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Abstract

As the channel conditions experienced by vehicular users in cellular
networks vary as they move, we investigate to which extent the quality of
channel allocation could be improved by exploiting predictions on future
data rates in non-stationary environments. Assuming mean future rates
can be computed from Signal-to-Noise Ratio (SNR) maps, we propose an
algorithm which predicts future throughputs over a short-term horizon at
regular time intervals, and then uses this extra-knowledge for improved on-
line channel allocation. The prediction of future throughputs is obtained
by solving a relaxed version of the problem using a projected gradient algo-
rithm. Using event-driven simulations, we compare the performance of the
proposed algorithm against those of other channel allocation algorithms,
including the Proportional Fair (PF) scheduler, which is known to be op-
timal in stationary environments, and the (PF)2S scheduler, which was
devised for mobiles nodes in non-stationary environments. The simulated
scenarios include scenarios with multiple base stations and are based on
realistic mobility traces generated using the road traffic simulator SUMO.
Simulation results show that the proposed algorithm outperform the other
algorithms and that exploiting the knowledge of future radio conditions
allows a significantly better channel allocation.

Index terms — proportional fairness, scheduling, mobility

1 Introduction

A central and challenging problem in cellular networks is channel allocation, that
is, to decide which mobile user the base station (BS) should serve in each time

∗A preliminary version of this paper appeared in [11].
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slot. To this end, the BS gathers the channel state information (CSI) from users
in order to know their radio conditions, which are mainly determined by their
distances to the BS and by fading effects. As maximizing the overall throughput
would lead to the starvation of distant users (those with the worst potential
data rates), today cellular networks allocates the channel to the user with the
highest potential rate proportionally to its time-average throughput1. With
this strategy, users with comparatively low allocated throughput are assigned a
higher priority even when they are in worse channel conditions. This scheduling
algorithm, which is known as the Proportional Fair (PF) scheduler, provides
a fair and efficient sharing of bandwidth between users in the sense that it
maximizes the aggregate logarithmic utility of obtained throughput in a fixed
population of permanent users [1].

A number of studies have been devoted to the analysis of the performance
of PF scheduling in wireless networks [2, 3, 4, 5, 6, 7], assuming either a static
population of permanent users, or a dynamic setting in which random finite-
size data transfers come and go over time. In both cases, it was shown that PF
scheduling strikes a good balance between the overall network throughput and
the degree of fairness among users. However, most of the literature is based on
the assumption that users experience stationary channel conditions. This was
partly motivated by the fact that a simple index-based allocation algorithm had
been shown to be optimal for stationary channels [8]. Thus, even if they take into
account the fast channel variations due to multi-path propagation, most studies
ignore the variations of the channel conditions on slower time scale dues to user
mobility. Taking into account such slow fading effects is particularly important
for vehicular users as the mean of the Signal-to-noise ratio (SNR) improves as a
vehicle comes closer to a BS and then worsens as it moves away. Another usual
assumption which is not realistic for vehicular users is the assumption of long
sojourn times. Indeed, a vehicle typically stays in the coverage range of a BS
for only a few minutes.

In this article, we investigate to which extent the quality of channel allocation
could be improved by exploiting information on future radio conditions in non-
stationary environments. Our main motivation comes from connected vehicles
which will use cellular networks to exchange informations related to security
and driving conditions with their environment. If the trajectory of a car is
known or can be estimated from historical travel data and/or observations of
the surrounding environment, then one can obtain good statistical predictions
of the SNR that will be experienced by the car in the near future. In turn,
these predictions could be used by the BS to achieve a channel allocation with a
higher utility than that of the PF algorithm. In this paper, we propose a channel
allocation policy exploiting this extra knowledge and evaluate the improvement
in utility that it yields in non-stationary environments. Note that such an
improvement in utility is not possible under the assumption of a stationary
channel as knowing the car trajectory does not bring any new information on

1The throughput is different from the data rate. While the latter is potential rate at which
a user can be served, the former can be smaller since in some slots a user may not be served
due to the presence of other users.
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the future data rates.
The idea of using information on future radio conditions for channel alloca-

tion was already explored in [9]. It uses future information by looking at channel
state of users in a few small time-slots. Different from their approach, we do
not look at the predicted channel state in few time slots which may be different
between users and difficult to predict correctly due to fast fading. Instead, we
base our allocation on average rate the user will experience during the time
interval this user stays inside the coverage range of the BS.

Another closely related work is [10] in which, using SNR maps obtained by
measurements, the authors first show that PF scheduling may perform poorly
in the presence of slow fading. They then propose a scheduling algorithm which
is similar to PF in that the channel is allocated to the user with the high-
est potential rate proportionally to its total throughput. This new algorithm,
which is called (PF)2S differs however from PF in that the total throughput
includes an estimation of the future throughput whereas PF considers only the
already allocated throughput. In order to estimate the future throughput, the
authors proposed three methods: round-robin, blind estimation, and a local
search heuristic. it was shown that even with this rough estimation of the fu-
ture throughput, this new index leads to an improved utility compared to the
PF algorithm in non-stationary environments. The channel allocation policy
proposed in this paper is similar to the (PF)2S scheduling policy except that we
use a different method for estimating future throughputs of vehicles. For the
purposes of numerical comparisons, we shall assume in this paper that (PS)2S
uses the round-robin policy. It was stated in [10] that, out of the three estima-
tion methods, round-robin is the most robust to prediction errors.

1.1 Contributions

We present a heuristic algorithm for non stationary channels that improves the
total utility of users compared to the PF and the (PF)2S algorithms. Our
heuristic is similar to the (PF)2S algorithm, except that instead of computing
an estimation of future throughput from a round-robin allocation, we compute
it as the solution of a utility maximization problem over a short-term horizon
assuming that the means of the future data rates are known over this short
horizon.

The original utility maximization problem being computationally complex,
we employ three techniques to obtain a lower complexity heuristic: (i) we relax
the integer constraints of the original problem; (ii), we shorten the time hori-
zon over which the problem is solved; and (iii) we compute the solution over
macroscopic time slots instead of microscopic ones that helps the algorithm run
in real time. The relaxation turns the problem into a convex one and allows for
its efficient resolution. Shortening of the time horizon and solving over macro-
scopic slots reduces the number of variables in the problem and decreases the
computation time.

We compare the performance of the proposed algorithm against those of
other channel allocation algorithms using event driven simulations. The simu-
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lated scenarios include scenarios with multiple base stations and are based on
realistic mobility traces generated using the open-source road traffic simulator
SUMO with vehicles moving at either equal or different speeds. Simulation re-
sults show that the proposed algorithm outperform other algorithms and that
exploiting the knowledge of future radio conditions allows a significantly better
channel allocation.

A preliminary version of the paper limited to scheduling in a single base sta-
tion setting and not including experiments with SUMO appeared in ASMTA2019
[11].

1.2 Organisation

In Section 2, we state the assumptions and define the objective function. In
Section 3, we give some background on PF and (PF)2S algorithms. In Section
4, we present our heuristic for improving the utility based on estimations of
future average data rate. Section 5 contains the numerical results for scenarios
with homogeneous as well as heterogeneous vehicles. Finally, we end the paper
in Section 6 with a few open problems.

2 Problem formulation

We consider a geographical region with a network of roads that is served by a
set of M base stations {B1, B2, ..., BM}. The region is partitioned into M non-
overlapping sub-regions each of which represents the coverage area of a base
station. Users (vehicles, bicycles, pedestrians, etc) enter the network, move
along different routes, and leave the network. Figure 1 shows an area within the
city of Toulouse which will be later used in the numerical experiments. In the
figure, the width of the box is approximately 1 km, and the height is around
0.65 km. The data for BS location can be found on the website2 of the French
Frequency Agency (ANFR), which manages all radio frequencies in France.

Every δ = 2 ms each BS has to decide which user to serve in a decentralized
fashion. We shall assume that the data rate received by a user depends on the
distance between the BS and that user. The data rate depends upon the SNR
which itself can vary along the road. In our numerical experiments, we assume
that the data rate decays exponentially as in formula (1) below

rm(x) =

{
0 if d(x,Bm) > dm,

1 + κ e−d(x,Bm)/σ otherwise,
(1)

where x is the position of the user, Bm is the position of BS m, d(x,Bm) is
the Euclidean distance between positions Bm and x, and κ and σ are adjustable
parameters. The scheduling algorithm we propose does not however require this
assumption to work.

2https://data.anfr.fr/anfr/portail
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Figure 1: A selected area of Toulouse which is covered by three BSs (LTE1800)
of the French mobile network operator Free Mobile.

Denote by T the time horizon over which the scheduling decisions are made,
and let K be total number of users who pass through the considered region dur-
ing that time. For simplicity, we assume that T is a multiple of δ. Our objective
is to achieve the proportional-fairness between users, which is described by the
following optimization problem (see, e.g., [2, 10, 12]):



maximize O(α) =

K∑
i=1

log

 M∑
m=1

T∑
j=1

αmij r
m
ij


subject to ∑K

i=1 α
m
ij = 1, j = 1, . . . , T, m = 1, . . . ,M,∑M

m=1 α
m
ij ≤ 1, j = 1, . . . , T, i = 1, . . . ,K,

αmij ∈ {0, 1}, j = 1, . . . , T, , i = 1, . . . ,K, m = 1, . . . ,M.
(I)

where:

• αmij is a binary decision variable which is equal to 1 if the channel of BS
m is allocated to user i at time j, and 0 otherwise.

• rmij is the potential data rate of user i at time j if it served by BS m. This
potential data rate is given by rmij = rm(xij), where xij is the position of
the user at time j and the rate function rm(x) is defined in formula (1).

Constraints
∑K
i=1 α

m
ij = 1 imply that each BS serves exactly one user at

each time j. Constraints
∑M
m=1 α

m
ij ≤ 1 imply that each user i is served by at

most one base station at each time j. Finally, the last constraints αmij ∈ {0, 1}
imply that a feasible solution is a binary vector α. To make the problem easier
to solve, we will remove the constraints

∑M
m=1 α

m
ij ≤ 1 by assuming that a user

can only be served by the closest BS.
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3 Existing Algorithms

In this section, we present some of the existing heuristics for channel allocation.
These heuristics will be later compared with the heuristics we propose in this
paper.

3.1 Greedy allocation

In the greedy scheme, the channel is always allocated to the vehicle with the
maximum rate, that is, at each time-slot j the channel of BS m is allocated to
a vehicle i∗m ∈ argmaxi(r

m
i,j).

3.2 Proportional Fair (PF) allocation

Remark that problem (I) is a discrete problem. Even though the number of
options is finite, it is NP-hard to find the optimal solution (see, e.g., [10]).
Nevertheless, a simple heuristic, called PF-EXP [8], is known to be optimal
when the number of users is fixed and that the data rates rmi,j are time stationary
and ergodic, that is, there is no correlation between rmi,j and rmi,j+1.

The PF algorithm chooses the user with the highest ratio of the current rate
to the observed throughput, that is, it chooses the user i who maximizes the
ratio rmi,j/Ai(j − 1), where

Ai(j) = Ai(0) +

j∑
t=1

M∑
m=1

rmi,jα
m
i,j ,

is the total allocated rate to user i up to time j (Ai(0) is the initial value for
each user). In the long-run when T goes to ∞, this algorithm was shown to be
optimal for a stationary and ergodic channel and for a fixed number of users [8].

As already mentioned, the stationarity assumption is not necessarily true
for road traffic when all users always move instead of resting in the same place.
As can be seen in Fig. 1, when users move on a given path, their rate can vary
with the distance to the BSs. Thus, the rate process observed by vehicles need
not be stationary, and the PF-EXP algorithm need not be optimal for vehicles
moving in a network.

3.3 Predictive Finite-horizon PF Scheduling ((PF)2S)

In [10], a modified PF algorithm based on predicted future rate was proposed.
This algorithm works as follows:

• It predicts future data rates r̂mi,j of cars in every future slot,

• it estimates future channel allocations α̂m based on the data rate predic-
tions. As mentioned in Sec. 1, the estimations can be computed using
either a round-robin policy, a blind estimation, or a local-search method.
It is stated in [10] that, out of these three, round-robin is more robust
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to prediction errors. Given this, we shall use Round Robin Estimation
(RRE) as the estimation policy for (PS)2S in the numerical comparisons.
As a reminder, RRE assumes that future time slots are allocated in a
round-robin manner and each user receives an equal number of slots.

• for each time slot j, the BS m chooses the user who maximizes Mm
i,j , where

Mm
i,j =

rmi,j∑j−1
t=1 α

m
i,tri,t + α̂mi,jri,j +

∑T
t=j+1 α̂

m
i,tr̂

m
i,t

. (2)

The index Mm
i,j looks similar to that of the PF-EXP algorithm but includes

the future allocation. It is related to the gradient of the utility function in (I).
In the case of one BS (so that we can omit the index m), provided the future
channel allocations α̂ can be predicted correctly, an optimal solution to problem
(I) can be obtained, as stated in Proposition 1.

Proposition 1. If there exist α∗ satisfying α∗i∗,j = 1 and α∗i,j = 0,∀i 6= i∗j ,
where

i∗j ∈ arg max
i∈{1,2,...K}

ri,j∑j−1
t=1 α

∗
i,tri,t + α∗i,jri,j +

∑
t=j+1 α

∗
i,tri,t

, (3)

then α∗ is the optimal solution of problem (I).

Proof. See Appendix B.

Note that Condition (3) is a sufficient condition for α∗ to be an optimal
solution of problem (I), but not a necessary condition.

In the next section, we present our heuristic. The motivation for the heuristic
comes from the observation that the formula of (PF)2S looks like one-step of the
gradient descent with starting point chosen according to the round robin policy
when the Round Robin Estimation is used. We may expect to get a better
allocation if we do more iterations instead of only one, ensuring that in every
iteration the allocation is in the feasible set. To do this we employ a projected
gradient algorithm, as described in the next section.

4 Projected gradient approach

We shall assume that each BS allocates the channel independently, that is, in a
decentralized manner and without coordination with the other BSs. The channel
allocation is done by the BS by taking into account the future data rates of the
users currently attached to this BS. Since each BS decides independently, we
omit the index m of the BS for simplicity.

We propose two heuristic algorithms, Short Term Objective 1 (STO1) and
Short Term Objective 2 (STO2), which are presented in the following. The
two heuristics use a different method (to be explained below) for estimating
the future throughput than the round-robin used in the (PF)2S algorithm. This
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estimate is based on optimizing the objective with the future mean channel gains
as an estimate for the actual realizations. This is similar in spirit to Stochastic
Model Predictive Control [13]. The two heuristics differ in the time-scale on
which updated future information is used as well as in the dimension of the
optimization problem solved at each decision epoch.

Before describing the two heuristics, we explain the ideas common to them.
The first step is to relax the integer constraints on the allocation variables in
optimization problem (I), so as to obtain the following convex optimization
problem 

maximize O(α) =

K∑
i=1

log

 T∑
j=1

αijrij


subject to ∑K

i=1 αij = 1, j = 1, . . . , T,
αij ∈ [0, 1], j = 1, . . . , T, i = 1, . . . ,K,

(II)

which is very similar to the original problem, except that αij can now be non-
integer in [0, 1]. The relaxed problem (II) can be solved efficiently using the
projected-gradient algorithm based on the formula for the projection on a sim-
plex given in [14], as described below.

Denote by D =
{
α ∈ [0, 1]K×T :

∑K
i=1 αij = 1, j = 1, 2, ..., T

}
the feasible

set of the relaxed problem. The set D is not a simplex, therefore we cannot
apply directly the algorithm in [14]. However, for every j the feasible set of
allocations is indeed a simplex. We can therefore obtain a projection on D by
projecting independently on simplexes corresponding to each of the time-steps.
The procedure for computing the projection ΠD on the set D is formalized in
Appendix A.

The projected gradient algorithm then works as follows. Starting from an
arbitrary initial solution α0 ∈ D, the algorithm computes at each iteration
n = 1, 2, . . . a new feasible solution using the formula

αn+1 = ΠD(αn + εn∇O(αn)), (4)

where ∇O(αn) is the gradient of the objective function at iteration n and εn ∈
(0, 1) is the step size at that iteration. A new feasible solution is computed until
convergence is reached. In our numerical examples, we have however limited
the number of iterations to 20.

Denote by ∇̃O(α) = ΠD(α+ ε∇O(α))−α with the step size ε ∈ (0, 1) small
enough. Proposition 2 below says that if the iterations (4) converge, then the
resulting allocation is optimal.

Proposition 2. If α∗ ∈ D and ∇̃O(α∗) = 0 then α∗ is the optimal value of the
relaxed problem (II).

Proof. See Appendix B.
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Solving (II) using the projected gradient algorithm (4) requires the knowl-
edge of all the future arrivals which may not be available. Further, the horizon T
could be potentially large (tens of minutes giving roughly of the order of 300000
small slots). This means the BS will have to solve a very high dimensional
problem every 2 ms.

For the heuristics, we circumvent these two issues as follows. First, we solve
(II) for only cars that are actually present in the coverage range and ignore
the future arrivals. Second, we reduce the computational complexity in two
ways: (i) we solve the problem over a shorter horizon; and (ii) we compute
the future allocations on a larger time-scale rather than the short time-scale of
channel allocation slots δ, which is usually in the order of a few milliseconds.
The distance travelled in δ ms by a vehicle is typically too small to observe large
changes in the mean channel conditions. Therefore, we define the notion of a
big-slot over which there is noticeable change in the mean channel conditions.
For example, a big-slot can be 500×δ, giving a value of 1 second for the big-slot
when δ = 2 ms. The exact value of a big-slot is an adjustable parameter that
can be set by the system designer.

Next, we describe the two heuristics.

4.1 Projected gradient short term objective algorithm (STO1)

Let ∆ be the size of the big-slot in absolute time units and let m = ∆/δ be the
number of small slots in a big-slot. If r̄ij is the average rate in slot j for user

i, then ρ̄iτ =
∑τm+t
j=(τ−1)m+t+1 r̄ij , is the total average data rate that user i will

get in big-slot τ . Define ᾱiτ to be the allocation in future big slot τ . These
allocations can be interpreted as the fraction of small slots that user i will be
allocated in the big-slot τ .

In small time slot t, let ai(t) =
∑t
j=1 αijrij be the cumulative allocated rate

of user i until time slot t, and K(t) be the number of users inside the coverage
range.

The STO1 heuristic works in two steps. At each small slot t, it first solves
the allocation for the current small slot and the future big-slots. In the second
step, it allocates the channel to the user with the largest fractional allocation
for the current slot. These steps are described below:

• Step 1– solve the following optimization problem over a short-term hori-
zon of J big-slots using the projected gradient algorithm:

maximize

K(t)∑
i=1

Ui

subject to ∑K(t)
i=1 αit = 1,∑K(t)
i=1 ᾱiτ = 1, τ = 1, . . . , J

αit, ᾱiτ ∈ [0, 1], , τ = 1, . . . , J, i = 1, . . . ,K,

(III)

9



where

Ui = log

(
ai(t− 1) + αitrit +

J∑
τ=1

ᾱiτ ρ̄iτ

)
.

The decision variables in Problem (III) are the allocations in the current
small slot, αit, and the allocations in the future big-slots, ᾱiτ . Since the
future allocations are only computed on the time-scale of big-slots, there
is reduction of factor m in the number of variables in (III).

• Step 2 – allocate the channel to the user who has the largest allocation
computed by (αit)i=1,K(t)

that is one user which is arg maxi αit.

The complexity of numerically optimal α computed in step 2 is equal to
20(J+1)K̄ log(K̄) where 20 is the number of iteration steps of projected gradient
in Step 1, K̄ is average number of users inside the coverage range, J is the
number of big slots.

4.2 Projected gradient short term objective algorithm 2
(STO2)

In STO2, we further reduce the complexity by recomputing the future alloca-
tions only at the beginning of a big-slot. The future allocation thus computed
is then used until the end of this big-slot. If one new user arrives to the system
in the middle of big-slot, we just ignore it for this big-slot and wait until the
beginning of next big-slot to update the state . Once the allocations for future
big-slots are computed, then in every small slot of this big-slot, we apply an
index-based policy as in (2).

The steps for STO2 are:

• Step 1 – In each big slot τ , solve the following problem using projected
gradient:

maximize

K(τ)∑
i=1

Ui

subject to ∑K(τ)
i=1 ᾱiτ = 1, τ = 1, . . . , J,

ᾱiτ ∈ [0, 1], τ = 1, . . . , J, i = 1, . . . ,K,

(IV)

where

Ui = log

(
ai ((τ − 1)m) +

J∑
τ=1

ᾱiτ ρ̄iτ

)
.

Here ai((τ − 1)m) is the total data rate received by user i up to big slot
τ . The other quantities are the same as for algorithm STO1.

10



• Step 2 – Inside a big-slot, in each small slot j, compute Mij as in (2)
where the future allocation α̂ is the solution ᾱ of (IV).

Note that Step 1 in STO2 is computed only once every big-slot unlikem times
in every big-slot as in STO1. By doing this, we further reduce the number of
computations almost by a factor of m times since we calculate ᾱ in each big-slot
only.

5 Numerical results

We now compare the utility of the proposed heuristics with the PF-EXP, (PF)2S
and a greedy algorithm. For the (PF)2S the future allocation was done using
the round robin algorithm.

Denote by

OA =

K∑
i=1

log

 T∑
j=1

αAijrij

 ,

the total reward of algorithm A and by ŌA = 1
KO

A its average reward over
K users. Given two algorithms A and B, the ratio between A and B equals
exp(ŌA − ŌB). The percentage of improvement of algorithm A over B is com-
puted as (exp(ŌA − ŌB)− 1) · 100%.

Due to the logarithm in the objective function, taking a different unit of
measure for the rate will give a different percentage of improvement between
algorithms. Although logarithm is an increasing function, we can know which
algorithm is better than the other, but we will not get a consistent percentage
of improvement across different units of measure. Therefore, by taking the
difference as above we construct a consistent criterion for comparison.

5.1 One road network

In the first set of simulations, there is only one base station and one straight
road. The road length is taken to be L = 1000 m with 0 at the leftmost edge.
The closest point on the road to the BS is at x = 500 m. The data rate at
position x along the road is given by:

r(x) = η · (1 + κ exp (|x− 500|/σ) , (5)

where κ ≥ 0 is a real number and η is uniform random variable whose range
will be in [0.7, 1.3] unless stated otherwise. A sample path of r(x) is shown in
Fig. 2,3. This function has the highest mean at the mid-point of the segment
and the lowest mean at the two end points. We emphasize the algorithm it-
self is independent of the rate function. We chose the above rate function for
convenience.

The time horizon T was 4, 000, 000 small time slots which corresponds to
8000 seconds (slightly more than two hours). The big slot length ∆ for our
projected gradient short term objective algorithm was taken as 1 second or
equivalently 500 small time slots.
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Figure 2: κ = 1. Figure 3: κ = 4.

Figure 4: Sample path of data rate at various positions along the road. σ = 100,
and η ∈ [0.7, 1.3].

5.1.1 Homogeneous vehicle velocities

First, we show the results when all vehicles move with the same velocity which
is taken to be v = 25 m/s. That is, there are N = 20, 000 spatial small slots in
the coverage range and J = 40 seconds. A new car enters through the left edge
in every second with probability p.

Figure 5 shows the average utility obtained by a vehicle for each of the
four algorithms as a function of the arrival probability p. Figure 6 shows the
percentage of improvement of the three other algorithms compared to PF-EXP.
The proposed algorithm does better than PF-EXP and more importantly better
than (PF)2S. Although, we have shown the greedy algorithm for comparison,
we emphasize that greedy is not practically implemented because it can be
very unfair to users that have heterogeneous rates. In the simulated scenario,
all vehicles move along the same road and observe statistically identical but
position-dependent radio conditions during their stay. These conditions are
rather favorable for the greedy algorithm.

5.1.2 Comparison with the upper bound

Next, again for homogeneous velocities, we also include the solution of the
relaxed problem (II) but for a smaller road length and shorter horizon because
it is computationally expensive. The parameters for this setting are: L = 100
m, J = 40 s, T = 500 s, and the other parameters are the same as in the
homogeneous case. We assume that the relaxed algorithm knows the future
arrivals as well as the future data rates exactly whereas the other algorithms do
not know this information. The solution to the relaxed problem gives an upper
bound on the optimal solution of the original problem (I).

Figures 7 and 8 plot the average reward per car and percentage improvement
for the five algorithms with respect to PF-EXP. It can be observed that the
proposed algorithm is quite close to the upper bound in this scenario.
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Figure 5: Average reward per car. Ho-
mogeneous velocities.

Figure 6: Percentage of improvement
over PF-EXP. Homogeneous veloci-
ties.

Figure 7: Average reward per car. In-
cludes the upper bound from the solu-
tion of (II). Small setting of homoge-
neous velocities.

Figure 8: Percentage of improvement
over PF-EXP. Small setting of homo-
geneous velocities.

In the following, unless otherwise specified, the parameters are chosen as
follows: κ = 4, σ = 100, big slot ∆ = 1s and the short-term horizon J is
the maximal remaining staying time of the users that are currently inside the
system. We calculate the allocation plan every one second. From now on, we do
not compare STO 1 because STO 1 takes much longer to run and may not be
computationally interesting on small time-scales. Also, we also do not show the
performance of greedy here since some users may starve in a greedy allocation
leading to a value of −∞.

5.2 Network simulation with SUMO

Simulation of Urban MObility application (SUMO) [15] is an open source soft-
ware designed for simulating mobility of vehicles in large traffic networks. One
of the features of this simulator is that we can import maps of different cities
and simulate realistic mobility traces. We use this application to simulate the
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complex driving dynamic systems in a specific region of Toulouse city to have
an objective comparison of our heuristics against existing algorithms in realistic
scenarios.

The performance evaluation of heuristics in done in two steps: in the first
step SUMO is used for generating the mobility traces of vehicles. These traces
are then fed to a Python script which implements the different heuristics and
computes the value of the objective function.

5.2.1 A simple network with 1 BS

Let us consider the network presented in in Figure 9. There are two classes of
users: one that arrives from A then moves along the long road to B and D (the
blue one), and another one that arrives from A then moves to B and then to C
(the red one). If we apply the greedy heuristic in this situation, then many users
of the second class are never allocated the channel. This is the reason we do not
show performance of the greedy algorithm for this scenario. Figure 10 shows the
numerical results for this case. In this scenario, it was observed that PF-EXP
always gives priority to the new arrivals no matter what the initial value is. This
leads to a higher sub-optimality of PF-EXP since the other heuristics focus on
users that are closer to the base station and have a higher quality channel.

A B

C

D

Figure 9: Utility Comparison: STO,
(PS)2S and PF-EXP.

Figure 10: Utility Comparison: STO,
(PS)2S and PF-EXP.

5.2.2 Place Wilson (Toulouse) scenario with 2 BSs

In this scenario, we evaluate the algorithms on users moving in the Place Wilson
area of Toulouse with two BSs as shown in Fig. 11. The average utilities of
the different heuristics are shown in Fig. 12. The various parameters for the
rate function are the same as those indicated at the beginning of this section.
It took 219 seconds, 229 seconds, 433 seconds and 833 seconds respectively to
run greedy, PF-EXP, (PS)2S and STO2 for simulating 1.07 hours of traffic with
483 users (including cars, buses, and bicycles). The staying times of the users
varied from 2s to 361s. We do not show greedy in the utility comparison since
there were several starving users in this case. As expected, there is a trade-off
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between the quality of the solution and the computation time. STO2 takes
longer to solve but gives a better allocation.

Figure 11: Place Wilson, Toulouse
with 2 Free Mobile BSs 4G.

Figure 12: Utility Comparison: STO2,
(PS)2S and PF-EXP.

Now, we change some of the parameters to see how the performance of the
heuristic is influenced by these parameters.

Figure 13a, 13b, 13c plot the average utilities for different values of κ with
the same H and ∆. The gap between STO2 and (PS)2S become larger when κ
increases.

Figure 14a, 14b, 14c and 14d illustrate the average utilities for different
values of J with same κ,∆. Remark that we assume (PS)2S and STO2 use the
same information, so in (PS)2S the future information is estimated until J as
well. It is seen that the more information we have, the better (PS)2S and STO2
perform.

Figure 15a, 15b, 15c illustrate for different values of big-slot ∆ with the
same values of J and κ. The performance of STO2 is almost the same for these
different values of ∆ but the running time is significant faster.

5.2.3 Jardin de Plantes (Toulouse) scenario with 4 BSs

In the final set of simulations, we take another area of Toulouse called Jardin des
Plantes with four BSs as shown in Fig. 16. The average utilities for this scenario
are plotted in Fig. 17. It took 976 seconds, 1009 seconds, 1502 seconds and 3403
seconds to run greedy, PF-EXP, (PS)2S and STO2 for a 1.05 hours of traffic with
740 users (including cars, buses, motorbikes, bicycles and pedestrian). Again,
we do not show greedy in the utility comparison since there are several starving
users in this case.

6 Conclusions and future work

We proposed two heuristics that use future mean channel gain information to
improve the utility of users in cellular networks. In order to reduce the compu-
tational complexity, they solve the problem over a shorter time horizon as well
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(a) κ = 2. (b) κ = 4.

(c) κ = 6.

Figure 13: Place Wilson, utility comparison for different κ.

as on a larger time-scale. It was shown on numerical experiments carried out
on traces generated from realistic mobility patterns that these heuristics give
better utility compared to PF as well as (PS)2S algorithms.

There are several directions in which this work can be taken. One avenue is to
implement a centralized and coordinated version of these heuristics. Further, it
will be interesting to design heuristics for networks in which there are a fractions
of users whose future channel gain information is not known. These could be
users who do not share their mobility information or users like pedestrians whose
mobility can be random and hence not known exactly.

Other directions of research include designing heuristics for different utility
functions and QoS requirements such are latency and jitter. On the analytical
side, obtaining heuristics with guaranteed sub-optimality bounds will be worth
investigating.

A Projection on feasible set D

The set D is a Cartesian product of J simplexes: D = D1 ×D2 · · · ×DJ where

Dj = {aj = (αij)i=1,K ∈ [0, 1]K ,

K∑
i=1

αij = 1}
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(a) J = 20s. (b) J = 60s.

(c) J = 120s.

(d) J = maximum remain time in term
of big-slot of all users inside the sys-
tem.

Figure 14: Place Wilson, utility comparison for different short time horizon J .
Here we assume that (PS)2S and STO2 use the same information, so in (PS)2S
the future information is estimated until J as well.
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(a) ∆ = 2s (833s to run STO2). (b) ∆ = 4s (568s to run STO2).

(c) ∆ = 6s (438s to run STO2).

Figure 15: Place Wilson, utility comparison for different ∆. The performance
are almost the same, but the running time is much faster when increasing big-
slot.
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Figure 16: Jardin de Plantes, Toulouse
with 4 BSs (Free and SFR) type 4G.

Figure 17: Utility Comparison: STO2,
(PS)2S and PF-EXP.

for all j = 1, 2, ..., J .
Since (Dj)j are simplexes, we can compute the projection on Dj following [14].
The projection on D can thus be computed by the simple following lemma:

Lemma 1. If Y = (yij)i=1,K,j=1,J ∈ RK×J , then

ΠD(Y ) = ΠD1
(Y1)×ΠD2

(Y2)× · · · ×ΠDJ
(YJ),

where Yj = (yij)i=1,K .

Proof. (of the lemma 1) Denote by Z = ΠD1
(Y1)×ΠD2

(Y2)× · · · ×ΠDJ
(YJ).

It is easy to check that for any X ∈ DK×J then 〈Y − Z,X − Z〉 ≤ 0.

As described in [14], the complexity of finding ΠDj is equal to K log(K) by
observation in practice, and equal to O(K2) in the worst case. Therefore the
complexity of finding projection on D = D1×D2 · · ·×DJ is equal to JK log(K)
in practice.

B Proofs

Proof. (proof of Proposition 2) The optimal is obtained by proving that for any
α ∈ D,

∇O(α∗)(α∗ − α) ≤ 0.

From lemma 1, it follows that it is sufficient to prove the above property on D1.
Assuming O is convex function on D1, we shall prove that if α∗ = (α∗i )i=1,...,K ∈
D1 satisifes

ΠD1(α∗ + ε∇(α∗)) = α∗ (6)

where ε positive, then

∇O(α∗)(α∗ − α) ≥ 0, for any α ∈ D1
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i.e, α∗ is global optimal of O. Indeed, without loss of generality, we assume that

α∗1 + ε
∂O

∂α∗1
≥ α∗2 + ε

∂O

∂α∗2
≥ ... ≥ +α∗M + ε

∂O

∂α∗M
≥ ... ≥ α∗K + ε

∂O

∂α∗K

where M is the largest index such that

1

M

M∑
i=1

(
α∗i + ε

∂O

∂α∗i
− 1
)
≤ α∗M + ε

∂O

∂α∗M .

Denote by τ = 1
M

∑M
i=1

(
α∗i + ε ∂O∂α∗

i
− 1
)
, by proposition 10 in [14] we have:

ΠD1(α∗+ ε ·∇(α∗)) =
(
α∗1 + ε ∂O∂α∗

1
− τ, α∗2 + ε ∂O∂α∗

2
− τ, ..., α∗M + ε ∂O

∂α∗
M
− τ, 0, ..., 0

)
.

Using (6) to compare term by term we get:

1. α∗M+1 = · · · = α∗K = 0,

2. α∗M+1 + ε ∂O
∂α∗

M+1
≤ τ, · · · , α∗K + ε ∂O∂α∗

K
≤ τ . Now, from the first item we

have α∗M+1 = · · · = α∗K = 0. It implies ε ∂O
∂α∗

M+1
≤ τ, · · · , ε ∂O∂α∗

K
≤ τ ,

3. ε ∂O∂α∗
1

= · · · = ε ∂O
∂α∗

M
= τ .

Thus,

ε∇O(α∗)(α∗ − α) =

K∑
i=1

ε
∂O

∂α∗i
(α∗i − αi)

=

M∑
i=1

ε
∂O

∂α∗i
(α∗i − αi) +

K∑
i=M+1

ε
∂O

∂α∗i
(α∗i − αi),

=

M∑
i=1

τ(α∗i − αi) +

K∑
i=M+1

ε
∂O

∂α∗i
(α∗i − αi),

=

K∑
i=1

τα∗i −
K∑
i=1

ταi +

K∑
i=M+1

(
ε
∂O

∂α∗i
− τ
)
(α∗i − αi),

= τ − τ +

K∑
i=M+1

(
ε
∂O

∂α∗i
− τ
)
(0− αi)

≥ 0.

The last sum is less than 0 since all its terms are greater than or equal to 0.

Proof. (proof of Proposition 1) In fact the condition (3) implies that ∇̃O(α∗) =
0 and from Proposition 2 we can conclude.
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