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Randomization matters
How to defend against strong adversarial attacks

Rafael Pinot * 1 2 Raphael Ettedgui * 1 Geovani Rizk 1 Yann Chevaleyre 1 Jamal Atif 1

Abstract
Is there a classifier that ensures optimal robust-
ness against all adversarial attacks? This pa-
per answers this question by adopting a game-
theoretic point of view. We show that adversarial
attacks and defenses form an infinite zero-sum
game where classical results (e.g. Sion theorems)
do not apply. We demonstrate the non-existence
of a Nash equilibrium in our game when the clas-
sifier and the Adversary are both deterministic,
hence giving a negative answer to the above ques-
tion in the deterministic regime. Nonetheless, the
question remains open in the randomized regime.
We tackle this problem by showing that, under
mild conditions on the dataset distribution, any
deterministic classifier can be outperformed by a
randomized one. This gives arguments for using
randomization, and leads us to a new algorithm
for building randomized classifiers that are robust
to strong adversarial attacks. Empirical results val-
idate our theoretical analysis, and show that our
defense method considerably outperforms Adver-
sarial Training against state-of-the-art attacks.

1. Introduction
Adversarial example attacks recently became a major con-
cern in the machine learning community. An adversarial
attack refers to a small, imperceptible change of an input
that is maliciously designed to fool a machine learning al-
gorithm. Since the seminal work of (Biggio et al., 2013)
and (Szegedy et al., 2014) it became increasingly important
to understand the vulnerability of machine learning models
to adversarial attacks. Accordingly, a large body of work
has been published on designing attacks (Goodfellow et al.,
2015; Papernot et al., 2016a; Madry et al., 2018; Carlini &
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Wagner, 2017; Athalye et al., 2018) and defenses (Goodfel-
low et al., 2015; Papernot et al., 2016b; Madry et al., 2018;
Cohen et al., 2019). At the same time, there has been a
growing interest in understand the very nature of this phe-
nomenon (Fawzi et al., 2016; 2018; Bubeck et al., 2019;
Ilyas et al., 2019; Gourdeau et al., 2019). Despite these
significant efforts, the existence of a classifier with optimal
robustness against all attacks remains an open problem. In
this paper we tackle the following questions for which we
provide principled and theoretically-grounded answers:

Q1: Is there a deterministic classifier that ensures optimal
robustness against any adversarial attack?

A1: To answer this question, in Section 3, we cast the ad-
versarial examples problem as an infinite zero-sum game
between a Defender (the classifier) and an Adversary that
produces adversarial examples. Then we demonstrate, in
Section 4, the non-existence of a Nash equilibrium in the
deterministic setting of this game. This entails that no deter-
ministic classifier can claim to be more robust than all other
classifiers against any possible adversarial attack, including
Adversarial Training. Another consequence of our analysis
is that there is no free lunch for transferable attacks: an
attack that works on all classifiers will never be optimal
against any of them.

Q2: Would randomized defense strategies be a suitable
alternative to defend against strong adversarial attacks?

A2: We tackle this problem both theoretically and empiri-
cally. In Section 5, we demonstrate, under a mild condition
on the data distribution, that for any deterministic defense
there exists a mixture of classifiers that offers better worst-
case theoretical guarantees. Building upon this, we devise a
new algorithm that generates robust randomized classifiers
using a boosting-type procedure. We evaluate this method,
that we call Boosted Adversarial Training, in Section 6
against strong attacks on the CIFAR10 dataset. It outper-
forms Adversarial Training against both `∞-PGD (Madry
et al., 2018), and `2-C&W attacks (Carlini & Wagner, 2017).
More precisely, our algorithm achieves 0.58 (resp. 0.59)
accuracy under attack against `∞-PGD (resp. `2-C&W)
with 100 iterations, which is an improvement of 0.16 (resp.
0.08) over Adversarial Training.
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2. Related Work
Many works have studied adversarial examples, in several
different settings. We discuss hereafter the different frame-
works that we believe to be related to our work, and discuss
the aspects on which our contribution differs from them.

Distributionally robust optimization. Sinha et al. (2018)
address the problem of adversarial examples through the
lens of distributionally robust optimization. They study a
min-max problem where the Adversary manipulates the
test distribution while being constrained in a Wasserstein
distance ball. A similar analysis was presented in Lee &
Raginsky (2018) in a more general setting that does not
focus on adversarial examples. Even though our work stud-
ies the same problem, our reasoning is very different. We
adopt a game theoretic standpoint, which allows us to in-
vestigate randomized defenses and endow them with strong
theoretical evidences.

Game Theory. Some works have tackled the problem of
adversarial examples as a two player game. For exam-
ple Brückner & Scheffer (2011) views adversarial example
attacks and defenses as a Stackelberg game. More recently,
Rota Bulò et al. (2017) and Perdomo & Singer (2019) inves-
tigated zero-sum games. They consider restricted versions
of the game where classical theorems apply, such as when
the defender only has a finite set of possible strategies. We
study a more general setting. Finally, Dhillon et al. (2018)
motivated the use of noise injection as a defense mechanism
by game theoretic arguments but only present empirical
results.

Randomization. Following the work of Dhillon et al.
(2018) and Xie et al. (2018), several recent works stud-
ied noise injection as a defense mechanism. In particular,
Lecuyer et al. (2018), followed by Cohen et al. (2019); Li
et al. (2019); Pinot et al. (2019); Wang et al. (2019) demon-
strated that noise injection can, in some cases, give provable
defense against adversarial attacks. The analysis and al-
gorithm we propose in this paper are not based on noise
injection. However, a link could be made between these
works and the mixture algorithm we propose, by noting that
a classifier in which noise is being injected can be seen as
an infinite mixture of perturbed classifiers.

Optimal transport. Our work considers a distributionnal
setting, in which the Adversary manipulating the dataset is
formalized by a push-forward measure. This kind of setting
is close to optimal transport settings recently developed by
Bhagoji et al. (2019) and (Pydi & Jog, 2019). Specifically,
these works investigate classifier-agnostic lower bounds on
the risk for binary classification under attack, with some
hypothesis on the data distribution. Even though they do
not treat the same problem, we believe that these works are
profoundly related and complementary to ours.

3. Problem statement
Notations. For any set Z with σ-algebra σ (Z), if there is
no ambiguity on the considered σ-algebra, we denote P (Z)
the set of all probability measures over (Z, σ (Z)), and
FZ the set of all measurable functions from (Z, σ (Z)) to
(Z, σ (Z)). For µ ∈ P (Z) and φ ∈ FZ , the pushforward
measure of µ by φ is the measure φ#µ such that φ#µ(B) =
µ(φ-1(B)) for any B ∈ σ(Z).

Binary classification task. Let X ⊂ Rd and Y = {-1, 1}.
We consider a distribution D ∈ P (X × Y) that we assume
to be of support X × Y . The Defender is looking for a hy-
pothesis (classifier) h in a class of functionsH, minimizing
the risk of h w.r.t. D, which is defined as the probability of
misclassification:

R(h) := E
(X,Y )∼D

[1 {h(X) 6= Y }]

= E
Y∼ν

[
E

X∼µY

[1 {h(X) 6= Y }]
]
.

(1)

WhereH := {h : x 7→ sgn g(x) | g : X → R continuous},
ν ∈ P (Y) is the probability measure that defines the law of
the random variable Y , and for any y ∈ Y , µy ∈ P (X ) is
the conditional law of X|(Y = y).

Adversarial example attack (point-wise). Given a clas-
sifier h : X → Y and a data sample (x, y) ∼ D, the
Adversary seeks a perturbation τ ∈ X that is visually im-
perceptible, but modifies x enough to change its class, i.e.
h(x+ τ) 6= y. Such a perturbation is called an adversarial
example attack. In practice, it is hard to evaluate the set of
visually imperceptible modifications of an image. However,
a sufficient condition to ensure that the attack is undetectable
is to constrain the perturbation τ to have a small norm, be it
for the `∞ or the `2 norm. Hence, one should always ensure
that ‖τ‖∞ ≤ ε∞, or ‖τ‖2 ≤ ε2, depending on the norm
used to measure visual imperceptibility. The choice of the
threshold depends on the application at hand. For example,
on CIFAR10, typical values for ε∞ and ε2 are respectively,
0.031 and 0.4/0.6/0.8.

Note that our definition of the problem implies that the
Adversary has perfect information on the dataset and the
classifier, so we consider here the strongest type of attacks,
called white-box attacks. In particular, the same point x
may have different perturbations depending on what its true
class is: since the Adversary wants the classifier to do as
many mistakes as possible, it may not attack a point when it
is already misclassified.

Adversarial example attack (distributional). The Adver-
sary is choosing, for every x ∈ X , a perturbation that de-
pends on its true label y. This amounts to construct, for each
label y ∈ Y , a measurable function φy such that φy(x) is
the perturbation associated with the labeled example (x, y).
This function naturally induces a probability distribution
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over adversarial examples, which is simply the push-forward
measure φy#µy. The goal of the Adversary is thus to find
φ = (φ-1, φ1) ∈ (FX )2 that maximizes the adversarial risk
Radv(h,φ) defined as:

Radv(h,φ) := E
Y∼ν

[
E

X∼φY #µY

[1 {h(X) 6= Y }]
]

−λΩ (φ) .

(2)

The penalty function Ω represents the transportation cost of
the Adversary, and λ ∈ (0, 1) some regularization weight.
More precisely, Ω encodes the constraints that the Adversary
enforces on the attacks, to remain undetected.

Transportation costs. The analysis of Equation (2) will
heavily depend on the choice of the penalty function Ω. In
this paper, we study two types of penalties: the norm penalty
Ωnorm , and the mass penalty Ωmass. The first one penalizes
the expected norm of the perturbation as follows:

Ωnorm(φ) := E
Y∼ν

[
E

X∼µY

[
‖X − φY (X)‖2

+∞1 {‖X − φY (X)‖2 > ε2}
]]
,

(3)

with the convention∞× 0 = 0. The first term of the regu-
larization has been proposed by Carlini & Wagner (2017)
to compute the eponymous attack (C&W)1. However, using
this alone may lead to create perceptible attacks. To deal
with this, but also for numerical experiments to be fair, Car-
lini et al. (2019) proposed to reject the perturbation when
the `2 norm is greater than some threshold ε2, hence the
second term2.

We define the mass penalty as follows:

Ωmass(φ) := E
Y∼ν

[
E

X∼µY

[
1 {X 6= φY (X)}

+∞1 {‖X − φY (X)‖∞ > ε∞}
]]
.

(4)

The mass penalty discourages the Adversary from attacking
too many points by penalizing the overall mass of trans-
ported points. This type of constraint, although not often
discussed in the literature, is very important to understand
and analyze real life scenarios, where the Defender tries
to detect attacks based on the occurrences of its failures.
Since the attack should also remain visually undetected, the
penalty ensures that all attacks have an `∞ norm smaller
than a given ε∞. This kind of `∞ constraint is related to
other attacks form the literature (e.g. FGSM (Goodfellow
et al., 2015) or PGD (Madry et al., 2018)).

1Ωnorm is not limited to `2 norm. The results we present hold
as long as the norm used to compare X and φY (X) comes from a
scalar product on X .

2One could also use a threshold on the `∞ norm. We chose the
`2 norm to be consistent with the first term of the penalty.

We will also see in Section 4 that the mass penalty can be
useful to study approximate solutions for the norm penalty.

Adversarial defense, a two-player zero-sum game.
Whatever penalty we choose, its value does not depend on
h (hence, the optimal Defender minimizing Eq. (1) or (2) is
the same). The adversarial examples problem can thus be
seen as a two-player zero-sum game, where the Defender
tries to find the best possible hypothesis h, while a strong
Adversary is manipulating the dataset distribution:

inf
h∈H

sup
φ∈(FX )2

Radv(h,φ). (5)

This means that the Defender tries to design the classifier
with the best performance under attack, whereas the Adver-
sary will each time design the optimal attack on this specific
classifier. In the game theoretical terminology, the choice of
a classifier h (resp. an attack φ) for the Defender (resp. the
Adversary) is called a strategy.

It is crucial to note that in our game, the sup-inf and inf-sup
problems do not coincide. In this paper, we mainly focus
on the Defender’s point of view which corresponds to the
inf-sup problem.

Definition 1 (Best Response). Let h ∈ H, and φ ∈ (FX )2.
A best response from the Defender to φ is a classifier h∗ ∈
H such that Radv(h∗,φ) = min

h∈H
Radv(h,φ). Similarly, a

best response from the Adversary to h is an attack φ∗ such
thatRadv(h,φ∗) = max

φ∈(FX )2
Radv(h,φ).

In the remaining, we denote BRΩ(h) the set of all best re-
sponses of the Adversary to a classifier h, under penalty
Ω. Similarly BR(φ) denotes the set of best responses to an
attack φ. Since Ω does not impact the Defender’s optimiza-
tion problem, we omit to mention Ω.

Definition 2 (Pure Nash Equilibrium). In the zero-sum
game (Eq. 5) with penalty Ω, a Pure Nash Equilibrium
is a couple of strategies (h,φ) ∈ H × (FX )

2 such that{
h ∈ BR(φ), and,
φ ∈ BRΩ(h).

When it exists, a Pure Nash Equilibrium is a state of the
game in which no player has any incentive to modify its
strategy. In our setting, this simultaneously means that no
attack could better fool the current classifier, and that the
classifier is optimal for the current attack.

Remark. All the definitions in this section assume a de-
terministic regime, i.e. that neither the Defender nor the
Adversary use randomization, hence the notion of Pure Nash
Equilibrium in the game theory terminology. We will study
this deterministic regime in Section 4. The randomized
regime will be studied in Section 5.
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Figure 1. Comparison of the distributions µ1 and µ-1 before attack (left) and after attack, according either to the mass penalty (middle) or
the norm penalty (right). The blue (dotted and dashed) curve represents the distribution ofX|Y = 1, and the red (dashed) oneX|Y = −1.
The black vertical line is the Bayes optimal classifier for the initial distributions. Finally, the red (lighter) and the blue (darker) areas
represents the zones on which the Adversary can change the distributions for mass (middle) and norm (right) penalty.

4. Deterministic regime
Notations. Let h ∈ H, y ∈ Y , and p ∈ {2,∞}.
We denote Ph := {x ∈ X | h(x) = 1}, and Nh :=
{x ∈ X | h(x) = -1} respectively the set of positive and
negative outputs of h. We also denote P ph (δ) :=
{x ∈ Ph | ∃z ∈ Nh and ‖z − x‖p ≤ δ}, and in the same
way Np

h(δ) the points that are closer than δ from the other
class. We omit p, when it is clear from the context3.

In this section we show that whatever penalty the Adversary
has, no Pure Nash Equilibrium exists. To do so, we charac-
terize the best responses for each player, and show that they
can never satisfy Definition 2.

Adversary’s best response. Let us first present the best
responses of the Adversary under respectively the norm
penalty and the mass penalty.

Lemma 1. Let h ∈ H, ε2 ≤ 1 the perceptibility parameter,
and φ ∈ BRΩnorm(h). Then the following holds:

φ1(x) =

{
π(x) if x ∈ Ph(ε2)
x otherwise.

Where π is the orthogonal projection on (Ph){, the comple-
ment of Ph in X . φ-1 is characterized symmetrically.

Lemma 2. Let h ∈ H, ε∞ ≤ 1 the perceptibility parameter,
and φ ∈ BRΩmass(h). Then the following holds:{

φ1(x) ∈ (Ph){ if x ∈ Ph(ε∞)
φ1(x) = x otherwise.

and φ-1 is characterized symmetrically.

Both best responses share a fundamental behavior: the op-
timal attack will only change points that are close enough
to the decision boundary be it w.r.t `2 or `∞ norm. This
means that, when the Adversary has no chance of making

3In particular when δ = εp it depends on the `p norm.

the classifier change its decision about a given point, it will
not attack it.

However, for the norm penalty all attacked points are pro-
jected on the decision boundary, whereas with the mass
penalty the attack moves the points across the border. This
difference is illustrated in Figure 1 with two uni-dimensional
Gaussian distributions. For the norm penalty (on the right),
the part of µ1 (dashed and dotted lines) that was in Ph(ε2)
(blue zone) is transported on a Dirac distribution at the deci-
sion boundary. The same holds for µ-1 (dashed lines). After
attack, we now have µ1 (Ph(ε2)) = 0, so a small value of
µ-1 in Ph(ε2) suffices to make it dominant, and that zone
will now be classified -1 by the Bayes classifier.
For the norm penalty (in the middle), µ1 (dashed and dotted
lines) is set to 0 in Ph(ε∞) (blue zone), and this mass is
transported into Nh(ε∞) (red zone), and added to the small
amount of µ1 that was already there. Similarly to the norm
penalty case, the small value of µ-1 (dashed lines) in the
Ph(ε∞) now suffices to make the best response classify that
zone as -1.

Remark. In practice, it might be computationally hard to
generate the exact best response for the norm penalty, i.e. the
projection on the decision boundary. That will happen for
example if this boundary is very complex (e.g. highly non-
smooth), or when X is in a high dimensional space. In order
to keep the attack computationally tractable, the Adversary
will have to compute an approximated best response by
allowing the projection to reach the point within a small ball
around the boundary. This means that the best responses of
the norm penalty and the mass penalty problems will often
match (for a well chosen ε).

Defender’s best response. At a first glance, one would sus-
pect that the best response for the Defender ought to be the
Bayes classifier for the transported distribution. However,
the Bayes classifier is only well defined for distributions that
have probability density functions. This does not always
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hold here for the transported distribution. Typically, we
see on Figure 1 that in the 1 dimensional setting, project-
ing on the decision boundary creates a Dirac distribution.
Nevertheless, we show that there is a property, shared by
the Bayes classifier when defined, that always holds for the
Defender’s best response.

Lemma 3. Let us consider φ ∈ (FX )
2. If we take h ∈

BR(φ), then for y = 1 (resp. y = -1), and for any B ⊂ Ph
(resp. B ⊂ Nh) one has:

P(Y = y|X ∈ B) ≥ P(Y = −y|X ∈ B)

with Y ∼ ν and for all y ∈ Y , X|(Y = y) ∼ φy#µy .

In particular, when φ1#µ1 and φ-1#µ-1 admit proba-
bility density functions, Lemma 3 simply means that
h is the optimal Bayes classifier for the distribution
(ν, φ1#µ1, φ-1#µ-1)4. We can now state our main theo-
rem, as well as two of its important consequences.

Theorem 1 (Non-existence of a pure Nash equilibrium). In
the zero-sum game (Eq. 5) with penalty Ω ∈ {Ωmass,Ωnorm},
there is no Pure Nash Equilibrium.

Consequence 1. No free lunch for transferable attacks.

To understand this statement, remark that, thanks to weak
duality, the following inequality always holds:

sup
φ∈(FX )2

inf
h∈H
Radv(h,φ) ≤ inf

h∈H
sup

φ∈(FX )2
Radv(h,φ).

On the left side problem (sup-inf), the Adversary looks for
the best attacking strategy φ against any unknown classifier.
This is tightly related to the notion of transferable attacks
(e.g. (Tramèr et al., 2017)), which refers to attacks success-
ful against a wide range of classifiers. On the right side our
problem (inf-sup), where the Defender tries to find the best
classifier under any possible attack, whereas the Adversary
plays in second and specifically attacks this classifier. As a
consequence of Theorem 1, the inequality is always strict:

sup
φ∈(FX )2

inf
h∈H
Radv(h,φ) < inf

h∈H
sup

φ∈(FX )2
Radv(h,φ).

This means that both problems are not equivalent. In par-
ticular, an attack designed to succeed against any classifier
(i.e. a transferable attack) will not be as good as an attack
tailored for a given classifier.

Consequence 2. No deterministic defense (including Ad-
versarial Training) may be proof against every attack.

Let us consider the state-of-the-art defense which is Adver-
sarial Training. The idea is to compute an efficient attack φ,
and train the classifier on created adversarial examples, in

4We prove this result in the supplementary material.

order to move the decision boundary and make the classifier
more robust to new perturbations by φ.
To be fully efficient, this method requires that φ remains
an optimal attack on h even after training. Our theorem
shows that it is never the case: after training our classifier
h to become (h′) robust against φ, there will always be a
different optimal attack φ′ that is efficient against h′. Hence
Adversarial Training will never achieve a perfect defense.

5. Randomization matters
Fully randomized regime. We have shown, that since there
is no pure Nash equilibrium, no deterministic classifier may
be proof against every attack. We would therefore need to
allow for a wider class of strategies. A natural extension
of the game would thus be to allow randomization for both
players, who would now choose a distribution over pure
strategies, leading to this game:

inf
η∈P(H)

sup
ϕ∈P((FX )2)

E
h∼η
φ∼ϕ

[Radv(h,φ)] . (6)

Without making further assumptions on this game (e.g. com-
pactness), we cannot apply known results from game theory
(e.g. Sion theorem) to prove the existence of an equilibrium
in this setting. These assumptions would however make the
problem loose much generality, and does not hold here.

Randomization matters. Even without knowing if an equi-
librium exists in the randomized setting, we can prove that
randomization matters. More precisely we show that, under
mild condition on the data distribution, any deterministic
classifier can be outperformed by a randomized one in terms
of the worst case adversarial risk. To do so we simplify
Equation 6 in two ways.

1. We do not consider the Adversary to be randomized,
i.e we restrict the search space of the Adversary to (FX )2

instead of P
(
(FX )2

)
. This condition corresponds to the

current state-of-the-art in the domain: to the best of our
knowledge, no efficient randomized adversarial example
attack has been designed (and so is used) yet.

2. We only consider a subclass of randomized classifiers,
called mixtures, which are discrete probability measures on
a finite set of classifier. We show that this kind of random-
ization is enough to strictly outperform any deterministic
classifier. We will discuss later the use of more general
randomization (such as noise injection) for the Defender.
Let us now define a mixture of classifiers:
Definition 3 (Mixture of classifier). Let n ∈ N, h =
(h1, ..., hn) ∈ Hn , and q ∈ P ([n]). A mixed classifier
of h by q is a mapping mq

h from X to P (Y) such that for
all x ∈ X , mq

h(x) is the discrete probability distribution
that is defined for all y ∈ Y by:

mq
h(x)(y) := E

i∼q
[1 {hi(x) = y}] .
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Figure 2. Illustration of adversarial examples (only on class 1 for more readability) crossing the decision boundary (left), adversarially
trained classifier for the class 1 (middle), and a randomized classifier that defends class 1. Stars are natural examples for class 1, and
crosses are natural examples for class -1. The straight line is the optimal Bayes classifier, and dashed lines delimit the points close enough
to the boundary to be attacked resp. for class 1 and -1.

We call such a mixture a mixed strategy of the Defender.
Given some x ∈ X , this amounts to picking a classifier hi
from h at random following the distribution q, and use it to
output the predicted class for x, i.e hi(x). Note that a mixed
strategy for the Defender is a non deterministic algorithm,
since it depends on the sampling one makes on q. Hence,
even if the attacks are defined in the same way as before, the
Adversary now needs to maximize a new objective function
which is the expectation of the adversarial risk under the
distribution mq

h. It writes as follows:

E
Y∼ν

[
E

X∼φY #µY

[
E

Ŷ∼mq
h(X)

[
1
{
Ŷ 6= Y

}]]]
− λΩ (φ) .

(7)

We also writeRadv to mean Equation (7), when it is clear
from context that the Defender uses a mixed classifier. Using
this new set of strategies for the Defender, we can study
whether mixed classifiers outperform deterministic ones,
and how to efficiently design them.

To do so, let us demonstrate that the efficiency of any deter-
ministic defense can be improved using a simple mixture
algorithm. This method presents similarities with the no-
tions of fictitious play (Brown, 1951) in game theory, and
boosting in machine learning (Freund & Schapire, 1995).
Given a deterministic classifier h1, we combine it (via ran-
domization) with the best response h2 to its optimal attack.
The rational behind this idea is that, by construction, effi-
cient attacks on one of these two classifiers will not work on
the other. If we can then calibrate the weights so that attacks
on important zones have a low probability of succeeding,
then the average risk under attack on the mixture will be
low. We will thus need the following condition on the data
distribution :

Definition 4 ((ε, p)-dilation and vanishing measure). Let U
be a subset of X , ε a positive value, p ∈ {2,∞}, and µ a

probability measure.

1. The (ε, p)-dilation of U is defined as follows:

U
p
⊕ ε :=

{
u+ v | (u, v) ∈ U ×X and ‖v‖p ≤ ε

}
.

2. We say that µ is (ε, p)-vanishing5 on U if we have:

µ
(
U

p
⊕ ε\U

)
≤ µ(U).

This is because mixing h1 with h2 has two opposite con-
sequences on the adversarial risk. On one hand, where we
only had to defend against attack on h1, we are now also
vulnerable to attacks on h2, so the total set of possible at-
tacks is now bigger. On the other hand, each attack will
only work part of the time, depending on the probability
distribution q. When Definition 4 applies on the attackable
zones, it ensures that we gain more than we loose.

With these new definitions, we now can state our second
main result: mixtures outperform deterministic classifiers.

Theorem 2. (Randomization matters) Let h1 ∈ H, λ ∈
(0, 1) the regularization parameter, φ ∈ BRΩnorm(h1), and
h2 ∈ BR(φ). If µ1 (resp. µ-1) is ε2-vanishing on Ph1

(ε2)
(resp. on Nh1

(ε2)), then for any α ∈ ( 1+λε2
2 , 1) one has:

∀φ′ ∈ BRΩnorm(mq
h), Radv(mq

h,φ
′) < Radv(h1,φ).

Where h = (h1, h2), q = (α, 1−α), and mq
h is the mixture

of h by q. A similar result holds for the mass penalty, with
α ∈ ( 1+λ

2 , 1).

On the vanishing measure condition. Let us briefly ex-
plain this property. To defend against an attack, the general
tactic is to change the classifier output, when points are

5As for P p
h we omit p when it is clear from the context.
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close to the border (either all the time, as in Adversarial
Training where we move the decision boundary to incor-
porate adversarial examples, or part of the time as in our
randomized algorithm so that the attack only works with a
given probability).

For example on figure 2, we mix the Bayes classifier (left)
with its optimal attack that swaps the blue and red zone
between the dotted line, on the gray area that is the former
attack zone for the blue class. This gives the figure on the
right. If the first classifier has a weight α = 0.5, the 10 old
attacks (points between the dotted lines) now succeed only
with probability 0.5 (the new optimal attack for star points
being to leave them in place), whereas 3 new attacks are
created (blue points outside of the gray area) that succeed
with probability 0.5, for a total attack score of 6.5, which is
lower than the old attack score of 10.

When adversarially training a classifier (Figure 2, middle),
we change its output on the blue zone, so that four of the
star points cannot be successfully attacked anymore. But
in exchange, the dilation of this zone (in red) can now be
attacked. For Adversarial Training to work, we need the
number of new potential attacks (i.e. the points that are
circled, 2 red ones in the dilatation and 2 blue ones that are
close to the new boundary) to be smaller than the number
of attacks we prevent (the points that are in a square, 4 blue
ones that an attack would send in the blue zone, and 3 red
points that are far from the new decision boundary). Here
we prevent 7 attacks at the cost of four new ones, so the
Adversarial Training improves the total score from 10 to 7.

This discussion shows that when no measure have any van-
ishing zone, Adversarial Training cannot bring any gain.
By contraposition, whenever a deterministic classifier can
be improved by Adversarial Training, it will also be out-
performed under optimal attack by a randomized algorithm
(see Theorem 2).

6. Experiments: How to build the mixture
Based on Theorem 2 we devise a new procedure (Algo-
rithm 1), called Boosted Adversarial Training (BAT) to con-
struct robust classifiers. It is based on three core principles:
Adversarial Training, Boosting and Randomization.

Contrary to classical algorithms such as Fictitious play that
also generates mixtures of classifiers, and whose theoretical
guarantees rely on the existence of a Mixed Nash Equilib-
rium, the performance of our algorithm is ensured by Theo-
rem 2 to be at least as good as the classifier it uses as a basis.
Moreover, the implementation of Fictitious Play would be
impractical on high dimensional dataset we consider, due to
computational costs.

Given a dataset D and a weight update parameter α ∈ [0, 1],

Algorithm 1 Boosted Adversarial Training
Input : n the number of classifiers, D the training data set
and α the weight update parameter.

Create and adversarially train h1 on D
h = (h1) ; q = (1)
for i = 2, . . . , n do

Generate the adversarial data set D̃ against mq
h.

Create and naturally train hi on D̃

qk ← (1− α)qk ∀k ∈ [i− 1]
qi ← α

q← (q1, . . . , qi)
h← (h1, . . . , hi)

end
return mq

h

BAT starts by constructing an adversarially trained classifier
on D, and gives it a weight of 1. Then, at each step of
the algorithm, we train a new classifier on a data set D̃
built from D that contains adversarial examples created to
fool the current mixture. This new classifier is added to
the mixture with a weight of α. Previous weights are then
multiplied by 1− α.

At each step, we use `∞-PGD with 20 iterations and
ε∞ = 0.031 to attack the current mixture and build the
adversarial dataset D̃. We choose this attack to fairly com-
pare against Adversarial Training, which uses it during the
training procedure.

On evaluating against `∞-PGD We use Expectation over
Transformation (EOT) following (Athalye et al., 2018)
and (Carlini et al., 2019), when implementing an `∞-PGD
attack against a mixture of classifier. Indeed, it is impor-
tant to compute the expected loss over the mixture, so that
the attack optimizes Equation (7). Previous works such
as (Dhillon et al., 2018) and (Pinot et al., 2019) estimate
the expected loss through a Monte Carlo sampling. Since
we assume perfect information for the Adversary, it knows
the exact distribution of the mixture. Hence it can directly
compute the expected loss without using a sampling method.

We conduced a grid-search to evaluate the influence of α
(see the supplementary material for more details). For the
results we present here, the optimal α we found is equal to
0.06 for 10 classifiers. In Table 1 we compare the accuracy
(on the CIFAR10 dataset (Krizhevsky & Hinton, 2009))
of Boosted and classical Adversarial Training under attack
with `∞-PGD run for 100 iterations.
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Training method Natural l∞-PGD `2-C&W 0.4 `2-C&W 0.6 `2-C&W 0.8
Natural 0.88 0.00 0.00 0.00 0.00

(Madry et al., 2018) 0.83 0.42 0.67 0.60 0.51
BAT (n = 10, α = 0.06) 0.80 0.58 0.70 0.65 0.59

Table 1. Evaluation on CIFAR10 without data augmentation. Accuracy under attack of a single classifier adversarially trained and the
mixture formed with our Algorithm 1. The evaluation is made with `∞-PGD and `2-C&W attacks both computed with 100 steps. For
`∞-PGD we use an epsilon equal to 8/255 (≈ 0.031), a step size equal to 2/255 (≈ 0.008) and we allow random initialization. For
`2-C&W we use a learning rate equal to 0.1, 9 binary search steps, the initial constant to 0.001, we allow the abortion when it has already
converged and we give the results for the different values of rejection threshold ε2 ∈ {0.4, 0.6, 0.8}. Since the mixture draws a classifier
in h according to q to predict a class for each sample, we run 100 times the evaluation to compute the expected accuracy under attack of
the mixture. The width of the 95% confidence interval is negligible (< 0.01). For this reason, we chose to omit it.

Results against `∞-PGD. We compute 100 steps of `∞-
PGD for the attack at test time, while only 20 steps during
the training. The idea behind this difference is that the
Adversary may target only a few specific points, and so may
have access to more computational power for attacks than
the Defender that trains on the whole dataset. For a classifier
to be fully robust, its loss of accuracy should be controlled
when the attacks are strongest than what it was trained on.

As shown in Table 1, the mixture generated by BAT with
10 classifiers and α = 0.06 outperforms adversarial training
on all four attacks. This is already the case for 2 classifiers,
which corroborates the result from Theorem 2. We refer the
reader to the supplementary material for additional results
on how the size of the mixture influences the performance.

On Evaluating against `2-C&W. Adversarial Training
can also be used to defend against `2-C&W. We conducted
experiments to evaluate whether the mixture constructed
with BAT also outperforms it against this attack. Since the
basic `2-C&W attack creates an unbounded perturbation on
examples, we implemented the constraint from Equation 3
by checking at test time whether the `2-norm of the per-
turbation exceeds a certain threshold ε2 ∈ {0.4, 0.6, 0.8}.
If this holds, we keep the natural example, instead of its
adversary version.

For the attacks to be comparable, the radiuses of the balls
must be chosen carefully. For CIFAR10, which is a 3×32×
32 dimensional space, this gives ε2 = 0.8 and ε∞ = 0.03.
The results of this evaluation are presented in Table 1. Note
that we ran 100 steps for the `2-C&W as well.

Results against l2-C&W. The accuracy under attack
of our mixture is higher than that of adversarial training
for all the thresholds. Our mixture is especially more
robust than Adversarial Training when the threshold (i.e.
the budget for a perturbation), is high. Here again, we
see that with two classifiers the mixture already gives
an accuracy under attack of 0.53 against `2-C&W with
ε2 = 0.8 and outperforms Adversarial Training. This result
also corroborates Theorem 2.

We refer the reader to the supplementary material for all
implementation details (architecture of models, optimization
settings, hyper-parameters, etc.).

7. Discussion & Conclusion
Finally, is there a classifier that ensures optimal robustness
against all adversarial attacks? We gave a negative answer
in the deterministic regime, but part of the question remains
open when considering randomized algorithms. We demon-
strated that randomized defenses are more efficient than
deterministic ones, and devised an algorithm to implements
them. There remains to study whether an Equilibrium exists
in the Randomized regime.

This question is appealing from a theoretical point of view,
and requires to investigate the space of randomized Adver-
saries P((FX )2). The characterization of this space is not
straightforward, and would require strong results in the the-
ory of optimal transport. A possible research direction is
to quotient the space (FX )2 so as to simplify the search
in P((FX )2) and the characterization of the Adversary’s
best responses. To do so, one could use an equivalence re-
lation that matches two functions when they have the same
adversarial risk.

The study of the mixed equilibrium is tightly related to that
of the value of the game, which would be interesting for
obtaining min-max bounds on the accuracy under attack, as
well as certificates of robustness for a set of classifiers. One
could also build upon the connection between mixtures and
noise injection to investigate a broader range of randomized
strategies for the Defender, and to devise such certificates.

From an algorithmic point of view, BAT can be improved in
several ways. For instance, the weights can be learned while
choosing the new classifier for the mixture. This could lead
to an improved accuracy under attack, but would lack some
theoretical justifications that still need to be set up. Finally,
tighter connections with standard boosting algorithms could
be established to improve the analysis of BAT.
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Supplementary Material

1. Technical results
Notations: Let us suppose that X is a normed vector space, with norm ‖.‖. B‖.‖(x, ε) = {z ∈ X | ‖x− z‖ ≤ ε} is the
closed ball of center x and radius ε for the norm ‖.‖. Note that H := {h : x 7→ sgn g(x) | g : X → R continuous}, with
sgn the function that outputs 1 if g(x) > 0, −1 if g(x) < 0, and 0 otherwise. Hence for any (x, y) ∼ D, and h ∈ H one
has 1{h(x) 6= y} = 1{g(x)y ≤ 0}.
Lemma 1. Let h ∈ H, ε2 ≤ 1 the perceptibly parameter, and φ ∈ BRΩnorm(h). Then the following holds:

φ1(x) =

{
π(x) if x ∈ Ph(ε2)
x otherwise.

Where π is the orthogonal projection on P {
h , the complement of Ph in X . φ-1 is characterized symmetrically.

Proof. Ωnorm is defined with an `2 norm, but this result holds as long as X is an Hilbert space with dot product <|> and
associated norm ||.|| =

√
< . | . >. We demonstrate the result with these general notations.

Let us first simplify the worst case adversarial risk for h. Recall that h = sgn(g) with g continuous. From the definition of
adversarial risk we have:

sup
φ∈(FX )2

Radv(h,φ) = sup
φ∈(FX )2

∑
y=±1

νy E
X∼µy

[
1 {h (φy(X)) 6= y} − λ‖X − φy(X)‖ −∞1 {‖X − φy(X)‖ > ε2}

]
(8)

= sup
φ∈(FX )2

∑
y=±1

νy E
X∼µy

[
1 {g (φy(X)) y ≤ 0} − λ‖X − φy(X)‖ −∞1 {‖X − φy(X)‖ > ε2}

]
(9)

=
∑
y=±1

νy sup
φy∈FX

E
X∼µy

[
1 {g (φy(X)) y ≤ 0} − λ‖X − φy(X)‖ −∞1 {‖X − φy(X)‖ > ε2}

]
(10)

Since finding φ1 and φ1 are two independent optimization problems, hereafter, we focus on characterizing φ1 (i.e. y = 1).

sup
φ1∈FX

E
X∼µ1

[
1 {g (φ1(X)) ≤ 0} − λ‖X − φ1(X)‖ −∞1 {‖X − φ1(X)‖ > ε2}

]
(11)

= E
X∼µ1

[
essup

z∈B‖.‖(X,ε2)

1(g(z) ≤ 0)− λ‖X − z‖

]
(12)

=

∫
X

essup
z∈B‖.‖(x,ε2)

1 {g(z) ≤ 0} − λ‖x− z‖ dµ1(x). (13)

Let us now consider (Hj)j∈J a partition of X , we can write.

sup
φ1∈FX

E
X∼µ1

[
1 {g (φ1(X)) ≤ 0} − λ‖X − φ1(X)‖ −∞1 {‖X − φ1(X)‖ > ε2}

]
(14)

=
∑
j∈J

∫
Hj

essup
z∈B‖.‖(x,ε2)

1 {g(z) ≤ 0} − λ‖x− z‖ dµ1(x) (15)

In particular, we consider here H0 = P {
h , H1 = Ph \ Ph(ε2), and H2 = Ph(ε2).
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• For x ∈ H0 = P {
h , taking z = x we get 1 {g(z) ≤ 0} − λ‖x− z‖ = 1. Since for any z ∈ X we have 1 {g(z) ≤ 0} −

λ‖x− z‖ ≤ 1, this strategy is optimal. Furthermore, for any other optimal strategy z′, we would have ‖x− z′‖ = 0, hence
z′ = x, and an optimal attack will never move the points of H0 = P {

h .

• For x ∈ H1 = Ph \ Ph(ε2), we have B‖.‖(x, ε2) ⊂ Ph by definition of Ph(ε2). Hence, for any z ∈ B‖.‖(x, ε2), one gets
g(z) > 0. Then 1 {g(z) ≤ 0} − λ‖x− z‖ ≤ 0. The only optimal z will thus be z = x, giving value 0.

• Let us now consider x ∈ H2 = Ph(ε2), which is the interesting case where an attack is possible. We know that
B‖.‖(x, ε2) ∩ P {

h 6= ∅, and for any z in this intersection, 1(g(z) ≤ 0) = 1. Hence :

essup
z∈B‖.‖(x,ε2)

1 {g(z) ≤ 0} − λ‖x− z‖ = max(1− λ essinf
z∈B‖.‖(x,ε2)∩P{

h

‖x− z‖, 0) (16)

= max(1− λπB‖.‖(x,ε2)∩P{
h

(x), 0) (17)

Where πB‖.‖(x,ε2)∩P{
h

is the projection on the closure of B‖.‖(x, ε2) ∩ P {
h . Note that πB‖.‖(x,ε2)∩P{

h
exists: g is continuous,

so B‖.‖(x, ε2) ∩ P {
h is a closed set, bounded, and thus compact, since we are in finite dimension. The projection is however

not guaranteed to be unique since we have no evidence on the convexity of the set. Finally, let us remark that, since
λ ∈ (0, 1), and ε2 ≤ 1, one has 1− λπB‖.‖(x,ε2)∩P{

h
(x) ≥ 0 for any x ∈ H2. Hence, on Ph(ε2), the optimal attack projects

all the points on the decision boundary. For simplicity, and since there is no ambiguity, we write the projection π.

Finally, since H0 ∪H1 ∪H2 = X , Lemma 1 holds. Furthermore, the score for this optimal attack is:

sup
φ∈(FX )2

Radv(h, φ) =
∑
y=±1

νy
∑
j∈J

∫
Hj

essup
z∈B‖.‖(x,ε2)

1 {g(z)y ≤ 0} − λ‖x− z‖ dµy(x) (18)

Since the value is 0 on Ph \ Ph(ε2) (resp. on Nh \Nh(ε2) ) for φ1 (resp. φ-1), one gets:

= ν1

 ∫
Ph(ε2)

(
1− λπ(x)

)
dµ1(x) +

∫
P{

h

1dµ1(x)

+ ν-1

 ∫
Nh(ε2)

(
1− λπ(x)

)
dµ-1(x) +

∫
N{

h

1dµ-1(x)


(19)

= ν1

 ∫
Ph(ε2)

(
1− λπ(x)

)
dµ1(x) + µ1(P {

h )

+ ν-1

 ∫
Nh(ε2)

(
1− λπ(x)

)
dµ-1(x) + µ-1(N{

h)

 (20)

= R(h) + ν1

∫
Ph(ε2)

(
1− λπ(x)

)
dµ1(x) + ν-1

∫
Nh(ε2)

(
1− λπ(x)

)
dµ-1(x) (21)

SinceR(h) = P(h(X) 6= Y )P(g(X)Y ≤ 0) = ν1µ1(P {
h ) + ν-1µ-1(N{

h).
This provides an interesting decomposition of the adversarial risk into the risk without attack and the loss on the attack zone.

Lemma 2. Let h ∈ H, ε∞ ≤ 1 the perceptibility parameter, and φ ∈ BRΩmass(h). Then the following holds:

{
φ1(x) ∈ P {

h if x ∈ Ph(ε∞)
φ1(x) = x otherwise.

and φ-1 is characterized symmetrically.
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Proof. Following the same proof schema as before the adversarial risk writes as follows:

sup
φ∈(FX )2

Radv(h, φ) = sup
φ∈(FX )2

∑
y=±1

νy E
X∼µy

[
1 {h (φy(X)) 6= y} − λ1 {X 6= φy(X)} −∞1

{
‖X − φy(X)‖∞ > ε∞

}]
(22)

= sup
φ∈(FX )2

∑
y=±1

νy E
X∼µy

[
1 {g (φy(X)) y ≤ 0} − λ1 {X 6= φy(X)} −∞1

{
‖X − φy(X)‖∞ > ε∞

}]
(23)

=
∑
y=±1

νy sup
φy∈FX

E
X∼µy

[
1 {g (φy(X)) y ≤ 0} − λ1 {X 6= φy(X)} −∞1

{
‖X − φy(X)‖∞ > ε∞

}]
(24)

Since finding φ1 and φ1 are two independent optimization problem, hereafter, we focus on characterizing φ1 (i.e. y = 1).

sup
φ1∈FX

E
X∼µ1

[
1 {g (φ1(X)) ≤ 0} − λ1 {X 6= φ1(X)} −∞1 {‖X − φ1(X)‖∞ > ε∞}

]
(25)

= E
X∼µ1

[
essup

z∈B‖.‖∞ (X,ε∞)

1 {g(z) ≤ 0} − λ1 {X 6= φ1(X)}

]
(26)

=

∫
X

essup
z∈B‖.‖∞ (x,ε∞)

1 {g(z) ≤ 0} − λ1 {x 6= φ1(x)} dµ1(x). (27)

Let us now consider (Hj)j∈J a partition of X , we can write.

sup
φ1∈FX

E
X∼µ1

[
1 {g (φ1(X)) ≤ 0} − λ1 {X 6= φ1(X)} −∞1 {‖X − φ1(X)‖∞ > ε∞}

]
(28)

=
∑
j∈J

∫
Hj

essup
z∈B‖.‖∞ (x,ε∞)

1 {g(z) ≤ 0} − λ1 {x 6= φ1(x)} dµ1(x) (29)

In particular, we can take H0 = P {
h , H1 = Ph \ Ph(ε2), and H2 = Ph(ε2).

For x ∈ H0 = P {
h or x ∈ H1 = Ph \Ph(ε2), with the same reasoning as before, any optimal attack will choose φ1(x) = x.

Let x ∈ H2 = Ph(ε2). We know thatB‖.‖∞(x, ε∞)∩P {
h 6= ∅, and for any z in this intersection, one has g(z) ≤ 0 and z 6= x.

Hence essup
z∈B‖.‖∞ (x,ε∞)

1 {g(z) ≤ 0}−λ1 {z 6= x} = max(1−λ, 0). Since λ ∈ (0, 1) one has 1 {g(z) ≤ 0}−λ1 {z 6= x} =

1 − λ for any z ∈ B‖.‖∞(x, ε∞) ∩ P {
h . Then any function that given a x ∈ X outputs φ1(x) ∈ B‖.‖∞(x, ε∞) ∩ P {

h is
optimal on H2.

Finally, since H0 ∪H1 ∪H2 = X , Lemma 2 holds.

Lemma 3. Let us consider φ ∈ (FX )
2. If we take h ∈ BR(φ), then for y = 1 (resp. y = -1), and for any B ⊂ Ph (resp.

B ⊂ Nh) one has:
P(Y = y|X ∈ B) ≥ P(Y = −y|X ∈ B)

with Y ∼ ν and for all y ∈ Y , X|(Y = y) ∼ φy#µy .

Proof. We reason ad absurdum. Let us consider y = 1, the proof for y = −1 is symmetrical. Let us suppose that there
exists C ⊂ Ph such that ν-1φ-1#µ-1(C) > ν1φ1#µ1(C). We can then construct h1 as follows:

h1(x) =

{
h(x) if x /∈ C
−1 otherwise.
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Since h and h1 are identical outside C, the difference between the adversarial risks of h and h1 writes as follows:

Radv(h, φ)−Radv(h1, φ) =
∑
y=±1

νy

∫
C

(
1 {h(x) 6= y} − 1 {h1(x) 6= y}

)
d(φy#µy)(x) (30)

= ν−11 {h(x) = 1}φ−1#µ-1(C)− ν11 {h1(x) 6= 1}φ1#µ1(C) (31)
= ν−1φ−1#µ-1(C)− ν1φ1#µ1(C) (32)

Since by hypothesis ν−1φ−1#µ-1(C) > ν1φ1#µ1(C) the difference between the adversarial risks of h and h1 is strictly
positive. This means that h1 gives strictly better adversarial risk than the best response h. Since, by definition h is supposed
to be optimal, this leads to a contradiction. Hence Lemma 3 holds.

Additional Result. Let us assume that there is a probability measure ζ that dominates both φ1#µ1 and φ-1#µ-1. Let us
consider φ ∈ (FX )

2. If we take h ∈ BR(φ), then h is the Bayes optimal classifier for the distribution (ν, φ1#µ1, φ-1#µ-1).

Proof. For simplicity, we denote f1 = (dφ1#µ1)
dζ and f−1 = d(φ−1#µ-1)

dζ the Radon-Nikodym derivatives of φ1#µ1 and
φ−1#µ-1 w.r.t. ζ. The best response h minimizes adversarial risk under attack φ. This minimal risk writes:

inf
h∈H
Radv(h, φ) = inf

h∈H

∑
y=±1

νy E
x∼µy

[1 {h(φy(x)) 6= y}]− λΩ (φ) (33)

Since the the penalty function does not depend on h, it suffices to seek inf
h∈H

∑
y=±1

νy
∫
X
1 {h(x) 6= y} d(φy#µy)(x).

Moreover thanks to the transfer theorem, one gets the following:

inf
h∈H

∑
y=±1

νy

∫
X

1 {h(x) 6= y} d(φy#µy)(x) = inf
h∈H

∑
y=±1

νy

∫
X

1 {h(x) 6= y} fy(x) dζ(x) (34)

= inf
h∈H

∫
X

∑
y=±1

νy1 {h(x) 6= y} fy(x) dζ(x). (35)

Finally, since the integral is bounded we get:

inf
h∈H

∫
X

∑
y=±1

νy1 {h(x) 6= y} fy(x) dζ(x) =

∫
X

[
inf
h∈H

∑
y=±1

νy1 {h(x) 6= y} fy(x)

]
dζ(x). (36)

Hence, the best response h is such that for every x ∈ X , and y ∈ Y , one has h(x) = y if and only if fy(x) ≤ f−y(x). Thus,
h is the optimal Bayes classifier for the distribution (ν, φ1#µ1, φ-1#µ-1). Furthermore, for y = 1 (resp. y = -1), and for
any B ⊂ Ph (resp. B ⊂ Nh) one has:

P(Y = y|X ∈ B) ≥ P(Y = −y|X ∈ B)

with Y ∼ ν and for all y ∈ Y , X|(Y = y) ∼ φy#µy .

Theorem 1 (Non-existence of a pure Nash equilibrium). In our zero-sum game with penalty Ω ∈ {Ωmass,Ωnorm}, there is
no Pure Nash Equilibrium.

Proof. Let h be a classifier, φ ∈ BRΩ(h) an optimal attack against h. We will show that h /∈ BR(φ), i.e. that h does not
satisfy the condition from Lemma 3. This suffices for Theorem 1 to hold since it implies that there is no (h,φ) ∈ H× (FX )

2

such that h ∈ BR(φ) and φ ∈ BRΩ(h).

According to Lemmas 1 and 2, whatever penalty we use, there exists p ∈ {2,∞}, and δ > 0 such that φ1#µ1 (P ph (δ)) = 0
or φ−1#µ-1 (Np

h(δ)) = 06. Both cases are symmetrical, so let us assume that P ph (δ) is of null measure for the transported

6p = 2 for Ωnorm and p =∞ for Ωmass.
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distribution conditioned by y = 1. Furthermore we have φ−1#µ-1 (P ph (δ)) = µ-1 (P ph (δ)) > 0 since φ−1 is the identity
function on P ph (δ), and since µ-1 is of full support on X . Hence we get the following:

φ−1#µ-1 (P ph (δ)) > φ1#µ1 (P ph (δ)) . (37)

Since the right side of the inequality is null, we also get:

φ−1#µ-1 (P ph (δ)) ν-1 > φ1#µ1 (P ph (δ)) ν1 (38)

This inequality is incompatible with the characterization of best response for the Defender of Lemma 3. Hence h /∈ BR(φ).

Theorem 2. (Randomization matters) Let h1 ∈ H, λ ∈ (0, 1) the regularization parameter, φ ∈ BRΩnorm(h1), and
h2 ∈ BR(φ). If µ1 (resp. µ-1) is ε2-vanishing on Ph1

(ε2) (resp. on Nh1
(ε2)), then for any α ∈ ( 1+λε2

2 , 1) one has:

∀φ′ ∈ BRΩnorm(mq
h), Radv(mq

h,φ
′) < Radv(h1,φ).

Where h = (h1, h2), q = (α, 1 − α), and mq
h is the mixture of h by q. A similar result holds for the mass penalty, with

α ∈ ( 1+λ
2 , 1).

Proof. Here we consider Ωnorm but the proof is similar for Ωmass. To demonstrate Theorem 2, we actually show a more
general result, where we only need µ1 to be ε2-vanishing on some U ⊂ Ph1(ε2). In particular this will be true when
U = Ph1

(ε2). Let us assume that such an U exists.

We can construct h2 as follows:

h2(x) =

{
−h1(x) if x ∈ U
h1(x) otherwise.

This means that h2 changes the class of all points in U , and do not change the rest, compared to h1. Let α ∈ (0, 1), and the
corresponding mq

h, and φ′ ∈ BRΩnorm(mq
h). We will find a condition on α so that the score of mq

h is lower than the score of
h1.

Radv(mq
h,φ

′) =
∑
y=±1

νy

∫
X

essup
z∈B‖.‖(x,ε)

α1 {h1(z) 6= y}+ (1− α)1 {h2(z) 6= y} − λ||x− z|| dµy(x) (39)

The only terms that may vary between the score of h1 and the score of mq
h are the integrals on U , U ⊕ ε2 and φ−1

−1(U)
(inverse image of U by φ−1), respectively the points we mix on, the points that may become attackable when y = 1 by
moving them on U , and the ones that were attacked for y = −1 by moving them on U . Hence, for simplicity, we only
write those terms in the following. Let us first consider the score of h1 under optimal attack. Thanks to the analysis of the
Lemma 1, it writes:

sup
φ∈(FX )2

Radv(h1,φ) = ν1

∫
U

(
1− λ‖x− πP{

h1

(x)‖
)
dµ1(x) + ν−1µ-1(U) (40)

+ ν−1µ-1 (U ⊕ ε2 \ Ph1(ε2)) + ν1

∫
(U⊕ε2\U)\Ph1

(ε2)

0 dµ1(x) (41)

+ ν−1µ-1 (U ⊕ ε2 ∩ Ph1(ε2)) + ν1

∫
(U⊕ε2\U)∩Ph1

(ε2)

(
1− λ‖x− πP{

h1

(x)‖
)
dµ1(x) (42)

+ ν−1

∫
φ−1
−1(U)

(
1− λ‖x− πU (x)‖

)
dµ-1(x). (43)
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For y = 1 all points in Ph1
(ε2) are attacked by projecting on the decision boundary, and no point outside is attacked. For

y = −1 some points of Nh1(ε2), that are attacked, may be sent into U , and others may not. Now let us consider the score of
the mixture under its optimal attack.

sup
φ∈(FX )2

Radv(mq
h,φ) = ν1

∫
U

max
(

1− α, α− λ‖x− πP{
h1

(x)‖
)
dµ1(x) (44)

+ ν−1

∫
U

max
(
α, 1− α− λ‖x− πU⊕ε2\U (x)‖

)
dµ-1(x) (45)

+ ν1

∫
(U⊕ε2\U)∩Ph1

(ε2)

max
(

1− α− λ‖x− πU (x)‖, 1− λ‖x− πP{
h1

(x)‖
)
dµ1(x) (46)

+ ν−1µ-1 ((U ⊕ ε2 \ U) ∩ Ph1
(ε2)) + ν1

∫
(U⊕ε2\U)\Ph1

(ε2)

max (0, 1− α− λ‖x− πU (x)‖) dµ1(x)

(47)

+ ν−1µ-1 ((U ⊕ ε2 \ U) \ Ph1
(ε2)) + ν−1

∫
φ−1
−1(U)

max
(

0, 1− λ‖x− πN{
h1

(x)‖, α− λ‖x− πU (x)‖
)
dµ-1(x)

(48)

We need to take into account the special case of the points in the dilation that were already in the attacked zone before, and
that can now be attacked in two ways, either by projecting on U (but that works with probability α, since the classification
on U is now randomized) or by projecting on P {

h1
, which works with probability 1 but may use more distance and so pay

more penalty. For y = −1, attacks on U now work with probability α instead of 1, so the attacker may choose to attack on
other points instead, even if that takes more distance.

We can now compute the difference between both risks, and show that it is strictly positive:

∆Radv = sup
φ∈(FX )2

Radv(h1,φ)− sup
φ∈(FX )2

Radv(mq
h,φ) (49)

> ν1

∫
U

1− λ‖x− πP{
h1

(x)‖ −max
(

1− α, α− λ‖x− πP{
h1

(x)‖
)
dµ1(x) (50)

+ ν−1µ-1(U)− ν−1

∫
U

max
(
α, 1− α− λ‖x− πU⊕ε2\U (x)‖

)
dµ-1(x) (51)

+ ν1

∫
(U⊕ε2\U)∩Ph1

(ε2)

1− λ‖x− πP{
h1

(x)‖ −max
(

1− α− λ‖x− πU (x)‖, 1− λ‖x− πP{
h1

(x)‖
)
dµ1(x)

(52)

+ ν−1

∫
φ−1
−1(U)

1− λ‖x− πU (x)‖ −max
(

0, 1− λ‖x− πN{
h1

(x)‖, α− λ‖x− πU (x)‖
)
dµ-1(x) (53)

− ν1

∫
(U⊕ε2\U)\Ph1

(ε2)

max (1− α− λ‖x− πU (x)‖, 0) dµ1(x) (54)

Let us simplify Equation (49) using using additional hypothesis:

• A sufficient condition for the adversarial risk to decrease will be to choose max
(

1− α, α− λ‖x− πP{
h1

(x)‖
)

=
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α − λ‖x − πP{
h1

(x)‖, so that the attacker continues to attack on U even with a smaller probability of success, thus

reducing the adversarial risk. This gives us α >
1+λmax

x∈U
‖x−π

P{
h1

‖

2 . In the remaining we consider such an α.

• In particular, this gives α > 1/2 and max
(
α, 1− α− λ‖x− πU⊕ε2\U (x)‖

)
= α. Hence line (51) = (1 −

α)ν−1µ-1(U) > 0.

• Furthermore, we have that 1− λ‖x− πP{
h1

(x)‖ −max
(

1− α− λ‖x− πU (x)‖, 1− λ‖x− πP{
h1

(x)‖
)

is equal to :{
0 if max = 1− λ‖x− πP{

h1

(x)‖
1− λ‖x− πP{

h1

(x)‖ − (1− α) + λ‖x− πU (x)‖ > −(1− α) elsewhere

Thus the expression on line (52) > −ν1(1− q)µ1 ((U ⊕ ε2 \ U) ∩ Ph1 (ε2)).

• Also note that, max (1− α− λ‖x, πU (x)‖, 0) < 1− α. Hence line (54) > −ν1(1− α)µ1((U ⊕ ε2 \ U) \ Ph1
(ε2)).

Finally, (52) + (54) > −ν1(1− α)µ1((U ⊕ ε2 \ U)), hence the difference between the adversarial risks is as follows:

∆Radv > ν1(1− α) (µ1(U)− µ1 ((U ⊕ ε2) \ U)) (55)

Since µ1 is vanishing on U , the expected result holds for α >
1+λmax

x∈U
‖x−π

P{
h1

‖

2 . Not that for any U ⊂ Ph (ε2), one have
max
x∈U
‖x− πP{

h1

≤ ε2. Moreover, when U = Ph(ε2), we get max
x∈U
‖x− πP{

h1

‖ = ε2, which gives the expected result.

2. Experimental results
In the experimental section, we consider X = [0, 1]32×32 to be the set of images, and Y = {1, ..., 10} or Y = {1, ..., 100}
according to the dataset at hand.

2.1. Adversarial attacks

Let (x, y) ∼ D and h ∈ H. We consider the following attacks:

(i) `∞-PGD attack. In this scenario, the Adversary maximizes the loss objective function, under the constraint that the `∞
norm of the perturbation remains bounded by some value ε∞. To do so, it recursively computes:

xt+1 = ΠB‖.‖∞ (x,ε∞)

[
xt + β sgn

(
∇xL

(
h
(
xt
)
, y
))]

(56)

where L is some differentiable loss (such as the cross-entropy), β is a gradient step size, and ΠS is the projection operator
on S. One can refer to (Madry et al., 2018) for implementation details.

(ii) `2-C&W attack. In this attack, the Adversary optimizes the following objective:

argmin
τ∈X

‖τ‖2 + λ× cost(x+ τ) (57)

where cost(x + τ) < 0 if and only if h(x + τ) 6= y. The authors use a change of variable τ = 1
2 (tanh(w) − x + 1) to

ensure that x+ τ ∈ X , a binary search to optimize the constant λ, and Adam or SGD to compute an approximated solution.
One should refer to (Carlini & Wagner, 2017) for implementation details.

2.2. Experimental setup

Datasets. To illustrate our theoretical results we did experiments on the CIFAR10 and CIFAR100 datasets.
See (Krizhevsky et al., 2009) for more details.
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Classifiers. All the classifiers we use are WideResNets (see (Zagoruyko & Komodakis, 2016)) with 28 layers, a widen
factor of 10, a dropout factor of 0.3 and LeakyRelu activations with a 0.1 slope.

Natural Training. To train an undefended classifier we use the following hyperparameters.

• Number of Epochs: 200

• Batch size: 128

• Loss function: Cross Entropy Loss

• Optimizer : SGD algorithm with momentum 0.9, weight decay of 2× 10−4 and a learning rate that decreases during
the training as follows:

lr =


0.1 if 0 ≤ epoch < 60
0.02 if 60 ≤ epoch < 120
0.004 if 120 ≤ epoch < 160
0.0008 if 160 ≤ epoch < 200

Adversarial Training. To adversarially train a classifier we use the same hyperparameters as above, and generate
adversarial examples using the `∞-PGD attack with 20 iterations. When considering that the input space is [0, 255]32×32, on
CIFAR10 and CIFAR100, a perturbation is considered to be imperceptible for ε∞ = 8. Here, we consider X = [0, 1]32×32

which is the normalization of the pixel space [0.255]32×32. Hence, we choose ε∞ = 0.031 (≈ 8/255) for each attack.
Moreover, the step size we use for `∞-PGD is 0.008 (≈ 2/255), and we use a random initialization for the gradient descent.
For the `∞-PGD attack against the mixture mq

h, we use the same parameters as above, but compute the gradient over the
expected loss (as explained in the main paper).

Evaluation Under Attack. At evaluation time, we use 100 iterations instead of 20 for `∞-PGD, and the same remaining
hyperparameters as before. For the `2-C&W attack, we use 100 iterations, a learning rate equal to 0.1, 9 binary search steps,
and an initial constant of 0.001. We give results for several different values of the rejection threshold: ε2 ∈ {0.4, 0.6, 0.8}.

Library used. We used the Pytorch and Advertorch libraries for all implementations.

Machine used. 6 Tesla V100-SXM2-32GB GPUs

Computing `2-C&W on a mixture with Advertorch. The implementation of the `2-C&W attack in Advertorch takes
as input not only the loss, but also the probits of the classifier. Hence, when attacking a mixture we need to compute both
the expected loss, and the expected probits of the mixture. See the submitted code for more details.

2.3. Experimental details on CIFAR10

Grid search on α. Let us provide some results on the grid search that helped us select the parameter α = 0.06 we present
in the main paper. Note that as described in the main paper, α here represents the weight of the new classifier added to the
mixture at each step. As shown in Figure 3, when α is small (e.g. 0.01), the accuracy under attack increases slowly for
every new classifier added to the mixture. Conversely, when α is to large (e.g. bigger than 0.07) the accuracy under attack
rapidly increases for the first classifiers and then plummet when the mixture becomes to big (more than 4 classifiers). This
phenomenon can be explained as follows: for bigger values of α, the probability of selecting the first classifiers decreases
too quickly, so that after a few steps they are not taken into account anymore. Since the newest classifiers in the mixture are
designed not to be robust by themselves but to compensate the weeknesses of the others, the accuracy under attack will then
decrease. Hence 1-α is a parameter that represents the ’memory’ of the boosting procedure.

The parameter α and the size of the mixture have an influence not only on the accuracy under `∞-PGD attack, but also
on the natural accuracy of the mixture. This is why we selected a mixture with 10 classifiers and α = 0.06. Indeed, this
mixture offers the best trade-off between natural accuracy and accuracy under attack. For completeness, we present all
evaluations in Table 2.
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Figure 3. Evolution of the accuracy under attack of the mixture according to the number of classifiers with different value of α ∈ [0.01, 0.1].
The evaluation is made with the `∞-PGD attack with 100 iterations.

Even though we presented in the main paper a mixture with 10 classifiers, it is worth noting that similar accuracy under
attack can be achieved with smaller mixtures, and different values for α. For instance with only 3 classifiers, one can achieve
accuracy under `∞-PGD attack of 0.59 by taking α = 0.1. Thus, when having less computation power, one can still use our
algorithm with good results under attack, at the cost of some natural accuracy.

α = 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

n = 1 0.46
n = 2 0.48 0.51 0.53 0.54 0.55 0.56 0.56 0.57 0.57 0.57
n = 3 0.51 0.55 0.56 0.57 0.59 0.60 0.58 0.58 0.59 0.59
n = 4 0.52 0.56 0.57 0.58 0.59 0.60 0.58 0.58 0.58 0.57
n = 5 0.53 0.57 0.58 0.58 0.59 0.60 0.58 0.58 0.57 0.57
n = 6 0.54 0.57 0.60 0.60 0.59 0.59 0.58 0.57 0.57 0.56
n = 7 0.54 0.58 0.59 0.59 0.59 0.59 0.57 0.56 0.56 0.54
n = 8 0.54 0.58 0.59 0.60 0.59 0.59 0.56 0.56 0.55 0.53
n = 9 0.55 0.59 0.59 0.59 0.59 0.58 0.56 0.55 0.54 0.53
n = 10 0.55 0.59 0.59 0.59 0.58 0.58 0.56 0.55 0.54 0.53

Table 2. Grid-search showing the accuracy under attack for α ∈ [0.01, 0.1] and n ∈ [1, 10]. The evaluation is made with the `∞-PGD
attack with 100 iterations.

Selecting the first element of the mixture. Our algorithm creates classifiers in a boosting fashion, starting with an
adversarially trained classifier. There are several ways of selecting this first element of the mixture: use the classifier with
the best accuracy under attack (option 1, called bestAUA), or rather the one with the best natural accuracy (option 2). Table 3
compares both options.

Beside the fact that any of the two mixtures outperforms the first classifier, we see that the fisrt option always outperforms
the second. In fact, when taking option 1 (bestAUA = True) the accuracy under `∞-PGD attack of the mixture is 3% better
than with option 2 (bestAUA = False). One can also note that both mixtures have the same natural accuracy (0.80), which
makes the choice of option 1 natural.

Training method NA of the 1st clf AUA of the 1st clf NA of the mixture AUA of the mixture

BAT (bestAUA=True) 0.77 0.46 0.80 0.58
BAT (bestAUA=False) 0.83 0.42 0.80 0.55

Table 3. Comparison of the mixture that has as first classifier the best one in term of natural accuracy and the mixture that has as first
classifier the best one in term of Accuracy under attack. The accuracy under attack is computed with the `∞-PGD attack. NA means
matural accuracy, and AUA means accuracy under attack.
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2.4. Additional results on CIFAR100

As we did for CIFAR10, we compare the robustness of Adversarial Training with our boosting procedure on CIFAR100.
Since the images have the same dimension, we use the same architectures and sets of hyperparameters as listed in Section 2.2,
and only change the dimension of the output to be equal to 100. As shown in Table 4, a mixture of 5 classifiers constructed
with our algorithm and α = 0.06 has a better accuracy under attack, as well as a better natural accuracy, than Adversarial
Training.

Training method Natural `∞-PGD
(Madry et al., 2018) 0.585 0.271

BAT (n = 5, α = 0.06, bestAUA=True) 0.592 0.402

Table 4. Evaluation on CIFAR100 without data augmentation. Accuracy under attack of a single classifier adversarially trained and the
mixture formed with our algorithm. The evaluation is made with `∞-PGD computed with 100 steps.


