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Abstract

This paper considers a distributed formation control problem for a multi-agent system. The dynamic of agents is assumed to
be Euler-Lagrange. An event-triggered approach is considered, leading to intermittent communications between agents. This
paper addresses the situation where communications are prone to random packet losses. To evaluate its control input, each
agent maintains multi-hypothesis estimators of its own state and of the states of its neighbors accounting for the potentially
lost packets. Each agent is then able to compute the expected estimation error of its own state as evaluated by its neighbors.
The condition to trigger communication (CTC) involves this expected error. An analysis of the behavior of the system with
such CTC is performed using stochastic Lyapunov functions. Simulations confirm the effectiveness of the proposed approach.

Key words: Communication constraints, event-triggered control, packet losses, formation stabilization, multi-agent system.

1 Introduction

Distributed control with event-triggered communication is an efficient method to coordinate Multi-agent System (MAS) with
a reduced amount of communication between agents. Contrary to periodical communication [5] or intermittent communication
[22], messages are transmitted only when needed. This method reduces the need for communications, and so reduces the risk
of packet collisions. The main difficulty of these approaches consists in determining the communication triggering condition
(CTC) that will ensure the completion of the task assigned to the MAS (see [16,19,6,27,23,15,2]). Nevertheless, since event-
triggered approaches are based on the idea that a message is transmitted only when required, a loss of information may have
a critical impact on the performance, and even stability of the MAS.

Packet losses may be due to collisions between packets transmitted from different agents, presence of obstacles, or interfer-
ence with other communications systems. The packet losses issue is usually addressed by integrating an acknowledgement
mechanism in the communication protocol to detect and possibly re-transmit lost messages. In practice, acknowledgement or
re-transmitted message can also be lost. This induces communication delays if the same content is re-transmitted, and may
lead to desynchronization between agents.

In [1,7,8,26,24] packet losses is addressed by combining H∞ control and event-triggered communications. Sufficient conditions
are established to ensure the global exponential stability of the system. In [7], communication delays and packet losses are
considered simultaneously. In [8], two different models (Bernoulli and non-Bernoulli) are proposed to describe the packet losses
in the networks. In [8] external perturbations are considered and it is shown that event-triggered control schemes are more
vulnerable to packet losses than time-triggered control strategies. The work in [1] addresses the problem of a MAS following
several leaders to reach its objectives. The observers of the state of other agents run by each agent account for the last send
message, agent dynamics and measurement perturbations. However, agents with linear dynamics are considered in all these
works.

Non-linear dynamic models are studied in [3,4]. In [3], the influence of packet losses is taken into account in the estimator
models and not in the CTC. New distributed estimators are designed to guarantee the exponential stability of the estimation
errors even in presence of packet losses. To update its estimate of other agents’ states, each agent uses its own innovation and
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the innovation of its neighbor’s. This improves the accuracy of the estimates at the cost of being more sensitive to the loss of
information expected from other agents.

In [4], the problem of control of a single agent in presence of potential loss of information in the measurement communication
process is considered. An event-triggered strategy is proposed along with two communication protocols, with and without
acknowledgment scheme. With acknowledgment scheme, the number of successive packet losses can be perfectly known, and
the most recently received measurement value can be identified. Without acknowledgment scheme, this information is no
longer available and a set of estimators is used to perform an estimation of this measurement, each one using a different
hypothesis of the last packet received. As previously stated, the case of a MAS is not studied here.

In this paper, the problem of distributed formation control of MAS with nonlinear Euler-Lagrange dynamics with state
perturbations is addressed. The reduction of communications is performed by a distributed event-triggered strategy. It extends
the method proposed in [20] to the case of packet losses by modifying the CTC evaluation to account for the potentially lost
information during communication in the MAS. In a similar way as [4], each agent maintains multi-hypotheses estimators of
its own state, each corresponding to estimates performed by its neighbors based on the potential received and lost information.
As this may lead to heavy computational burden, a practical implementation is proposed to limit the number of estimators
to maintain. The convergence of the global system to the target formation is proved.

Assumptions and the formation parameterization are introduced in Section 2 and 3. The distributed control law is described
in Section 3. State estimators to replace missing information in control law and evaluate the CTC are proposed in Section 4.1.
Influence of packet losses on estimator is presented in Section 4.2, to evaluate an expected value of the estimation error.
Knowledge of this error is improved using a feedback information from other agents, as described in Section 4.4. The distributed
CTC is presented in Section 5. A simulation example is presented in Section 6 to illustrate the reduction of the number of
communications obtained by the proposed approach. Finally, Section 7 presents conclusions and perspectives for future work.

2 Notations and hypotheses

Consider a vector x = (x1, . . . , xn)T ∈ Rn. The notation x > 0 indicates that each component xi of x is non-negative, i.e.,

xi > 0, ∀i ∈ {1, . . . , n}. The absolute value of the i-th component of x is |xi| and |x| = (|x1| , . . . , |xn|)T .

2.1 Multi-agent system

Consider a MAS consisting of N communicating agents with indexes in the set N = {1, . . . , N}. In a global fixed reference

frame R, let qi ∈ Rn be the vector of coordinates of agent i and q =
[
qT1 , . . . , q

T
N

]T ∈ RNn be the configuration of the MAS.
The relative coordinate vector between two agents i and j is rij = qi − qj .

The evolution of the state xi =
[
qTi , q̇

T
i

]T
of agent i is assumed to be described by the Euler-Lagrange model

Mi (qi) q̈i + Ci (qi, q̇i) q̇i +G = ui + di, (1)

where ui ∈ Rn is some control input, Mi (qi) ∈ Rn×n is the inertia matrix of agent i, Ci (qi, q̇i) ∈ Rn×n is the matrix of the
Coriolis and centripetal terms for agent i, G accounts for gravitational acceleration supposed to be known and constant, and
di is a time-varying state perturbation satisfying ‖di (t)‖ 6 Dmax.

One assume that the MAS satisfies is such that for each agent i:

A1) Mi (qi) is symmetric positive and there exists kM > 0 satisfying ∀x, xTMi (qi)x ≤ kMxTx.

A2) Ṁi (qi) − 2Ci (qi, q̇i) is skew symmetric or negative definite and there exists kC > 0 satisfying ∀x, xTCi (qi, q̇i)x ≤
kC ‖q̇i‖xTx.

A3) the left side of (1) can be linearly parametrized as

Mi (qi) ξ1 + Ci (qi, q̇i) ξ2 = Yi (qi, q̇i, ξ1, ξ2) θi (2)

for all vectors ξ1, ξ2 ∈ Rn, where Yi (qi, q̇i, ξ1, ξ2) is a regressor matrix with known structure identical for all agents, and
θi ∈ Rp is a vector of constant parameters known by agent i.

A4) xi can be measured without error.

A5) its initial value of its state xi (0) is known by of all its neighbors.

Assumptions A1, A2, and A3 have been previously considered, e.g., in [11–13,18]. In what follows, the notations Mi and Ci
are used in place of Mi (qi) and Ci (qi, q̇i).
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2.2 Communication model

Each agent is only able to communicate with a subset of agents in the MAS. This communication topology is described by
a fixed undirected graph G = (N , E), where E ⊂ N × N is the set of edges of the graph. The set of neighbors of agent i is
Ni = {j ∈ N| (i, j) ∈ E , i 6= j} with cardinal number Ni.

One neglects communication delays between agents. Due to occlusions, fading, and packet collisions, the communication link
between agents i and j may be unreliable and messages may be lost. When agent i broadcasts its ki-th message at time ti,ki ,

agent j ∈ Ni either receives this message without error at time tji,ki = ti,ki or does not receive it. To limit the amount of
communications, one assumes further that there is no acknowledgement protocol and thus no possible retransmission in case
of losses. Let {δji,ki}ki>1 be a sequence of binary variables such that δji,ki = 1 if the ki-th message sent by agent i has been

received by agent j and δji,ki = 0 else.

Here, the δji,kis are modeled as realizations of a timing-invariant Markov processes with characteristic identical for all agents,
as described in Assumption A6.

A6) There exists κ > 0 such that for all pairs of neighbouring agents (i, j), one has

Pr

(
δji,ki = 1|

κ∑
`=1

δji,ki−` > 0

)
= 1− π (3)

Pr

(
δji,ki = 0|

κ∑
`=1

δji,ki−` > 0

)
= π (4)

and

Pr

(
δji,ki = 1|

κ∑
`=1

δji,ki−` = 0

)
= 1 (5)

Pr

(
δji,ki = 0|

κ∑
`=1

δji,ki−` = 0

)
= 0 (6)

with 0 6 π < 1.

Assumption A6 implies that at least one of the last κ messages broadcast by Agent i has been received by each of its neighours
Agent j.

Let kji 6 ki be the index of the last message agent j has received from its neighbor i. When a communication is triggered at
time ti,ki , agent i broadcasts a message containing ki, ti,ki , qi (ti,ki), q̇i (ti,ki), θi, and {kij} ∈ j ∈ Ni. By sending kij ≤ kj for
all j ∈ Ni, agent i indicates the index of the last message received from each of its neighbors.

When agent j receives a message from agent i, it updates kji to ki. Moreover, qi (ti,ki), q̇i (ti,ki), and θi are used to update its

estimator of the state of agent i, as detailed in Section 4.1. Finally, agent j keeps track in the variables ki,jj of the value of kij
which represents the index of the last message sent by agent j and which has been actually received by agent i. ki,jj is used

by agent j to evaluate the knowledge agent i has on on xj (see example Figure 1).

2.3 Target formation

A potentially time-varying target formation is defined by the set R =
{
r∗ij (t) , (i, j) ∈ N ×N

}
, where r∗ij (t) is the target

relative coordinate vector between agents i and j. Without loss of generality, the first agent is considered as the reference
agent. Any target relative coordinate vector r∗ij can be expressed as r∗ij (t) = r∗i1 (t)− r∗j1 (t). The target relative configuration

vector is r∗ (t) = [ r∗T11 (t) . . . r∗T1N (t) ]T . Each agent i knows only the relative coordinate vector between its own neighbors

r∗ij (t), j ∈ Ni. Additionally, a constant target reference velocity q̇∗1 known by all agents is imposed to the MAS, where q̇∗1 .

Our aim is to evaluate, in a distributed way, the control input for each agent so that the MAS converges to R, while limiting
the number of communications between agents and accounting for losses in the communication between agents. For that
purpose, the control inputs will have to provide an asymptotic convergence of the MAS to the target configuration vector with
a bounded mean-square error. Due to the packet losses, this convergence will only be achievable in the mean-square sense.
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Definition 1 The MAS asymptotically mean-square converges to the target formation with a bounded mean-square error
(bounded average asymptotic convergence) iff there exists some ε1 > 0 such that

∀ (i, j) ∈ N 2, lim
t→∞

E
(∥∥rij (t)− r∗ij (t)

∥∥2) 6 ε1, (7)

where the expectation is evaluated considering the packet loss events.

2.4 Overview of the proposed approach

A distributed control law is introduced in Section 3 to drive the MAS to its target formation and reference speed. This requires
the knowledge by each agent of the state vector of its neighbors. Since the state vector of a neighbor j is only available at
agent i when agent j broadcasts its state, agent i has to maintain an estimator of the state of each of its neighbors. This
estimator is described in Section 4.

Moreover, to determine the quality of the estimate of xi evaluated by its neighbors, agent i has also to estimate its own state
xi with the information it has transmitted to these neighbors. As soon as a function of the error between this estimate and
xi reaches some threshold, agent i triggers a communication to allow its neighbors to refresh their estimate of xi. The main
difficulty, compared to [18,20], lies in the fact that estimators have to account for packet losses. In the solution proposed here,
each agent maintains several estimates of its own state accounting for different packet loss hypotheses, and an estimate of
the state of its neighbors with the last information received. As will be seen in Section 4.4, the number of hypotheses can be
limited to a manageable amount determined by the last received packet from agent i.

The CTC relies on the error between the values of the states of agents and of the estimates made by neighboring agents,
see Section 5. Since this error cannot be exactly evaluated due to packet losses, only its expected value is used in the CTC.
This paper proposes different methods to evaluate or upper-bound this expected error, which is then used to analyze the
convergence and the stability of the MAS.

3 Distributed control inputs

Section 3.1 introduces the potential energy P (q, t) of the MAS to quantify the discrepancy between the current and target
formations. A control input accounting for agent state estimators is defined in Section 3.2.

3.1 Potential energy of the formation

In [14,25], the potential energy of the formation

P (q, t) =
1

2

N∑
i=1

N∑
j=1

mij

∥∥rij − r∗ij∥∥2 (8)

is introduced, where the coefficients mij = mji are some positive or null coefficients. P (q, t) quantifies the discrepancy between
the actual and target relative coordinate vectors. We take mii = 0, mij = 0 if (i, j) /∈ E , and mij > 0 if (i, j) ∈ E . Since G is
connected, the minimum number of non-zero coefficients mij to properly define a target formation is N − 1.

Proposition 2 The MAS asymptotically converges to the target formation with a bounded error iff there exists some ε2 > 0
such that

lim
t→∞

E (P (q, t)) 6 ε2, (9)

where the expectation is evaluated considering the packet loss events.

The proof of Proposition 2 is provided in Appendix A.1.

3.2 Control input with agent state estimators

In what follows, a distributed control law is designed so that the MAS asymptotically converges with a bounded mean-square
error. The control law has to make P (q, t) decrease. For that purpose, one introduces, as in [25],

gi =
∂P (q, t)

∂qi
=
∑
j∈Ni

mij

(
rij − r∗ij

)
, (10)

ġi =
∑
j∈Ni

mij

(
ṙij − ṙ∗ij

)
, (11)

si = q̇i − q̇∗i + kpgi, (12)
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where q̇∗i = q̇∗1 − ṙ∗1i is the reference velocity of agent i. The vectors gi and ġi characterize the evolution with qi and q̇i of the
discrepancy between the actual and target relative coordinate vectors. In (12), kp > 0 is a scalar design parameter.

According to (10), to make P (q, t) decrease, the control input of agent i requires rij , and thus qj , j ∈ Ni. Nevertheless,
qj , j ∈ Ni is only available to agent i when it receives a packet from agent j containing qj , see Section 2.2. Between the
reception of two packets from Agent j, an estimates q̂ij of qj , j ∈ Ni needs to be evaluated. This one has to account for
potentially lost packets, see Section 4.1.

Using estimates q̂ij and ˙̂qij of qj and q̇j for all j ∈ Ni, agent i is able to evaluate r̄ij = qi − q̂ij , ˙̄rij = q̇i − ˙̂qij , as well as

ḡi =
∑
j∈Ni

mij

(
r̄ij − r∗ij

)
(13)

s̄i = q̇i − q̇∗i + kpḡi. (14)

Then, the following control input can be evaluated in a distributed way by agent i and used in (1)

ui =−kss̄i − kg ḡi +G− Yi
(
qi, q̇i, p̄i, ˙̄pi

)
θi, (15)

where p̄i = kpḡi − q̇∗i and ˙̄pi = kp ˙̄gi − q̈∗i with the additional design parameters kg > 0 and ks ≥ 1 + kp (kM + 1).

The convergence properties of the MAS when each agent i applies the control input (15) will be analysed and ensured in
Section 5.

4 State estimators and packet losses

This section describes the estimators involved in the control input (15) of each agent. These estimators are introduced in
Section 4.1. Section 4.2 describes the way agent i estimates its own state xi, with the information transmitted to its neighbors,
to determine the quality of their estimates of xi. In Section 4.3, the expected value of the estimation error between the current
and the estimated state is evaluated. This estimator accounts for packet losses. In Section 4.4, an implicit feedback, based on
packets received from other agents, is described and exploited to improve the evaluation of the state estimation error.

4.1 Estimation of the state of other agents

To evaluate (15), agent i has to maintain an estimate x̂ij of the state xj of all its neighbors j ∈ Ni. Assume that agent j
broadcasts its k-th message at time tj,k. Then, since communication delays are neglected, depending on whether this message
has been received by agent i, x̂ij is updated as follows, see [3]

x̂ij
(
t+j,k
)

= δij,kxj (tj,k) +
(

1− δij,k
)
x̂ij (tj,k) , (16)

where xj(tj,k) is obtained from the received packet. For all t > tj,k and up to the time instant of reception of the next packet

sent by agent j, the components q̂ij and ˙̂qij evolve according to

Mj

(
q̂ij

)
¨̂qij + Cj

(
q̂ij , ˙̂qij

)
˙̂qij +G = ûij . (17)

where Mj and Cj are evaluated using (2) with Yj and θ̂ij = θj , where the structure of Yj and θj are initially known by Agent i

or have been transmitted by Agent j at time t = 0. The estimator (17) maintained by agent i requires itself an estimate ûij
of the control input uj evaluated by agent j. This estimate ûij , used by agent i, is

ûij = −ks ˙̂εij +G− Yj
(
q̂ij , ˙̂qij , −q̈∗j , −q̇∗j

)
θ̂ij , (18)

with ˙̂εij = ˙̂qij − q̇∗j . The control input (18) thus only depends on information available at agent i.
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4.2 Multi hypothesis state estimates

The estimate q̂ji of the state of agent i, evaluated by agent j, only depends on the information provided by agent i. The

estimate q̂ji is reset to qi as soon as a message sent by agent i is received by agent j, see (16). Consequently, when agent i
has sent ki messages, and wants to evaluate the estimate of its own state as computed by one of its neighbors, κ+ 2 different
hypotheses have to be considered, each of which is associated to a different estimator of qi at time t ∈ [ti,ki , ti,ki+1]

• the ki-th packet has been received,

• the ki-th packet has been lost, but the ki − 1-th packet has been received,

• ...

• all packets have been lost, except the ki − κ-th if ki ≥ κ,

• no packet has been received if ki < κ, but the initial state is known.

At time t ∈ [ti,ki , ti,ki+1[, the state estimates corresponding to these hypotheses are denoted q̂i,`i (t), ` = max{0, ki−κ}, . . . , ki
and q̂i,kii = q̂ii , introduced in Section 4.1.

Since there are at most κ−1 consecutive losses, agent i has only to maintain κ estimates of qi, denoted q̂
(1)
i (t) , ..., q̂

(κ)
i (t). For

all t ∈ [ti,ki , ti,ki+1[, one has q̂
(1)
i (t) = q̂i,kii (t) , . . . , q̂

(κ)
i (t) = q̂i,ki−κ+1

i (t). These estimates evolve according to the dynamic
(17)-(18) introduced in Section 4.1. When a new packet is sent at time ti,ki+1 by agent i, the estimates are updated as follows

q̂
(1)
i (ti,ki+1) = qi (ti,ki+1) . (19)

q̂
(`+1)
i (ti,ki+1) = q̂

(`)
i

(
t−i,ki+1

)
, ` = 1, . . . , κ− 1, (20)

where t−i,ki+1 = ti,ki+1 − ε for some very small ε > 0.

4.3 Expected value of the estimation error of qi (t)

At time t ∈ [ti,ki , ti,ki+1[, agent i has sent ki packets. Let

pjki,` = Pr
(
δji,` = 1, δji,`+1 = 0, . . . , δji,ki = 0

)
be the probability that the `-th packet has been received by a given neighbor j and that all packets from the `+ 1-th to the
ki-th have been lost. Note that pjki,` only depends on the considered packet loss model, and does not depend on the neighbor
index j, which is omitted in what follows. When ` = ki, one has simply pki,ki = 1− π.

At time t ∈ [ti,ki , ti,ki+1[, the estimation error of the coordinates of agent i, as evaluated by agent j, is

eji (t) = q̂ji (t)− qi (t) (21)

and its mean-square value is

E
(
||eji (t) ||2

)
=

ki∑
`=max{ki−κ+1,0}

pki,`||q̂
i,`
i (t)− qi (t) ||2. (22)

E
(
||eji (t) ||2

)
can be determined by agent i using q̂i,`i (t) and pki,`, ` = max{ki−κ, 0}, . . . , ki. Consequently, from (22), agent i

is able to determine the quality of the estimate of qi evaluated by its neighbors. Agent i has thus to maintain κ estimates
q̂i,`i (t) of qi (t). Note the expectation of ėji can be obtained in the same way.
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Fig. 1. Communication instants and index of last message received kji and kj,ii .

4.4 Estimates accounting for the feedback

When agent i receives a message at time tj,kj ∈ [ti,ki , ti,ki+1[ from one of its neighbors j, this message contains the index kji
of the last message received by agent j and sent by agent i, see Figure 1. This index is kept by agent i in kj,ii , see Section 2.2.

This information can significantly improve the evaluation of the mean-square value of eji (t). Using kj,ii , agent i can evaluate

the probability pj
ki,`|k

j,i
i

that agent j has received its `-th message and lost all the following message up to the ki-th message,

knowing that agent j has received its kj,ii -th message. Here again, pj
ki,`|k

j,i
i

only depends on the values of ki, `, and kj,ii , and

on the packet loss probability model introduced in Section 4.1. The superscript j is thus again omitted in what follows.

Consider the probability

p
ki,`|k

j,i
i

= Pr

(
δji,` = 1,

ki∑
m=`+1

δji,m = 0|δj
i,k
j,i
i

= 1

)
(23)

that the `-th message sent by agent i (with ` 6 ki) has been received by agent j and that all following messages, including

the ki-th have been lost, knowing that the kj,ii -th message has been received. Our aim in what follows is to get an expression

of p
ki,`|k

j,i
i

, for all ` = kj,ii , . . . , ki, to be used in the evaluation of mean-square value of eji (t).

Assume that in the time interval [ti,ki , ti,ki+1[, agent i has received a single message from agent j at time tj,kj . Then, upon

reception of this message, agent i updates kj,ii to kji 6 ki: By receiving this message from agent j, agent i is aware that

agent j has received the kj,ii -th message sent by agent i, and has not received the following ones if kji < ki, see Figure 1, where

kji = ki − 2. According to Assumption A6, one has necessarily kji > max {0, ki − κ}. Consequently, one has

p
ki,k

j,i
i |k

j,i
i

= Pr

 ki∑
m=k

j,i
i +1

δji,m = 0|δj
i,k
j,i
i

= 1

 = 1 (24)

and for all ` = kj,ii + 1, . . . , ki,

p
ki,`|k

j,i
i

= Pr

(
δji,` = 1,

ki∑
m=`+1

δji,m = 0|δj
i,k
j,i
i

= 1

)
= 0. (25)

Consider now t ∈ [ti,ki+1, ti,ki+2[ and assume that the last message received by agent i from agent j was at time tj,kj ∈
[ti,ki , ti,ki+1[. One has still kj,ii = kji 6 ki. Consequently, agent i knows that agent j has received the kj,ii -th message sent by

agent i, and has not received the following ones with indexes between kj,ii and ki. Agent i has no information about the fact

the agent j has received the ki + 1-th message, except if kj,ii = ki−κ. In the latter case, according to Assumption A6, agent i
is sure that agent j has received the ki + 1-th message sent by agent i. Consequently, one has

p
ki+1,`|kj,ii =ki−κ

(t) =

{
1 ` = ki + 1

0 else,
(26)
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ki + n

`

5 6 7 8 9 10

3 1 π 0 0 0 0

4 0 0 0 0 0 0

5 0 0 0 0 0 0

6 ∗ 1− π (1− π)π (1− π)π2 (1− π)π3 0

7 ∗ ∗
1 π π2 π3

− (1− π)π − (1− π)π2 − (1− π)π3 − (1− π)π4

8 ∗ ∗ ∗ 1− π (1− π)π (1− π)π2

9 ∗ ∗ ∗ ∗ 1− π (1− π)π

10 ∗ ∗ ∗ ∗ ∗
1− π

+ (1− π)π4

Table 1
Example of probability calculation

and

p
ki+1,`|kj,ii >ki−κ

(t) =


π ` = kj,ii
1− π ` = ki + 1

0 ` ∈ [max {0, ki − κ} , kj,ii − 1]

∪[kj,ii + 1, ki].

(27)

The following proposition allows one to evaluate p
ki,`|k

j,i
i

recursively, starting from (24)-(25).

Proposition 3 Consider t ∈ [ti,ki+n, ti,ki+n+1[ with n > 0 and assume that the last message received by agent i from agent j

was at time tj,kj ∈ [ti,ki , ti,ki+1[. Thus kj,ii = kji 6 ki . Then one may write for all m > kj,ii

p
m,m|kj,ii

= 1− π + πp
m−1,m−κ|kj,ii

if m > κ (28)

= 1− π else

p
m+n,m|kj,ii

= πnp
m,m|kj,ii

if n 6 κ (29)

= 0 else

p
m,`|kj,ii

= 0 if ` 6 ki and ` 6= kj,ii . (30)

The proof of Proposition 3 is in Appendix A8.

Example: Consider an agent i and a message received at time tkj ∈ [tki , tki+1[ from its neighbor agent j. Table 1 illustrates

the different values of p
ki+n,`|k

j
i
, for n ∈ [0, . . . , 4] when κ = 4, ki = 5, and kji = 3.

Then Proposition 3 can be used with Assumption A6 to evaluate E
(
||eji (t) ||2

)
, taking into account the feedback information

provided by neighbors as follows.

Consider some agent i and ki > 0. Assume that agent i knows the index kji of the last message sent by agent i and received
by some neighbor agent j. At time t ∈ [ti,ki , ti,ki+1[, the mean-square value of the estimation error (21) is

E
(∥∥∥eji (t)

∥∥∥2 |kj,ii ) =

ki∑
`=max{ki−κ+1,0}

p
ki,`|k

j,i
i

∥∥∥q̂i,`i (t)− qi (t)
∥∥∥2 . (31)

In what follows, the notation E(||eji (t)||
2) is used in place of E(||eji (t)||

2|kj,ii ). Contrary to (22), (31) depends now on the index

of the neighbor agent j via kj,ii , and so is updated each time agent i receives a message from its neighbor, in addition to the
update made each time agent i broadcast a message as in (22).
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5 Event-triggered communications accounting for packet losses

This section presents a CTC which may involve one of the state estimators introduced in Section 4.

Let mmin = mini,j=1,...,N {mij 6= 0}, mmax = maxi,j=1,...,N {mij} , Nmin = mini=1...N (Ni), αi =
∑N
j=1mij , and αM =

maxi=1,...,N αi. The distributed CTC (32) presented in Theorem 4 is designed to ensure an asymptotic convergence of the
MAS to the target formation with a bounded mean-square error.

Theorem 4 Consider a MAS with agent dynamics given by (1), the communication protocol defined in Section 2.2, the control
law (15). Consider also the packet losses model satisfying by Assumption A6. Assuming absence of communication delays, if
the communications are triggered by each agent i of the MAS when the following condition is satisfied

αM

[
N∑
j=1

mij

(
keE

(∥∥∥eji∥∥∥2)+ kpkME
(∥∥∥ėji∥∥∥2))

+kpk
2
C

N∑
j=1

mij

(
2E
(∥∥∥eji∥∥∥2)∥∥∥ ˙̂qij

∥∥∥2 + E
(∥∥∥eji∥∥∥4)+ E

(∥∥∥ėji∥∥∥4))
]

+ kgbi ‖q̇i − q̇∗i ‖
2 ≥ kss̄Ti s̄i + kpkg ḡ

T
i ḡi + η (32)

where ke = ksk
2
p + kgkp +

kg
bi

, η ≥ 0, and 0 < bi <
ks

kskp+kg
are design parameters, then

(a) The MAS with agent dynamics (1) asymptotically converges to the target formation with a bounded error such that

lim
t→∞

E
(

1

2
P (q, t)

)
≤ ξ (33)

where ξ = N
kgc3

[
D2

max + η
]
,

c3 =
min {k1, kp}min

(
1, Nminmmin

mmax

)
max {1, kM}

(34)

and k1 = ks − (1 + kp (kM + 1)).

(b) One has ti,ki < ti,ki+1.

The proof of (a) in Theorem 4 is given in Appendix A.3, and proof of (b) in Appendix A.4. Each agent i has to evaluate the

expected values of ||eji (t) ||2 and ||ėji (t) ||2 for all j ∈ Ni. This can be done by evaluating the expectation (22) or (31) detailed
in Section 4.3 and 4.4.

The CTC (32) is triggered by agent i mainly when E(||eji (t) ||2) and E(||ėji (t) ||2) become large. Thus, it is preferable to use

the knowledge of kj,ii allowed from the proposed feedback mechanism to calculate (31) rather than using (22).

An analysis of the impact of the values of the parameters on the reduction of communications has been presented in [20] in
absence of packet losses. These results can be extended to the case with packet losses. The choice of the parameters αM, kg,

kp and bi also determines the number of messages broadcast. Choosing the coefficients mij such that αi =
∑N
j=1mij is small,

leads to a reduction in the number of communications triggered resulting from the satisfaction of (32), at the cost of a less
precise formation.

6 Example

Consider the dynamical model of N identical surface ships with coordinate vectors qi = [ xi yi ψi ]T ∈ R3, i = 1 . . . N , in a

local Earth-fixed frame. For agent i, (xi, yi) represents its position and ψi its heading angle. The agent dynamics are expressed
in the body frame (see [10]) as

Mb,iv̇i + Cb,i (vi) vi +Db,ivi = τb,i + db,i, (35)

where vi is the velocity vector in the body frame. The values of Mb,i, Db,i, and Cb,i (vi) are taken from [10].

One takes N = 6. The model (35) may be expressed as (1) with G = 0 using an appropriate change of variables detailed in
[10]. The parameters of (15) are kM = ‖Mi‖ = 33.8, kC = ‖Ci (1N )‖ = 43.96, kp = 6, kg = 20, ks = 1 + kp (kM + 1), bi = 1

kg
.
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6.1 Parameters

The initial value of the configuration vector is q (0) = [x (0)T , y (0)T , ψ (0)T ]T , q̇ (0) = 03N×1, with x (0) = [−0.35, 4.59, 4.72, 0.64,
3.53,−1.26] , y (0) = [−1.11,−4.59, 2.42, 1.36, 1.56, 3.36] and ψ (0) = 0N . An hexagonal target formation is considered

with r∗ (0) = [ r∗(1) (0)T r∗(2) (0)T r∗(3) (0)T ]T where r∗(1) (0) = [0, 2, 3, 2, 0,−1], r∗(2) (0) =
[
0, 0,
√

3, 2
√

3, 2
√

3,
√

3
]
, and

r∗(3) (0) = 0N . Moreover, the target MAS velocity is q̇∗1 = [1, 1, 0]T . Each agent communicates with N/2 = 3 other agents.

From [25], one obtains the coefficients matrix S = [mij ]i,j=1...N such

S = 0.1



0 1.85 0 0.926 0 1.85

1.85 0 1.85 0 0.926 0

0 1.85 0 1.85 0 0.926

0.926 0 1.85 0 1.85 0

0 0.926 0 1.85 0 1.85

1.85 0 0.926 0 1.85 0


.

One has αi =
∑N
j=1mij = 0.463, for all i = 1, . . . , N and αM = 0.463.

The simulation duration is T = 4 s, taken sufficiently large to reach a steady-state behavior, with an integration step size
∆t = 0.01 s. Since time has been discretized, the minimum delay between the transmission of two messages by the same
agent is set to ∆t. The perturbation di (t) is assumed constant over each interval [k∆t, (k + 1) ∆t[. The components of

di (t) are independent realizations of zero-mean uniformly distributed noise U
(
−Dmax/

√
3, Dmax/

√
3
)

and are thus such that
‖di (t)‖ ≤ Dmax. Let Nm be the total number of messages transmitted during a simulation. The performance of the proposed

approach is evaluated with Rcom = Nm/Nm, where Nm = NT/∆t ≥ Nm. One takes κ = 6.

6.2 Simulations results

Figure 2 shows the performance of the proposed approach with the CTC (32) for different values of the packet loss probability
π and disturbance bound Dmax. Results are averaged over 50 independent realizations of the noise and of the packet losses.
As expected, the number of communications required for the MAS to converge increases with π and Dmax.

The influence of η on the number of communication is detailed in [21]. Increasing η leads to a reduction of Rcom but increases
the potential energy P (q, T ), and thus the discrepancy with respect to the target formation.

Figure 3 compares results of the proposed approach obtained without (a) and with (b) the exploitation of the index kj,ii of
the last message sent by agent i and received by some neighbor agent j. Using the implicit feedback from neighbors, and thus

E
(∥∥eji (t)

∥∥2 |kij) instead of E
(∥∥eji (t)

∥∥2) in the CTC, convergence is obtained with 75% less communications.

7 Conclusion

This paper addresses the problem of communication reduction in distributed formation control of a MAS with Euler-Lagrange
dynamics in presence of packet losses and perturbations. To evaluate its control input, each agent maintains estimators of the
states of the other agents. Each agent also maintains a multi-hypothesis estimator of its own state accounting for potentially
lost packets in the communications with its neighbors. Using these estimators, each agent is then able to compute an expected
value of the estimation error of its own state as evaluated by its neighbors. An feedback from other agents may be used
to get a reduced estimation error. A distributed CTC is then proposed, involving these estimation errors, to reduce the
number of communications and the behavior of the MAS is analyzed using stochastic Lyapunov functions. Convergence to the
target formation has been proven and the time between consecutive communications has been proven to be strictly positive.
Simulations illustrate the effectiveness of the proposed approach.

In future work, communication delays will also be considered along with packet losses.
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Fig. 2. Evolution of P (q, T ) and Rcom for different values of Dmax, η = 100. The estimator (17) is considered, as well as

E
(∥∥eji (t)

∥∥2 |ki,jj ) from (31).

(a) without feedback (b) with feedback

Fig. 3. Results of the method using (a) no implicit feedback (22), (b) an implicit feed-back (31). Dmax = 200, π = 0.2
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A Appendix

A.1 Proof of Proposition 2

Assume that there exists ε2 > 0 such that
lim
t→∞

E (P (q, t)) 6 ε2. (A.1)

Then

lim
t→∞

1

2

N∑
i=1

N∑
j=1

mijE
(∥∥rij (t)− r∗ij (t)

∥∥2) 6 ε2. (A.2)

Since

mijE
(∥∥rij (t)− r∗ij (t)

∥∥2) 6
N∑
i=1

N∑
j=1

mijE
(∥∥rij (t)− r∗ij (t)

∥∥2) . (A.3)

and mij > 0, for all (i, j) such that mij > 0, this implies

lim
t→∞

E
(∥∥rij (t)− r∗ij (t)

∥∥2) 6
2ε2
mij

. (A.4)

Consider now a pair (i, j) such that mij = 0. The communication graph has been assumed connected. Consequently, one find
a sequence

(
i1, . . . , iNij

)
of Nij 6 N nodes with i1 = i and iNij = j and such that mikik+1 > 0 for all k = 1, . . . , Nij−1. Then

lim
t→∞

E
(∥∥rij (t)− r∗ij (t)

∥∥2) 6 lim
t→∞

Nij−1∑
k=1

E
(∥∥∥rikik+1 (t)− r∗ikik+1

(t)
∥∥∥2) .

Using (A.4), one gets

lim
t→∞

E
(∥∥rij (t)− r∗ij (t)

∥∥2) 6

Nij−1∑
k=1

2ε2
mikik+1

. (A.5)

Then, introduce

ε11 = max
(i,j)∈N2,mij=0

Nij−1∑
k=1

2ε2
mikik+1

(A.6)

and

ε12 = max
(i,j)∈N2,mij>0

2ε2
mij

. (A.7)

Finally, combining (A.4) and (A.5), one has for all (i, j) ∈ N 2,

lim
t→∞

E
(∥∥rij (t)− r∗ij (t)

∥∥2) 6 ε1, (A.8)

with ε1 = max {ε11, ε12}.

The converse is immediate: if there exists ε1 > 0 such that (A.8) is satisfied for all (i, j) ∈ N 2, then

lim
t→∞

E (P (q, t)) = lim
t→∞

1

2

N∑
i=1

N∑
j=1

mijE
(∥∥rij (t)− r∗ij (t)

∥∥2)
6 ε2,

with ε2 = 1
2

∑N
i=1

∑N
j=1mijε1.

13



A.2 Evaluation of pm,m|kj,i
i

Consider t ∈ [ti,ki+n, ti,ki+n+1[ with n > 0 and assume that the last message received by agent i from agent j was at time

tj,kj ∈ [ti,ki , ti,ki+1[. Thus kj,ii = kji 6 ki and agent i knows that agent j has received the kj,ii -th message sent by agent i,

and has not received the following ones with index between kj,ii and ki. Agent i has no information about the reception by

agent j of the ki + 1, . . . , ki + n-th messages, except if kj,ii = ki − κ.

Consider some t > ti,ki−1. For all m > kj,ii , there exists βm such that

p
m,m|kj,ii

= Pr

(
δji,m = 1|δj

i,k
j,i
i

= 1

)
= βm (A.9)

and

Pr

(
δji,m = 0|δj

i,k
j,i
i

= 1

)
= 1− βm. (A.10)

A) First, evaluate p
m+1,m|kj,ii

for some m > kj,ii

p
m+1,m|kj,ii

= Pr

(
δji,m+1 = 0, δji,m = 1|δj

i,k
j,i
i

= 1

)
= Pr

(
δji,m+1 = 0|δji,m = 1, δj

i,k
j,i
i

= 1

)
Pr

(
δji,m = 1|δj

i,k
j,i
i

= 1

)
= Pr

(
δji,m+1 = 0|δji,m = 1, δj

i,k
j,i
i

= 1

)
βm

= πβm.

Consider now p
m+n,m|kj,ii

for some m > kj,ii and n > 0

p
m+n,m|kj,ii

= Pr

(
n∑
`=1

δji,m+` = 0, δji,m = 1|δj
i,k
j,i
i

= 1

)

= Pr

(
n∑
`=1

δji,m+` = 0|δji,m = 1, δj
i,k
j,i
i

= 1

)
Pr

(
δji,m = 1|δj

i,k
j,i
i

= 1

)

= Pr

(
n∑
`=1

δji,m+` = 0|δji,m = 1

)
βm. (A.11)

Form (A.11), two cases have to be considered

1) If n > κ+ 1, since, according to Assumption A6,

Pr

(
n∑
`=1

δji,m+` = 0|δji,m = 1

)
= 0 (A.12)

p
m+n,m|kj,ii

= 0. (A.13)
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2) If n 6 κ, then

p
m+n,m|kj,ii

= Pr

(
n∑
`=2

δji,m+` = 0|δji,m+1 = 0, δji,m = 1

)
× Pr

(
δji,m+1 = 0|δji,m = 1

)
βm

= Pr

(
n∑
`=2

δji,m+` = 0|δji,m+1 = 0, δji,m = 1

)
πβm

= Pr

(
n∑
`=3

δji,m+` = 0|δji,m+2 = 0, δji,m+1 = 0, δji,m = 1

)
× Pr

(
δji,m+2 = 0|δji,m+1 = 0, δji,m = 1

)
πβm

= Pr

(
n∑
`=3

δji,m+z = 0|δji,m+2 = 0, δji,m+1 = 0, δji,m = 1

)
π2βm

...

= πnβm

So

p
m+n,m|kj,ii

= πnp
m,m|kj,ii

if n 6 κ. (A.14)

B) Now, evaluate p
m,m|kj,ii

with m > kj,ii

p
m,m|kj,ii

= Pr

(
δji,m = 1|δj

i,k
j,i
i

= 1

)
= 1− Pr

(
δji,m = 0, |δj

i,k
j,i
i

= 1

)
= 1− Pr

(
δji,m = 0, δji,m−1 = 1|δj

i,k
j,i
i

= 1

)
− Pr

(
δji,m = 0, δji,m−1 = 0|δj

i,k
j,i
i

= 1

)
= 1− p

m,m−1|kj,ii

− Pr

(
δji,m = 0, δji,m−1 = 0, δji,m−2 = 0|δj

i,k
j,i
i

= 1

)
− Pr

(
δji,m = 0, δji,m−1 = 0, δji,m−2 = 1|δj

i,k
j,i
i

= 1

)
= 1− p

m,m−1|kj,ii
− p

m,m−2|kj,ii

− Pr

(
δji,m = 0, δji,m−1 = 0, δji,m−2 = 0|δj

i,k
j,i
i

= 1

)
= ...

= 1−
m−1∑

`=m−κ+1

p
m,`|kj,ii

− Pr

(
m−1∑

`=m−κ+1

δji,` = 0|δj
i,k
j,i
i

= 1

)

and according to Assumption A6, Pr

(∑m−1
`=m−κ+1 δ

j
i,` = 0|δj

i,k
j,i
i

= 1

)
= 0. Thus

p
m,m|kj,ii

= 1−
m−1∑

`=m−κ+1

p
m,`|kj,ii

(A.15)
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Using (A.15) and (A.14), one gets

p
m,m|kj,ii

= 1− π
m−1∑

`=m−κ+1

p
m−1,`|kj,ii

= 1− π

 m−1∑
`=(m−1)−κ+1

p
m−1,`|kj,ii

− p
m−1,m−1−κ+1|kj,ii

 . (A.16)

Moreover, since (A.15), one has

p
m,m|kj,ii

+

m−1∑
`=m−κ+1

p
m,`|kj,ii

= 1

m∑
`=m−κ+1

p
m,`|kj,ii

= 1

and so
m−1∑
`=m−κ

p
m−1,`|kj,ii

= 1. (A.17)

Combining (A.17) and (A.16) one gets

p
m,m|kj,ii

= 1− π + πp
m−1,m−κ|kj,ii

. (A.18)

A.3 Proof of convergence with packet losses

To prove Theorem 4 a) one shows first that the MAS is converging with a bounded mean-square error. For that purpose, one
will introduce a candidate Lyapunov function and show that it satisfies the conditions introduced in the Definition 1.

Consider some Dmax > 0, η > 0, and realizations di (t), i = 1, . . . , N of the state perturbations.

Inspired by the proof developed in [17,3], consider the continuous positive-definite candidate Lyapunov function

V (t) = E

(
1

2

N∑
i=1

(
si (q (t, δ))T Misi (q (t, δ))

)
+
kg
4
P (q (t, δ) , t)

)
(A.19)

where the expectation is evaluated considering the random losses described by δ.

A.3.1 Continuity of the Lyapunov function

Assume that the first message is transmitted at time t1, without loss of generality, by agent 1 to N1 neighbors. Consider
some t ∈ [t1, t2[, where t2 is the time at which the second message is transmitted, whatever the agent. There are 2N1 possible
reception scenario, from no reception by all agents to a reception by all agents. Let σ represent the index of the σ-th scenario,
0 6 σ 6 2N1 and pσ,1 be the associated probability for the first communication. One may write

V (t) = E

(
1

2

N∑
i=1

(
si (q (t, δ))T Misi (q (t, δ))

)
+
kg
4
P (q (t, δ) , t)

)

=
1

2

2N1∑
σ=1

pσ,1

(
N∑
i=1

si (q (t, δσ))T Misi (q (t, δσ)) +
kg
4
P (q (t, δσ) , t)

)
(A.20)

where
∑2N1

σ=1 pσ,1 = 1.

For a given reception scenario σ of the first message, the time instant tσ,2 of transmission of the second message and the index
iσ,2 of the transmitting agent both depend on σ. More generally, at time t, St different transmission and reception scenarios
have to be considered. For a given scenario σ, let nσ be the number of communications that have occurred. The associated
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loss vector is δσ = (δσ,1, . . . , δσ,nσ ), where δσ,k is the loss vector for the k-th communication. The probability associated to δσ
is pσ. The next communication time instant is tσ,nσ+1 > t and the communicating agent is iσ,nσ+1. Let

t̄ = min
σ=1,...,St

tσ,nσ+1

σ = arg min
σ=1,...,St

tσ,nσ+1

and i denote the index of the associated communicating agent.

For all t ∈ [t, t̄[ , one has

V (t) =
1

2

St∑
σ=1

pσ

(
N∑
i=1

si (q (t, δσ))T Misi (q (t, δσ)) +
kg
4
P (q (t, δσ) , t)

)
.

In the scenario σ, at time t, agent i is communicating. Consequently

V (t̄) =
1

2

∑
σ=1,...,St,σ 6=σ

pσ

(
N∑
i=1

si (q (t̄, δσ))T Misi (q (t̄, δσ)) +
kg
4
P (q (t̄, δσ) , t̄)

)

+
1

2

2
N
i∑

µ=1

p(σ,µ)

(
N∑
i=1

si
(
q
(
t̄, δ(σ,µ)

))T
Misi

(
q
(
t̄, δ(σ,µ)

))
+
kg
4
P
(
q
(
t̄, δ(σ,µ)

)
, t̄
))

(A.21)

where p(σ,µ) denotes the probability of the µ-th loss scenario associated to the nσ + 1 communication performed by agent i

at time t, when the previous loss scenario is σ. One has

2
N
i∑

µ=1

p(σ,µ) = pσ. (A.22)

Upon reception at time t
+

of a message sent at time t, only the estimators are updated according to (16). The state of agents

receiving a message at time t
+

from a neighbor is continuous, i.e., qi
(
t̄+, δ(σ,µ)

)
= qi

(
t̄−, δσ

)
, where t

−
is a time instant

immediately before transmission. This is also true for agents which do not receive the message sent at time t. Thus, one
gets gi

(
t̄+, δ(σ,µ)

)
= gi

(
t̄−, δσ

)
, si

(
q
(
t̄+, δ(σ,µ)

))
= si

(
q
(
t̄−, δσ

))
for i = 1, . . . , N , and consequently, P

(
q
(
t̄+, δ(σ,µ)

)
, t̄+
)

=

P
(
q
(
t̄−, δσ

)
, t̄−
)

for all µ. Thus, at time t
+

, (A.21) becomes

V
(
t̄+
)

=
1

2

∑
σ=1,...,St,σ 6=σ

pσ

(
N∑
i=1

si
(
q
(
t̄+, δσ

))T
Misi

(
q
(
t̄+, δσ

))
+
kg
4
P
(
q
(
t̄+, δσ

)
, t̄+
))

+
1

2

2
N
i∑

µ=1

p(σ,µ)

(
N∑
i=1

si
(
q
(
t̄+, δ(σ,µ)

))T
Misi

(
q
(
t̄+, δ(σ,µ)

))
+
kg
4
P
(
q
(
t̄+, δ(σ,µ)

)
, t̄+
))

=
1

2

∑
σ=1,...,St,σ 6=σ

pσ

(
N∑
i=1

si
(
q
(
t̄−, δσ

))T
Misi

(
q
(
t̄−, δσ

))
+
kg
4
P
(
q
(
t̄−, δσ

)
, t̄−
))

+
1

2

2
N
i∑

µ=1

p(σ,µ)

(
N∑
i=1

si
(
q
(
t̄−, δσ

))T
Misi

(
q
(
t̄−, δσ

))
+
kg
4
P
(
q
(
t̄−, δσ

)
, t̄−
))

and using (A.22), one gets

V
(
t̄+
)

=
1

2

∑
σ=1,...,St,σ 6=σ

pσ

(
N∑
i=1

si
(
q
(
t̄−, δσ

))T
Misi

(
q
(
t̄−, δσ

))
+
kg
4
P
(
q
(
t̄−, δσ

)
, t̄−
))

+
1

2
pσ

(
N∑
i=1

si
(
q
(
t̄−, δσ

))T
Misi

(
q
(
t̄−, δσ

))
+
kg
4
P
(
q
(
t̄−, δσ

)
, t̄−
))

= V
(
t̄−
)
.

Consequently, V (t) is continuous at t.
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A.3.2 Differential inequality satisfied by the Lyapunov function

Using (A.21) from the previous section, the time derivative of V exists and can be evaluated for each t ∈ [t, t̄[ as follows

V̇ (t) =

St∑
σ=1

pσ

(
N∑
i=1

(
1

2
sTi (q (t, δσ)) Ṁisi (q (t, δσ)) + sTi (q (t, δσ))Miṡi (q (t, δσ))

)
+
kg
4

d

dt
P (q (t, δσ) , t)

)
. (A.23)

which may be written more concisely as

V̇ = E

(
N∑
i=1

[
1

2
sTi Ṁisi + sTi Miṡi

]
+
kg
4

d

dt
P (q, t)

)
, (A.24)

where the expectation is to be taken over all possible transmission loss events.

Our aim, in what follows is to obtain a differential inequality satisfied by V . One starts considering the two terms in the right
hand side of (A.24).

In (A.23), one has

1

4

d

dt
P (q, t)

=
1

4

d

dt

N∑
i=1

N∑
j=1

mij

∥∥rij − r∗ij∥∥2
=

N∑
i=1

[
1

2

N∑
j=1

mij

(
ṙij − ṙ∗ij

)T (
rij − r∗ij

)]

=

N∑
i=1

1

2

N∑
j=1

mij

[
(q̇i − q̇∗i )

T (
rij − r∗ij

)
−
(
q̇j − q̇∗j

)T (
rij − r∗ij

)]
=

N∑
i=1

1

2

N∑
j=1

mij

[
(q̇i − q̇∗i )

T (
rij − r∗ij

)
− (q̇i − q̇∗i )

T (
rji − r∗ji

)]
(A.25)

Since rji = −rij , one gets

1

4

d

dt
P (q, t) =

N∑
i=1

(q̇i − q̇∗i )
T

N∑
j=1

mij

(
rij − r∗ij

)
=

N∑
i=1

(q̇i − q̇∗i )
T
gi. (A.26)

Combining (A.23) and (A.26), one obtains

V̇ = E

(
N∑
i=1

[
1

2
sTi Ṁisi + sTi Miṡi + kg (q̇i − q̇∗i )

T
gi

])
(A.27)

One focuses now on the term Miṡi. Using (12), one may write

Miṡi + Cisi = Mi (q̈i − q̈∗i + kpġi) + Ci (q̇i − q̇∗i + kpgi)

and using (1), one gets

Miṡi + Cisi = ui + di −G+Mi (kpġi − q̈∗i ) + Ci (kpgi − q̇∗i ) . (A.28)
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Now, introducing (15), one gets

Miṡi + Cisi =−kss̄i − kg ḡi − Yi
(
qi, q̇i, kp ˙̄gi − q̈∗i , kpḡi − q̇∗i

)
θi

+Mi (kpġi − q̈∗i ) + Ci (kpgi − q̇∗i ) + di (A.29)

In what follows, one uses Yi to represent Yi
(
qi, q̇i, kp ˙̄gi − q̈∗i , kpḡi − q̇∗i

)
. Assumption A3 leads to

−sTi Yiθi =−sTi
(
Mi

(
kp ˙̄gi − q̈∗i

)
+ Ci (kpḡi − q̇∗i )

)
. (A.30)

Considering (2) and (A.29) in (A.27), one gets

V̇ = E

(
N∑
i=1

[
1

2
sTi Ṁisi − kssTi s̄i − kgsTi ḡi − sTi Cisi + sTi (Mi (kpġi − q̈∗i ) + Ci (kpgi − q̇∗i ))

−sTi
(
Mi

(
kp ˙̄gi − q̈∗i

)
+ Ci (kpḡi − q̇∗i )

)
+ kg (q̇i − q̇∗i )

T
gi + sTi di

])
. (A.31)

Now, introduce (10) in (12) to get

si = q̇i − q̇∗i + kp

N∑
i=1

mij

(
qi − qj − r∗ij

)
. (A.32)

Since eij = q̂ij − qj , one gets

si = q̇i − q̇∗i + kp

N∑
i=1

mij

(
qi − q̂ij + eij − r∗ij

)
= q̇i − q̇∗i + kp

N∑
i=1

mij

(
r̄ij − r∗ij

)
+ kp

N∑
j = 1

j 6= i

mije
i
j

= s̄i + kpE
i (A.33)

with

Ei =

N∑
i=1

mije
i
j , (A.34)

since mii = 0. Using similar derivations, one may show that

gi = ḡi + Ei. (A.35)

Replacing (A.33) and (A.35) in (A.31), one gets

V̇ = E

(
N∑
i=1

[
sTi

[
1

2
Ṁi − Ci

]
si − kssTi s̄i − kg (q̇i − q̇∗i + kpgi)

T
ḡi

+kps
T
i

(
MiĖ

i + CiE
i
)

+ kg (q̇i − q̇∗i )
T
gi + sTi di

])
. (A.36)

Let V̇1 =
∑N
i=1 2kps

T
i

(
MiĖ

i + CiE
i
)

. Using Assumption A2, 1
2
Ṁi−Ci is skew symmetric or definite negative thus sTi

[
1
2
Ṁi − Ci

]
si ≤

0. For all b > 0 and all vectors x and y of similar size, one has

xT y ≤ 1

2

(
bxTx+

1

b
yT y

)
. (A.37)
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Using (A.37) with b = 1, and the fact that dTi di ≤ D2
max, one deduces that dTi si ≤ 1

2

(
D2

max + sTi si
)

and that

V̇ ≤ E

(
N∑
i=1

[
−kssTi s̄i − kgkpgTi ḡi +

1

2
sTi si +

1

2
D2

max

+kg (q̇i − q̇∗i )
T

(gi − ḡi)
]

+
1

2
V̇1

)
. (A.38)

One notices that rij = qi − qj = qi − q̂ij + eij = r̄ij + eij , thus

‖si − s̄i‖2 = sTi si − 2sTi s̄i + s̄Ti s̄i∥∥∥kpEi∥∥∥2 = sTi si − 2sTi s̄i + s̄Ti s̄i

sTi s̄i =−1

2

∥∥∥kpEi∥∥∥2 +
1

2
sTi si +

1

2
s̄Ti s̄i (A.39)

Using similar derivations, from (A.39), one shows that gTi ḡi = − 1
2

∥∥Ei∥∥2 + 1
2
gTi gi + 1

2
ḡTi ḡi. Injecting the latter expression in

(A.38), one gets

V̇ ≤ E

(
N∑
i=1

[
ks
2

(
k2p

∥∥∥Ei∥∥∥2 − sTi si − s̄Ti s̄i)+ kpkg
1

2

(∥∥∥Ei∥∥∥2 − gTi gi − ḡTi ḡi)+
1

2
sTi si +

1

2
D2

max

+kg (q̇i − q̇∗i )
T

(gi − ḡi)
]

+
1

2
V̇1

)
≤ E

(
N∑
i=1

[
− (ks − 1)

2
sTi si −

ks
2
s̄Ti s̄i +

ksk
2
p + kgkp

2

∥∥∥Ei∥∥∥2 − 1

2
kpkg

(
gTi gi + ḡTi ḡi

)
+

1

2
D2

max

+kg (q̇i − q̇∗i )
T

(gi − ḡi)
]

+
1

2
V̇1

)
. (A.40)

Using (A.37) with b = bi > 0, one shows that 2q̇Ti (gi − ḡi) ≤
(
bi ‖q̇i‖2 + 1

bi

∥∥Ei∥∥2). Using this result in (A.40), one gets

V̇ ≤ 1

2

N∑
i=1

[
− (ks − 1)E

(
sTi si

)
− ksE

(
s̄Ti s̄i

)
+

(
ksk

2
p + kgkp +

kg
bi

)
E
(∥∥∥Ei∥∥∥2)+ bikgE

(
‖q̇i − q̇∗i ‖

2
)

−kpkgE
(
gTi gi + ḡTi ḡi

)
+D2

max

]
+

1

2
E
(
V̇1

)
(A.41)

Consider now V̇1. Using (A.37) with b = 1 and Assumption A1, one obtains

N∑
i=1

2kps
T
i

(
MiĖ

i + CiE
i
)
≤

N∑
i=1

kp
(
sTi Misi + sTi si +

[
ĖiTMiĖ

i + EiTCTi CiE
i
])

≤
N∑
i=1

kp
(

(kM + 1) sTi si +
[
kM Ė

iT Ėi + EiTCTi CiE
i
])

(A.42)

Focus now on the terms EiTCTi CiE
i. Using Assumption A2, one has

N∑
i=1

EiTCTi CiE
i =

N∑
i=1

(
N∑
j=1

mije
i
j

)T
CTi Ci

(
N∑
`=1

mi`e
i
`

)

≤
N∑
i=1

N∑
j=1

N∑
`=1

mi`mij ‖Ci‖2 eiTj ei`. (A.43)
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Using again (A.37) with b = 1, one gets

N∑
i=1

EiTCTi CiE
i ≤ 1

2

N∑
i=1

N∑
j=1

N∑
`=1

mi`mij ‖Ci‖2
(
eiTj e

i
j + eiT` e

i
`

)
≤

N∑
i=1

N∑
j=1

N∑
`=1

mi`mij ‖Ci‖2
(
eiTj e

i
j

)
≤

N∑
i=1

αi

N∑
j=1

mij ‖Ci‖2
(
eiTj e

i
j

)
. (A.44)

Since mij = mji and mij = 0 if (i, j) /∈ Nj , one may write

N∑
i=1

N∑
j=1

mij

∥∥∥eij∥∥∥2 =

N∑
i=1

N∑
j=1

mji

∥∥∥eji∥∥∥2 =

N∑
i=1

N∑
j=1

mij

∥∥∥eji∥∥∥2 (A.45)

and using Assumption A2, one gets

N∑
i=1

EiTCTi CiE
i ≤

N∑
i=1

(
αM

N∑
j=1

[
mij

∥∥∥eji∥∥∥2 ‖Cj‖2]
)

≤
N∑
i=1

(
αM

N∑
j=1

[
mij

∥∥∥eji∥∥∥2 k2C ‖q̇j‖2]
)
. (A.46)

Observing that

‖q̇j‖2 =
∥∥∥ ˙̂qij + ėij

∥∥∥2
=
∥∥∥ ˙̂qij

∥∥∥2 +
∥∥∥ėij∥∥∥2 + 2 ˙̂qiTj ėij

≤ 2
∥∥∥ ˙̂qij

∥∥∥2 + 2
∥∥∥ėij∥∥∥2 ,

(A.45) can be rewritten as

N∑
i=1

EiTCTi CiE
i ≤ 2αMk

2
C

N∑
i=1

N∑
j=1

mij

∥∥∥eji∥∥∥2(∥∥∥ ˙̂qij

∥∥∥2 +
∥∥∥ėij∥∥∥2)

≤ 2αMk
2
C

N∑
i=1

N∑
j=1

mij

(∥∥∥eji∥∥∥2 ∥∥∥ ˙̂qij

∥∥∥2 +
∥∥∥eji∥∥∥2 ∥∥∥ėij∥∥∥2) .

Using (A.37) with b = 1 and mij = mji, one gets

N∑
i=1

EiTCTi CiE
i ≤ 2αMk

2
C

N∑
i=1

N∑
j=1

mij

(∥∥∥eji∥∥∥2 ∥∥∥ ˙̂qij

∥∥∥2 +
1

2

∥∥∥eji∥∥∥4 +
1

2

∥∥∥ėij∥∥∥4)

≤ 2αMk
2
C

N∑
i=1

N∑
j=1

mij

(∥∥∥eji∥∥∥2 ∥∥∥ ˙̂qij

∥∥∥2 +
1

2

∥∥∥eji∥∥∥4 +
1

2

∥∥∥ėji∥∥∥4) . (A.47)

Similarly, one shows that
∑N
i=1E

iTEi ≤
∑N
i=1 αM

∑N
j=1mij

∥∥eji∥∥2 and
∑N
i=1 Ė

iT Ėi ≤
∑N
i=1 αM

∑N
j=1mij

∥∥ėji∥∥2.
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Injecting (A.42) and (A.47) in (A.41), one gets

V̇ ≤ 1

2

N∑
i=1

[
− (ks − 1− kp (kM + 1))E

(
sTi si

)
− ksE

(
s̄Ti s̄i

)
+D2

max

−kpkgE
(
gTi gi

)
− kpkgE

(
ḡTi ḡi

)
+ kgbiE

(
‖q̇i − q̇∗i ‖

2
)

+ kpkM

N∑
j=1

αMmijE
(∥∥∥ėji∥∥∥2)

+

(
ksk

2
p + kgkp +

kg
bi

) N∑
j=1

αMmijE
(∥∥∥eji∥∥∥2)

+2αMkpk
2
C

N∑
j=1

mij

(
E
(∥∥∥eji∥∥∥2)∥∥∥ ˙̂qij

∥∥∥2 +
1

2
E
(∥∥∥eji∥∥∥4)+

1

2
E
(∥∥∥ėji∥∥∥4))

]
(A.48)

The CTC (32) leads to

V̇ ≤ 1

2

N∑
i=1

E
[
− (ks − 1− kp (kM + 1)) sTi si − kgkpgTi gi +D2

max + η
]

V̇ ≤ 1

2

N∑
i=1

E
[
−k1sTi si − kgkpgTi gi +D2

max + η
]

(A.49)

with k1 = ks − 1− kp (kM + 1).

Introducing km = min {k1, kp}, from (A.49), one gets

V̇ ≤ 1

2

N∑
i=1

E
[
−km

(
sTi si + kgg

T
i gi
)

+D2
max + η

]
. (A.50)

A lower bound of
∑N
i=1 g

T
i gi has now to be introduced using the following lemma, which proof is given in Appendix A.5.1.

Lemma 5 For all t, one has

N∑
i=1

gTi gi ≥
Nminmmin

mmax
P (q, t) , (A.51)

where mmin = mini,j=1...N (mij 6= 0), mmax = max
i, ` = 1 . . . N

(mij) and Nmin = mini=1...N (Ni).

Using Lemma 5 and introducing k3 = Nminmmin
mmax

, one may write

V̇ ≤ E

(
−km

2

[
N∑
i=1

sTi si +
k3kg

4
P (q, t)

]
+
N

2

(
D2

max + η
))

≤ E

(
− km
k∗M

[
1

2

N∑
i=1

(
kMs

T
i si
)

+
k3kg

4
P (q, t)

]
+
N

2

(
D2

max + η
))

≤ E

(
− k4
k∗M

[
1

2

N∑
i=1

(
kMs

T
i si
)

+
kg
4
P (q, t)

]
+
N

2

(
D2

max + η
))

(A.52)

with k∗M = 1 if kM < 1 and k∗M = kM else, and k4 = km min (1, k3). Introducing c3 = k4
k∗
M

, one gets

V̇ ≤ E

(
−c3

[
1

2

N∑
i=1

(
sTi Misi

)
+
kg
4
P (q, t)

]
+
N

2

[
D2

max + η
])

V̇ ≤ −c3V +
N

2

[
D2

max + η
]
. (A.53)
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A.3.3 Upper bound of the Lyapunov function

Consider t ∈ [t, t̄[ and the function W satisfying

Ẇ = −c3W +
N

2

[
D2

max + η
]
. (A.54)

The solution of (A.54) with initial condition W (t) = V (t) is

W (t) = exp (−c3 (t− t))V (t) + (1− exp (−c3 (t− t))) N

2c3

[
D2

max + η
]
. (A.55)

Then, using [9, Lemma 3.4] (Comparison lemma), one has V (t) ≤W (t) ∀t ∈ [t, t̄[, so

V (t) ≤ exp (−c3 (t− t))V (t) + (1− exp (−c3 (t− t))) N

2c3

[
D2

max + η
]

(A.56)

≤ exp (−c3 (t− t))
[
V (t)− N

2c3

[
D2

max + η
]]

+
N

2c3

[
D2

max + η
]

(A.57)

Then, since V (t) > N
2c3

[
D2

max + η
]
, V (t) is decreasing over the interval [t, t̄[.

Using (A.56), one may write ∀t > 0

V (t) ≤ exp (−c3t)V (0) + (1− exp (−c3t))
N

2c3

[
D2

max + η
]

(A.58)

and from (A.58), one has

lim
t→∞

V (t) ≤ N

2c3

[
D2

max + η
]

lim
t→∞

E

(
1

2

N∑
i=1

(
sTi Misi

)
+
kg
4
P (q, t)

)
≤ N

2c3

[
D2

max + η
]

lim
t→∞

E
(

1

2
P (q, t)

)
≤ N

kgc3

[
D2

max + η
]
. (A.59)

Asymptotically, the formation error is bounded and according to Definition 1, the system is asymptotically converging to the
target formation with a bounded mean-square error.

A.4 Proof that ti,k < ti,k+1

Consider
CL (t) = kss̄

T
i (t) s̄i (t) + kpkg ḡ

T
i (t) ḡi (t) + η

and

CR (t) = αM

[
N∑
j=1

mij

(
keE

(∥∥∥eji (t)
∥∥∥2)+ kpkME

(∥∥∥ėji (t)
∥∥∥2))

+2kpk
2
C

N∑
i=1

N∑
j=1

mij

(
E
(∥∥∥eji (t)

∥∥∥2)∥∥∥ ˙̂qij (t)
∥∥∥2 +

1

2
E
(∥∥∥eji (t)

∥∥∥4)+
1

2
E
(∥∥∥ėji (t)

∥∥∥4))]
+ kgbi ‖q̇i (t)− q̇∗i (t)‖2 ,

with ke =
(
ksk

2
p + kgkp +

kg
bi

)
.

According to (32), no communication is triggered as long as CL (t) > CR (t). A communication is triggered at t = ti,k when

CL (ti,k) = CR (ti,k) . (A.60)
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The message sent at time t = ti,k by agent i implies an update of the estimates q̂ji , j ∈ Ni of that state qi run by the neighbors
of agent i. Consequently, the expected state estimation error will be such that

E
(∥∥∥eji (t+i,ki)∥∥∥2) = πE

(∥∥∥eji (t−i,ki)∥∥∥2) ,
see in Appendix A.5.3. Nevertheless, kss̄

T
i s̄i + kpkg ḡ

T
i ḡi + η and ‖q̇i − q̇∗i ‖2, which are not updated by the communication,

stay unchanged. Consequently

CL

(
t+i,ki

)
= CL

(
t−i,ki

)
. (A.61)

To prove that ti,k < ti,k+1, one has to show that CL

(
t+i,ki

)
> CR

(
t+i,ki

)
.

Using Appendix A.5.3 and the continuity of q̇i (t) and q̇∗i , one may write

CR

(
t+i,ki

)
= kgbi

∥∥q̇i (t−i,ki)− q̇∗i (t−i,ki)∥∥2 + παM

[
N∑
j=1

mij

(
keE

(∥∥∥eji (t−i,ki)∥∥∥2)+ kpkME
(∥∥∥ėji (t−i,ki)∥∥∥2))

+2kpk
2
C

N∑
i=1

N∑
j=1

mij

(
E
(∥∥∥eji (t−i,ki)∥∥∥2)∥∥∥ ˙̂qij

∥∥∥2 +
1

2
E
(∥∥∥eji (t−i,ki)∥∥∥4)+

1

2
E
(∥∥∥ėji (t−i,ki)∥∥∥4))

]

Using (A.60) and (A.61), one gets

CR

(
t+i,ki

)
= kgbi

∥∥q̇i (t−i,ki)− q̇∗i (t−i,ki)∥∥2 + π
[
kss̄

T
i s̄i

(
t−i,ki

)
+ kpkg ḡ

T
i ḡi

(
t−i,ki

)
+ η − kgbi

∥∥q̇i (t−i,ki)− q̇∗i (t−i,ki)∥∥2]
= (1− π) kgbi

∥∥q̇i (t−i,ki)− q̇∗i (t−i,ki)∥∥2 + π
[
kss̄

T
i s̄i

(
t−i,ki

)
+ kpkg ḡ

T
i ḡi

(
t−i,ki

)
+ η
]
.

The CTC is not satisfied if

CL

(
t+i,ki

)
> CR

(
t+i,ki

)
kss̄

T
i s̄i

(
t−i,ki

)
+ kpkg ḡ

T
i ḡi

(
t−i,ki

)
+ η > (1− π) kgbi

∥∥q̇i (t−i,ki)− q̇∗i (t−i,ki)∥∥2
+ π

[
kss̄

T
i s̄i

(
t−i,ki

)
+ kpkg ḡ

T
i ḡi

(
t−i,ki

)
+ η
]

(A.62)

(1− π)
(
kss̄

T
i s̄i

(
t−i,ki

)
+ kpkg ḡ

T
i ḡi

(
t−i,ki

)
+ η
)
> (1− π) kgbi

∥∥q̇i (t−i,ki)− q̇∗i (t−i,ki)∥∥2
kss̄

T
i s̄i

(
t−i,ki

)
+ kpkg ḡ

T
i ḡi

(
t−i,ki

)
+ η > kgbi

∥∥q̇i (t−i,ki)− q̇∗i (t−i,ki)∥∥2 (A.63)

and let show now that (A.63) is always satisfied.

Using the property xT y ≥ − 1
2

(
bi2x

Tx+ 1
bi2
yT y

)
for some bi2 > 0, one deduces that

s̄Ti s̄i = k2pḡ
T
i ḡi + ‖q̇i − q̇∗i ‖

2
+ 2kpḡ

T
i (q̇i − q̇∗i )

≥
(
k2p − kpbi2

)
ḡTi ḡi +

(
1− kp

bi2

)
‖q̇i − q̇∗i ‖

2
. (A.64)

Using (A.64), a sufficient condition for (A.63) to be satisfied is

ks
(
k2p − kpbi2

)
ḡTi ḡi + ks

(
1− kp

bi2

)
‖q̇i − q̇∗i ‖

2
+ kpkg ḡ

T
i ḡi + η > kgbi ‖q̇i − q̇∗i ‖

2

ks

(
1− kp

bi2

)
‖q̇i − q̇∗i ‖

2
+
[
kpkg + ks

(
k2p − kpbi2

)]
ḡTi ḡi + η > kgbi ‖q̇i − q̇∗i ‖

2

k1ḡ
T
i ḡi + η > k2 ‖q̇i − q̇∗i ‖

2
(A.65)
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where k1 =
[
kpkg + ks

(
k2p − kpbi2

)]
and k2 =

[
kgbi − ks

(
1− kp

bi2

)]
. To ensure that the inequality (A.65) is satisfied inde-

pendently of the values of ḡi and q̇i, it is sufficient to find bi and bi2 such that k1 > 0 and k2 < 0. Consider first k1.

kpkg + ks
(
k2p − kpbi2

)
> 0

kg
ks

> (−kp + bi2)

kskp + kg
ks

> bi2. (A.66)

Focus now on k2

kgbi − ks
(

1− kp
bi2

)
< 0

kgbi
ks

< 1− kp
bi2

(A.67)

Since bi2 > 0, one has
kgbi
ks

< 1 and so bi <
ks
kg

. Then

kskp
ks − kgbi

< bi2. (A.68)

Finally, one has to find a condition on bi such that (A.66) and (A.67) can be satisfied simultaneously

kskp + kg
ks

> bi2 >
kskp

ks − kgbi
. (A.69)

One may find bi2 if

ks − kgbi >
k2skp

kskp + kg

1

kg

(
ks −

k2skp
kskp + kg

)
> bi

bi <
ks

kskp + kg
. (A.70)

which also ensures that bi <
ks
kg

. Thus, once bi <
ks

kskp+kg
, there exists some bi2 such that (A.69) is satisfied. As a consequence,

(32) stops to be satisfied when t = t+i,k.

A.5 Additional proof elements

A.5.1 Upper-bound on
∑N

i=1 g
T
i gi

From (10), one may write

N∑
i=1

gTi gi =

N∑
i=1

(
N∑
j=1

mij

(
rij − r∗ij

))T ( N∑
`=1

mi` (ri` − r∗i`)

)

=

N∑
i=1

N∑
`=1

N∑
j=1

mi`mij

(
rij − r∗ij

)T
(ri` − r∗i`) (A.71)

Using the fact that

(a− b)T (a− b) = aT a+ bT b− 2aT b, (A.72)
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one gets
N∑
i=1

gTi gi =

N∑
i=1

[
1

2

N∑
`=1

N∑
j=1

mi`mij

[∥∥rij − r∗ij∥∥2 + ‖ri` − r∗i`‖
2 −

∥∥rij − r∗ij − (ri` − r∗i`)
∥∥2]] . (A.73)

One has (
rij − r∗ij

)
− (ri` − r∗i`) = (rij − ri`)−

(
r∗ij − r∗i`

)
= r`j − r∗`j

Injecting this result in (A.73) leads to

N∑
i=1

gTi gi =

N∑
i=1

[
1

2

N∑
`=1

N∑
j=1

mi`mij

[∥∥rij − r∗ij∥∥2 + ‖ri` − r∗i`‖
2 −

∥∥r`j − r∗`j∥∥2]
]

(A.74)

with mmax = max
i, j = 1 . . . N

(mij)

mmax

N∑
i=1

gTi gi ≥
N∑
i=1

[
1

2

N∑
`=1

N∑
j=1

mi`mijm`j

[∥∥rij − r∗ij∥∥2 + ‖ri` − r∗i`‖
2 −

∥∥r`j − r∗`j∥∥2]
]

mmax

N∑
i=1

gTi gi ≥
1

2

N∑
i=1

N∑
`=1

N∑
j=1

mi`mijm`j

∥∥rij − r∗ij∥∥2 +
1

2

N∑
i=1

N∑
`=1

N∑
j=1

mi`mijm`j ‖ri` − r∗i`‖
2

− 1

2

N∑
i=1

N∑
`=1

N∑
j=1

mi`mijm`j

∥∥r`j − r∗`j∥∥2
mmax

N∑
i=1

gTi gi ≥
1

2

N∑
i=1

N∑
`=1

N∑
j=1

mi`mijm`j

∥∥rij − r∗ij∥∥2 +
1

2

N∑
i=1

N∑
`=1

N∑
j=1

mi`mijm`j

∥∥rij − r∗ij∥∥2
− 1

2

N∑
i=1

N∑
`=1

N∑
j=1

mi`mijm`j

∥∥rij − r∗ij∥∥2
mmax

N∑
i=1

gTi gi ≥
1

2

N∑
i=1

N∑
`=1

N∑
j=1

mi`mijm`j

∥∥rij − r∗ij∥∥2 . (A.75)

According mi` = 0 if ` /∈ Ni, one gets

N∑
i=1

N∑
`=1

N∑
j=1

mi`mijm`j

∥∥rij − r∗ij∥∥2 =

N∑
i=1

∑
`∈Ni

mi`

N∑
j=1

mijm`j

∥∥rij − r∗ij∥∥2
Let mmin = mini,j=1...N (mij 6= 0) and Nmin = mini=1...N (Ni). One may write

N∑
i=1

N∑
`=1

N∑
j=1

mi`mijm`j

∥∥rij − r∗ij∥∥2 =

N∑
i=1

∑
`∈Ni

mmin

N∑
j=1

mij

∥∥rij − r∗ij∥∥2 .
N∑
i=1

N∑
`=1

N∑
j=1

mi`mijm`j

∥∥rij − r∗ij∥∥2 ≥ Nminmmin

N∑
i=1

N∑
j=1

mij

∥∥rij − r∗ij∥∥2
and so

mmax

N∑
i=1

gTi gi ≥ Nminmmin

N∑
i=1

N∑
j=1

mij

∥∥rij − r∗ij∥∥2
N∑
i=1

gTi gi ≥
Nminmmin

mmax
P (q, t) (A.76)
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A.5.2 Evaluation of c3

c3 =
k4
k∗M

=
km min (1, k3)

max {1, kM}

=
min {k1, kp}min

(
1, Nminmmin

mmax

)
max {1, kM}

. (A.77)

where k1 = ks − 1− kp (kM + 1).

A.5.3 Evaluation of E
(∥∥∥eji (t+i,ki+1

)∥∥∥2) and E
(∥∥∥ėji (t+i,ki+1

)∥∥∥2)

E
(∥∥∥eji (t+i,ki+1

)∥∥∥2) and E
(∥∥∥ėji (t+i,ki+1

)∥∥∥2) are evaluated assuming that the implicit feedback is not employed. A simi-

lar evaluation may be performed considering this information. Using results of (22), one may write immediately after the
transmission of the ki + 1 message by agent i

E
(∥∥∥eji (t+i,ki+1

)∥∥∥2) =

ki+1∑
`=ki−κ+2

pki+1,`

∥∥∥q̂i,`i (
t+i,ki+1

)
− qi

(
t+i,ki+1

)∥∥∥2
=

ki∑
`=ki−κ+1

πpki,`

∥∥∥q̂i,`i (
t+i,ki+1

)
− qi

(
t+i,ki+1

)∥∥∥2
+ pki+1,ki+1

∥∥∥q̂i,ki+1
i

(
t+i,ki+1

)
− qi

(
t+i,ki+1

)∥∥∥2
− pki+1,ki−κ

∥∥∥q̂i,ki−κ+1
i

(
t+i,ki+1

)
− qi

(
t+i,ki+1

)∥∥∥2 ,
where pki+1,` = πpki,` has been shown in (29). Since q̂i,`i

(
t+i,ki+1

)
= q̂i,`i

(
t−i,ki+1

)
for all ` = ki−κ+1, . . . , ki and qi

(
t+i,ki+1

)
=

qi
(
t−i,ki+1

)
, one deduces

E
(∥∥∥eji (t+i,ki+1

)∥∥∥2) = πE
(∥∥∥eji (t−i,ki+1

)∥∥∥2)
+ pki+1,`

∥∥∥q̂i,ki+1
i

(
t+i,ki+1

)
− qi

(
t+i,ki+1

)∥∥∥2
− pki+1,ki−κ

∥∥∥q̂i,ki−κ+1
i (tki+1)− qi (tki+1)

∥∥∥2 .
According to Proposition 3, pki+1,ki−κ = 0. Moreover, at t = t+k+1, q̂i,ki+1

i

(
t+i,ki+1

)
= qi

(
t+i,ki+1

)
. Consequently,

E
(∥∥∥eji (t+i,ki+1

)∥∥∥2) = πE
(∥∥∥eji (t−i,ki+1

)∥∥∥2) .
Similarly, one has

E
(∥∥∥ėji (t+i,ki+1

)∥∥∥2) = πE
(∥∥∥ėji (t−i,ki+1

)∥∥∥2)
since ˙̂qi,`i

(
t+i,ki+1

)
= ˙̂qi,`i

(
t−i,ki+1

)
for all ` = ki − κ+ 1, . . . , ki and q̇i

(
t+i,ki+1

)
= q̇i

(
t−i,ki+1

)
.
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