured on each view. For example,
this principle has been used for multi-scale image classification[14] where each
view is a version of the image at a given scale, i.e. the weights are derived
directly from the scale factor associated with the view. Obviously, this only
makes sense with regard to the application, for which the scale factor gives an
indication of the reliability for each view.

Another, more generic and classification-specific approach, is to evaluate the
quality of the dissimilarity matrix using the performance of a classifier. This
makes it possible to estimate whether a dissimilarity matrix sufficiently reflects
class membership[15, 14]. For example, one can train a SVM classifier from each
dissimilarity matrix and use its accuracy as an estimation of the corresponding
weights[14]. kNN classifiers are also very often used for that purpose[15, 16].
The reason is that a good dissimilarity measure is expected to propose good
neighborhoods, or in other words the most similar instances should belong to
the same class.

Since kernel matrices can be viewed as similarity matrices, there are also
few solutions in the literature of kernel methods that could be used to estimate
the quality of a dissimilarity matrix. The most notable is the Kernel Alignment
(KA) estimate[17] A(K1,K2), for measuring the similarity between two kernel
matrices K1 and K2:

A(K1,K2) =
〈K1,K2〉F√

〈K1,K1〉F 〈K2,K2〉F
(12)

where Ki is a kernel matrix and where 〈·, ·〉F is the Frobenius norm[17].
In order to use the KA measure to estimate the quality of a given kernel

matrix, a target matrix must be defined beforehand. This target matrix is an
ideal theoretical similarity matrix, regarding the task. For example, for binary
classification, the ideal target matrix is usually defined as K∗ = yyT , where
y = {y1, y2, . . . , yn} are the true labels of the training instances, in {−1,+1}.
Thus, each value in K∗ is:

K∗
ij =

{
1, if yi = yj

−1, otherwise
(13)

In other words, the ideal matrix is the similarity matrix in which instances are
considered similar (K∗

ij = 1) if and only if they belong to the same class. This
estimate is transposed to multi-class classification problems as follows[18]:

K∗
ij =

{
1, if yi = yj
−1
C−1 , otherwise

(14)

where C is the number of classes.

Both kNN and KA methods presented above are used in the experimental
part for comparison purposes (cf. Section 5). However, in order to use the KA

9

method for our problem, some adaptations are required. Firstly, the dissimilar-
ity matrices need to be transformed into similarity matrices by S(q) = 1−D(q).
The following heuristic is then used to deduce the weight from the KA mea-
sure[19]:

w(q) =
A(S(q),yyT)∑Q

h=1 A(S(h),yyT)
(15)

Strictly speaking, for the similarity matrices S(q) to be considered as kernel
matrices, it must be proven that they are p.s.d. When such matrices are proven
to be p.s.d, the KA estimates is necessarily non-negative, and the corresponding
w(q) are also non-negative[17, 19]. However, as it is not proven that our matrices
S(q) built from RFD are p.s.d., we propose to use the softmax function to
normalize the weights and to ensure they are strictly positive:

w(q) =
exp(A(S(q),K∗))∑Q

h=1 exp(A(S(h),K∗))
(16)

The main drawback of the methods mentioned above is that they evaluate
the quality of the dissimilarity matrices based solely on the training set. This is
the very essence of these methods, which are designed to evaluate (dis)similarity
matrices built from a sample, e.g. the training set. However, this may cause
overfitting issues when these dissimilarity matrices are used for classification
purposes as it is the case in our framework. Ideally, the weights should be set
from the quality of the dissimilarity representations estimated on an independent
validation dataset. Obviously, this requires to have additional labeled instances.
The method we propose in this section allows to estimate the quality of the
dissimilarity representations without the use of additional validation instances.

The idea behind our method is that the relevance of a RFD space is reflected
by the accuracy of the RF classifier used to build it. This accuracy can be
efficiently estimated with a mechanism called the Out-Of-Bag (OOB) error.
This OOB error is an estimate supplied by the Bagging principle, known to
be a reliable estimate of the generalization error[3]. Since the RF classifiers
in our framework are built with the Bagging principle, the OOB error can be
used to estimate their generalization error without the need of an independent
validation dataset.

Let us briefly explained here how the OOB error is obtained from a RF: let
B denote a Bootstrap sample formed by randomly drawing p instances from
T , with replacement. When p = n, n being the number of instances in T , it
can be proven that about one third of T , in average, will not be drawn to form
B[3]. These instances are called the OOB instances of B. Using Bagging for
growing a RF classifier, each tree in the forest is trained on a Bootstrap sample,
that is to say using only about two thirds of the training instances. Similarly,
each training instance x is used for growing about two thirds of the trees in the
forest. The remaining trees are called the OOB trees of x. The OOB error is
the error rate measured on the whole training set by only using the OOB trees
of each training instance.

Therefore, the method we propose to use consists in using the OOB error
of the RF classifier trained on a view directly as its weight in the weighted
combination. This method is noted SWOOB in the following.

10

4.2 Dynamic combination
In contrast to static weighting, dynamic weighting aims at assigning different
weights to the views for each instance to predict[20]. The intuition behind using
dynamic weighting in our framework is that the prediction for different instances
may rely on different types of information, i.e. different views. In that case, it is
crucial to use different weights for building the joint dissimilarity representation
from one instance to predict to another.

However, such a dynamic weighting process is particularly complex in our
framework. Let us recall that the framework we propose to use in this work is
composed of two stages: (i) inferring the dissimilarity matrix from each view,
and (ii) combining the per-view dissimilarity matrices to form a new training
set. The weights we want to determine are the weights used to compute the final
joint dissimilarity matrix in stage (ii). As a consequence, if these weights change
for each instance to predict, the joint dissimilarity matrix must be completely
recalculated and a new classifier must also be re-trained afterwards. This means
that, for every new instance to predict, a whole training procedure has to be
performed. This is computationally expensive and quite inefficient from our
point of view.

To overcome this problem, we propose to use Dynamic Classifier Selection
(DCS) instead of dynamic weighting. DCS is a generic strategy, amongst the
most successful ones in the Multiple Classifier Systems literature[20]. It typically
aims at selecting one classifier in a pool of candidate classifiers, for each instance
to predict. This is essentially done through two steps[21]: (i) the generation of a
pool of candidate classifiers and (ii) the selection of the most competent classifier
in this pool for the instance to predict. The solutions we propose for these steps
are illustrated in Figure 2, the first step in the upper part and the second step
in the lower part. The whole procedure is also detailed in Algorithm 2 and
described in the following.

4.2.1 Generation of the pool of classifiers

The generation of the pool is the first key step of DCS. As the aim is to select the
most competent classifier on the fly for each given test instance, the classifiers
in the pool must be as diverse and as individually accurate as possible. In our
case, the challenge is not to create the diversity in the classifiers, since they are
trained on different joint dissimilarity matrices, generated with different sets
of weights. The challenge is rather to generate these different weight tuples
used to compute the joint dissimilarity matrices. For such a task, a traditional
grid search strategy could be used. However, the number of candidate solutions
increases exponentially with respect to the number of views. For example, Sup-
pose that we sample the weights with 10 values in [0, 1]. For Q views, it would
result in 10Q different weight tuples. Six views would thus imply to generate 1
million weight tuples and to train 1 million classifiers afterwards. Here again,
this is obviously highly inefficient.

The alternative approach we propose is to select a subset of views for every
candidate in the pool, instead of considering a weighted combination of all
of them. By doing so, for each instance to predict, only the views that are
considered informative enough are expected to be used for its prediction. The

11

selected views are then combined by averaging. For example, if a problem is
described with six views, there are 26 − 1 = 63 possible combinations (the
situation in which none of the views is selected is obviously ignored), which
will result in a pool of 63 classifiers H = {H1,H2, . . . , H63}. Lines 1 to 6 of
Algorithm 2 give a detailed implementation of this procedure.

4.2.2 Evaluation and selection of the best classifier

The selection of the most competent classifier is the second key step of DCS.
Generally speaking, this selection is made through two steps[20]: (i) the defini-
tion of a region of competence for the instance to predict and (ii) the evaluation
of each classifier in the pool for this region of competence, in order to select the
most competent one.

The region of competence Θt of each instance xt is the region used to esti-
mate the competence of the classifiers for predicting that instance. The usual
way to do so is to rely on clustering methods or to identify the k nearest neigh-
bors (kNN) of xt. For clustering[22], the principle is usually to define the region
of competence as the closest cluster of xt, according to the distances of xt to the
centroids of the clusters. As the clusters are fixed once for all, many different
instances might share the same region of competence. In contrast, kNN meth-
ods give different regions of competence from one instance to another, which
allows for more flexibility but at the expense of a higher computational cost[23].

The most important part of the selection process is to define the criterion
to measure the competence level of each classifier in the pool. There are a lot
of methods for doing so, that differ in the way they estimate the competence,
using for example a ranking, the classifier accuracies, a data complexity mea-
sure, etc.[20]. Nevertheless, the general principle is most of the time the same:
calculating the measure on the region of competence exclusively. We do not
give an exhaustive survey of the way it can be done here, but briefly explain
the most representative method, namely the Local Classifier Accuracy (LCA)
method[24], as an illustration.

The LCA method measures the local accuracy of a candidate classifier Hi,
with respect to the prediction ŷt of a given instance xt:

wi,t =

∑
xk∈Θt,ŷt

I(Hi(xk) = ŷt)∑
xk∈Θt

I(yk = ŷt)
(17)

where Θt = {x1, . . .xk, . . . ,xK} is the region of competence for xt, and Θt,ŷt

is the set of instances from Θt that belong to the same class as ŷt. Therefore,
wi,t represents the percentage of correct classifications within the region of com-
petence, by only considering the instances for which the classifier predicts the
same class as for xt. In this calculation, the instances in Θt generally come from
a validation set, independent of the training set T [20].

The alternative method we propose here is to use a selection criterion that
does not rely on an independent validation set, but rather relies on the OOB es-
timate. To do so, the region of competence is formed by the k nearest neighbors
of xt, amongst the training instances. These nearest neighbors are determined
in the joint dissimilarity space with the RFD measure (instead of the traditional
Euclidean distance). This is related to the fact that each candidate classifier is

12

trained in this dissimilarity space, but also because the RFD measure is more
robust to high dimensional spaces, contrary to traditional distance measures.
Finally, the competence of each classifier is estimated with its OOB error on
the k nearest neighbors of xt. Lines 7 to 15 of Algorithm 2 give all the details
of this process.

To sum it up, the key mechanisms of the DCS method we proposed, noted
DCSRFD and detailed in Algorithm 2, are:

• Create the pool of classifiers by using all the possible subsets of views,
to avoid the expensive grid search for the weights generation (lines 4-5 of
Algorithm 2).

• Define the region of competence in the dissimilarity space by using the
RFD dissimilarity measure, to circumvent the issues that arise from high
dimensional spaces (lines 12-13 of Algorithm 2).

• Evaluate the competence of each candidate classifier with its OOB error
rate, so that no additional validation instances are required (line 14 of
Algorithm 2).

• Select the best classifier for xt (lines 16-17 of Algorithm 2).

These steps are also illustrated in Figure 2 with the generation of the pool
of classifiers in the upper part, and with the evaluation and selection of the
classifier in the lower part of the figure. For illustration purposes, the classifier
ultimately selected for predicting the class of xt is assumed to be the second
candidate (in red).

5 Experiments
5.1 Experimental protocol
Both the SWOOB and the DCSRFD methods are evaluated on several real-
world multi-view datasets in the following, and compared to state-of-the-art
methods: the simple average of the view-specific dissimilarity matrices as a
baseline method and the two static weighting methods presented in Section 4.1,
namely the 3NN and the KA methods.

The multi-view datasets used in this experiment are described in Table 1. All
these datasets are real-world multi-view datasets, supplied with several views
of the same instances: NonIDH1, IDHcodel, LowGrade and Progression are
medical imaging classification problems, with different families of features ex-
tracted from different types of radiographic images; LSVT and Metabolomic are
two other medical related classification problems, the first one for Parkinson’s
disease recognition and the second one for colorectal cancer detection; BBC
and BBCSport are text classification problems from news articles; Cal7, Cal20,
Mfeat, NUS-WIDE2, NUS-WIDE3, AWA8 and AWA15 are image classification
problems made up with different families of features extracted from the images.
More details about how these datasets have been constituted can be found in
the paper (and references therein) cited in the caption of Table 1.

All the methods used in these experiments include the same first stage, i.e.
building the RF classifiers from each view and building then the view-specific

13

Algorithm 2: The DCSRFD method
Input: T (q), ∀q = 1..Q: the Q training sets, each composed of n instances
Input: D(q), ∀q = 1..Q: Q n× n RFD matrices, built from the Q views
Input: H(q), ∀q = 1..Q: the Q RF classifiers used to build the D(q)

Input: RF (.): The RF learning procedure
Input: RFD(., .|.): the RFD measure
Input: k: the number of neighbors to define the region of competence
Input: xt: an instance to predict
Output: ŷ: the prediction for xt

// 1 - Generate the pool of classifiers:
1 {w0,w1, . . . ,w2Q−1} = all the possible Q-sized 0/1 vectors
2 H = an empty pool of classifiers
3 for i = 1..2Q − 1 do

// The ith candidate classifier in the pool, wi[q] being the qth

value of wi, either equal to 1 or 0:
4 Di =

1
Q

∑Q
q=1 D

(q).wi[q]

5 H[i] = RF (Di)

6 end
// 2 - Evaluate the candidate classifiers for xt

7 for q = 1..Q do
// the qth dissimilarity representation of xt

8 dx
(q)
t = RFD(xt,xj |H(q)), ∀xj ∈ T (q)

9 end
10 D = an empty set of dissimilarity representations of xt

11 for i = 1..2Q − 1 do
// The averaged dissimilarity representation of xt:

12 D[i] = 1
Q

∑Q
q=1 dx

(q)
t .wi[q]

// The region of competence, Di[j, .] being the jth row of Di :
13 θt,i = the kNN according to RFD(D[i], Di[j, .]|H[i]),∀j = 1..n

// The competence of H(i) on θt,i:
14 St,i = OOBerr(H[i], θt,i)

15 end
// 3 - Select the best classifier for xt and predict its class

16 m = argmaxi St,i

17 ŷ = H[m](D[m])

14

Figure 2: The DCSRFD procedure, with the training and prediction phases.
The best candidate classifier that gives the final prediction for xt is H[2] in this
illustration (in red).

15

Table 1: Real-world multi-view datasets[2]. aImbalanced Ratio, i.e. the number
of instances from the majority class over the number of instances from the
minority class.

features instances views classes IRa

AWA8 10940 640 6 8 1
AWA15 10940 1200 6 15 1
BBC 13628 2012 2 5 1.34
BBCSport 6386 544 2 5 3.16
Cal7 3766 1474 6 7 25.74
Cal20 3766 2386 6 20 24.18
IDHcodel 6746 67 5 2 2.94
LowGrade 6746 75 5 2 1.4
LSVT 309 126 4 2 2
Metabolomic 476 94 3 2 1
Mfeat 649 600 6 10 1
NonIDH1 6746 84 5 2 3
NUS-WIDE2 639 442 5 2 1.12
NUS-WIDE3 639 546 5 3 1.43
Progression 6746 84 5 2 1.68

RFD matrices. Therefore, for a fair comparison on each dataset, all the methods
use the exact same RF classifiers, made up with the same 512 trees[2]. As for the
other important parameters of the RF learning procedure, the mtry parameter
is set to √

mq, where mq is the dimension of the qth view, and all the trees are
grown to their maximum depth (i.e. with no pre-pruning).

The methods compared in this experiment differ in the way they combine
the view-specific RFD matrices afterwards. We recall below these differences:

• Avg denotes the baseline method for which the joint dissimilarity repre-
sentation is formed by a simple average of the view-specific dissimilarity
representations.

• SW3NN and SWKA both denote static weighting methods for determin-
ing Q weights, one per view. The first one derives the weights from the
performance of a 3NN classifier applied on each RFD matrix; the second
one uses the KA method to estimate the relevancy of each RFD matrix in
regards to the classification problem.

• SWOOB is the static weighting method we propose in this work and pre-
sented in Section 4.1; it computes the weights of each view from the OOB
error rate of its RF classifier.

• DCSRFD is the dynamic selection method we propose in this work and
presented in Section 4.2; it computes different combinations of the RFD
matrices for each instance to predict based on its k nearest neighbors, with
k = 7 following the recommendation in the literature[20].

After each method determine a set of Q weights, the joint RFD matrix is com-
puted. This matrix is then used as a new training set for a RF classifier learnt
with the same parameters as above (512 trees, mtry =

√
n with n the number

of training instances, fully grown trees).

16

Figure 3: Pairwise comparison between each method and the baseline Avg. The
vertical lines are the level of statistical significance according to the Sign test.

As for the pre-processing of the datasets, a stratified random splitting pro-
cedure is repeated 10 times, with 50% of the instances for training and 50% for
testing. The mean accuracy, with standard deviations, are computed over the
10 runs and reported in Table 2. Bold values in this table are the best average
performance obtained on each dataset.

Table 2: Accuracy (mean ± standard deviation) and average ranks
Avg SW3NN SWKA SWOOB DCSRFD

AWA8 56.22%± 1.01 56.22%± 0.99 56.12%± 1.42 56.59%± 1.41 57.28%± 1.49
AWA15 38.23%± 0.83 38.13%± 0.87 38.27%± 1.05 38.23%± 1.26 38.82%± 1.56
BBC 95.46%± 0.65 95.52%± 0.64 95.36%± 0.74 95.46%± 0.60 95.42%± 0.59
BBCSport 90.18%± 1.96 90.29%± 1.83 90.26%± 1.78 90.26%± 1.95 90.44%± 1.89
Cal7 96.03%± 0.53 96.10%± 0.57 96.11%± 0.60 96.10%± 0.60 94.65%± 1.09
Cal20 89.76%± 0.80 89.88%± 0.82 89.77%± 0.68 90.00%± 0.71 89.15%± 0.97
IDHCodel 76.76%± 3.59 77.06%± 3.43 77.35%± 3.24 76.76%± 3.82 77.65%± 3.77
LowGrade 63.95%± 5.62 62.56%± 6.10 63.95%± 3.57 63.95%± 5.01 65.81%± 5.31
LSVT 84.29%± 3.51 84.29%± 3.65 84.60%± 3.54 84.76%± 3.63 84.44%± 3.87
Metabolomic 69.17%± 5.80 68.54%± 5.85 70.00%± 4.86 70.00%± 6.12 70.21%± 4.85
Mfeat 97.53%± 1.00 97.53%± 1.09 97.53%± 1.09 97.57%± 1.01 97.63%± 0.99
NonIDH1 80.70%± 3.76 80.47%± 3.32 80.00%± 3.15 80.93%± 4.00 79.77%± 2.76
NUS-WIDE2 92.82%± 1.93 92.86%± 1.88 92.60%± 2.12 92.97%± 1.72 93.30%± 1.58
NUS-WIDE3 80.32%± 1.95 79.95%± 2.40 80.09%± 2.07 80.14%± 2.20 80.77%± 2.06
Progression 65.79%± 4.71 65.79%± 4.71 65.79%± 4.99 66.32%± 4.37 66.84%± 5.29
Avg rank 3.67 3.50 3.30 2.40 2.13

5.2 Results and discussion
The first observation one can make from the results gathered in Table 2 is that
the best performance are obtained with one of the two proposed methods for 13
over the 15 datasets. This is confirmed by the average ranks that place these
two methods in the first two positions. To better assess the extent to which
these differences are significant, a pairwise analysis based on the Sign test is
computed on the number of wins, ties and losses between the baseline method
Avg and all the other methods. The result is shown in Figure 3.

From this statistical test, one can observe that none of the static weighting
methods allows to reach the significance level of wins over the baseline method.
It indicates that the simple average combination, when using dissimilarity rep-
resentations for multi-view learning, is a quite strong baseline. It also underlines

17

that all views are globally relevant for the final classification task. There is no
view that is always irrelevant, for all the predictions.

Figure 3 shows also that the dynamic selection method proposed in this
work is the only method that predominantly improves the accuracy over this
baseline, till reaching the level of statistical significance. From our point of view,
it shows that all the views do not participate in the same extent to the good
prediction of every instance. Some instances are better recognized when the
dissimilarities are computed by relying on some views more than on the others.
These views are certainly not the same ones from one instance to another, and
some instances may need the dissimilarity information from all the views at
some point. Nevertheless, this highlights that the confusion between the classes
is not always consistent from one view to another. In that sense, the views
complement each others, and this can be efficiently exploited for multi-view
learning provided that we can identify the views that are the most reliable for
every instance, one by one.

6 Conclusion
Multi-view data are now very common in real world applications. Whether they
arise from multiple sources or from multiple feature extractors, the different
views are supposed to provide a more accurate and complete description of
objects than a single description would do. Our proposal in this work was to
address multi-view classification tasks using dissimilarity strategies, which give
an efficient way to handle the heterogeneity of the multiple views.

The general framework we proposed consists in building an intermediate dis-
similarity representation for each view, and in combining these representations
afterwards for learning. The key mechanism is to use Random Forest classifiers
to measure the dissimilarities. Random Forests embed a (dis)similarity measure
that takes the class membership into account in such a way that instances from
the same class are similar. The resulting dissimilarity representations can be
efficiently merged since they are fully comparable from one view to another.

Using this framework, our main contribution was to propose a dynamic view
selection method that provides a better way of merging the per-view dissimi-
larity representations: a subset of views is selected for each instance to predict,
in order to take the decision on the most relevant views while at the same
time ignoring as much as possible the irrelevant views. This subset of views
is potentially different from one instance to another, because all the views do
not contribute at the same extent to the prediction of each instance. This has
been confirmed on several real-world multi-view datasets, for which the dynamic
combination of views has allowed to obtain much better results than static com-
bination methods.

However, in its current form, the dynamic selection method proposed in this
chapter strongly depends on the number of candidate classifiers in the pool.
To allow for more versatility, it could be interesting to decompose each view
into several sub-views. This could be done for example, by using Bagging and
Random Subspaces principles before computing the view-specific dissimilarities.
In such a way, the dynamic combination could only select some specific part of
each view, instead of considering the views as a whole.

18

Acknowledgement
This work is part of the DAISI project, co-financed by the European Union
with the European Regional Development Fund (ERDF) and by the Normandy
Region.

References
[1] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d object detection

network for autonomous driving. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 6526–6534, (2017).

[2] H. Cao, S. Bernard, R. Sabourin, and L. Heutte, Random forest dissimi-
larity based multi-view learning for radiomics application, Pattern Recog-
nition. 88, 185–197, (2019).

[3] L. Breiman, Random forests, Machine Learning. 45(1), 5–32, (2001).

[4] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, Do we need
hundreds of classifiers to solve real world classification problems?, Journal
of Machine Learning Research. 15, 3133–3181, (2014).

[5] C. Englund and A. Verikas, A novel approach to estimate proximity in a
random forest: An exploratory study, Expert Systems with Applications.
39(17), 13046–13050, (2012).

[6] E. Pekalska and R. P. W. Duin, The Dissimilarity Representation for Pat-
tern Recognition: Foundations And Applications (Machine Perception and
Artificial Intelligence). (World Scientific Publishing Co., Inc., 2005).

[7] Y. M. G. Costa, D. Bertolini, A. S. Britto, G. D. C. Cavalcanti, and L. E. S.
de Oliveira, The dissimilarity approach: a review, Artificial Intelligence
Review. pp. 1–26, (2019).

[8] G. Biau and E. Scornet, A random forest guided tour, TEST. 25, 197–227,
(2016).

[9] L. Rokach, Decision forest: Twenty years of research, Information Fusion.
27, 111–125, (2016).

[10] A. Verikas, A. Gelzinis, and M. Bacauskiene, Mining data with random
forests: A survey and results of new tests, Pattern Recognition. 44(2), 330
– 349, (2011).

[11] H. Cao. Random Forest For Dissimilarity Based Multi-View Learning:
Application To Radiomics. PhD thesis, University of Rouen Normandy,
(2019).

[12] M. R. Smith, T. Martinez, and C. Giraud-Carrier, An instance level anal-
ysis of data complexity, Machine Learning. 95(2), 225–256, (2014).

[13] K. R. Gray, P. Aljabar, R. A. Heckemann, A. Hammers, and D. Rueckert,
Random forest-based similarity measures for multi-modal classification of
alzheimer’s disease, NeuroImage. 65, 167–175, (2013).

19

[14] Y. Li, R. P. Duin, and M. Loog. Combining multi-scale dissimilarities for
image classification. In International Conference on Pattern Recognition
(ICPR), pp. 1639–1642. IEEE, (2012).

[15] R. P. Duin and E. Pekalska, The dissimilarity space: Bridging structural
and statistical pattern recognition, Pattern Recognition Letters. 33(7),
826–832, (2012).

[16] D. Li and Y. Tian, Survey and experimental study on metric learning
methods, Neural Networks. (2018).

[17] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. S. Kandola. On kernel-
target alignment. In Advances in Neural Information Processing Systems
(NeurIPS), pp. 367–373, (2002).

[18] J. E. Camargo and F. A. González. A multi-class kernel alignment method
for image collection summarization. In Proceedings of the 14th Iberoamer-
ican Conference on Pattern Recognition: Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications (CIARP), pp. 545–552.
Springer-Verlag, (2009).

[19] S. Qiu and T. Lane, A framework for multiple kernel support vector regres-
sion and its applications to sirna efficacy prediction, IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics (TCBB). 6(2),
190–199, (2009).

[20] R. M. Cruz, R. Sabourin, and G. D. Cavalcanti, Dynamic classifier selec-
tion: Recent advances and perspectives, Information Fusion. 41, 195–216,
(2018).

[21] A. S. Britto Jr, R. Sabourin, and L. E. Oliveira, Dynamic selection of clas-
sifiers - a comprehensive review, Pattern Recognition. 47(11), 3665–3680,
(2014).

[22] R. G. Soares, A. Santana, A. M. Canuto, and M. C. P. de Souto. Using
accuracy and diversity to select classifiers to build ensembles. In IEEE In-
ternational Joint Conference on Neural Network (IJCNN), pp. 1310–1316.
IEEE, (2006).

[23] M. C. De Souto, R. G. Soares, A. Santana, and A. M. Canuto. Empirical
comparison of dynamic classifier selection methods based on diversity and
accuracy for building ensembles. In IEEE International Joint Conference
on Neural Networks (IJCNN), pp. 1480–1487. IEEE, (2008).

[24] K. Woods, W. P. Kegelmeyer, and K. Bowyer, Combination of multiple
classifiers using local accuracy estimates, IEEE transactions on pattern
analysis and machine intelligence. 19(4), 405–410, (1997).

20

