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This paper proposes an event-triggered approach for the distributed formation control problem of an Euler-Lagrange multiagent system with state perturbations, when communications between agents are prone to losses. To evaluate its control input, each agent maintains estimators of its own state and of the states of its neighbors. Each estimator accounts for a different packet-loss hypothesis. Each agent is then able to compute the expected value of the estimation error of its own state as evaluated by its neighbors. A communication triggering condition (CTC) exploiting this expected error is then proposed. An analysis of the behavior of the system with this CTC is performed using stochastic Lyapunov functions. Simulations confirm the effectiveness of the proposed approach.

Introduction

Distributed control with event-triggered communication is an efficient method to coordinate Multi-Agent Systems (MAS) with a reduced amount of communications between agents. The Communication Triggering Condition (CTC) is instrumental in these approaches to limit communications, while allowing enough information to be exchanged between agents to complete the task assigned to the MAS [START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF][START_REF] Viel | New state estimators and communication protocol for distributed eventtriggered consensus of linear multi-agent systems with bounded perturbations[END_REF][START_REF] Zhu | Event-based consensus of multi-agent systems with general linear models[END_REF][START_REF] Wu | Event-triggered control for consensus problem in multi-agent systems with quantized relative state measurements and external disturbance[END_REF][START_REF] Nowzari | Event-triggered communication and control of networked systems for multi-agent consensus[END_REF]. Designing a suitable CTC when communications between agents are prone to packet losses is challenging. With event-triggered control, a message is transmitted only when required. A loss of information may thus have a critical impact on the performance and even stability of the MAS.

Packet losses may result from collisions between packets simultaneously transmitted from different agents, from occlusions by obstacles, or from interference with other communications systems. Considering two packet-loss models, [START_REF] Hu | Control of discrete-time stochastic systems with packet loss by event-triggered approach[END_REF] has shown that event-triggered control schemes are more vulnerable to packet losses than time-triggered control strategies. Acknowledgment mechanisms are helpful to detect and possibly re-transmit lost messages. Nevertheless, acknowledgments or re-transmitted messages may also be lost, which increases communication delays, risk of packet collisions, and may lead to desynchronization between agents. In [START_REF] Chen | Event-based containment control for multi-agent systems with packet dropouts[END_REF][START_REF] Hu | Cooperative output regulation of heterogeneous linear multi-agent systems by event-triggered control[END_REF][START_REF] Hu | Control of discrete-time stochastic systems with packet loss by event-triggered approach[END_REF][START_REF] Zhou | Periodic event-triggered condition design for the consensus of multiagent systems with communication delays[END_REF][START_REF] Xiao | Event-triggered control of discrete-time switched linear systems with packet losses[END_REF] packet losses are addressed by combining an H∞ control and event-triggered communications. For agents with linear dynamics, sufficient conditions are established to ensure the global exponential stability of the system. In [START_REF] Hu | Cooperative output regulation of heterogeneous linear multi-agent systems by event-triggered control[END_REF], communication delays and packet losses are considered simultaneously. In [START_REF] Chen | Event-based containment control for multi-agent systems with packet dropouts[END_REF], the focus is on a MAS where agents follow several leaders. Each agent maintains observers of the state of other agents. These observers account for the last received message from the other agents and for models of their dynamics. In [START_REF] Xiong | Stabilization of linear systems over networks with bounded packet loss[END_REF], two types of networked controller design methods are proposed. The first one ensures that the system is asymptotically stable in the presence of an arbitrary bounded number of packet losses. The second one provides mean square stability in presence of Markovian packet losses. In [START_REF] Guinaldo | Distributed event-triggered control with network delays and packet losses[END_REF], communication delays are also considered. Two communication protocols are proposed, and the convergence of the MAS is guaranteed if the delay and the number of consecutive packet losses are bounded. All previous works consider only linear dynamics.

Nonlinear dynamics are studied in [START_REF] Ding | Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks[END_REF][START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed lp-gain performance and Zeno-freeness[END_REF]. In [START_REF] Ding | Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks[END_REF], packet losses are taken into account in the estimator models but not in the CTC: new distributed estimators are designed to guarantee the exponential stability of the estimation errors. To update the estimate of the state of other agents, each agent uses its own innovation and the innovation of its neighbors obtained from received packets. This improves the accuracy of the estimates at the cost of an increased sensitivity to losses. The control of a single Agent in presence of measurements losses is considered in [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed lp-gain performance and Zeno-freeness[END_REF]. An event-triggered strategy is proposed along with two communication protocols, with and without acknowledgments. With acknowledgments, the most recently received measurement can be identified. Without acknowledgment, this information is no longer available. A set of estimators is used to estimate the measurement lost during transmission. Each estimator uses a different hypothesis of the last packet received. As previously stated, the case of a MAS is not considered. This paper addresses the distributed formation control of a MAS consisting of agents with nonlinear Euler-Lagrange dynamics, affected by state perturbations, and communications with losses. An event-triggered control strategy is proposed extending that presented in [START_REF] Viel | Distributed event-triggered control strategies for multi-agent formation stabilization and tracking[END_REF] to account for packet losses. Each agent maintains several estimators of its own state to mimic the estimators of its state maintained by its neighbors. Each estimator considers a different hypothesis of packet reception by these neighbors. This extends the idea of [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed lp-gain performance and Zeno-freeness[END_REF], where only two estimators are maintained. Contrary to most studies accounting for packet losses, no explicit feedback mechanism is considered here. Nevertheless, packets received from neighbors provide some (usually delayed) implicit feedback which is exploited to reduce the number of considered loss hypotheses, without requiring additional communications. This reduces the amount of estimators of its own state maintained by each agent. The CTC proposed in [START_REF] Viel | Distributed event-triggered control strategies for multi-agent formation stabilization and tracking[END_REF] is then updated to explicitly account for the potential loss of transmitted packets. The asymptotic convergence of the MAS to the target formation, as well as the absence of Zeno behavior have been proved.

Assumptions and the formation parameterization are introduced in Section 2 and 3. The distributed control law is described in Section 3. State estimators to replace missing information in control law and evaluate the CTC are proposed in Section 4.1. Influence of packet losses on estimator is presented in Section 4.2, to evaluate an expected value of the estimation error. Knowledge of this error is improved using a feedback information from other agents, as described in Section 4.4. The distributed CTC is presented in Section 5. A simulation example is presented in Section 6 to illustrate the reduction of the number of communications obtained by the proposed approach. Finally, Section 7 presents conclusions and perspectives for future work.

Notations and hypotheses

For a vector x = [x1, . . . , xn] T ∈ R n , x 0 indicates that xi 0, ∀i ∈ {1, . . . , n}. The absolute value of the i-th component of x is |xi| and |x| = [|x1| , . . . , |xn|] T . Table 1 gathers the main notations used in this paper.

Multi-Agent system

Consider a MAS consisting of N communicating agents with indexes in the set N = {1, . . . , N }. In a global fixed reference frame F, let qi ∈ R n be the vector of coordinates of Agent i and q = q T 1 , . . . , q T N T ∈ R N n be the configuration of the MAS. The relative coordinate vector between two Agents i and j is rij = qi -qj.

The evolution of the state xi = q T i , qT i T of Agent i is assumed to be described by the Euler-Lagrange model

Mi (qi) qi + Ci (qi, qi) qi + G = ui + di, (1) 
where ui ∈ R n is the control input, Mi (qi) ∈ R n×n is the inertia matrix, Ci (qi, qi) ∈ R n×n is the matrix of the Coriolis and centripetal terms for Agent i, G accounts for gravitational acceleration supposed to be known and constant, and di ∈ R n is a time-varying state perturbation satisfying di (t) Dmax with known Dmax.

For each Agent i of the MAS, we consider the following assumptions.

A1) Mi (qi) is symmetric positive and there exists kM > 0 satisfying ∀x ∈ R n , x T Mix kM x T x.

A2) Ṁi (qi) -2Ci (qi, qi) is skew symmetric or negative definite and there exists kC > 0 satisfying ∀x ∈ R n , x T Ci (qi, qi) x kC qi x T x.

A3) For all ξ1 ∈ R n and ξ2 ∈ R n , the left side of (1) can be linearly parametrized as Mi (qi) ξ1 + Ci (qi, qi) ξ2 = Yi (qi, qi, ξ1, ξ2) θi,

see [START_REF] Slotine | On the adaptive control of robot manipulators[END_REF]. Yi (qi, qi, ξ1, ξ2) is a regressor matrix with known structure, identical for all agents, and θi ∈ R p is a vector of constant parameters known by Agent i via, e.g., an offline identification. Modeling and estimation errors for Yi and θi may be incorporated in di(t).

N number of agents qi coordinates vector of Agent i q configuration vector, q = q T 1 , . . . , q Assumptions A1, A2, A3 and A4 have been previously considered in [START_REF] Liu | Formation control of mobile robots using distributed controller with sampled-data and communication delays[END_REF][START_REF] Makkar | Lyapunov-based tracking control in the presence of uncertain nonlinear parameterizable friction[END_REF][START_REF] Mei | Distributed coordinated tracking with a dynamic leader for multiple Euler-Lagrange systems[END_REF][START_REF] Slotine | On the adaptive control of robot manipulators[END_REF][START_REF] Viel | Distributed event-triggered control for multi-agent formation stabilization[END_REF]. The following assumptions are considered for each Agent i:

A5) An estimate xj i (0) = qj i (0) T , qj i (0) T of the state xi (0)
is known by all its neighbors j ∈ Ni and the squared norm of the estimation errors ||qi (0) -qj i (0) || 2 and || qi (0) -qj i (0) || 2 are bounded with bounds described in Proposition 8, see Section 5.

A6)

The velocity qi and acceleration qi are bounded,

|| qi (t) || qmax, (3) ||qi (t) || qmax. (4) 
Moreover, qi and Lipschitz, i.e., there exists

K d > 0 such that ∀t, ∀∆t, || qi (t + ∆t) -qi (t) || K d |∆t|. (5) 
In what follows, the notations Mi and Ci are used in place of Mi (qi) and Ci (qi, qi).

Communication model

When its CTC is satisfied, Agent i broadcasts a message to its neighbors. The packet containing the message is either received without error or is lost. Usually, packet losses are due i) to collisions (packets are transmitted at the same time instants by different agents), ii) to occlusions by obstacles (two agents are not in line of sight), iii) to a signal-to-noise ratio below a certain threshold (agents are too far away).

The packet loss probability between Agents i and j is denoted πij = πji. One considers that a communication link exists between two agents i and j if πij is less than π 0.5. From this hypothesis, the communication topology of the MAS can be described by a undirected graph G = (N , E), where E ⊂ N × N is the set of edges of the graph. Agent i can communicate with its Ni one-hop neighbors with indexes in Ni = {j ∈ N | (i, j) ∈ E, i = j}. For each Agent j ∈ Ni, one has therefore πij π.

In this paper, we assume that G is connected and invariant with the time. Moreover, to simplify analysis, we assume that

∀(i, j) ∈ E, πij = π.
Communication delays are neglected: When Agent i broadcasts its ki-th message at time t i,k i , Agent j ∈ Ni either receives this message without error at time t i,k i or does not receive it.

Consider a pairs of neighboring agents (i, j) ∈ E. Let {δ j i,k i } k i 1 be a sequence of binary variables such that δ j i,k i = 1 if the ki-th message sent by Agent i has been received by Agent j and δ j i,k i = 0 else. The δ j i,k i s are modeled as realizations of time-invariant memoryless Bernoulli processes with

Pr δ j i,k i = 1 = 1 -π (6) Pr δ j i,k i = 0 = π. (7) 
The model ( 6)-( 7) captures relatively accurately situation i). Packet loss events due to collisions are often independent from one communication trial to the next one, provided that there is no synchronization between agents (as in the ALOHA protocol [START_REF] Abramson | The ALOHA system: Another alternative for computer communications[END_REF]). The considered packet loss model can also represent situation ii) provided that obstacles are small or agents move fast enough to experience only very short occlusions. Situation iii) is more difficult to represent. Adjusting the transmission power periodically, so as to reach farther agents (even less frequently), may partly address the problem. Nevertheless, this would lead to a time-varying probability π of packet loss. For situations ii) and iii), one may alternatively consider a modification of the agent communication topology, which is out of the scope of this paper. Some works use feedback to partially solve the problem, but feedback requires extra communications and so increases the risk of collision between packets, as described in situation i). This is why, here, the only feedback information considered is that received from packets sent by other agents, when this own CTC is satisfied.

Message content

Let k i j kj be the index of the last message Agent i has received from its neighbor j. When a communication is triggered at time t i,k i , Agent i broadcasts a message containing ki, t i,k i , xi (t i,k i ), θi, and {k i j }, j ∈ Ni. By sending k i j kj for all j ∈ Ni, Agent i indicates the index of the last message received from each of its neighbors. This can be considered as an implicit acknowledgment mechanism for the neighbors j ∈ Ni.

When Agent j receives a message from Agent i, it updates k j i to ki. Moreover, xi (t i,k i ) and θi are used to update its estimator of the state of Agent i, as detailed in Section 4.1. Finally, Agent j keeps track in the variables k i,j j of the value of k i j which represents the index of the last message sent by Agent j and which has been actually received by Agent i. The index k i,j j is used by Agent j to evaluate the knowledge Agent i has about xj (see the example in Figure 1).

Target formation

A potentially time-varying target formation is defined by the set R(t) = r * ij (t) , (i, j) ∈ N × N , where r * ij (t) is the target relative coordinate vector between Agents i and j. Without loss of generality, the first agent is considered as the reference agent. Any target relative coordinate vector r * ij can be expressed as

r * ij (t) = r * i1 (t) -r * j1 (t). The target relative configuration vector is r * (t) = [ r * T 11 (t) . . . r * T 1N (t) ] T .
Each Agent i is assumed to only know the relative coordinate vector with its direct neighbors r * ij (t), j ∈ Ni. Additionally, a constant target reference velocity q * 1 known by all agents is imposed to the MAS. The reference velocities q * i are expressed as q * i = q * 1 + ṙ * i1 and are assumed to satisfy Fig. 1. Communication instants between Agents i and j and evolution of the indexes k j i and k j,i i of last message received; from the packet received at time tj,1, Agent i can deduce that Agent j has received the packet sent at time ti,3 from the content of the packet it receives from Agent j at time tj,1. A7) For all Agents i, the target velocity q * i and acceleration q * i are bounded such that

|| q * i (t) || < qmax, ( 8 
) ||q * i (t) ||< qmax, (9) 
for i = 1, . . . , N . Moreover, q * i is Lipschitz with constant K * d K d , i.e. ∀t ∆t, q * i (t + ∆t) -q * i (t) K * d |∆t|. ( 10 
)
Our aim is to evaluate the control input for each Agent in a distributed way so that the MAS converges to R(t), while limiting the number of communications between agents and accounting for losses. For that purpose, the control input of each Agent has to provide an asymptotic convergence of the MAS to the target configuration vector with a bounded Mean-Square Error (MSE).

Definition 1

The MAS asymptotically mean-square converges to the target formation with a bounded MSE (bounded average asymptotic convergence) iff there exists some ε1 > 0 such that

∀ (i, j) ∈ N 2 , lim t→∞ E rij (t) -r * ij (t) 2 ε1, (11) 
where the expectation is evaluated considering the packet loss events.

Overview of the proposed approach

A control law is introduced in Section 3 to drive the MAS to its target formation and reference speed in a distributed way. This requires the knowledge by each Agent of the state vector of its neighbors. Since the state vector of a neighbor Agent j is only available at Agent i when Agent j broadcasts its state, Agent i has to maintain an estimator of the state of each of its neighbors. This estimator is described in Section 4.

To determine the quality of the estimate of xi evaluated by its neighbors, Agent i has also to estimate its own state xi with the information it has transmitted to its neighbors. As soon as a function of the error between this estimate and xi reaches some threshold, Agent i triggers a communication to allow its neighbors to refresh their estimate of xi. The main difficulty, compared to [START_REF] Viel | Distributed event-triggered control for multi-agent formation stabilization[END_REF][START_REF] Viel | Distributed event-triggered control strategies for multi-agent formation stabilization and tracking[END_REF], lies in the fact that estimators have to account for packet losses. In the solution proposed here, each Agent maintains several estimates of its own state accounting for different packet loss hypotheses, and an estimate of the state of its neighbors with the last information received. As will be seen in Section 4.4, the number of hypotheses can be limited to a manageable amount determined by the last received packet from Agent i.

Usually, a CTC relies on the error between the states of agents and the state estimates evaluated by neighboring agents. Here, since this error cannot be exactly obtained due to packet losses, the CTC involves the MSE between the state of an agent and its estimate evaluated by its neighbors, see Section 5. This paper proposes different methods to evaluate or upper-bound this MSE, which is then used to analyze the convergence and the stability of the MAS.

3 Distributed control inputs Section 3.1 introduces the potential energy P (q, t) of the MAS to quantify the discrepancy between the current and target formations. A control input minimising P (q, t) by exploiting the agent state estimators is presented in Section 3.2.

Potential energy of the MAS

In [START_REF] Nabet | Tensegrity models and shape control of vehicle formations[END_REF][START_REF] Yang | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF], consider the potential energy of the MAS

P (q, t) = 1 2 N i=1 N j=1 mij rij -r * ij 2 , (12) 
is introduced, where mij = mji are some positive or null coefficients. P (q, t) quantifies the discrepancy between the actual and target relative coordinate vectors. We take mii = 0, mij = 0 if (i, j) / ∈ E, and mij > 0 if (i, j) ∈ E. Since G is connected, the minimum number of non-zero coefficients mij to properly define a target formation is N -1.

Proposition 2

The MAS asymptotically converges to the target formation with a bounded MSE iff there exists some ε2 > 0 such that lim t→∞ E (P (q, t)) ε2,

where the expectation is evaluated considering the packet loss events.

The proof of Proposition 2 is provided in Appendix A.1.

Control input with Agent state estimators

In what follows, a control law is designed for each agent so that the MAS asymptotically converges with a bounded MSE. The control law requires only local knowledge of the agent and can therefore be implemented in a distributed way. It has to make P (q, t) decrease. One introduces, as in [START_REF] Yang | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF],

gi = ∂P (q, t) ∂qi = j∈N i mij rij -r * ij , (14) ġi 
= j∈N i mij ṙij -ṙ * ij , (15) 
si = qi -q * i + kpgi, (16) 
where q * i = q * 1 -ṙ * 1i is the reference velocity of Agent i. The vectors gi and ġi characterize the evolution with qi and qi of the discrepancy between the actual and target relative coordinate vectors. In [START_REF] Seyboth | Event-based broadcasting for multi-agent average consensus[END_REF], kp > 0 is a scalar design parameter. When the agents are far from the target formation, gi is large and determines the direction for Agent i to get closer to the target formation.

To make P (q, t) decrease, Agent i has to evaluate [START_REF] Nabet | Tensegrity models and shape control of vehicle formations[END_REF]. The control input of Agent i requires rij, and thus qj, j ∈ Ni. Nevertheless, qj is only available to Agent i when it receives a packet from Agent j containing qj, see Section 2.2. Between the reception of two packets from Agent j, an estimate qi j of qj, j ∈ Ni needs to be evaluated, see Section 4.1. Using estimates qi j and qi j of qj and qj for all j ∈ Ni, Agent i is able to evaluate the discrepancies rij = qi -qi j , ṙij = qi -qi j between its own state and the estimate of the state of the neighbors, as well as

ḡi = j∈N i mij rij -r * ij , (17) ġi 
= j∈N i mij ṙij -ṙ * ij , (18) 
si = qi -q * i + kpḡi. (19) 
Then, the following control input (to be used in (1)) can be evaluated in a distributed way by each Agent i ∈ N , i.e., using only vectors available locally

ui = -kssi -kg ḡi + G -Yi qi, qi, ṗi, pi θi, (20) 
where pi = kpḡi -q * i and ṗi = kp ġi -q * i with the additional design parameters kg > 0 and ks 1 + kp (kM + 1). In [START_REF] Viel | New state estimators and communication protocol for distributed eventtriggered consensus of linear multi-agent systems with bounded perturbations[END_REF], si maintain the formation at the reference velocity, ḡi drives the agent to the target formation, G compensates the action of the gravity, and Yi qi, qi, ṗi, pi θi compensates the inertia, Coriolis and centripetal terms of the dynamic of the agents. The convergence properties of the MAS when each agent applies [START_REF] Viel | New state estimators and communication protocol for distributed eventtriggered consensus of linear multi-agent systems with bounded perturbations[END_REF] is analyzed and ensured in Section 5.

State estimators and packet losses

Section 4.1 introduces the estimators involved in the control input [START_REF] Viel | New state estimators and communication protocol for distributed eventtriggered consensus of linear multi-agent systems with bounded perturbations[END_REF] applied by each agent. Section 4.2 describes the way Agent i estimates its own state xi, with the information transmitted to its neighbors, to determine the quality of their estimates of xi. In Section 4.3, the MSE between the current state xi and its remote estimates xj i , j ∈ Ni is evaluated. In Section 4.4, packets received from other agents are exploited to improve the evaluation of the MSE of the estimate xj i of xi.

Estimation of the state of other agents

To evaluate [START_REF] Viel | New state estimators and communication protocol for distributed eventtriggered consensus of linear multi-agent systems with bounded perturbations[END_REF], Agent i has to maintain an estimate xi j of the state xj of all its neighbors j ∈ Ni. Assume that Agent j broadcasts its k-th message at time t j,k . Then, since communication delays are neglected, depending on whether this message has been received by Agent i, xi j is updated as follows, see [START_REF] Ding | Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks[END_REF] 

xi j t + j,k = δ i j,k xj (t j,k ) + 1 -δ i j,k xi j t - j,k , (21) 
where xj(t j,k ) is obtained from the received packet, where xi j t - j,k is the value of the state estimate at t i,k i before the update and xi j t + j,k is its value after the update. For all t t j,k and up to the time instant of reception of the next packet sent by Agent j, the components qi j and qi j of xi j evolve as

Mj qi j qi j + Cj qi j , qi j qi j + G = ûi j . ( 22 
)
where Mj and Cj are evaluated using [START_REF] Chen | Event-based containment control for multi-agent systems with packet dropouts[END_REF] with Yj and θi j = θj, where the structure of Yj and θj are initially known by Agent i or have been transmitted by Agent j at time t = 0. The estimator [START_REF] Viel | Distributed event-triggered control for multi-agent formation stabilization and tracking[END_REF] maintained by Agent i requires itself an estimate ûi j of the control input uj evaluated by Agent j. This estimate ûi j , used by Agent i, is chosen as

ûi j = -ks εi j + G -Yj qi j , qi j , -q * j , -q * j θi j , (23) 
with εi j = qi j -q * j . The control input [START_REF] Viel | Distributed event-triggered formation control for multi-agent systems in presence of packet losses[END_REF] only depends on information available to Agent i Therefore, [START_REF] Viel | Distributed event-triggered formation control for multi-agent systems in presence of packet losses[END_REF] has been built from [START_REF] Viel | New state estimators and communication protocol for distributed eventtriggered consensus of linear multi-agent systems with bounded perturbations[END_REF] by removing all terms unknown by the neighbors of Agent j. Consequently ḡj and ġj cannot be used, and xj is replaced by xi j . Since [START_REF] Viel | Distributed event-triggered formation control for multi-agent systems in presence of packet losses[END_REF] differs from [START_REF] Viel | New state estimators and communication protocol for distributed eventtriggered consensus of linear multi-agent systems with bounded perturbations[END_REF], xi j will progressively diverge from xj. Since each agent runs an estimator of its own state with the information available to its neighbors, it can trigger a communication when the discrepancy is too large. When the MAS is close to the target formation, the term ġj becomes negligible and ( 20) and [START_REF] Viel | Distributed event-triggered formation control for multi-agent systems in presence of packet losses[END_REF] get closer. This choice limits the number of state estimate hypotheses to consider, see Section 4.2.

We consider Assumptions A8 and A9 on the components of xi j :

A8) The velocity qi j and acceleration qi j are bounded

|| qi j || qmax (24) 
|| qi j || qmax. 

with Kd > 0.

This assumtion is consistent with that considered for qj, i.e Assumption A6, since between two communication time instants, ( 22) is similar to (1).

A9) There exists emax > 0 such that the norm of the estimation error satisfies

||qi (t) -qj i (t) || emax. ( 27 
)
This assumption is reasonable for MAS evolving in some limited geographical area.

Multi-hypothesis state estimates

The estimate qj i of the state of Agent i, evaluated by Agent j, only depends on the information provided by Agent i. The estimate qj i is reset to qi as soon as a message sent by Agent i is received by Agent j, see [START_REF] Viel | Distributed event-triggered control strategies for multi-agent formation stabilization and tracking[END_REF]. Consequently, when Agent i has sent ki messages, and wants to evaluate an image of its own state as computed by one of its neighbors, ki different hypotheses have to be considered, each of which is associated to a different estimator of qi at time t ∈ [t i,k i , t i,k i +1 [:

• A first estimator considers the ki-th packet as received,

• A second estimator considers the ki-th packet as lost, but the ki -1-th packet as received,

• ...

• A last estimator considers that no packet has been received, and uses the initial state estimate xj i (0).

At time t ∈ [t i,k i , t i,k i +1
[, the state estimates corresponding to these hypotheses are denoted as

xi, i (t) = qi, i (t) , qi, i (t) , (28) 
with = 0, . . . , ki and xi,k

i i = xi i .
Since ki can become very large, we impose that Agent i maintains at most κ estimates of xi, denoted x( 1)

i (t) , ..., x(κ) i (t). For all t ∈ [t i,k i , t i,k i +1 [, ki κ, one has x(1) i (t) = xi,k i i (t) , . . . , x(κ) i (t) = xi,k i -κ+1 i (t)
. These estimates evolve according to the dynamics ( 22)-( 23) introduced in Section 4.1. When a new packet is sent by Agent i at time t i,k i +1 , the estimates are updated as

x(1) i t + i,k i +1 = xi t - i,k i +1 . (29) 
x( +1)

i t + i,k i +1 = x( ) i t - i,k i +1 , = 1, . . . , κ -1. (30) 
4.3 Expected value of the estimation error of x i (t)

At time t ∈ [t i,k i , t i,k i +1 [, Agent i has sent ki packets. Let p j k i , = Pr δ j i, = 1, δ j i, +1 = 0, . . . , δ j i,k i = 0 (31) 
with 0 ki, be the probability that the -th packet has been received by a given neighbor j and that all packets from the + 1-th to the ki-th have been lost. By convention,

p j k i ,0 = Pr δ j i,1 = 0, . . . , δ j i,k i = 0 and p j k i ,k i = Pr δ j i,k i = 1 . (32) 
Note that p j k i , only depends on the packet loss probability π of the packet loss model ( 6)-( 7), and does not depend on the neighbor index j, which is omitted in what follows.

Proposition 3 One has p1,1 = 1 -π (33) p1,0 = π. ( 34 
)
For all ki > 0 and < ki,

p k i , = πp k i -1, . (35) 
Moreover

p k i ,k i = 1 -π. ( 36 
)
The proof of Proposition 3 is in Appendix A.2.

At time t ∈ [t i,k i , t i,k i +1 [, the estimation error of the coordinates of Agent i, as evaluated by Agent j, is

e j i (t) = qj i (t) -qi (t) . (37) 
Since Agent i does not know the index of the last packet received by Agent j among those it has sent, Agent i cannot evaluate (37). Alternatively, Agent i can evaluate the mean square value of e j i (t) considering the estimates qi, i and the associated probabilities

p k i , E ||e j i (t) || 2 = k i =0 p k i , ||q i, i (t) -qi (t) || 2 . ( 38 
)
Since Agent i maintains only κ estimators of xi, it cannot evaluate (38) when ki > κ. Nevertheless, using Assumption A9, the MSE (38) can be upper-bounded.

Proposition 4

The MSE (38) can be expressed or upper-bounded as

E ||e j i (t) || 2 = k i =0 p k i , ||q i, i (t) -qi (t) || 2 if ki κ E ||e j i (t) || 2 E e j i (t) 2 else, (39) 
where

E e j i (t) 2 = k i = min p k i , qi, i (t) -qi (t) 2 + min e j i,k i (t) , σ j i (ki, κ)e 2 max ( 40 
)
with σ j i (ki, κ) = 1 -k i =k i -κ+1 p k i , , min = max (0, ki -κ + 1
) and

e j i,k i (t) = 4 qmaxemaxσ j i (ki, κ) (t -t i,k i ) + πE e j i t - i,k i 2 - k i = min p j k i , qi, i t + i,k i -qi t + i,k i 2 . ( 41 
)
Similar bounds can be obtained for

E ėj i (t) 2 = k i = min p k i , qi, i (t) -qi (t) 2 + min ėj i,k i (t) , 4σ j i (ki, κ) q2 max (42) E e j i (t) 4 = k i = min p k i , qi, i (t) -qi (t) 4 + min e j,2 i,k i (t) , σ j i (ki, κ)e 4 max (43) 
E ėj i (t) 4 = k i = min p k i , qi, i (t) -qi (t) 4 + min ėj,2 i,k i (t) , 16σ j i (ki, κ) q4 max (44) with ėj i,k i (t) = 8 qmax qmaxσ j i (ki, κ) (t -t i,k i ) + πE ėj i t - i,k i 2 - k i = min p j k i , qi, i t + i,k i -qi t + i,k i 2 (45) e j,2 i,k i (t) = 8 qmaxe 3 max σ j i (ki, κ) (t -t i,k i ) + πE e j i t - i,k i 4 - k i = min p j k i , qi, i t + i,k i -qi t + i,k i 4 (46) ėj,2 i,k i (t) = 32qmax q3 max σ j i (ki, κ) (t -t i,k i ) + πE ėj i t - i,k i 4 - k i = min p j k i , qi, i t + i,k i -qi t + i,k i 4 . ( 47 
)
The proofs of Proposition 4 is provided in Appendix A.7. In the condition of Proposition 4 without implicit feed-back, one always has

σ j i (ki, κ) = k i -κ =0 p k i , = π κ .
Using (39)-( 47), Agent i is able to determine the quality of the estimate of xi evaluated by its neighbors.

Using (39), Agent i is able to determine the quality of the estimate of xi evaluated by its neighbors. The choice of κ impacts the upper bound of E ||e j i (t) || 2 and E || ėj i (t) || 2 in (39). A large value of κ reduces the influence of emax and qmax on the MSE. Nevertheless, κ should not be chosen too large to limit the number of estimators of its own state maintained by Agent i.

Estimates accounting for received packets (implicit feed-back)

Consider Agent i, the time interval [t i,k i , t i,k i +1 [, and assume that [t i,ρ j i , t i,ρ j i +1
[ is the time interval during which the last packet has been received from Agent j. This packet contains the index k j i of the last message received by Agent j and sent by Agent i, as illustrated by Figure 1. This index is kept by Agent i in k j,i i , see Section 2.2. This implicit acknowledgment can significantly improve the evaluation of the mean-square values of e j i (t) and ėj i (t). From this message, Agent i knows that all packets sent in the time interval [t i,k j i +1 , t i,ρ j i +1 [ have not been received by Agent j.

Consider again the example in Figure 1. The packet received in

[t i,k i , t i,k i +1 [ with k j i = ki -2 indicates that packet ki -2 has been received, but neither packet ki -1 nor ki.
Using this knowledge, Agent i can evaluate the probability

p j k i , |k j,i i ,ρ j i = Pr δ j i, = 1, k i m= +1 δ j i,m = 0 δ j i,k j i = 1, ρ j i m=k j,i i +1 δ j i,m = 0 (48)
that the -th message sent by Agent i (with k j i ki) has been received by Agent j and that all following messages, including the ki-th have been lost. By convention,

p j k i ,k i |k j,i i ,ρ j i = Pr δ j i,k i = 1|δ j i,k j,i i = 1, ρ j i m=k j,i i +1 δ j i,m = 0 . (49) 
Proposition 5 As long as Agent i has not received any message from Agent j, p j k i , |0,0 is evaluated for all ki > 0 and ki as

p j k i , |0,0 = (1 -π) π k i -if > 0, (50) 
p j k i ,0|0,0 = π k i else. (51) 
If Agent i receives a message from Agent

j at t j,k j ∈ [t i,k i , t i,k i +1 [ containing k j i , then k j,i i = k j i , ρ j i = ki, and 
p j k i ,k j,i i |k j,i i ,k i = 1 (52) p j k i , |k j,i i ,k i = 0 ∀ ki, = k j,i i . ( 53 
)
Consider t ∈ [t i,k i +n , t i,k i +n+1
[ with n > 0 and assume that the last message received by Agent i from Agent j has been at time

t j,k j ∈ [t i,k i , t i,k i +1 [. Consequently, k j,i
i ki, and one has still

ρ j i = ki. Then p j k i +n, |k j,i i ,k i
is evaluated recursively for all = 0, . . . , ki + n as

p j k i +n,k j,i i |k j,i i ,k i = πp j k i +n-1,k j,i i |k j,i i ,k i (54) p j k i +n, |k j,i i ,k i = πp j k i +n-1, |k j,i i ,k i if ki < < ki + n = 0 if < ki and = k j,i i (55) p j k i +n,k i +n|k j,i i ,k i = 1 -π. ( 56 
) k i + n 5 message 6 7 8 9 from Agent j 0 π 5 0 0 0 0 0 1 (1 -π) π 4 0 0 0 0 0 2 (1 -π) π 3 0 0 0 0 0 3 (1 -π) π 2 1 π π 2 π 3 π 4 4 (1 -π) π 0 0 0 0 0 5 1 -π 0 0 0 0 0 6 * * 1 -π (1 -π) π (1 -π) π 2 (1 -π) π 3 8 * * * 1 -π (1 -π) π (1 -π) π 2 9 * * * * 1 -π (1 -π) π 10 * * * * * 1 -π Table 2 Probabilities p k i +n, |k j,i i ,k i
that the -th message sent by Agent i has been received by Agent j and all following messages including the ki-th one have been lost, for n ∈ [0, . . . , 5], ki = 5; * represents probabilities not defined. In the time interval

[t k i ,5 , t k i ,6
[, a message is received from Agent j indicating that the last message it has received from Agent i is message ki = 3.

The proof of Proposition 5 is in Appendix

A.3.
Table 2 illustrates the evolution of p k i +n, |k j,i i ,k i as a function of n when κ = 3, ki = 5, and k j i = 3.

Proposition 5 can be used by Agent i to evaluate E ||e j i (t) || 2 , taking into account the implicit acknowledgement provided by neighbors as follows.

Proposition 6 Consider some Agent i and ki > 0. Assume that Agent i knows the index k j i of the last message sent by Agent i and received by some neighbor Agent j.

At time t ∈ [t i,k i +n , t i,k i +n+1 [, one has E e j i (t) 2 |k j,i i E e j i (t) 2 |k j,i i , (57) 
where

E e j i (t) 2 |k j,i i = k i +n = min p j k i +n, |k j,i i ,k i qi, i (t) -qi (t) 2 + 1 k i >κ 1 k i -k j,i i >κ × min e j i,k i +n (t) , σ j i ki + n, κ|k j,i i , ki e 2 max ( 58 
)
with min = max ({0, ki + n -κ + 1}), σ j i ki + n, κ|k j,i i , ki = 1 -k i =k i -κ+1 p j k i +n, |k j,i i ,k i and 
1 k i >κ = 1 if ki > κ 0 else, (59) 
e j i,k i +n (t) = 4 qmaxemaxσ j i ki + n, κ|k j,i i , ki (t -t i,k i +n ) + πE e j i t - i,k i +n 2 |k j,i i - k i +n = min p j k i +n, |k j,i i ,k i qi, i t + i,k i +n -qi t + i,k i +n 2 . ( 60 
)
Contrary to (39), (58) depends now on the index of the neighbor Agent j via k j,i i , and so is updated by its neighbor when Agent i receives a packet, in addition to the update made each time Agent i broadcast a message as in (39). Note that, in opposition with Proposition 4 without implicit acknowledgement, the value of σ j i mostly depend of the messages received from Agent j.

Similar results can be obtained for

E || ėj i (t) || 2 |k j,i i . In what follows, the notation E(||e j i (t)|| 2 ) is used in place of E(||e j i (t)|| 2 |k j,i i ).

Event-triggered communications accounting for packet losses

This section presents a CTC which may involve one of the state estimators introduced in Section 4.

Let mmin = mini,j=1,...,N {mij = 0}, mmax = maxi,j=1,...,N {mij} , Nmin = mini=1...N {Ni}, αi = N j=1 mij, and αM = maxi=1,...,N αi. The distributed CTC (61) presented in Theorem 7 is designed to ensure an asymptotic convergence of the MAS to the target formation with a bounded MSE.

Theorem 7 Consider a MAS with agent dynamics given by (1), the communication protocol defined in Section 2.2, and the control law [START_REF] Viel | New state estimators and communication protocol for distributed eventtriggered consensus of linear multi-agent systems with bounded perturbations[END_REF]. In absence of communication delays, and with a packet loss model satisfying ( 6)- [START_REF] Hu | Control of discrete-time stochastic systems with packet loss by event-triggered approach[END_REF], if the communications are triggered by each Agent i of the MAS when the following condition is satisfied

αM N j=1 mij keE e j i 2 + kpkM E ėj i 2 + kpk 2 C × N j=1 mij 2E e j i 2 qi j 2 + E e j i 4 + E ėj i 4 + kgbi qi -q * i 2 kss T i si + kpkg ḡT i ḡi + η ( 61 
)
where ke = ksk 2 p + kgkp + kg b i , η and bi are design parameters such that

η > 4kgbi q2 max ( 62 
)
for some 0 < bi < ks kskp+kg , then (a) the MAS asymptotically converges to the target formation with a bounded MSE such that (b) one has t i,k i +1 -t i,k i > τmin for some τmin > 0.

lim t→∞ E 1 2 P (q, t) ξ, ' (63) 
The proof of (a) in Theorem 7 is given in Appendix A. The CTC proposed in Theorem 7 is analyzed considering that the state estimators and the communication protocol are such that for all i ∈ N and for all agent j ∈ Ni that has received its last message from Agent

i at t ∈ [t i,k i -κ , t i,k i [ one has x i, i (t) = x j i (t) (65) all t ∈ [t , t i,k i [. If Agent j has received the -th message from Agent i, its estimation x j i (t) of xi (t) is equal to x i, i (t) 
, one of the κ estimators maintained by Agent i. This property is actually satisfied by the communication protocol described in Section 2.2 and the state estimator described in Section 4. Alternative estimators can be used.

The CTC (61) is satisfied for Agent i mainly when E(||e j i || 2 ) and E(|| ėj i || 2 ) become large. Thus, it is preferable to use the knowledge of k j,i i provided by the proposed implicit feedback mechanism to calculate (58) rather than using (39).

A large packet loss probability π results in large values of E(||e j i (t) || 2 ) and E(|| ėj i (t) || 2 ), and therefore leads to an increase in the number of communications to compensate for the losses.

When π is a conservative upper-bound of the packet loss probabilities πij, (i, j) ∈ E, the upper bounds of E(||e j i (t) || 2 ) and E(|| ėj i (t) || 2 ) evaluated by Agent i will be conservative. This leads to more communications than necessary. This effect may be limited by exploiting the implicit acknowledgement.

The right hand side of the CTC (61) is proportional to ḡi(t) and si(t), i.e., to the potential energy of the formation P (q, t), which is large when agents are far from the target formation. When agents are far from the target formation, the discrepancy between ( 20) and ( 23) is large. This lead to a fast increase of E(||e j i (t) || 2 ) and E(|| ėj i (t) || 2 ). The fact that the right hand side of the CTC (61) is large too prevents the CTC from being satisfied too often. When agents are close to the target formation, even if the right hand side of the CTC (61) is small, the fact that ( 23) is close to [START_REF] Viel | New state estimators and communication protocol for distributed eventtriggered consensus of linear multi-agent systems with bounded perturbations[END_REF] leads to E(||e j i (t) || 2 ) and E(|| ėj i (t) || 2 ) increasing slowly. Consequently, less communications will be required. See Section 6 for an illustration.

An analysis of the impact of the values of the parameters on the reduction of communications has been presented in [START_REF] Viel | Distributed event-triggered control strategies for multi-agent formation stabilization and tracking[END_REF] in absence of packet losses. These results can be extended to the case with packet losses. The choice of the parameters αM, kg, kp and bi also determines the number of broadcast messages. Choosing the coefficients mij such that αi = N j=1 mij is small, leads to a reduction in the number of communications triggered resulting from the satisfaction of (61), at the cost of a less precise formation.

The following proposition introduces a condition on the initial estimate of agent states to guarantee that (61) in Theorem 7 is not satisfied at t = 0.

Proposition 8 If a common initial estimate xj i (0) is known by all the neighbors j ∈ Ni of each Agent i such that || qj i (0) || = 0, ||e j i (0) || 2 Hi, || ėj i (0) || 2 Hi (66)
where Hi 0 is defined for each Agent i as

Hi = (ke + kpkM ) 2 + kpk 2 C ξi -(ke + kpkM ) 2kpk 2 C (67) ξi = kp (ks + kg) αMαi ḡT i ḡi (0) + η αMαi , (68) 
then the condition (61) in Theorem 7 is guaranteed not to be satisfied at t = 0.

The proof of Proposition 8 is given in Appendix A.8.

Hi = 0 corresponds to the case where the initial state xi(0) is known by all neighbors of Agent i, i.e. xj i (0) = xi(0) ∀j ∈ Ni. The value of the bound Hi is proportional to ḡi (0), i.e. the initial value of the potential energy of the formation. Thus, the most distant from the target formation agents are, the largest the initial error of the estimate xj i (0) can be tolerated.

We have assumed in Proposition 8 that all neighbors of Agent i share the same estimate xj i (0) of xi(0). This allows Agent i to initialize the estimator of its own state by xj i (0) and avoids using a different estimator for each of its neighbors. When this hypothesis is not satisfied initially, in practice, the local estimators of xi and those performed by neighbors are likely to coincide after few communications. In practice, the formation can still be achieved even if the initial conditions do not satisfy Proposition 8.

Example

Consider the dynamical model of N identical surface ships with coordinate vectors qi = [ xi yi ψi ] T ∈ R 3 , i = 1 . . . N , in a local Earth-fixed frame. For Agent i, (xi, yi) represents its position and ψi its heading angle. The Agent dynamics are expressed in the body frame as

M b,i vi + C b,i (vi) vi + D b,i vi = τ b,i + d b,i , ( 69 
)
where vi is the velocity vector in the body frame. The values of M b,i , D b,i , and C b,i (vi) are found in [START_REF] Kyrkjebãž | Output synchronization control of ship replenishment operations: Theory and experiments[END_REF].

One takes N = 6. The model (69) may be expressed as [START_REF] Abramson | The ALOHA system: Another alternative for computer communications[END_REF] with G = 0 using an appropriate change of variables detailed in [START_REF] Kyrkjebãž | Output synchronization control of ship replenishment operations: Theory and experiments[END_REF]. The parameters of (20) are kM = Mi = 33.8, kC = Ci (1N ) = 43.96, kp = 2, kg = 20, ks = 1 + 6 (kM + 1), bi = 1 kg , emax = 20, qmax = 2 and qmax = 1. In the simulations, the following state estimator x i j is used for all t ∈ [t j,k , t j,k+1 [ with components

qi j (t) , qi j (t) = qi j (t i,k i ) , 0 (70) 
qi j (t) = qi j (t j,k ) + (t -t j,k ) qi j (t j,k ) , (71) 
x i j is updated using [START_REF] Viel | Distributed event-triggered control strategies for multi-agent formation stabilization and tracking[END_REF].

Parameters

The initial value of the configuration vector is q (0) = [x (0) T , y (0) T , ψ (0) T ] T , q (0) = 03N×1, with x (0) = [-0. 

(0) = [ r * (1) (0) T r * (2) (0) T r * (3) (0) T ] T where r * (1) (0) = [0, 2, 3, 2, 0, -1], r * (2) (0) = 0, 0, √ 3, 2 √ 3, 2 √ 3, √ 3 
, and r * (3) (0) = 0N . Moreover, the target MAS velocity is q * 1 = [1, 1, 0] T . Each Agent communicates with N/2 = 3 other agents. From [START_REF] Yang | Distributed formation stabilization for mobile agents using virtual tensegrity structures[END_REF], one obtains the coefficients matrix S = [mij] i,j=1...N such 

S = 0.1             0 1.
           
.

One has αi = N j=1 mij = 0.463, for all i = 1, . . . , N and αM = 0.463.

The simulation duration is T = 2 s, taken sufficiently large to reach a steady-state behavior, with an integration step size ∆t = 0.01 s. Since time has been discretized, the minimum delay between the transmission of two messages by the same Agent is set to ∆t. The perturbation di (t) is assumed constant over each interval [k∆t, (k + 1) ∆t[. The components of di (t) are independent realizations of zero-mean uniformly distributed noise U -Dmax/ √ 3, Dmax/ √ 3 and are thus such that di (t)

Dmax. Let Nm be the total number of messages transmitted during a simulation. The performance of the proposed approach is evaluated with

Rcom = Nm/N m (72) 
where N m = N T /∆t Nm. Rcom is the ratio between the number of communications required using the proposed approach and the number of communications that would be obtained with a communication triggered at each sampling time instant.

One takes κ = 6.

Simulations results

Figure 2 shows the performance of the proposed approach with the CTC (61) for different values of the packet loss probability π and disturbance bound Dmax. Results are averaged over 50 independent realizations of the noise and of the packet loss events. As expected, the number of communications required for the MAS to converge increases with π and Dmax.

The influence of η on the number of communication is detailed in [START_REF] Viel | Distributed event-triggered control for multi-agent formation stabilization and tracking[END_REF]. Increasing η leads to a reduction of Rcom but increases the potential energy P (q, T ), and thus the discrepancy with respect to the target formation at t = T .

Figure 3 compares results of the proposed approach obtained without (a) and with (b) the exploitation of the index k j,i i of the last message sent by Agent i and received by some neighbor Agent j. Using the implicit acknowledgement from neighbors, and thus E e j i (t)

2 |k i j instead of E e j i (t) 2 
in the CTC, convergence is obtained with 75% less messages.

Figure 4 shows the influence of κ on the number of communication Rcom. One observes that increasing κ reduces Rcom, until Rcom reaches a minimum value (when k = 3). Increasing further κ does not reduce Rcom.

When κ is small, E e j i (t)

2 |k i,j j and E ėj i (t) 2 |k i,j j
are conservative, which leads to more communications than necessary. When κ 3, the additional terms in the upper bound have a negligible impact. Rcom is large due to emax, qmaxans qmax which influence the value of E e j i (t) 2 |k i,j j .

Conclusion

This paper addresses the problem of communication reduction in distributed formation control of a MAS with Euler-Lagrange dynamics in presence of packet losses and state perturbations. given by ( 58) is considered in the CTC.

To evaluate its control input, each agent maintains estimators of the states of its neighbors as well as multiple estimators of its own state accounting for different packet loss hypotheses in the communications with its neighbors. Using these estimators, each agent is then able to compute the expected value of the estimation error of its own state as evaluated by its neighbors. An implicit acknowledgement from other agents may be used to evaluate more accurately the estimation error. A distributed CTC is then proposed, involving these estimation errors. The behavior of the MAS is analyzed using stochastic Lyapunov functions in [START_REF] Viel | Distributed event-triggered formation control for multi-agent systems in presence of packet losses[END_REF]. The convergence to the target formation and the absence of Zeno behavior have been proven. Simulations illustrate the effectiveness of the proposed approach. In future work, communication delays will also be considered along with packet losses.

A Appendix

A.1 Proof of Proposition 2

Assume that there exists ε2 > 0 such that lim t→∞ E (P (q, t)) ε2, (A.1)

then lim t→∞ 1 2 N i=1 N j=1 mijE rij (t) -r * ij (t) 2 ε2. (A.2) Since mijE rij (t) -r * ij (t) 2 N i=1 N j=1 mijE rij (t) -r * ij (t) 2 . (A.3)
and mij 0 for all (i, j) such that mij > 0, this implies

lim t→∞ E rij (t) -r * ij (t) 2 2ε2 mij . (A.4)
Consider now a pair (i, j) such that mij = 0. The communication graph has been assumed connected. Consequently, there exists a sequence i1, . . . , iN ij of Nij N nodes with i1 = i and iN ij = j and such that mi k i k+1 > 0 for all k = 1, . . . , Nij -1. Then

lim t→∞ E rij (t) -r * ij (t) 2 lim t→∞ N ij -1 k=1 E ri k i k+1 (t) -r * i k i k+1 (t) 2 .
Using (A.4), one gets

lim t→∞ E rij (t) -r * ij (t) 2 N ij -1 k=1 2ε2 mi k i k+1 . (A.5)
Then introduce 

ε11 = max (i,j)∈N 2 ,m ij =0 N ij -1 k=1 2ε2 mi k i k+1 , (A.6) ε12 = max (i,j)∈N 2 ,m ij >0 2ε2 mij (A.
(i, j) ∈ N 2 , lim t→∞ E rij (t) -r * ij (t) 2 ε1, (A.9)
The converse is immediate: if there exists ε1 > 0 such that (A.9) is satisfied for all (i, j) ∈ N 2 , then

lim t→∞ E (P (q, t)) = lim t→∞ 1 2 N i=1 N j=1 mijE rij (t) -r * ij (t) 2 ε2, with ε2 = 1 2 N i=1 N j=1 mijε1.

A.2 Proof of Proposition 3

Consider first

p j k i , = Pr δ j i, = 1, δ j i, +1 = 0, . . . , δ j i,k i = 0 . (A.10)
Since the channel is memoryless,

p j k i , = Pr δ j i,k i = 0 Pr δ j i, = 1, δ j i, +1 = 0, . . . , δ j i,k i -1 = 0 (A.11)
so, using ( 6)-( 7), one gets

p j k i , = πp j k i -1, .
(A.12) Consider now p j k i +n,k i +n . Using ( 6)-( 7), one gets

p j k i +n,k i +n = 1 -Pr δ j i,k i +n = 0 = 1 -π.
(A.13) Note that p j k i +n,k i +n is independent of j because no implicit acknowledgment is exploited in Proposition 3.

A.3 Proof of proposition 5

Before any reception from a packet for Agent j, (51) is evaluated as in Proposition 3.

Consider t ∈ [t i,k i +n , t i,k i +n+1 [ with n 0 and assume that the last message received by Agent i from Agent j was at time

t j,k j ∈ [t i,k i , t i,k i +1 [ . Thus k j,i i = k j i
ki and Agent i knows that Agent j has received the k j,i i -th message sent by Agent i, and has not received the following ones with index between k j,i i and ki. Agent i has no information about the reception by Agent j of the ki + 1, . . . , ki + n-th messages. Then, by definition of p j k i , |k

j,i i ,k i , one has p j k i ,k j,i i |k j,i i ,k i = Pr   δ j i,k j,i i = 1|δ j i,k j,i i = 1, k i m=k j,i i +1 δ j i,m = 0    = 1 (A.14)
and for all ki with = k j,i i

p j k i , |k j,i i ,k i = Pr    k i m= +1 δ j i,m = 0, δ j i, = 1|δ j i,k j,i i = 1, k i m=k j,i i +1 δ j i,m = 0    = 0. (A.15)
Consider now the evaluation of p j k i +n, |k

j,i i ,k i
with n > 0. One has

p j k i +n, |k j,i i ,k i = Pr    k i +n m= +1 δ j i,m = 0, δ j i, = 1|δ j i,k j,i i = 1, k i m=k j,i i +1 δ j i,m = 0    . (A.16) If ki with = k j,i i , one has clearly p j k i +n, |k j,i i ,k i = 0.
In what follows, we consider thus = k j,i i or ki < < ki + n and, since the channel is memoryless, one has

p j k i +n, |k j,i i ,k i = Pr δ j i,k i +n = 0 Pr    k i +n-1 m= +1 δ j i,m = 0, δ j i, = 1|δ j i,k j,i i = 1, k i m=k j,i i +1 δ j i,m = 0    (A.17)
Using ( 6)-( 7), one gets

p j k i +n, |k j,i i ,k i = πp j k i +n-1, |k j,i i ,k i . (A.18)
Consider now the evaluation of p j k i +n,k i +n|k j,i i ,k i with n > 0. Since the channel is memoryless, one has

p j k i +n,k i +n|k j,i i ,k i = Pr δ j i,k i +n = 1 = 1 -π. (A.19)

A.4 Proof of convergence with packet losses

To prove Theorem 7 a) one shows first that the MAS is converging with a bounded mean-square error. For that purpose, one will introduce a candidate Lyapunov function and show that it satisfies the conditions introduced in the Definition 1.

Consider some Dmax 0, η 0, and realizations di (t), i = 1, . . . , N of the state perturbations.

Inspired by the proof developed in [START_REF] Ding | Event-triggered distributed H∞ state estimation with packet dropouts through sensor networks[END_REF][START_REF] Shi | Event-triggered maximum likelihood state estimation[END_REF], consider the continuous positive-definite candidate Lyapunov function

V (t) = E 1 2 N i=1 si (q (t, δ)) T Misi (q (t, δ)) + kg 4 P (q (t, δ) , t) (A.20)
where the expectation is evaluated considering the random losses described by δ.

A.4.1 Continuity of the Lyapunov function

Assume that the first message is transmitted at time t1, without loss of generality, by Agent 1 to N1 neighbors. Consider some t ∈ [t1, t2[, where t2 is the time at which the second message is transmitted, whatever the Agent. There are 2 N 1 possible reception scenario, from no reception by all agents to a reception by all agents. Let σ represent the index of the σ-th scenario, 0 σ 2 N 1 and pσ,1 be the associated probability for the first communication. One may write

V (t) = E 1 2 N i=1
si (q (t, δ)) T Misi (q (t, δ)) + kg 4 P (q (t, δ) , t)

= 1 2 2 N 1 σ=1 pσ,1 N i=1
si (q (t, δσ)) T Misi (q (t, δσ)) + kg 4 P (q (t, δσ) , t) (A.21)

where 2 N 1 σ=1 pσ,1 = 1.
For a given reception scenario σ of the first message, the time instant tσ,2 of transmission of the second message and the index iσ,2 of the transmitting Agent both depend on σ. More generally, at time t, St different transmission and reception scenarios have to be considered. For a given scenario σ, let nσ be the number of communications that have occurred. The associated loss vector is δσ = (δσ,1, . . . , δσ,n σ ), where δ σ,k is the loss vector for the k-th communication. 

V (t) = 1 2 S t σ=1 pσ N i=1
si (q (t, δσ)) T Misi (q (t, δσ)) + kg 4 P (q (t, δσ) , t) .

In the scenario σ, at time t, Agent i is communicating. Consequently

V ( t) = 1 2 σ=1,...,S t ,σ =σ pσ N i=1
si (q ( t, δσ)) T Misi (q ( t, δσ)) + kg 4 P (q ( t, δσ) , t)

+ 1 2 2 N i µ=1 p (σ,µ) N i=1 si q t, δ (σ,µ) T Misi q t, δ (σ,µ) + kg 4 P q t, δ (σ,µ) , t (A.22)
where p (σ,µ) denotes the probability of the µ-th loss scenario associated to the nσ + 1 communication performed by Agent i at time t, when the previous loss scenario is σ. One has

2 N i µ=1 p (σ,µ) = pσ. (A.23)
Upon reception at time t + of a message sent at time t, only the estimators are updated according to [START_REF] Viel | Distributed event-triggered control strategies for multi-agent formation stabilization and tracking[END_REF]. The state of agents receiving a message at time t + from a neighbor is continuous, i.e., qi t+ , δ (σ,µ) = qi t-, δσ , where t -is a time instant immediately before transmission. This is also true for agents which do not receive the message sent at time t. Thus, one gets gi t+ , δ (σ,µ) = gi t-, δσ , si q t+ , δ (σ,µ) = si q t-, δσ for i = 1, . . . , N , and consequently, P q t+ , δ (σ,µ) , t+ = P q t-, δσ , tfor all µ. Thus, at time t + , (A.22) becomes

V t+ = 1 2 σ=1,...,S t ,σ =σ pσ N i=1
si q t+ , δσ T Misi q t+ , δσ + kg 4 P q t+ , δσ , t+ + 1 2

2 N i µ=1 p (σ,µ) N i=1
si q t+ , δ (σ,µ) T Misi q t+ , δ (σ,µ) + kg 4 P q t+ , δ (σ,µ) , t+ = 1 2 σ=1,...,S t ,σ =σ pσ N i=1 si q t-, δσ T Misi q t-, δσ + kg 4 P q t-, δσ , t-+ 1 2

2 N i µ=1 p (σ,µ) N i=1
si q t-, δσ T Misi q t-, δσ + kg 4 P q t-, δσ , tand using (A.23), one gets

V t+ = 1 2 σ=1,...,S t ,σ =σ pσ N i=1
si q t-, δσ T Misi q t-, δσ + kg 4 P q t-, δσ , t-

+ 1 2 pσ N i=1 si q t-, δσ T Misi q t-, δσ + kg 4 P q t-, δσ , t- = V t-.
Consequently, V (t) is continuous at t.

A.4.2 Differential inequality satisfied by the Lyapunov function

Using (A.22) from the previous section, the time derivative of V exists and can be evaluated for each t ∈ [t, t[ as follows

V (t) = S t σ=1 pσ N i=1 1 2 s T i (q (t, δσ)) Ṁisi (q (t, δσ)) + s T i (q (t, δσ)) Mi ṡi (q (t, δσ)) + kg 4 
d dt P (q (t, δσ) , t) . (A.24)
which may be written more concisely as

V = E N i=1 1 2 s T i Ṁisi + s T i Mi ṡi + kg 4 d dt P (q, t) , (A.25)
where the expectation is to be taken over all possible transmission loss events.

Our aim, in what follows is to obtain a differential inequality satisfied by V . One starts considering the two terms in the right hand side of (A.25).

In (A.24), one has 1 4

d dt P (q, t) = 1 4 d dt N i=1 N j=1 mij rij -r * ij 2 = N i=1 1 2 N j=1 mij ṙij -ṙ * ij T rij -r * ij = N i=1 1 2 N j=1 mij ( qi -q * i ) T rij -r * ij -qj -q * j T rij -r * ij = N i=1 1 2 N j=1 mij ( qi -q * i ) T rij -r * ij -( qi -q * i ) T rji -r * ji (A.26)
Since rji = -rij, one gets 1 4

d dt P (q, t) = N i=1 ( qi -q * i ) T N j=1 mij rij -r * ij = N i=1 ( qi -q * i ) T gi. (A.27)
Combining (A.24) and (A.27), one obtains

V = E N i=1 1 2 s T i Ṁisi + s T i Mi ṡi + kg ( qi -q * i ) T gi (A.28)
One focuses now on the term Mi ṡi. Using ( 16), one may write

Mi ṡi + Cisi = Mi (qi -q * i + kp ġi) + Ci ( qi -q * i + kpgi)
and using (1), one gets

Mi ṡi + Cisi = ui + di -G + Mi (kp ġi -q * i ) + Ci (kpgi -q * i ) . (A.29)
Now, introducing [START_REF] Viel | New state estimators and communication protocol for distributed eventtriggered consensus of linear multi-agent systems with bounded perturbations[END_REF], one gets

Mi ṡi + Cisi = -kssi -kg ḡi -Yi qi, qi, kp ġi -q * i , kpḡi -q * i θi +Mi (kp ġi -q * i ) + Ci (kpgi -q * i ) + di (A.30)
In what follows, one uses Yi to represent Yi qi, qi, kp ġi -q * i , kpḡi -q * i . Assumption A3 leads to

-s T i Yiθi = -s T i Mi kp ġi -q * i + Ci (kpḡi -q * i ) . (A.31)
Considering ( 2) and (A.30) in (A.28), one gets

V = E N i=1 1 2 s T i Ṁisi -kss T i si -kgs T i ḡi -s T i Cisi + s T i (Mi (kp ġi -q * i ) + Ci (kpgi -q * i )) -s T i Mi kp ġi -q * i + Ci (kpḡi -q * i ) + kg ( qi -q * i ) T gi + s T i di . (A.32)
Now, introduce ( 14) in ( 16) to get 

si = qi -q * i + kp N i=1 mij qi -qj -r * ij . (A.33) Since e i j = qi j -qj, one gets si = qi -q * i + kp N i=1 mij qi -qi j + e i j -r * ij = qi -q * i + kp N i=1 mij rij -r * ij + kp N j = 1 j = i mije i j = si + kpE i (A.
V = E N i=1 s T i 1 2 Ṁi -Ci si -kss T i si -kg ( qi -q * i + kpgi) T ḡi +kps T i Mi Ėi + CiE i + kg ( qi -q * i ) T gi + s T i di . (A.37) Let V1 = N i=1 2kps T i Mi Ėi + CiE i . Using Assumption A2, 1 2 Ṁi-Ci is skew symmetric or definite negative thus s T i 1 2
Ṁi -Ci si 0. For all b > 0 and all vectors x and y of similar size, one has

x T y 1 2 bx T x + 1 b y T y . (A.38)
Using (A.38) with b = 1, and the fact that

d T i di D 2 max , one deduces that d T i si 1 2 D 2 max + s T i si and that V E N i=1 -kss T i si -kgkpg T i ḡi + 1 2 s T i si + 1 2 D 2 max +kg ( qi -q * i ) T (gi -ḡi) + 1 2 V1 . (A.39) One notices that rij = qi -qj = qi -qi j + e i j = rij + e i j , thus si -si 2 = s T i si -2s T i si + sT i si kpE i 2 = s T i si -2s T i si + sT i si s T i si = - 1 2 kpE i 2 + 1 2 s T i si + 1 2 sT i si (A.40)
Using similar derivations, from (A.40), one shows that

g T i ḡi = -1 2 E i 2 + 1 2 g T i gi + 1 2 ḡT i ḡi.
Injecting the latter expression in (A.39), one gets

V E N i=1 ks 2 k 2 p E i 2 -s T i si -sT i si + kpkg 1 2 E i 2 -g T i gi -ḡT i ḡi + 1 2 s T i si + 1 2 D 2 max +kg ( qi -q * i ) T (gi -ḡi) + 1 2 V1 E N i=1 - (ks -1) 2 s T i si - ks 2 sT i si + ksk 2 p + kgkp 2 E i 2 - 1 2 kpkg g T i gi + ḡT i ḡi + 1 2 D 2 max +kg ( qi -q * i ) T (gi -ḡi) + 1 2 V1 . (A.41) Using (A.38) with b = bi > 0, one shows that 2 qT i (gi -ḡi) bi qi 2 + 1 b i E i 2 . Using this result in (A.41), one gets V 1 2 N i=1 -(ks -1) E s T i si -ksE sT i si + ksk 2 p + kgkp + kg bi E E i 2 + bikgE qi -q * i 2 -kpkgE g T i gi + ḡT i ḡi + D 2 max + 1 2 E V1 (A.42)
Consider now V1. Using (A.38) with b = 1 and Assumption A1, one obtains

N i=1 2kps T i Mi Ėi + CiE i N i=1 kp s T i Misi + s T i si + ĖiT Mi Ėi + E iT C T i CiE i N i=1 kp (kM + 1) s T i si + kM ĖiT Ėi + E iT C T i CiE i (A.43)
Focus now on the terms E iT C T i CiE i . Using Assumption A2, one has Injecting (A.43) and (A.48) in (A.42), one gets

N i=1 E iT C T i CiE i = N i=1 N j=1 mije i j T C T i Ci N =1 m i e i N i=1 N j=1 N =1 m i mij Ci
V 1 2 N i=1 -(ks -1 -kp (kM + 1)) E s T i si -ksE sT i si + D 2 max -kpkgE g T i gi -kpkgE ḡT i ḡi + kgbiE qi -q * i 2 + kpkM N j=1 αMmijE ėj i 2 + ksk 2 p + kgkp + kg bi N j=1 αMmijE e j i 2 +2αMkpk 2 C N j=1 mij E e j i 2 qi j 2 + 1 2 E e j i 4 + 1 2 E ėj i 4 (A.49)
The CTC (61) leads to

V 1 2 N i=1 E -(ks -1 -kp (kM + 1)) s T i si -kgkpg T i gi + D 2 max + η V 1 2 N i=1 E -k1s T i si -kgkpg T i gi + D 2 max + η (A.50)
with k1 = ks -1 -kp (kM + 1).

Introducing km = min {k1, kp}, from (A.50), one gets

V 1 2 N i=1 E -km s T i si + kgg T i gi + D 2 max + η . (A.51)
A lower bound of N i=1 g T i gi has now to be introduced using the following lemma, which proof is given in Appendix A.5.1.

Lemma 9 For all t, one has

N i=1 g T i gi
Nminmmin mmax P (q, t) , (A.52)

where mmin = mini,j=1...N (mij = 0), mmax = max i, = 1 . . . N (mij) and Nmin = mini=1...N (Ni).

Using Lemma 9 and introducing k3 = N min m min mmax , one may write

V E - km 2 N i=1 s T i si + k3kg 4 P (q, t) + N 2 D 2 max + η E - km k * M 1 2 N i=1 kM s T i si + k3kg 4 P (q, t) + N 2 D 2 max + η E - k4 k * M 1 2 N i=1 kM s T i si + kg 4 P (q, t) + N 2 D 2 max + η (A.53)
with k * M = 1 if kM < 1 and k * M = kM else, and k4 = km min (1, k3). 

Introducing c3 = k 4 k * M , one gets V E -c3 1 2 N i=1 s T i Misi + kg 4 P (q, t) + N 2 D 2 max + η V -c3V + N 2 D 2 max + η . (A.
Ẇ = -c3W + N 2 D 2 max + η . (A.55)
The solution of (A.55) with initial condition

W (t) = V (t) is W (t) = exp (-c3 (t -t)) V (t) + (1 -exp (-c3 (t -t))) N 2c3 D 2 max + η . (A.56)
Then, using [9, Lemma 3.4] (Comparison lemma), one has

V (t) W (t) ∀t ∈ [t, t[, so V (t) exp (-c3 (t -t)) V (t) + (1 -exp (-c3 (t -t))) N 2c3 D 2 max + η (A.57) exp (-c3 (t -t)) V (t) - N 2c3 D 2 max + η + N 2c3 D 2 max + η (A.58) Then, since V (t) > N 2c 3 D 2 max + η , V (t) is decreasing over the interval [t, t[.
Using (A.57), one may write ∀t > 0

V (t) exp (-c3t) V (0) + (1 -exp (-c3t)) N 2c3 D 2 max + η (A.59)
and from (A.59), one has

lim t→∞ V (t) N 2c3 D 2 max + η lim t→∞ E 1 2 N i=1 s T i Misi + kg 4 P (q, t) N 2c3 D 2 max + η lim t→∞ E 1 2 P (q, t) N kgc3 D 2 max + η . (A.60)
Asymptotically, the formation error is bounded and according to Definition 1, the system is asymptotically converging to the target formation with a bounded mean-square error.

A.5 Additional proof elements

A.5.1 Upper-bound on N i=1 g T i g i
From ( 14), one may write

N i=1 g T i gi = N i=1 N j=1 mij rij -r * ij T N =1 m i (r i -r * i ) = N i=1 N =1 N j=1 m i mij rij -r * ij T (r i -r * i ) (A.61)
Using the fact that

(a -b) T (a -b) = a T a + b T b -2a T b, (A.62) one gets N i=1 g T i gi = N i=1 1 2 N =1 N j=1 m i mij rij -r * ij 2 + r i -r * i 2 -rij -r * ij -(r i -r * i ) 2 . (A.63) One has rij -r * ij -(r i -r * i ) = (rij -r i ) -r * ij -r * i = r j -r * j
Injecting this result in (A.63) leads to

N i=1 g T i gi = N i=1 1 2 N =1 N j=1 m i mij rij -r * ij 2 + r i -r * i 2 -r j -r * j 2 (A.64) with mmax = max i, j = 1 . . . N (mij) mmax N i=1 g T i gi N i=1 1 2 N =1 N j=1 m i mijm j rij -r * ij 2 + r i -r * i 2 -r j -r * j 2 mmax N i=1 g T i gi 1 2 N i=1 N =1 N j=1 m i mijm j rij -r * ij 2 + 1 2 N i=1 N =1 N j=1 m i mijm j r i -r * i 2 - 1 2 N i=1 N =1 N j=1 m i mijm j r j -r * j 2 mmax N i=1 g T i gi 1 2 N i=1 N =1 N j=1 m i mijm j rij -r * ij 2 + 1 2 N i=1 N =1 N j=1 m i mijm j rij -r * ij 2 - 1 2 N i=1 N =1 N j=1 m i mijm j rij -r * ij 2 mmax N i=1 g T i gi 1 2 N i=1 N =1 N j=1 m i mijm j rij -r * ij 2 . (A.65) According m i = 0 if / ∈ Ni, one gets N i=1 N =1 N j=1 m i mijm j rij -r * ij 2 = N i=1 ∈N i m i N j=1 mijm j rij -r * ij 2
Let mmin = mini,j=1...N (mij = 0) and Nmin = mini=1...N (Ni). One may write

N i=1 N =1 N j=1 m i mijm j rij -r * ij 2 = N i=1 ∈N i mmin N j=1 mij rij -r * ij 2 . N i=1 N =1 N j=1 m i mijm j rij -r * ij 2 Nminmmin N i=1 N j=1 mij rij -r * ij 2 and so mmax N i=1 g T i gi Nminmmin N i=1 N j=1 mij rij -r * ij 2 N i=1 g T i gi
Nminmmin mmax P (q, t) (A.66)

A.5.2 Evaluation of c 3 c3 = k4 k * M = km min (1, k3) max {1, kM } = min {k1, kp} min 1, N min m min mmax max {1, kM } . (A.67)
where k1 = ks -1 -kp (kM + 1).

A.5.3 Evaluation of E e

j i t + i,ki+1 2 
and

E ėj i t + i,ki+1 2 E e j i t + i,k i +1 2 and E ėj i t + i,k i +1 2
are evaluated assuming that the implicit feedback is not employed. A similar evaluation may be performed considering this information. Using (39), after the transmission of the ki + 1 message by Agent i, one gets

E e j i t + i,k i +1 2 = k i +1 =k i -κ+2 p k i +1, qi, i t + i,k i +1 -qi t + i,k i +1 2 + k i -κ+1 =0 p k i +1, qi, i t + i,k i +1 -qi t + i,k i +1 2 = k i =k i -κ+2 πp k i , qi, i t + i,k i +1 -qi t + i,k i +1 2 + k i -κ+1 =0 πp k i , qi, i t + i,k i +1 -qi t + i,k i +1 2 + p k i +1,k+1 qi,k i +1 i t + i,k i +1 -qi t + i,k i +1 2 , (A.68) using p k i +1, = πp k i , , see (54). Since qi, i t + i,k i +1 = qi, i t - i,k i +1 for all = ki -κ + 1, . . . , ki and qi t + i,k i +1 = qi t - i,k i +1 , one deduces E e j i t + i,k i +1 2 = k i =k i -κ+2 πp k i , qi, i t - i,k i +1 -qi t - i,k i +1 2 + k i -κ+1 =0 πp k i , qi, i t - i,k i +1 -qi t - i,k i +1 2 + p k i +1,k+1 qi,k i +1 i t + i,k i +1 -qi t + i,k i +1 2 , (A.69) Moreover, at t = t + k+1 , qi,k i +1 i t + i,k i +1 = qi t + i,k i +1 . Consequently E e j i t + i,k i +1 2 = k i =k i -κ+2 πp k i , qi, i t - i,k i +1 -qi t - i,k i +1 2 + k i -κ+1 =0 πp k i , qi, i t - i,k i +1 -qi t - i,k i +1 2 = πE e j i t - i,k i +1 2 . (A.70)
One shows similarly that

E ėj i t + i,k i +1 2 = πE ėj i t - i,k i +1 2 .
(A.71)

A.6 Upper-bound on E e j i (t)

2

Immediately after the transmission of the ki-th message by Agent i, using (39), one gets for t

∈ [t i,k i , t i,k i +1 [ E e j i (t) 2 = k i =k i -κ+1 p k i , qi, i (t) -qi (t) 2 + k i -κ =0 p k i , qi, i (t) -qi (t) 2 . (A.72)
Since at most κ estimators are run in parallel, the estimators qi, i (t) for ki-κ are no more available at Agent i. Nevertheless, from Assumption A9, one has qi, i (t) -qi (t) emax and E e j i (t)

2 k i =k i -κ+1 p k i , qi, i (t) -qi (t) 2 + k i -κ =0 p k i , e 2 max . (A.73) Introducing σ j i (ki, κ) = k i -κ =0 p k i , = 1 -k i =k i -κ+1 p k i , , as k i =0 p k i , = 1, one gets E e j i (t) 2 k i =k i -κ+1 p k i , qi, i (t) -qi (t) 2 + σ j i (ki, κ) e 2 max . (A.74)
When the implicit (and delayed) feedback information introduced in Section 4.4 is exploited, then (A.74) becomes

E e j i (t) 2 |k j,i i , ρ j i k i =k i -κ+1 p j k i , |k j,i i ,ρ j i qi, i (t) -qi (t) 2 
+ σ j i ki, κ|k j,i i , ρ j i e 2 max (A.75)
where Agent i is aware from a packet received from Agent j in the time interval [t i,ρ j i , t i,ρ j i +1 [ that Agent j has received packet k j,i i sent by Agent i and

σ j i ki, κ|k j,i i , ρ j i = 1 - k i =k i -κ+1 p j k i , |k j,i i ,ρ j i
.

When the implicit (and delayed) feedback information is not exploited, one has

σ j i (ki, κ) = k i -κ =0 p k i , = k i -κ =1 (1 -π) π k i -+ π k i = (1 -π) k i -κ =1 π k i -+ π k i = (1 -π) k i -1 =κ π + π k i = (1 -π) π κ -π k i (1 -π) + π k i = π κ . (A.76)
The same method can be used to upper-bound E ėj i (t) 2 using the fact that qi, i (t) -qi (t) 2 qmax (see Assumptions A6 and A8) to get

E ėj i (t) 2 k i =k i -κ+1 p k i , qi, i (t) -qi (t) 2 + 4σ j i (ki, κ) q2 max . (A.77)
The upper-bounds (A.74) and (A.77) will be used in Appendix A.7 to get more accurate upper bounds E e j i (t)

2 and

E ėj i (t) 2
for E e j i (t)

2 and E ėj i (t) 2 . In what follows, one focuses on the case where the feedback information is not exploited. The following proofs can be translated to the case where the implicit feedback information is exploited by replacing E e j i (t) 2 , p k i , , and σ j i (ki, κ) by E e j i (t)

2 |k j,i i , p j k i , |k j,i i ,ρ j i
, and σ j i ki, κ|k j,i i , ρ j i .

A.7 Study of E e j i (t)

2
Our aim in this appendix is to build an upper bound E e j i (t) 

2 of E e j i (t) 2 such that E e j i (t) 2 E e j i (t) 2 ∀t 0 (A.78) E e j i t + i,k i +1 2 =πE e j i t - i,k i +1 2 ∀ki > 0. (A.
E e j i t + i,k i 2 = k i =k i -κ+1 p k i , qi, i t + i,k i -qi t + i,k i 2 + min      πE e j i t - i,k i 2 - k i =k i -κ+1 p j k i , qi, i t + i,k i -qi t + i,k i 2 , σ j i (ki, κ) e 2 max      . (A.88) If πE e j i t - i,k i 2 -k i =k i -κ+1 p j k i , qi, i t + i,k i -qi t + i,k i 2 σ j i (ki, κ) e 2 max , one has E e j i t + i,k i 2 = k i =k i -κ+1 p k i , qi, i t + i,k i -qi t + i,k i 2 + πE e j i t - i,k i 2 - k i =k i -κ+1 p j k i , qi, i t + i,k i -qi t + i,k i 2 = πE e j i t - i,k i 2 .
(A.89)

Else, one has with min = max ([0, ki -κ + 1]),

σ j i (ki, κ) e 2 max < πE e j i t - i,k i 2 - k i =k i -κ+1 p j k i , qi, i t + i,k i -qi t + i,k i 2 (A.90) so E e j i t + i,k i 2 = k i =k i -κ+1 p k i , qi, i t + i,k i -qi t + i,k i 2 + σ j i (ki, κ) e 2 max k i =k i -κ+1 p k i , qi, i t + i,k i -qi t + i,k i 2 + πE e j i t - i,k i 2 - k i =k i -κ+1 p j k i , qi, i t + i,k i -qi t + i,k i 2 πE e j i t - i,k i 2 . (A.
k i =k i -κ+1 p j k i , qi, i (t) -qi (t) 2 + d dt e j i,k i (t) = d dt k i =k i -κ+1 p j k i , qi, i (t) 
k i =k i -κ+1 p k i , qi, i (t) -qi (t) 2 + 4 qmaxemax k i -κ =0 p k i , d dt k i =k i -κ+1 p k i , qi, i ( 
1 k i >κ = 1 if ki > κ 0 else, e j i,k i (t) = 4 qmaxemaxσ j i (ki, κ) (t -t i,k i ) + πE e j i t - i,k i 2 - k i =k i -κ+1 p j k i , qi, i t + i,k i -qi t + i,k i 2 (A.99)
and E e j i (0)

2 = qi i (0) -qi (0) 2 .
Note that (A.98) guarantees that E e j i t + i,k i

2

= πE e j i t - i,k i 2 for all communication instants t i,k i .

Following the same steps, (A.98) can be extended to the case where the implicit feedback information is exploited as

E e j i (t) 2 |k j,i i , ρ j i = k i = min p j k i , |k j,i i ,ρ j i qi, i (t) -qi (t) 2 (A.100) + 1 k i >κ 1 k i -k j,i i
>κ min e j i,k i (t) , σ j i ki, κ|k j,i i , ρ j i e 2 max with e j i,k i (t) = 4 qmaxemaxσ 

j i ki, κ|k j,i i , ρ j i (t -t i,k i ) + πE e j i t - i,k i |k j,i i , ρ j i 2 - k i =k i -κ+1 p j k i , |k j,i i ,ρ j i qi, i t + i,k i -qi t + i,k i 2 . (A.
E ėj i (t) 2 = k i = min p k i , qi, i (t) -qi (t) 2 + 1 k i >κ min ėj i,k i (t) , 4σ j i (ki, κ) q2 max (A.102) with ėj i,k i (t) = 8 qmax qmaxσ j i (ki, κ) (t -t i,k i ) + πE ėj i t - i,k i 2 - k i =k i -κ+1 p j k i , qi, i t + i,k i -qi t + i,k i 2 .
(A.103)

Consider now the upper bound E e j i (t) 4 of E e j i (t) 4 . Following the idea used for E e j i (t) 

3 max σ j i (ki, κ) (t -t i,k i ) + πE e j i t - i,k i 4 - k i =k i -κ+1 p j k i , qi, i t + i,k i -qi t + i,k i 4 (A.106)
The same method can be used to obtain an upper bound E ėj i (t)

4 of E ėj i (t) 4 : E ėj i (t) 4 = k i = min p k i , qi, i (t) -qi (t) 4 + 1 k i >κ min ėj,2 i,k i (t) , 16σ j i (ki, κ) q4 max (A.107) with ėj,2 i,k i (t) = 32qmax q3 max σ j i (ki, κ) (t -t i,k i ) + πE ėj i t - i,k i 4 - k i =k i -κ+1 p j k i , qi, i t + i,k i -qi t + i,k i 4 . (A.108)
Here again, these results can be extended to the case where the implicit feedback information is used by replacing in the expressions the notation E e j i (t) 2 , p k i , , 1 k i >κ , and σ j i (ki, κ) by E e j i (t)

2 |k j,i i , ρ j i , p j k i , |k j,i i ,ρ j i , 1 k i >κ 1 k i -k j,i i >κ
, and σ j i ki, κ|k j,i i , ρ j i .

A.8 Proof of the upper-bound H i

The CTC (61) is not triggering at t = 0 if 

kss T i si (0) + kpkg ḡT i ḡi (0) + η > αM N j=1 mij ke e j i 2 + kpkM ėj i 2 +2kpk 2 C N j=1 mij e j i 2 qi j 2 + 1 2 e j i 4 + 1 2 ėj i 4 + kgbi qi -q * i 2 .

Remind sT

i si = kpḡ T i ḡi + qi -q * i 2 , so ks qi -q * i 2 ( 
< (ke + kpkM ) 2 + kpk 2 C ξi -(ke + kpkM ) 2kpk 2 C where ξi = kp(ks+kg ) α M α i ḡT i ḡi (0) + η α M α i .

B Proof of absence of Zeno behavior

To prove the absence of Zeno behavior, we have to define a minimum inter-event time τmin such t i,k i +1 -t i,k i τmin. To obtain it, we study the evolution of the right-hand side CR (t) and the left-hand side CL (t) of the CTC exposed in Theorem 7 to find a condition such CR (t i,k i + ∆t) < CL (t i,k i + ∆t) for ∆t < τmin. Lipschitzien hypotheses described in Assumptions A6, A7 and A8 will be used to obtain an estimation of CR (t i,k i + ∆t) and CL (t i,k i + ∆t) before be used to estimate τmin.

B.1 Proof that

t i,k < t i,k+1
In a first time, let show the CTC is not satisfied immediately after a communication, i.e. t i,k < t i,k+1 , and find conditions on design parameters to guarantee it. Consider

CL (t) = kss T i (t) si (t) + kpkg ḡT i (t) ḡi (t) + η and 
CR (t) = αM N j=1 mij keE e j i (t) 2 + kpkME ėj i (t) 2 +2kpk 2 C N j=1 mij E e j i (t) 2 qi j (t) 2 + 1 2 E e j i (t) 4 + 1 2 E ėj i (t) 4 + kgbi qi (t) -q * i (t) 2 , with ke = ksk 2 p + kgkp + kg b i .
According to (61), no communication is triggered as long as CL (t) > CR (t). A communication is triggered at t = t i,k when

CL (t i,k ) = CR (t i,k ) . (B.1)
The message sent at time t = t i,k by Agent i implies an update of the estimates q j i , j ∈ Ni of that state qi run by the neighbors of Agent i. Introduce t - i,k i as the instant t i,k i before the update and t + i,k i be the instant t i,k i after the update. Consequently, the expected state estimation error will be such that

E e j i t + i,k i 2 = πE e j i t - i,k i 2 (B.2) E e j i t + i,k i 2 = πE e j i t - i,k i 2 , (B.3)
see in Appendix A.5.3 and A.7. Nevertheless, kss T i si + kpkg ḡT i ḡi + η and qi -q * i 2 , which are not updated by the communication, stay unchanged. Consequently

CL t + i,k i = CL t - i,k i . (B.4)
To prove that t i,k < t i,k+1 , one has to show that CL t

+ i,k i > CR t + i,k i .
Using Appendix A.5.3 and the continuity of qi (t) and q * i , one may write

CR t + i,k i = kgbi qi t - i,k i -q * i t - i,k i 2 + παM N j=1 mij keE e j i t - i,k i 2 + kpkM E ėj i t - i,k i 2 +2kpk 2 C N j=1 mij E e j i t - i,k i 2 qi j 2 + 1 2 E e j i t - i,k i 4 + 1 2 E ėj i t - i,k i 4 
Using (B.1) and (B.4), one gets

CR t + i,k i = kgbi qi t - i,k i -q * i t - i,k i 2 + π kss T i si t - i,k i + kpkg ḡT i ḡi t - i,k i + η -kgbi qi t - i,k i -q * i t - i,k i 2 = (1 -π) kgbi qi t - i,k i -q * i t - i,k i 2 + π kss T i si t - i,k i + kpkg ḡT i ḡi t - i,k i + η . (B.5)
The CTC is not satisfied if

CL t + i,k i > CR t + i,k i kss T i si t - i,k i + kpkg ḡT i ḡi t - i,k i + η > (1 -π) kgbi qi t - i,k i -q * i t - i,k i 2 + π kss T i si t - i,k i + kpkg ḡT i ḡi t - i,k i + η (B.6) (1 -π) kss T i si t - i,k i + kpkg ḡT i ḡi t - i,k i + η > (1 -π) kgbi qi t - i,k i -q * i t - i,k i 2 kss T i si t - i,k i + kpkg ḡT i ḡi t - i,k i + η > kgbi qi t - i,k i -q * i t - i,k i 2 (B.7)
and let show now that (B.7) is always satisfied.

Using the property x T y -1 2 bi2x T x + 1 b i2 y T y for some bi2 > 0, one deduces that

sT i si = k 2 p ḡT i ḡi + qi -q * i 2 + 2kpḡ T i ( qi -q * i ) k 2 p -kpbi2 ḡT i ḡi + 1 - kp bi2 qi -q * i 2 . (B.8)
Using (B.8), a sufficient condition for (B.7) to be satisfied is

ks k 2 p -kpbi2 ḡT i ḡi + ks 1 - kp bi2 qi -q * i 2 + kpkg ḡT i ḡi + η > kgbi qi -q * i 2 ks 1 - kp bi2 qi -q * i 2 + kpkg + ks k 2 p -kpbi2 ḡT i ḡi + η > kgbi qi -q * i 2 k1ḡ T i ḡi + η > k2 qi -q * i 2 (B .9) 
where k1 = kpkg + ks k 2 p -kpbi2 and k2 = kgbi -ks 1 -kp b i2

. To ensure that the inequality (B.9) is satisfied independently of the values of ḡi and qi, it is sufficient to find bi and bi2 such that k1 > 0 and k2 < 0. 

  where ξ = N kg c 3 D 2 max + η , c3 = min {k1, kp} min 1, N min m min mmax max {1, kM } (64) and k1 = ks -(1 + kp (kM + 1)).
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 2 Fig.2. Evolution of P (q, T ) and Rcom for different values of Dmax and π, when η = 100, the estimator (22) is considered for the dynamics of neighbors agents, as well as E e j i (t) 2 |k i,j j from (58).
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 324 Fig. 3. Results of the proposed method using an estimated of the state error (a) via (39) (implicit acknowledgement not used), (b) via (58) (implicit acknowledgement used) when Dmax = 200 and π = 0.2

  7) and ε1 = max {ε11, ε12} . (A.8) Combining (A.4) and (A.5), one has for all

m 2 .

 2 i mij Ci 2 e iT j e i j + e iT e i mij = mji and mij = 0 if (i, j) / ∈ Nj, one may write Using (A.38) with b = 1 and mij = mji, one gets

  

  35, 4.59, 4.72, 0.64, 3.53, -1.26] , y (0) = [-1.11, -4.59, 2.42, 1.36, 1.56, 3.36] and ψ (0) = 0N . An hexagonal target formation is considered with r *

  The probability associated to δσ is pσ. The next communication time instant is tσ,n σ +1 > t and the communicating Agent is iσ,n σ +1. Let

	t = min σ=1,...,S t	tσ,n σ +1
	σ = arg min	

σ=1,...,S t tσ,n σ +1 and i denote the index of the associated communicating Agent. For all t ∈ [t, t[ , one has

  79) A.7.1 Case 1: when k i κ Our main in what follows is to show that (A.83)-(A.84) satisfy the following conditions for t ∈ [t i,k i , t i,k i +1 [: The proof is by induction. Assume that (A.85)-(A.87) is true for ki -1 and all t ∈ [t i,k i -1 , t k i [ . Consider now the time interval [t i,k i , t i,k i +1 [ .

			E e j i (t)	2	E e j i (t)	2	(A.85)
		E e j i t + i,k i		2	πE e j i t -i,k i	2	(A.86)
			E e j i (t)	2		k i	p k i ,	qi, i (t) -qi (t)	2	+ σ j i (ki, κ) e 2 max .	(A.87)
							=k i -κ+1
	1) From (A.83), (A.87) is obviously satisfied.			
	2) At t = t + i,k i , one has								
	In this case, one has								
						E e j i (t)	2	=	k i	p k i , -qi (t) 2 .	(A.80)
										=0
	Since ki κ, all qi, i (t),	ki are available at Agent i and one can take
					i (t) E e j	2	=	k i	p k i ,	qi, i (t) -qi (t)	2
										=0
									= E e j i (t)	2	.	(A.81)
	From Appendix A.5.3, one has							
						E e j i t + i,k i	2	= πE e j i t -i,k i	2	(A.82)
	so (A.78) and (A.79) are satisfied for all ki κ and t tκ+1.
	A.7.2 Case 2: k i > κ								
	Consider ki > κ and introduce							
	E e j i (t)	2	=	k i	p k i ,	qi, i (t) -qi (t)	2	+ min e j i,k i (t) , σ j i (ki, κ) e 2 max	(A.83)
				=k i -κ+1			
	where								
			e j i,k i (t) = πE e j i t -i,k i	2	+ 4 qmaxemaxσ i (ki, κ) (t -t i,k i ) j
				-	k i	p k i ,	qi, i	t + i,k i -qi t + i,k i	2	.	(A.84)
						=k i -κ+1		

  (t), introduced in (A.84), is an increasing function of t. Two situations have to be considered. First, if for all t ∈ [t i,k i , t i,k i +1 [ one has e j i,k i (t) σ j i (ki, κ) e 2 max , then Consider now the time interval [t i,k i , min { ti,k i , t i,k i +1 }[. To show that (A.85) is satisfied for all t ∈ [t i,k i , min { ti,k i , t i,k i +1 }[,

	91) i t -From (A.89) and (A.91), one deduces that (A.86) is satisfied. Moreover, using (A.71), and the induction hypothesis E e j i,k i E e j i t -i,k i 2 , then (A.85) is satisfied at t = t + i,k i . 3) Since e j i (t) 2 = k i =k i -κ+1 p k i , qi, i (t) -qi (t) 2 + e j i,k i (t) . Second, if there exist ti,k i ∈ [t i,k i , t i,k i +1 [ such that e j i,k i ( ti,k i ) = σ j i (ki, κ) e 2 max , then ∀t ∈ [ ti,k i , t i,k i +1 [, e j i,k i (t) > σ j i (ki, κ) e 2 max and E e j i (t) 2 = k i =k i -κ+1 p k i , qi, i (t) -qi (t) 2 + σ j i (ki, κ) e 2 max . (A.92) Then, from (A.74) and (A.92), for all t > ti,k i one has E e j i (t) 2 E e j i (t) 2 . we first show that d dt E e j i (t) 2 -d dt E e j i (t) 2 0. (A.93) One has i,k i E e j d dt E e j i (t) 2 d = dt	2

  -qi (t)

																	2	+ 4 qmaxemaxσ	j i (ki, κ)
	and																
	d dt	E e j i (t)	2	=	d dt	k i =k i -κ+1	p j k i ,	qi, i (t) -qi (t)	2	+	d dt	=0 k i -κ	p j k i ,	qi, i (t) -qi (t)	2	.	(A.94)
	For all ∈ [0, ki], one has															
			d dt		qi, i (t) -qi (t)	2	=	d dt	qi, i (t) -qi (t)	T	qi, i (t) -qi (t)
									= 2 qi, i (t) -qi (t)	T			qi, i (t) -qi (t)
										2 qi, i (t) -qi (t)			qi, i (t) -qi (t) .	(A.95)
	Using Assumptions A6, A8 and A9, one has qi, i (t) -qi (t)	2 qmax and qi, i (t) -qi (t)	emax, so
							d dt	qi, i (t) -qi (t)	2	4 qmaxemax.	(A.96)
	Then,																
		d dt	E e j i (t)	2	d dt										

  0) + kp (ks + kg) ḡT i ḡi (0) + η > αM

														N	i mij ke e j	2	+ kpkM ėj i	2
													j=1		
									+2kpk 2 C	N j=1	mij	e j i	2 qi j	2	+	1 2	e j i	4	+	2 1	i ėj	4
									+ kgbi qi -q * i	2 .	(A.109)
	Since bi <	ks kskp+kg , one has														
					ks -kg	ks kskp + kg	= ks	kskp + kg -kg kskp + kg
												= ks	kskp kskp + kg	> 0
	so (A.109) is satisfied if														
		kp (ks + kg) ḡT i ḡi (0) + η > αM	N	i mij ke e j	2	+ kpkM ėj i	2
								j=1							
						+2kpk 2 C	N j=1	mij			e j i	2 qi j	2	+	1 2	e j i	4	+	1 2	ėj i	4	.	(A.110)
	We choose the condition qi j	2	= 0, e j i	2 < Hi and ėj								N j=1 mij. Thus,
	(A.110) may be rewritten as														
													N		
				kp (ks + kg) ḡT i ḡi (0) + η > αM			mij (ke + kpkM ) Hi
												j=1		
									+2kpk 2 C	N j=1	mij	1 2	H 2 i
				kp (ks + kg) ḡT i ḡi (0) + η > αMαi (ke + kpkM ) Hi + kpk 2 C H 2 i	(A.111)
	and so															
			kp (ks + kg) αMαi	ḡT i ḡi (0) +	η αMαi		-(ke -kpkM ) Hi -kpk 2 C H 2 i > 0.	(A.112)
	By solving (A.112), we find														
				Hi											

i 2 < Hi where Hi 0 is a constant. Remind αi =

  Consider first k1.From the Lipschitzien hypotheses of Assumptions A6, A7 and A8, we can deduce there exist K, K and K * such These conditions are now used to find an upper bound for all the terms inside the CTC. + i,k i + ∆t -qi t + i,k i + ∆t and so the previous upper-bound is also valid for E e j i (t) 2 . Else, suppose I is defined such for t ∈ I, =0 p jk i , = 1 -k i =k i -κ+1 p j k i , with ki -κ = min -1,one has Using results of Appendix B.2.1, since the structure of E e j i t + i,k i + ∆t Using the same steps that for ḡi (t) , one gets for si (t) the following expression: Let's consider t = t + i,k i , where t + i,k i correspond to the instant t i,k i after the update of the estimate values. The left side of the CTC CL t + i,k i + ∆t = ks si t + i,k i + ∆t 2 + kpkg ḡi t + i,k i + ∆t 2 + η (B.43) becomes using results of Section B.2 and η = (1 -b + b)η,In the same way, the right side of the CTC can be expressing using E e j i t + i,k i + ∆t 2 or its upper-bound E e j i t + i,k i + ∆tAt t = t + i,k i + ∆t, the CTC is not triggering if CR t + i,k i + ∆t < CL t + i,k i + ∆t (B.50)where (B.50) is satisfied ifCR t + i,k i + B∆t + A (∆t) 2 < (1 -b) CL t + i,k i + 1 -K1 (∆t) 2 < (1 -b) CL t + i,k i -CR t + i,k i . Since 0 < π < 1, one has A > 0, B > 0 and C > 0 iff η > kgbi qi t + i,k i -q *So τmin > 0. From (B.53), we deduce than for t > t i,k i ,the CTC is not triggering since t < t i,k i + ∆t. Thus, we can conclude that t i,k i +1 -t i,k i τmin.(B.59)

	One may find bi2 if Thus, one gets B.2.2 Upper-bound on E e j i t + i,ki + ∆t	4	and E	ėj i t + i,ki + ∆t	4	2	.
	ks -kgbi > k 2 s kp kskp + kg > bi kskp + kg k 2 s kp bi < ks kskp + kg kskp+kg , there exists some bi2 such that (B.13) is satisfied. As a consequence, ks -. (B.14) ks qi (t + ∆t) -qi (t) K∆t (B.15) qj i (t + ∆t) -qj i (t) K∆t (B.16) q * i (t + ∆t) -q * i (t) K * ∆t (B.17) 2 qi, i t + 2 i (t) + kpḡi (t) 1 kg kg . Thus, once bi < which also ensures that bi < ks (61) stops to be satisfied when t = t + i,k . B.2 Study of upper-bound qi, si (t) = qi (t) -q * Thus By solving (B.52) for ∆t as unknown, one gets i,k i -qi t + i,k i + 4 qmaxemax∆t (B.21) E e j i t + i,k i + ∆t 2 E e j i t + i,k i 2 + 4 qmaxemax∆t. (B.22) In practice, E e j i (t) 2 is upper-bound by E e j i (t) 2 in the CTC. If p k i +n,k j,i i ,κ = 0, one has E e j i t + i,k i 2 = E e j i t + i,k i 2 one has E e j i (t) 2 k i = min p k i , qi, i (t) -qi (t) 2 + σ j i (t i,k i )e 2 max . Thus, one gets E e j i t + i,k i + ∆t 2 = k i = min p k i , qi, i t + i,k i + ∆t -qi t + i,k i + ∆t 2 + 4 qmaxemaxσ j i (t i,k i )∆t + πE e j i t -2 4 and E ėj i t + i,k i + ∆t 4 are similar to E e j i t + i,k i + ∆t 2 and E ėj i t + i,k i + ∆t 2 , one gets E e j i t + i,k i + ∆t 4 E e j i t + i,k i 4 + 8 qmaxemax∆t (B.28) E ėj i t + i,k i + ∆t 4 E ėj i t + i,k i 4 + 32 qmax qmax∆t, (B.29) and E e j i t + i,k i + ∆t 4 E e j i t + 4 + 8 qmaxemax∆t (B.30) si (t) = kp N mij ((qi (t) -qi (t + ∆t)) -(q * i (t) -q * i (t + ∆t))) CR t + i,k i + ∆t αM N mij keE e j i t + i,k i + ∆t 2 + kpkME ėj i t + 2 ∆t < τmin (B.53) i,k i + ∆t j=1 -kp N j=1 mij qi j (t) -qi j (t + ∆t) -q * j (t) -q * j (t + ∆t) + qi (t) -qi (t + ∆t) -q * i (t) + q * i (t + ∆t) + si (t + ∆t) si (t) si (t + ∆t) + N j=1 mij ( qi (t + ∆t) -qi (t) + q * i (t + ∆t) -q * j=1 + 2kpk 2 C with N j=1 mij E e j i t + i,k i + ∆t 2 qi 2 j t + i,k i + ∆t + 1 2 E e j i t + i,k i + ∆t 4 + 1 2 E ėj i t + i,k i + ∆t 4 (B.46) τmin = -B + B 2 + 4AC (B.54) 2A A = A + π K1 (B.55) 1 -π i (t) + qi j (t + ∆t) -qi j (t) + q * j (t + ∆t) -q * j (t) + qi (t) -qi (t + ∆t) + q * i (t) -q * i (t + ∆t) B = B (B.56) which becomes using results of Appendix B.2 CR t + i,k i + ∆t αM C = (1 -π) η -kgbi qi t + i,k i -q * i t + 2 (B.57) i,k i N mij keE e j i t + i,k i 2 + kpkME ėj 2 i t + i,k i i,k i E ėj i t + i,k i + ∆t 4 E ėj i t + i,k i 4 + 32 qmax qmax∆t. (B.31) si (t) si (t + ∆t) + ∆t αi K + K + 2K * + 2K * d j=1 (B.40) + 2kpk 2 C N mij E e j i t + i,k i 2 qi 2 j t + i,k i i,k i -k i = min p j k i , qi, i t + i,k i -qi t + i,k i 2 B.2.3 Upper-bound on qi j t + i,ki + ∆t 2 E e j i,ki + ∆t si (t + ∆t) si (t) + ∆t αi K + K + 2K * + 2K * + αM [αi (ke4 qmaxemax + 8 qmax qmax) ∆t i t + 2 In a similar way, it can be shown that j=1 + 1 2 E e j i t + i,k i 4 + 1 2 E ėj 2 i t + i,k i 4 i t + i,k i > 4kgbi q2 max . (B.58)
	k i = min Using results obtained in Appendix B.2.1, one gets j=1 p k i , |k j,i i ,ρ j i qi, i N + 2kpk 2 C mij (qmax + 4 qmaxemax) ∆t + 4qmax qmaxemax (∆t) 2 t + i,k i -qi t + i,k i 2 + 4 qmaxemax∆t + 4 qmaxemaxσ	j i (t i,k i )∆t
	with	qi j t + i,k i + ∆t	2 + ∆t and E E e j ėj i t + i,ki + ∆t i t + i,k i 2 + [4 qmaxemax∆t + 16 qmax qmax] ∆t)] i t + + E e j i,k i 2 -k i p j k i , qi, 2 E e j i t + i,k i + ∆t 2 qi j t + i,k i + 4 qmaxemax∆t CR t + i,k i + B∆t + A (∆t) 2 = min qi j t + i,k i E e j 2 i t + i,k i + ∆t (qmax + 4 qmaxemax)	(B.47)
			N		+ 4qmax qmaxemax (∆t) 2		(B.32)
		A = 8αMkpk 2 C qmax qmaxemax	mij			(B.48)
	kpkg + ks k 2 p -kpbi2 > 0 kg > (-kp + bi2) 2 = k i =0 p k i , |k j,i i ,ρ j i qi, i t + i,k i + ∆t -qi t + i,k i + ∆t 4 qmaxemax∆t i,k i + ∆t i t + E e j i,k i + ∆t i t + E e j 2   k i = min p k i , |k j,i i ,ρ j i + min -1 p k i , |k j,i i ,ρ j i ∆t j=1   + E e j 2 i t + i,k i 1 -1 b (∆t) 2 αi K + K + 2K * + 2K * d 2 + (1 -b) si (t) 2 si (t + ∆t) 2 N B = αMαi (ke4 qmaxemax + 8 qmax qmax) + 2αMkpk 2 C (qmax + 8 qmaxemax + 16 qmax qmax) mij =0 j=1 ks kskp + kg ks > bi2. Let study d dt E e j i (t) 2 : E e j i t + i,k i 2 + 4 qmaxemax k i =0 p k i , |k j,i i ,ρ j i ∆t with 1 > b > 0. Consider now ḡi (t) and remark A > 0 and B > 0.	2	(B.18) (B.42) (B.49) (B.10)
	Focus now on k2 Since bi2 > 0, one has Finally, one has to find a condition on bi such that (B.10) and (B.11) can be satisfied simultaneously kgbi -ks 1 -kp < 0 d dt E e j i (t) 2 = E e j 2 i t + i,k i + 4 qmaxemax∆t. N k i p k i , |k j,i i ,ρ j i d qi, 2 ḡi (t) = mij qi (t) -qi j (t) -q * i (t) -q * j (t) dt j=1 =0 bi2 kgbi ks < 1 -kp bi2 kg b i ks < 1 and so bi < ks kg . Then kskp ks -kgbi < bi2. kskp + kg ks > bi2 > kskp ks -kgbi . = 2 N k i =0 p k i , |k j,i i ,ρ j i qi, k i =0 p k i , |k j,i i ,ρ j i qi, 4 qmaxemax k i =0 p k i , |k j,i i ,ρ j i and since k i =0 p k i , |k j,i i ,ρ j i = 1, one has d dt E e j 2 4 qmaxemax. = mij qi (t) -qi j (t) -q * i (t) -q * j (t) In similar way, one can obtain qi j t + i,k i + ∆t qi j t + i,k i + qmax∆t. and E ėj i t + i,k i + ∆t 2 E ėj i t + i,k i 2 + 8 qmax qmax∆t, E ėj i t + i,k i + ∆t 2 E ėj i t + i,k i 2 + 8 qmax qmax∆t. j=1 -N j=1 mij qi (t + ∆t) -qi j (t + ∆t) -q * i (t + ∆t) -q * j (t + ∆t) + N j=1 mij qi (t + ∆t) -qi j (t + ∆t) -q * i (t + ∆t) -q * j (t + ∆t) = N j=1 mij ((qi (t) -qi (t + ∆t)) -(q * i (t) -q * CL t + i,k i + ∆t (1 -b) ks si t + i,k i 2 + kpkg ḡi t + i,k i 1 K1 (∆t) 2 + bη b 2 + η + bη + 1 -1 2 -bη + B∆t + A -1 -1 (∆t) 2 (B.51) (B.24) (B.11) (B.12) (B.13) (B.19) (B.20) (B.25) (B.26) (B.27) b (∆t) 2 ks αi K + K + 2K * + 2K * d b From (B.5), one has CR t + i,k i = πCL t + i,k i + (1 -π) kgbi qi t + i,k i -q * i 2 t + i,k i , thus one chooses b = 1 -π and (B.51) +kpkg αi K + K + 2K * 2 becomes i (t + ∆t))) -N mij qi j (t) -qi j (t + ∆t) -q * j (t) -q * (1 -b) CL t + i,k i + 1 -1 b (∆t) 2 K1 + bη (B.44) -(1 -π) η + B∆t + A -1 -1 (∆t) 2 K1 (∆t) 2 < -(1 -π) kgbi qi t + i,k i -q * i t + i,k i 1 -π j (t + ∆t) i (t) j=1 +ḡi (t + ∆t) (B.33) π 1 -π K1 (∆t) 2 ≤ 0 (B.52)

B.2.1 Upper-bound on qi

j t + i,ki + ∆t , E e j i t + i,ki + ∆t

2 Define I = t + i,k i , t + i,k i + ∆t such that Agent i broadcasts no communication inside I. Consider first the MSE i (t) -qi (t) i (t) -qi (t) T qi, i (t) -qi (t) 2 i (t) -qi (t) qi, i (t) -qi (t) i t i t + i,k i -qi t + i,k i 2 (B.23)

and since

σ j i (t i,k i ) = k i -κ B.

2.4 Upper-bound on ḡi (t + ∆t) and si (t + ∆t) d (B.41) Using (B.40) and (B.41), one can deduce | si (t + ∆t) -si (t) | ∆t αi K + K + 2K * + 2K * d Following the same steps from (B.37) to (B.39), one gets B.3 Minimum inter-event time with K1 = ks αi K + K + 2K * + 2K * d 2 + kpkg αi K + K + 2K * 2 (B.45) 2 -(1 -π) η -kgbi qi t + i,k i -q * i t + i,k i 2 + B∆t + A +
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In (B.33), using (B. [START_REF] Nowzari | Event-triggered communication and control of networked systems for multi-agent consensus[END_REF] and Assumption A7, one may write ḡi (t) ḡi (t + ∆t) +