
HAL Id: hal-02892099
https://hal.science/hal-02892099v2

Submitted on 24 May 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using channel predictions for improved proportional-fair
utility for vehicular users

Thi Thuy Nga Nguyen, Olivier Brun, Balakrishna Prabhu

To cite this version:
Thi Thuy Nga Nguyen, Olivier Brun, Balakrishna Prabhu. Using channel predictions
for improved proportional-fair utility for vehicular users. Computer Networks, 2022, 208,
�10.1016/j.comnet.2022.108872�. �hal-02892099v2�

https://hal.science/hal-02892099v2
https://hal.archives-ouvertes.fr


Using channel predictions for improved

proportional-fair utility for vehicular users

Thi Thuy Nga Nguyen ∗ Olivier Brun

Balakrishna J. Prabhu †

Abstract

As the channel conditions experienced by vehicular users in cellular
networks vary as they move, we investigate to what extent the quality
of channel allocation could be improved by exploiting predictions on fu-
ture data rates in non-stationary environments. Assuming mean future
rates can be computed from Signal-to-Noise Ratio (SNR) maps, we pro-
pose an algorithm which predicts future throughputs over a short-term
horizon at regular time intervals, and then uses this extra-knowledge for
improved online channel allocation. The prediction of future throughputs
is obtained by solving a relaxed version of the problem using a projected
gradient algorithm. When the transmit powers of the base stations can be
varied over time, a straightforward extension of our algorithm can be used
for the joint optimization of channel allocation and transmit power control
under average and maximum power constraints. Using event-driven sim-
ulations, we compare the performance of the proposed algorithms against
those of other channel allocation algorithms, including the Proportional
Fair (PF) scheduler, which is known to be optimal in stationary environ-
ments, and the (PF)2S scheduler, which was devised for mobiles nodes
in non-stationary environments. The simulated scenarios, which cover
the cases with and without power control, include scenarios with multiple
base stations and are based on realistic mobility traces generated using
the road traffic simulator SUMO. Simulation results show that the pro-
posed algorithms outperform the other algorithms and that exploiting the
knowledge of future radio conditions allows a significantly better channel
allocation.

1 Introduction

A central and challenging problem in cellular networks is channel allocation, that
is, to decide which mobile user the base station (BS) should serve in each time

∗T.T. Nga Nguyen is with Torus Actions SAS, Toulouse, France, e-mail: nt-
tnga@math.ac.vn

†Olivier Brun and Balakrishna J. Prabhu are with LAAS-CNRS, Université de Toulouse,
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slot. To this end, the BS gathers the channel state information (CSI) from users
in order to know their radio conditions, which are mainly determined by their
distances to the BS and by fading effects. As maximizing the overall throughput
would lead to the starvation of distant users (those with the worst potential
data rates), today cellular networks allocate the channel to the user with the
highest potential rate proportionally to its time-average throughput1. With this
strategy, users with comparatively low allocated throughput are occasionally
assigned a higher priority even when they are in worse channel conditions. This
scheduling algorithm, which is known as the Proportional Fair (PF) scheduler,
provides a fair and efficient sharing of bandwidth between users in the sense
that it maximizes the aggregate logarithmic utility of obtained throughput in a
fixed population of permanent users [8].

A number of studies have been devoted to the analysis of the performance
of PF scheduling in wireless networks [3, 17, 4, 19, 20, 5], assuming either a
static population of permanent users, or a dynamic setting in which random
finite-size data transfers come and go over time. In both cases, it was shown
that PF scheduling strikes a good balance between the overall network through-
put and the degree of fairness among users. In contrast to the above references,
where it is assumed that the transmit powers of BSs cannot be varied over time,
some authors have considered the joint optimization of channel allocation and
transmit power control. This problem has been investigated for different multi-
plexing schemes such as CDMA [16] and OFDM [7]. The proposed algorithms
base their decisions on the current channel conditions and on previous decisions.

However, most of the literature is based on the assumption that users ex-
perience stationary channel conditions. This was partly motivated by the fact
that a simple index-based allocation algorithm had been shown to be optimal
for stationary channels [9]. Thus, even if they take into account the fast channel
variations due to multi-path propagation, most studies ignore the variations of
the channel conditions on slower time scale dues to user mobility. Taking into
account such slow fading effects is particularly important for vehicular users as
the mean of the Signal-to-noise ratio (SNR) improves as a vehicle comes closer
to a BS and then worsens as it moves far away. Another usual assumption
which is not realistic for vehicular users is the assumption of long sojourn time.
Indeed, a vehicle typically stays in the scheduling area of a BS for only a few
minutes.

In this article, we investigate to which extent the quality of channel allocation
could be improved by exploiting information on future radio conditions in non-
stationary environments. Our main motivation comes from connected vehicles
which will use cellular networks to exchange information related to security
and driving conditions with their environment. If the trajectory of a car is
known or can be estimated from historical travel data and/or observations of
the surrounding environment, then one can obtain good statistical predictions
of the SNR that will be experienced by the car in the near future. In turn, these

1The throughput is different from the data rate. While the latter is the potential rate at
which a user can be served, the former can be smaller since in some slots a user may not be
served due to the presence of other users.
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predictions could be used by the BSs to achieve a channel allocation with a
higher utility than that of the PF algorithm. In this paper, we propose a channel
allocation policy exploiting this extra knowledge and evaluate the improvement
in utility that it yields in non-stationary environments. Note that such an
improvement in utility is not possible under the assumption of a stationary
channel as knowing the users’ trajectory does not bring any new information on
the future data rates, since users are static and hence their trajectory is just one
point. We also show how to extend the proposed scheduling policy to address a
joint channel allocation and transmit power control problem in which there are
average and power constraints on the base-stations.

The idea of using information on future radio conditions for channel alloca-
tion was already explored in [2]. It uses future information by looking at channel
state of users in a few small time-slots. Different from their approach, we do not
look at the predicted channel state in few time slots which may be different be-
tween users and difficult to predict correctly due to fast fading. Instead, we base
our allocation on average rate the user will experience during the time interval
this user stays inside the coverage range of the BS. In the context of high-speed
trains, [18] solves the opportunistic utility maximization problem assuming all
the future rates are perfectly known and with average power constraints.

Another closely related work is [11] in which, using SNR maps obtained by
measurements, the authors first show that PF scheduling may perform poorly
in the presence of slow fading. They then propose a scheduling algorithm which
is similar to PF in that the channel is allocated to the user with the high-
est potential rate proportionally to its total throughput. This new algorithm,
which is called (PF)2S differs however from PF in that the total throughput
includes an estimation of the future throughput whereas PF considers only the
already allocated throughput. In order to estimate the future throughput, the
authors proposed three methods: round-robin, blind estimation, and a local
search heuristic. It was shown that even with a rough estimation of the future
throughput, this new index leads to an improved utility compared to the PF
algorithm in non-stationary environments. The channel allocation policy pro-
posed in this paper is similar to the (PF)2S scheduling policy except that we use
a different method for estimating future throughputs of vehicles. For the pur-
poses of numerical comparisons, we shall assume in this paper that (PF)2S uses
the round-robin policy. It was stated in [11] that, out of the three estimation
methods, round-robin is the most robust to prediction errors.

1.1 Contributions

We first consider the case when the transmit powers of BSs cannot be varied
over time. We present two heuristic algorithms for non stationary channels
that improve the total utility of users compared to the PF and the (PF)2S
algorithms. Our heuristics are similar to the (PF)2S algorithm, except that
instead of computing an estimation of future throughput from a round-robin
allocation, we compute it as the solution of a utility maximization problem over
a short-term horizon assuming that the means of the future data rates are known
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over this short horizon. The two heuristics differ in the frequency at which they
recompute future allocations.

The original utility maximization problem being computationally complex,
we employ three techniques to obtain lower complexity heuristics: (i) we relax
the integer constraints of the original problem; (ii), we shorten the time hori-
zon over which the problem is solved; and (iii) we compute the solution over
macroscopic time slots instead of microscopic ones that helps the algorithm run
in real time. The relaxation turns the problem into a convex one and allows for
its efficient resolution. Shortening of the time horizon and solving over macro-
scopic slots reduces the number of variables in the problem and decreases the
computation time.

When the transmit powers of the BSs can be varied over time, a straight-
forward extension of our heuristics can be used for the joint optimization of
channel allocation and transmit power control under average and maximum
power constraints.

We compare the performance of the proposed algorithms against those of
other channel allocation algorithms using event driven simulations. The simu-
lated scenarios include scenarios with multiple base stations and are based on
realistic mobility traces generated using the open-source road traffic simulator
SUMO with vehicles moving at either equal or different speeds. Simulation re-
sults show that the proposed algorithms outperform other algorithms and that
exploiting the knowledge of future radio conditions allows a significantly better
channel allocation.

Some of the results presented in this paper appeared in ASMTA 2019 [13]
and RAWNET 2020 [15]. These publications were limited to scheduling in a
single base station setting and do not include experiments with SUMO.

1.2 Organisation

In Section 2, we state the channel allocation problem addressed in this paper.
Section 3 briefly describes some existing channel allocation algorithms, which
shall be used for comparison purposes. In Section 4, we present two different
heuristics for improving the proportional fairness between vehicular users. Sec-
tion 5 is devoted to the extension of our heuristics for the joint optimization of
channel allocation and power control. Section 6 presents the numerical results
for some simple scenarios with homogeneous vehicles, as well as for some more
advanced scenarios generated with SUMO. Finally, Section 7 summarizes our
findings and discusses some future research directions.

2 Problem formulation

We consider a geographical region with a network of roads that is served by a
set B = {1, . . . , B} of BSs. The region is partitioned into B non-overlapping
sub-regions, one for each BS. The sub-region assigned to a BS corresponds to
the area in which this BS has a better average SINR that the other BSs as
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(a) A selected area of Toulouse which is
covered by three BSs of the French mobile
network operator Free Mobile.
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given by their SINR maps. We will call the sub-region of a BS as the scheduling
area of this BS. This reflects the fact that users in the scheduling area of a
BS are assigned to this BS which is responsible for the scheduling decisions
for the users that are present there. The scheduling area is in fact a subset of
the coverage area of a BS which is the area over which an acceptable signal is
received from this BS. See Figure 1b illustrating the difference between the two.
The SINR maps could in general vary over time and need not be symmetric.
The scheduling area can be updated to reflect the temporal variations.

Users (vehicles, bicycles, pedestrians, etc) enter the network, move along
different routes, and leave the network. In the following, we shall denote by
U(t) the set of users in the system at time t. Figure 1a shows an area within
the city of Toulouse which will be later used in the numerical experiments. In
the figure, the width of the box is approximately 1 km, and the height is around
0.65 km. The data for BS location can be found on the website2 of the French
Frequency Agency (ANFR), which manages all radio frequencies in France.

Every δ = 2 ms each BS has to decide which user to serve in a decentralized
fashion. Here, we are assuming that there is one resource (channel, in this
case) that a BS can allocate in each slot to the users in its scheduling area. In
practice, there can be multiple channels and the ideas presented in this paper
can be applied to this case as well. Throughout the paper, we shall also assume
that a user can only be served by the closest BS. We define Ub(t) as the subset of
users that are attached to BS b at time t, and xi(t) as a binary decision variable
which is equal to 1 if the channel of BS b is allocated to user i ∈ Ub(t) at that
time, and 0 otherwise.

The allocation decisions of the BSs are based on the channel conditions of
the users. In time slot t, user i ∈ Ub(t) has a potential data rate of ri(t) if it
is allocated the channel of BS b. In the numerical experiments (see Section 6),
when the user is at distance d from the BS, ri(t) will have the form

ri(t) = ηi(t) · r̄ (d) , (1)

2https://data.anfr.fr/anfr/portail
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where ηi(t) is a random variable that models time-varying SNR and r̄ (d) is the
average data rate which depends on the distance d. More precisely, we assume
that

r̄(d) =

{
0 if d > dmax,

1 + κ e−d/σ otherwise,
(2)

where κ and σ are adjustable parameters and dmax is a given number standing
for the scheduling area of the BS. We emphasize that the scheduling algorithms
proposed in this paper do not require this assumption to work.

With the above definitions, the throughput of user i at time t can then be
defined as

φi(t) = xi(t)× ri(t), (3)

which means that the throughput is 0 if the channel of the serving BS is not
allocated to user i, and that it is equal to the potential data rate ri(t) otherwise.

Denote by T the time horizon over which the scheduling decisions need to be
determined, and let K be total number of users who pass through the considered
region during that time. For simplicity, we assume that T is a multiple of δ.
Our objective is to achieve the proportional-fairness between users, which is
described by the following optimization problem (see, e.g., [3, 11, 1]):

maximize U(x) =

K∑
i=1

log

(
1

T

T∑
t=1

φi(t)

)
s.t. ∑

i∈Ub(t)

xi(t) = 1, b ∈ B, t = 1, . . . , T,

xi(t) ∈ {0, 1}, i ∈ Ub(t), b ∈ B, t = 1, . . . , T.

(I)

The objective function is the sum of the logarithm of the mean throughputs
of the users. Constraints

∑
i∈Ub(t) xi(t) = 1 imply that each BS serves exactly

one user at each time t. Finally, the last constraints xi(t) ∈ {0, 1} imply that a
feasible solution is a binary vector x.

Solving the optimization problem (I) presents several practical difficulties.
First and foremost, in time-slot t, the potential data rates ri(k) in the future
(i.e., for k > t) are unknown. Thus, the channel allocation has to be done online
with the knowledge of the past allocations and the current potential data rates
only. The other difficulty is computational due to (I) being NP-hard [11].

Apart from the algorithm in [11], the existing algorithms for channel alloca-
tion base their decisions only on the past and current information. It was shown
in [11] that by including an estimate of future data rates, the global utility can
be improved. We shall present two algorithms in Section 4 that further improve
upon the gains shown in [11].
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3 Existing Algorithms

Before introducing our algorithms, we first present three existing channel allo-
cation algorithms that will also be used for comparison in our numerical exper-
iments.

3.1 Greedy allocation

The simplest channel allocation scheme is the greedy algorithm in which the BS
allocates the channel to the user with maximum current potential rate, that is,
in time-slot t, BS b allocates its channel to a user i∗b ∈ argmaxi∈Ub(t) {ri(t)}.
This algorithm does not use information on the past allocations and greedily
maximizes the utility for the local allocation only. In scenarios where users spend
similar amounts of time close to a BS (that is, have good channel conditions),
greedy can perform well. On the other hand, when these times can vary a lot
between users, it can lead to unbalanced allocations and possibly starvation
to users who spend more time in poor channel conditions. Moreover, greedy
allocation can be sporadic from a user’s point of view. A user who is moving
away from a BS may have to wait until it gets close to the next BS before it get
a new allocation. This may lead to short-term unfairness or starvation.

3.2 Proportional Fair (PF) allocation

The PF-EXP algorithm, versions of which are implemented in cellular networks,
improves the fairness by taking into account not only the current potential rate
but also the previous allocations. It chooses the user with the highest ratio
of the current rate to the observed throughput, that is, BS b chooses the user
i ∈ Ub(t) who maximizes the ratio ri(t)/Ai(t− 1), where

Ai(t) = Ai(0) +

t∑
k=1

φi(k),

is the total allocated rate to user i up to time t (Ai(0) is the initial value for
each user). The algorithm takes into account the past allocation but ignoring
completely the future one. A nice property that makes this algorithm attractive
is that, in the long-run when T goes to ∞, it is optimal for a stationary and
ergodic channels and for a fixed number of users [9].

In [11], it was shown using measurements that the potential data rates for
vehicular traffic are not necessarily stationary. The mean potential data rate
can vary along a road segment as a vehicle gets close or moves away from the
BS. The non-stationarity of potential data rate means that PF-EXP may no
longer be optimal which opens up the possibility to use future information for
improving the global utility. The exact future rate is of course unknown but
current allocation can be based on predictions made using SNR maps.
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3.3 Predictive Finite-horizon PF Scheduling ((PF)2S)

Based on the observation of non-stationarity, in [11], the authors proposed a
modified PF algorithm that exploits estimated future rate. This algorithm works
as follows:

• It predicts future data rates r̂i(s) of cars in every future slot s = t+ 1, t+
2, . . ., T.

• It estimates future channel allocations x̂ based on the data rate predic-
tions. As mentioned in Section 1, the estimations can be computed using
either a round-robin policy, a blind estimation, or a local-search method.
It is stated in [11] that, out of these three, round-robin is more robust
to prediction errors. Given this, we shall use Round Robin Estimation
(RRE) as the estimation policy for (PF)2S in the numerical comparisons.
As a reminder, RRE assumes that future time slots are allocated in a
round-robin manner.

• For each time slot t, the BS b chooses the user i ∈ Ub(t) who maximizes
Mi(t), where

Mi(t) =
ri(t)

Ai(t− 1) + x̂i(t)ri(t) +
∑T
k=t+1 x̂i(k)r̂i(k)

. (4)

(PF)2S is also an index-based algorithm like PF-EXP. The main difference be-
tween the two is that, while PF-EXP takes into account only the past rates
in the denominator, (PF)2S also includes the estimated future allocations. It
can be seen that (4) is related to the gradient of (I) with future rates replaced
by their estimates, and choosing the user with maximal Mi(t) can be seen as
choosing a step in the direction of the maximal gradient. In the case of one BS,
provided the future channel allocations x̂ can be predicted correctly, an optimal
solution to problem (I) can be obtained, as stated in Proposition 1.

Proposition 1. If there exists x∗ satisfying x∗i(t)(t) = 1 and x∗i (t) = 0,∀i 6= i(t),

where i(t) belongs to

arg max
i∈Ub(t)

ri(t)∑T
k=1 x

∗
i (k)ri(k)

, (5)

for all t, then x∗ is an optimal solution of problem (I).

Proof. See B.2.

Note that condition (5) is a sufficient condition for x∗ to be an optimal
solution of problem (I), but not a necessary condition and x∗ whose components
are integers does not always exist. In chapter 5 of [14], we discussed more detail
about other properties of this optimization problem and it’s solution. Moreover,
in proposition of 5.5.5 of that reference, when |Ub(t)| = 1, T = 2, K = 2, we
solved and illustrated the solutions of the relaxed version which will be defined
later in (II).
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In the next section, we present our heuristics. The motivation for the heuris-
tics comes from the observation that the formula (4) for (PF)2S looks like one-
step of the gradient descent with starting point chosen according to the round
robin policy when the RRE is used. We may expect to get a better allocation
if we do more iterations instead of only one, ensuring that in every iteration
the allocation is in the feasible set. To do this we employ a projected gradient
algorithm, as described in the next section.

4 Channel allocation heuristics

We shall assume that each BS allocates the channel independently, that is, in
a decentralized manner and without coordination with the other BSs. The
channel allocation is done by a BS by taking into account the future data rates
of the users currently attached to this BS. Since each BS decides independently,
we consider an arbitrary BS, say BS b.

We propose two heuristic algorithms, Short Term Objective 1 (STO1) and
Short Term Objective 2 (STO2), which are presented in the following. As ex-
plained below, the two heuristics use a different method for estimating the future
throughput than the round-robin scheme used in the (PF)2S algorithm. This
estimate is based on maximizing the total utility with the future mean chan-
nel gains as an estimate for the actual realizations. This is similar in spirit to
Stochastic Model Predictive Control [12]. The two heuristics differ in the time-
scale at which updated future information is used as well as in the dimension of
the optimization problem solved at each decision epoch.

4.1 Projected gradient algorithm

Before describing the two heuristics, we explain the ideas common to them.
The first step is to relax the integer constraints on the allocation variables in
optimization problem (I), so as to obtain the following convex optimization
problem 

maximize U(x) =

K∑
i=1

log

(
1

T

T∑
t=1

φi(t)

)
s. t. ∑

i∈Ub(t) xi(t) = 1, t = 1, . . . , T,

xi(t) ∈ [0, 1], i ∈ Ub(t), t = 1, . . . , T,

(II)

where K is total number of users passing BS b during T. The relaxed problem
(II) is almost the same as the original problem, except the fact that now xi(t)
does not need to be an integer. Let us assume for the moment that all the future
arrivals are known. Under this assumption, (II) can be solved efficiently using
the projected-gradient algorithm based on the formula for the projection on a
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simplex given in [6], as described below. Let us denote by

D =

x ∈ [0, 1]K(t)×T :

K(t)∑
i=1

xi(t) = 1, t = 1, 2, ..., T


the feasible set of the relaxed problem (II) with K(t) = |Ub(t)|. Observe that
although D is not a simplex, it is the Cartesian product of T simplexes since for
every component t = 1, 2, . . . , T the feasible set of allocations is indeed a simplex
(see details in A). We can therefore obtain a projection on D by projecting
independently on the simplexes corresponding to each of the time-steps. The
procedure for computing the projection ΠD on the set D is formalized in A.

In the following, we present the projected gradient algorithm. Starting by
initializing an arbitrary x(0) in the feasible set D, the algorithm computes at
each iteration n = 1, 2, . . . a new feasible solution using the formula

x(n+1) = ΠD

(
x(n) + εn∇U(x(n))

)
, (6)

where ∇U(x) is the gradient of the utility function at point x and εn ∈ (0, 1)
is the step size at iteration n. A new feasible solution is computed until con-
vergence is reached. We have however limited the number of iterations to 20 in
the numerical results presented in Section 6.

Proposition 2 below states that if the iteration (6) converges, then the result-
ing allocation is optimal. In this proposition, we use the notation ∇̃U(x, ε) :=
ΠD(x + ε∇U(x))− x.

Proposition 2. If x∗ ∈ D and if there exists an ε ∈ (0, 1) such that ∇̃U(x∗, ε) =
0, then x∗ is an optimal allocation of the relaxed problem (II).

Proof. See B.1.

Solving (II) using the projected gradient algorithm (6) requires the knowl-
edge of all the future arrivals which may not be available. Further, the horizon
T could be potentially large (tens of minutes giving roughly of the order of
300, 000 small-slots). This means the BS will have to solve a very high dimen-
sional problem every 2 ms.

For the heuristics, we circumvent these two issues as follows. First, we solve
(II) only for cars that are actually present in the coverage range and ignore
the future arrivals. Second, we reduce the computational complexity in two
ways: (i) we solve the problem over a shorter horizon; and (ii) we compute
the future allocations on a larger time-scale rather than the short time-scale of
channel allocation slots δ, which is usually in the order of a few milliseconds.
The distance travelled in δ ms by a vehicle is typically too small to observe large
changes in the mean channel conditions. Therefore, we define the notion of a
big-slot over which there is noticeable change in the mean channel conditions.
For example, a big-slot can be 500×δ, giving a value of 1 second for the big-slot
when δ = 2 ms. The exact value of a big-slot is an adjustable parameter that
can be set by the system designer.

Next, we describe the two heuristics.
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4.2 Short term objective algorithm (STO1)

Let ∆ be the size of the big-slot in absolute time units and let m = ∆/δ be the
number of small-slots in a big-slot. If r̄i(t) is the average rate in slot t for user
i, then ρ̄i(τ) =

∑τm
t=(τ−1)m+1 r̄i(t) is the total average data rate that user i will

get in big-slot τ if it is allocated in τ . Define x̄i(τ) to be the allocation of user
i in future big-slot τ . These allocations can be interpreted as the fraction of
small-slots that user i will be allocated in the big-slot τ .

The STO1 heuristic works in two steps. At each small-slot t, it first solves
the allocation for the current small-slot and the future big-slots. In the second
step, it allocates the channel to the user with the largest fractional allocation
for the current slot. These steps are described below:

• Step 1– In each small-slot t, solve the following optimization problem over
a short-term horizon of J big-slots using the projected gradient algorithm
as described above:

maximize
∑

i∈Ub(t)

log

(
Ai(t− 1) + xi(t)ri(t) +

τ+J−1∑
τ ′=τ

x̄i(τ
′)ρ̄i(τ

′)

)
s.t. ∑

i∈Ub(t) xi(t) = 1,

xi(t) ∈ [0, 1], i ∈ Ub(t),∑
i∈Ub(t) x̄i(τ

′) = 1, τ ′ = τ . . τ + J − 1,

x̄i(τ
′) ∈ [0, 1], τ ′ = τ . . τ + J − 1, i ∈ Ub(t).

(III)

where τ is the big-slot counted from t+ 1, i.e., it contains m consecutive
small-slots t + 1 . . t + m. The decision variables in Problem (III) are
the allocations xi(t) in the current small-slot, and the allocations x̄i(τ)
in the future big-slots. Since the future allocations are only computed on
the time-scale of big-slots, there is reduction of factor m in the number of
variables in (III).

• Step 2 – The channel of BS b is allocated to (an arbitrary) user i ∈
argmaxj∈Ub(t)xj(t).

The computational complexity of this heuristic is mainly in Step 1, which
requires in the order of 20×(J+1)×|Ub(t)|× log(|Ub(t)|) operations to complete
(as we limit the number of iterations of the projected gradient algorithm to 20).

4.3 Short term objective algorithm 2 (STO2)

In STO2, we further reduce the complexity by recomputing the future alloca-
tions only at the beginning of a big-slot. The future allocation computed is
thus used until the end of this big-slot. If one new user arrives to the system
in the middle of a big-slot, we just ignore it for this big-slot and wait until the
beginning of next big-slot to update the state. Once the allocations for future
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big-slots are computed, then in every small-slot of this big-slot, we apply an
index-based policy as in (4).

The steps for STO2 are:

• Step 1 – At the beginning of each big-slot τ , that is at time t = τm+ 1,
solve the following problem using the projected gradient algorithm:

maximize
∑

i∈Ub(t)

log

(
Ai(t− 1) +

τ+J−1∑
τ ′=τ

x̄i(τ
′)ρ̄i(τ

′)

)
s.t. ∑

i∈Ub(t) x̄i(τ
′) = 1, τ ′ = τ, . . . , τ + J − 1,

x̄i(τ
′) ∈ [0, 1], i ∈ Ub(t), τ ′ = τ, . . . , τ + J − 1.

(IV)

• Step 2 – Inside a big-slot, in each small-slot s, compute Mi(s) as in (4)
where the future allocation x̂ is the solution x̄ of (IV), and then allocate
the channel to the user i maximizing Mi(s).

Note that Step 1 in STO2 is computed only once every big-slot unlike m
times in every big-slot as in STO1. By doing this, we further reduce the number
of computations almost by a factor m.

5 Extension to joint channel allocation and power
control

We now show how the heuristics can be extended for joint channel allocation
and power control. The throughput of user i ∈ Ub(t) is now computed according
to the Shannon formula

ri(t) = xi(t) log

(
1 +

γi(t) pi(t)

xi(t)

)
, (7)

where xi(t) is the fraction of the channel assigned to user i in slot t by base
station b, and pi(t) is the power with which the BS transmits to user i. In (7),
γi(t) represents the channel gain of user i at time t. As before, we do not make
explicit the dependence of ri(t) on the decision variables xi(t) and pi(t) in order
to keep the notation light.

We assume that each BS has an average transmit power constraint of P̄ over
the horizon T , and that the maximum transmit power in each time slot is Pmax.
The objective of each BS is now to choose the power and the channel allocation
so as to maximize the total utility of the K users over a horizon of T time slots:
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maximize

K∑
i=1

log

(
1

T

T∑
t=1

ri(t)

)
(V)

s.t. (8)∑
i∈Ub(t)

xi(t) = 1, b ∈ B, t = 1, . ., T, (9)

1

T

∑
t

∑
i∈Ub(t)

pi(t) ≤ P̄ , b ∈ B, (10)

∑
i∈Ub(t)

pi(t) ≤ Pmax, b ∈ B, t = 1, . ., T, (11)

xi(t) ∈ [0, 1], i ∈ Ub(t), t = 1, . . . , T. (12)

Here (10) is the average power constraint, while (11) is the maximum power
constraint. Note that in (V) we have allowed for fractional channel allocations.
If the system imposes a binary constraint, that is only one user on one channel in
any given slot, then these constraints can be imposed as well as in the algorithms
we propose. In our experiments, we observed however that allocations were
mostly binary. So, we expect the qualitative conclusions to be valid whether
allocations are binary or not.

Remark 3 (Maximum power constraint). For conciseness, we shall not write
the maximum power constraint explicitly in the optimization problems that we
will define from now on. This constraint will be implicit and assumed to be
applicable in all slots.

In contrast to the current literature, which is based solely on the channel
gains in the current time slot, we can extend our heuristics so as to exploit also
the predicted values of the mean channel gains in the future slots.

5.1 Short term objective 2 (STO2) with power control

We will only give the STO2 version of the algorithm since it is computationally
less expensive and performs well. The STO1 version can also be formulated
along similar lines, if needed.

As before, a big-slot is m consecutive time-slots. For a non-stationary and
slowly varying model in which, for each vehicle i, the mean of the channel gains
varies on a slow time-scale, the preferred value of m will be the number of
time-slots during which mean channel gain remains constant. For example, for
a time-slot of 2 ms, the means may vary every 200 ms, which yields m = 100
slots. In contrast, in a mobility model where cars can come and leave, the
channel gains γi(t) are non-stationary and their means change every slot. In
this case, the value of m can be set by the system designer depending on how
fast the mean channel gains vary.
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Let τt ∈ {1, . . . , T} be the big-slot to which time-slot t belongs to. The
number of slots remaining in big-slot τt after (but not including) time t is then
θt = (τt + 1)m− t.

We shall use the notation x̂ for a quantity that is computed over a big-slot.
For example p̂i(τ) will denote the power used in all the slots inside big-slot τ .
Similarly,

r̂i(τ) = m · x̂i(τ) log

(
1 +

γ̄i(τ)p̂i(τ)

x̂i(τ)

)
(13)

is the total rate obtained by vehicle i in big-slot τ when it is served a fraction
x̂i(τ) of time at a transmit power of p̂i(τ). Note that here the rate is computed
assuming that the channel gain is its mean value in big-slot τ . With a slight
abuse of notation,

r̂i(τt) = θtx̂i(τt) log

(
1 +

γ̄i(τt)p̂i(τt)

x̂i(τt)

)
, (14)

shall denote the total rate in the remaining slots in current big-slot τt.
Recall that STO2 recomputes the allocations and powers of the future big-

slots only at the beginning of each big-slot and over a short-term horizon of J .
Inside a big-slot, it computes only the solution for the current slot assuming the
solution for the future big-slots to be the same as that computed at the the start
of the current big-slot. The power control version of this algorithm operates in
two steps.

• Step 1 – If t ≡ 1 (mod m), i.e., at the beginning of each big slot, BS b
first maximizes∑

i∈Ub(t)

log

(
t−1∑
s=1

ri(s) +

τt+J−1∑
τ=τt

r̂i(τ)

)
(STO2-Big)

subject to

[x̂i(τ)] ∈ S, i ∈ Ub(t), τ = τt, . . . , τt + J − 1, (15)

m
∑

i∈Ub(t)

p̂i(τ) ≤ P̄ , τ = τt, . . . , τt + J − 1, (16)

where S is the set of feasible solutions of problem (IV). The variables in
this problem are [x̂i(τ)] and [p̂i(τ)], τ = τt, . . . , τt + J − 1, only for the
cars in the scheduling area of BS b. The constraint (16) ensures that the
average power does not exceed P̄ in each big-slot.

Remark 4. The average power constraint (16) is stricter than (10) since
it is imposed in each big-slot and not over the remaining horizon. This
is done because otherwise the algorithm does not necessarily use up all
its power budget. Depending upon the scenario, it may leave quite some
power budget for the future big-slots and not end up using it if enough cars
do not arrive in the future or the channel conditions were not favorable.
Therefore, to ensure that STO2 uses all the power budget, constraint (16)
is imposed in each big-slot.
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• Step 2 – Next, in each small-slot t, the optimal allocation and transmit
power are computed for t as well as for the remaining small-slots in the
current big-slot assuming that the allocations and transmit powers in the
future big-slots are those computed from solving (STO2-Big). That is, in
slot t, STO2 maximizes

∑
i∈Ub(t)

log

(
t−1∑
s=1

ri(s) + ri(t) +

τt+J−1∑
τ=τt

r̂i(τ)

)
(STO2-Small)

subject to

[xi(t)] ∈ S, [x̂i(τt)] ∈ S; (17)∑
i∈Ub(t)

(pi(t) + θtp̂i(τt)) ≤ P (b)
t , (18)

where P
(b)
t is the remaining power budget of BS b in the current big-slot.

The variables in this problem are [xi(t)], [pi(t)], [x̂i(τt)] and [p̂i(τt)].

In each small-slot, STO2 solves a lower dimensional problem with 4|Ub(t)|
variables – 2|Ub(t)| for the current small-slot and 2|Ub(t)| for the remaining
small-slots in τt. This is twice the number that would be required when not
using future information. So, the complexity induced by optimizing over future
information is not excessive.

6 Numerical results

This section compares the utility of the proposed heuristics with PF-EXP,
(PF)2S and a greedy algorithm. For the (PF)2S the future allocation was done
using the round robin algorithm. Two different simulation setups will be used.
In the first one in Section 6.1, vehicles move along a single road served by one
BS. The simulations for this scenario are performed with Python. The second
set of scenarios, presented in Section 6.2, consists of three road networks with
multiple BSs. The simulations for these scenarios are done using SUMO which
simulates actual vehicle driving behaviour.

Before presenting the scenarios, we first introduce the performance metric.
Recall that the proportional-fair utility is defined in (I). Let

UA =

K∑
i=1

log

(
T∑
t=1

φi(t)

)
,

be the total utility or the reward of algorithm A and by ŪA = 1
KU

A its average
utility (reward) over K users. A comparison of two algorithms A and B using
the relative error is not appropriate because of the logarithm in the utility. Note
that when a different unit of measure is used for the data rate (for example,
bits instead of megabits), the ratio UA/UB changes as well. In order to have a
comparison that is independent of the units of measure, it is more appropriate
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to use the difference UA − UB , or, for convenience, exp(ŪA − ŪB) which gives
a non-negative value with 0 meaning that the utility of B is vastly superior
to A, and ∞ meaning that it is the other way round. As the performance
measure, we shall use the percentage improvement of algorithm A over B given
by (exp(ŪA − ŪB)− 1) · 100%.

6.1 Single road and homogeneous vehicle velocities

In the first set of simulations, there is only one base station and one straight
road in the scheduling area. The road length is taken to be L = 1000 m with 0
at the leftmost edge. The closest point on the road to the BS is at z = 500 m.
The data rate at position z along the road is given by:

r(z) = η · (1 + κ exp (|z − 500|/σ) , (19)

where κ ≥ 0 is a real number and η is uniform random variable whose range
will be in [0.7, 1.3] unless stated otherwise. A sample path of r(z) is shown in
Figure 2 for two different values of κ. This function has the highest mean at the
mid-point of the segment and the lowest mean at the two end points. We chose
the above rate function for convenience and emphasize that the algorithm itself
is independent of the rate function.
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(a) κ = 1.
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(b) κ = 4.

Figure 2: Sample path of data rate at various positions along the road. σ = 100,
and η ∼ U [0.7, 1.3].

The time horizon T was 4, 000, 000 small-slots which corresponds to 8000
seconds (slightly more than two hours). The big-slot length ∆ for our algorithms
was taken as 1 second or equivalently 500 small-slots.

Vehicles enter the road from the left edge, move with the same velocity
v = 25 m/s, and leave from the right edge. This gives N = 20, 000 spatial
small-slots in the scheduling area and J = 40 big-slots. The arrival of new cars
on the left edge is assumed to happen with probability p in every second.

Figure 3a shows the average utility obtained by a vehicle for each of the
four algorithms as a function of the arrival probability p. When p is small it
is natural for all the algorithms to give similar rewards since there is rarely
more than one car at a time in the scheduling area. The difference becomes
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more apparent at higher values of p when there are more cars competing for the
channel. Figure 3b shows the percentage improvement of the three other algo-
rithms compared to PF-EXP. Both STO1 and STO2 do better than PF-EXP
and more importantly better than (PF)2S. The greedy algorithm does well in
this scenario mainly because all vehicles move along the same road and observe
statistically identical but position-dependent radio conditions during their stay.
As mentioned previously, greedy is not practically implemented because it can
be very unfair to users that have heterogeneous rates.
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(a) Average utility per car.
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Figure 3: Comparison of algorithms for homogeneous vehicle velocities.

Comparison with the upper bound: before considering more complex scenar-
ios, we compare our algorithms to the upper bound which can be obtained by
solving the relaxed problem (II) assuming that all the future arrivals as well
as future data rates are known exactly and given as input. Solving with such
assumptions is infeasible in practice. However, purely for comparison purposes,
the upper bound can show how much we lose due to lack of precise information.
Since the problem size of (II) can grows quickly with the parameters, we restrict
the road length to L = 100 m, and reduce the time-horizon to T = 500 s. The
big-slot ∆ is shortened to 0.1 s so that J = 40 big-slots as before. The rate
curve remains the same as for the previous setting.

Figures 4a and 4b plot the average utility per car and percentage improve-
ment with respect to PF-EXP for the four algorithms as well as for the upper
bound. It can be observed that the proposed algorithm is quite close to the
upper bound in this scenario which means that average data rates provide a
good estimate of the actual data rates.

6.2 Network simulation with SUMO

Simulation of Urban MObility application (SUMO) [10] is an open source soft-
ware designed for simulating mobility of vehicles in large traffic networks. One
of the features of this simulator is that we can import maps of different cities
and simulate realistic mobility traces. We use this application to simulate the
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(a) Small setting: average utility per car.
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Figure 4: Comparison of algorithms against the upper bound from the solution
of (II) for homogeneous vehicle velocities.

complex driving dynamics in a simple scenario and in two specific regions of
Toulouse city to have an objective comparison of our heuristics against existing
algorithms in realistic scenarios.

The performance evaluation of heuristics in done in two steps. In the first
step SUMO is used for generating the mobility traces of vehicles. These traces
are then fed to a Python script which implements the different heuristics and
computes the value of the objective function.

In the following, unless otherwise specified, the parameters are chosen as
follows: κ = 4, σ = 100, big-slot ∆ = 1s and the short-term horizon J is
the maximal remaining sojourn time of the users that are currently inside the
system. We calculate the allocation plan every one second. From now on, we
do not include STO 1 in the comparison because STO 1 takes much longer time
to run and may not be computationally interesting on small time-scales. Also,
we also do not show the performance of the greedy algorithm here since some
users may starve in a greedy allocation leading to a value of −∞.

6.2.1 A simple network with 1 BS

Let us consider the network presented in Figure 5a. There are two classes of
users: one that arrives from A then moves along the long road to B and D (the
blue one), and another one that arrives from A then moves to B and then to
C (the red one). The base station is placed at location (20, 40), A is placed at
(−94, 40), B is placed at (−34, 39), C is placed at (−35,−18) and D is placed
at (96, 35), so the length from A to D in this simple network is 190 m. The
simulation duration was 1 hour 9 minutes and 25 seconds with a total of 1598
users passing through during this time.

If we apply the greedy heuristic in this situation, then many users of the
second class are never allocated the channel assuming that when the second
class leaves the scheduling area it does not get close to the BS of the next
cell. This is the reason why we do not evaluate the performance of the greedy
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algorithm for this scenario.
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(a) A simple road network with
two classes of users.
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(b) Comparison of the utilities obtained
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Figure 5: Simple netwokr scenario and its average utility.

Figure 5b shows the numerical results for this case. In this scenario, it was
observed that PF-EXP always gives priority to the new arrivals no matter what
the initial value is. This leads to a higher sub-optimality of PF-EXP since the
other heuristics focus on users that are closer to the base station and have a
higher quality channel.

Power control

We redo the above experiment for the algorithms with power control. The
average power level, P̄ is taken to be 1 and Pmax = 5. The horizon J = 5
big-slots and ∆ = 1 sec. The rate curve is taken such that the rate when
transmitting at P̄ gives the rate curve of the scenario without power control.
Fig. 6a shows the average utility for STO2, STO2-FP which is STO2 but with a
fixed power level of P̄ in each small-slot, and PF-EXP again with a fixed power
level of P̄ in each small-slot. Gains in utility (and the throughput) can be
achieved by using prediction of the future average rates. There is no discernible
gain achieved by power control compared to the fixed power algorithm. The
gains will of course depend upon the parameters of the scenario. One such
scenario will be shown later.

Fig. 6b shows the statistics of the gain in average utility obtained by STO2
with respect to that of PF-EXP. Only alternate noise values are shown so as
not to clutter the plot. The box plot shows the median and the 25 and 75
percentiles and violin plot shows how the values are distributed. The points
above the horizontal line at 0 are for vehicles that improved their utility under
STO2 when compared to that under PF-EXP while any point under this line
indicates vehicles that see a decrease in utility under STO2. In this scenario,
only two vehicles out of 1600 did not benefit by the use of STO2.
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Figure 6: Simple network with power control

6.2.2 Place Wilson (Toulouse) scenario with 2 BSs

In this scenario, we evaluate the algorithms on users moving in the Place Wilson
area of Toulouse with two BSs as shown in Fig. 7a. The average utilities of
the different heuristics are shown in Fig. 7b. The various parameters for the
rate function are the same as those indicated at the beginning of this section.
It took 219 seconds, 229 seconds, 433 seconds and 833 seconds respectively to
run greedy, PF-EXP, (PF)2S and STO2 for simulating 1.07 hours of traffic with
483 users (including cars, buses, and bicycles). The staying times of the users
varied from 2s to 361s. We do not show greedy in the utility comparison since
there were several starving users in this case. As expected, there is a trade-off
between the quality of the solution and the computation time. STO2 takes
longer to solve but gives a better allocation.

(a) Place Wilson, Toulouse with two
4G BSs.
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(b) Comparison of the utilities obtained
with STO2, (PF)2S and PF-EXP for the
scenario of Fig. 7a.

Figure 7: Place Wilson scenario and its average utility.
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(b) κ = 4.
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(c) κ = 6.

Figure 8: Comparison of the utilities obtained with STO2, (PF)2S and PF-EXP
for the scenario of Fig. 7a and for different values of κ.

Now, we change some of the parameters to see how the performance of the
heuristic is influenced by these parameters.

Figure 8a, 8b, 8c plot the average utilities for different values of κ with the
same J and ∆. The gap between STO2 and (PF)2S become larger when κ
increases.

Figure 9a, 9b, 9c and 9d illustrate the average utilities for different values of
J with the same values of κ and ∆. Remark that we assume (PF)2S and STO2
use the same information, so in (PF)2S the future information is estimated until
J as well. It is seen that the more information we have, the better (PF)2S and
STO2 perform.

Figure 10a, 10b and 10c show the influence of the size ∆ of the big-slot,
assuming the same values of J and κ. The performance of STO2 is almost the
same for these different values of ∆ but the running time is significantly shorter
with the largest value.

Power control

As for the previous scenario, we redo the above experiment for the algorithms
with power control. The average power level, P̄ is taken to be 1 and Pmax = 5.
The horizon J = 5 big-slots and ∆ = 1 sec. The rate curve is taken such that the

21



0.0 0.2 0.4 0.6 0.8 1.0
noise level

1.4

1.3

1.2

1.1

1.0

0.9

av
er

ag
e 

ut
ilit

y

STO 2
(PF)2S
PF-EXP

(a) J = 20s.
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(b) J = 60s.
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(c) J = 120s.
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(d) J = maximum sojourn time in term of
big-slot of all users inside the system.

Figure 9: Comparison of the utilities obtained with STO2, (PF)2S and PF-EXP
for the scenario of Fig. 7a and for different time horizon J .
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(a) ∆ = 1s (833s to run STO2).
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(b) ∆ = 2s (568s to run STO2).
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(c) ∆ = 4s (438s to run STO2).

Figure 10: Comparison of the utilities obtained with STO2, (PF)2S and PF-
EXP for the scenario of Fig. 7a and for different values of ∆. The performance
are almost the same, but the running time is much shorter when increasing the
big-slot size.
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rate when transmitting at P̄ gives the rate curve of the scenario without power
control. Fig. 11a shows the average utility for STO2, STO2-FP. As before,
gains in utility (and the throughput) can be achieved by using prediction of the
future average rates. The gains achieved by power control again are negligible
compared to those by prediction.

Fig. 11b shows box plot and the violin plot for the gain in average utility of
STO2 with respect to PF-EXP. The number next to the double arrowed line is
the fraction of vehicles that see a decrease in their utility under STO2. Unlike
in the previous scenario, this time, a non negligible proportion of vehicles see a
decrease in their utility. For example, 27% of vehicles saw their utility decrease
for noise level of 0.1 while this number was 8% for noise level of 0.9. However,
overall STO2 improves the average utility with a median of +0.05 units of utility,
that is at least half of the vehicles gained 0.05 units of utility.
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Figure 11: Place Wilson scenario with power control

6.2.3 Jardin de Plantes (Toulouse) scenario with 4 BSs

In the final set of simulations, we take another area of Toulouse called Jardin
des Plantes with four BSs as shown in Fig. 12a. The average utilities for this
scenario are plotted in Fig. 12b. It took 976 seconds, 1009 seconds, 1502 sec-
onds and 3403 seconds to run greedy, PF-EXP, (PF)2S and STO2 for 1.05 hours
of traffic with 740 users (including cars, buses, motorbikes, bicycles and pedes-
trian). Again, we do not include the greedy algorithm in the utility comparison
since there are several starving users in this case.

Power control

The plots for this scenario with power control are shown in Fig. 13. Here, power
control does bring improvements over the fixed-power STO2 with respect to the
previous two scenarios. Compared to the Place Wilson scenario, STO2 has a
smaller fraction of vehicles that are worse off than with PF-EXP.
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(a) Jardin de Plantes, Toulouse
with four 4G BSs.
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Figure 12: Jardin des Plantes scenario and its average utility.
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Figure 13: Jardin des Plantes with power control

7 Conclusions and future work

We proposed two heuristics that use future mean channel gain information to
improve the utility of users in cellular networks. In order to reduce the compu-
tational complexity, they solve the problem over a shorter time horizon as well
as on a larger time-scale. It was shown on numerical experiments carried out
on traces generated from realistic mobility patterns that these heuristics give
better utility compared to PF as well as (PF)2S algorithms.

There are several directions in which this work can be taken. One avenue is to
implement a centralized and coordinated version of these heuristics. Further, it
will be interesting to design heuristics for networks in which there are a fractions
of users whose future channel gain information is not known. These could be
users who do not share their mobility information or users like pedestrians whose
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mobility can be random and hence not known exactly.
Other directions of research include designing heuristics for different utility

functions and QoS requirements such are latency and jitter. On the analytical
side, obtaining heuristics with guaranteed sub-optimality bounds will be worth
investigating.

A Projection on feasible set D

The set D is a Cartesian product of J simplexes: D = D1 ×D2 · · · ×DJ where

Dt =

{
xt = (xi,t)i=1. .K ∈ [0, 1]K :

K∑
i=1

xi,t = 1

}
,

for all t = 1, 2, ..., J .
Since the sets Dt are simplexes, we can compute the projection on Dt fol-

lowing [6]. The projection on D can thus be computed with the simple following
lemma.

Lemma 5. If y = (yi,t)i=1. .K,t=1. .J ∈ RK×J , then

ΠD(y) = ΠD1
(y1)×ΠD2

(y2)× · · · ×ΠDJ
(yJ),

where yt = (yi,t)i=1. .K .

Proof. Denote by z = ΠD1
(y1)×ΠD2

(y2)× · · · ×ΠDJ
(yJ). It is easy to check

that for any x ∈ D, we have 〈y − z,x− z〉 ≤ 0.

As described in [6], the worst-case complexity of computing ΠDt
is O(K2),

but is observed to be equal to K× log(K) in practice. Therefore the complexity
of computing the projection on D = D1 × D2 · · · × DJ is expected to be J ×
K × log(K) in practice.

B Proofs

B.1 Proof of Proposition 2

Proposition 2. The point x∗ is an optimal solution if for any x ∈ D,

∇U(x∗) · (x∗ − x) ≤ 0.

From Lemma 5, it follows that it is sufficient to prove the above inequality on
Dt for an arbitrary t ∈ {1, . ., J}. Assuming U is a convex function on Dt, we
shall prove that if x∗t = (x∗i,t)i=1,. .,K ∈ Dt satisifes

ΠDt
(x∗t + ε∇U(x∗t )) = x∗t (20)

for some ε > 0, then
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∇U(x∗t ) · (x∗t − xt) ≥ 0, for any xt ∈ Dt,

i.e, x∗t is global optimum of U . Indeed, without loss of generality, we assume
that

x∗1,t + ε
∂U

∂x∗1,t
≥ x∗2,t + ε

∂U

∂x∗2,t
≥ . . . ≥ x∗n,t + ε

∂U

∂x∗n,t
≥ x∗K,t + ε

∂U

∂x∗K,t
,

where n is the largest index such that

1

n

n∑
i=1

(
x∗i,t + ε

∂U

∂x∗i,t
− 1
)
≤ x∗n,t + ε

∂U

∂x∗n,t
.

Define τ = 1
n

∑n
i=1

(
x∗i,t + ε ∂U

∂x∗i,t
− 1
)

. By Proposition 10 in [6] we have:

ΠDt
(x∗t+ε·∇U(x∗t )) =

(
x∗1,t + ε

∂U

∂x∗1,t
− τ, x∗2,t + ε

∂U

∂x∗2,t
− τ, ..., x∗n,t + ε

∂U

∂x∗n,t
− τ, 0, ..., 0

)
.

Comparing term by term with (20), we get:

1. x∗n+1,t = · · · = x∗K,t = 0,

2. x∗n+1,t + ε ∂U
∂x∗n+1,t

≤ τ, · · · , x∗K,t + ε ∂U
∂x∗K,t

≤ τ . It thus follows from the first

item that ε ∂U
∂x∗n+1,t

≤ τ, · · · , ε ∂U
∂x∗K,t

≤ τ ,

3. ε ∂U
∂x∗1,t

= · · · = ε ∂U
∂x∗n,t

= τ .

It yields

ε∇U(x∗t ) · (x∗t − xt) =

K∑
i=1

ε
∂U

∂x∗i,t
(x∗i,t − xi,t)

=

n∑
i=1

ε
∂U

∂x∗i,t
(x∗i,t − xi,t) +

K∑
i=n+1

ε
∂U

∂x∗i,t
(x∗i,t − xi,t),

=

n∑
i=1

ετ(x∗i,t − xi,t) +

K∑
i=n+1

ε
∂U

∂x∗i,t
(x∗i,t − xi,t),

=

K∑
i=1

ετx∗i,t −
K∑
i=1

ετxi,t +

K∑
i=n+1

(
ε
∂U

∂x∗i,t
− τ

)
(x∗i,t − xi,t),

= τ − τ +

K∑
i=n+1

(
ε
∂U

∂x∗i,t
− τ

)
(0− xi,t),

≥ 0.
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The last sum is greater than 0 since all its terms are greater than or equal
to 0.

B.2 Proof of Proposition 1

Proposition 1. In fact the condition (5) implies that ∇̃U(x∗) = 0, which yields
the proof according to Proposition 2.
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