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Abstract. Many machine learning algorithms rely on vector representations as
input. In particular, natural language word vector representations that encode
semantic information can be constructed using several different methods, all
based on solving an unconstrained optimization problem using stochastic gra-
dient descent. Traditionally, these optimization formulations arise either from
word co-occurrence based models (e.g word2vec, GloVe, fastText), or encoders
combined with a masked language model (e.g BERT). In this work we propose
word embedding methods based on the Distance Geometry Problem (DGP): find
object positions based on a subset of their pairwise distances. Considering the
empirical Pointwise Mutual Information (PMI) as an inner product approximation,
we discuss two algorithms to obtain approximate solutions of the underlying Eu-
clidean DGP on large instances. The resulting algorithms are considerably faster
than state-of-the-art algorithms such as GloVe, fastText or BERT, with similar
performance for classification tasks. The main advantage of our approach for
practical use is its significantly lower computational complexity, which allows us
to train representations much faster with a negligible quality loss, a useful property
for domain specific corpora.

1 Introduction

In recent years, the most successful algorithms for Natural Language Processing (NLP)
tasks (e.g. text classification, machine translation, named entity recognition) rely on
vector representations of words and sentences constructed with a variety of approaches.

First, following the first vector space models based on index terms (TF-IDF, Soft-
ware: SMART [Salton, 1971], Lucène [Hatcher and Gospodnetic, 2004]), co-occurrence
based models in the early 2010s improved empirical performance for NLP tasks, mo-
tivating a geometric conjecture relating analogies on word pairs to proximity between
the corresponding word vector differences, as advertised in [Pennington et al., 2014].
This conjecture was studied in [Arora et al., 2016] using a connection between scalar
products of word vectors and pointwise mutual information (PMI). Despite the uncertain
nature of the assumptions supporting this conjecture, as discussed in [Khalife et al.,
2019], the property connecting scalar product of word vectors and PMI hold with high
probability at infinity (i.e as the vocabulary size becomes sufficiently large). These prop-
erties popularized several representations obtained with methods as word2vec, GloVe
or other similar co-occurrence based models [Mikolov et al., 2013b, Pennington et al.,
2014, Arora et al., 2017].



2 Sammy Khalife, Douglas S. Gonçalves, and Leo Liberti

Then, to overcome polysemy caused by static word embeddings, the family of
dynamic representations (for which a word can be attributed different vectors, depending
on its context) have gained momentum, also due to the increased use of deep learning
methods. For instance, ELMo [Peters et al., 2018], and BERT [Devlin et al., 2019]
representations are based on bidirectional encoders combined with masked language
models incorporating supplementary information such as position, segment (subword
information) and improved significantly the empirical performance for a variety of NLP
tasks.

Most of these constructions rely on an unconstrained minimization of a loss function
using stochastic gradient descent. In this paper we propose a new method for constructing
word vectors, based on Euclidean Distance Geometry (DG). The fundamental problem
of DG consists in identifying point positions from information about a subset of their
pairwise distances [Liberti et al., 2014]. The DG literature provides several tools to
address this problems in many situations.

More specifically, we use DG based methods in order to develop faster word vectors
construction algorithms. Furthermore, we show empirically that such word vectors
behave well on extrinsic tasks [Melamud et al., 2016] such as text classification.

The rest of this paper is organized as follows. Sect. 2 briefly reviews some DG
concepts useful to devise our algorithms. Sect. 3 describes the word co-occurrence
model and introduce DG methods for word embeddings. These methods are compared
to the state-of-the-art in terms of the training model and computational complexity.
Sect. 4 shows the performance of the methods on intrinsic and text classification tasks.
Conclusions are given in Section 5.

2 Distance geometry

Given an integerK > 0 and a simple, undirected and edge-weighted graph G = (V, E , d)
where d : E → R+, the Distance Geometry problem (DGP, [Liberti et al., 2014]) consists
in finding a map v : V → RK , such that

∀{i, j} ∈ E , ‖vi − vj‖2 = d2ij (1)

where ‖.‖ denotes the Euclidean norm, vi := v(i) ∈ RK , for all i ∈ V , and dij :=
d({i, j}), for all {i, j} ∈ E. Let us denote the number of vertices by n = |V| and the
inner product by 〈·, ·〉. A solution for Eq. (1) is called valid realization.

The DGP is known to be NP-Hard [Saxe, 1979]. The most relevant polynomial time
case is that of complete graphs, which correspond to fully defined Distance Matrices
D = (d2ij). We say that D is an Euclidean Distance Matrix (EDM) when Eq. (1) admits
a solution for some dimension K. In this case we can solve Eq. (1) or determine its
infeasibility by a process similar to Classic Multidimensional Scaling and Principal
Components Analysis (PCA) [Vidal et al., 2016].

Let 1 denote the vector of ones of appropriate dimension. For a square matrix Z,
diag(Z) denotes a vector on the diagonal elements of Z. From the relation between the
inner product and Euclidean norm:

‖vi − vj‖2 = −2〈vi, vj〉+ ‖vi‖2 + ‖vj‖2. (2)
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Assuming that
∑
i vi = 0, we can define a linear isomorphism K from the space of

symmetric centered matrices SC = {Y ∈ Rn×n : Y = Y >, Y 1 = 0} to the space
of symmetric null diagonal matrices SH = {Z ∈ Rn×n : Z = Z>, diag(Z) = 0},
such that D = K(G) whenever Dij = ‖vi − vj‖2 and Gij = 〈vi, vj〉 [Al-Homidan and
Wolkowicz, 2005]. Such a linear transformation is defined by

K(G) = −2G+ 1diag(G)> + diag(G)1>.

Its inverse is given by

K−1(D) = −1

2
JDJ (3)

where J = I − (1/n)11> is known as centering matrix.
Due to this one-to-one correspondence, when all pairwise distances are available,

the problem of finding v : V → RK such that ∀ {i, j}, ‖vi − vj‖2 = Dij is equivalent
to finding v : V → RK such that ∀ {i, j}, 〈vi, vj〉 = Gij .

A remarkable result in DG is Schoenberg’s theorem [Schoenberg, 1935, Gower,
1982, Dokmanic et al., 2015], which states that D is Euclidean if and only if G =
(−1/2)JDJ is positive semidefinite (PSD). Moreover, if G is PSD, then it is a genuine
Gram matrix (matrix of inner products). Let r = rank(G). A solution for Eq. (1) is given
by V =

√
ΛrQ

>
r , where G = QΛQ> is the eigendecomposition of G, Λr is a r × r

diagonal matrix with the top r eigenvalues of G, and the columns of Qr contain the
corresponding eigenvectors. If K ≥ r, V is a solution of Eq. (1). Else, if K < r, we
can choose among the PSD matrices X of rank ≤ K, one that minimizes ‖X −G‖F .
A solution is given by QKΛKQ>K , where ΛK is diagonal with top K eigenvalues of
G and QK ∈ RK×n contains the corresponding eigenvectors in its columns. Thus, an
approximate realization for Eq. (1), in dimension K, is given by V =

√
ΛKQ

>
K .

Last, but not least, if D is not an EDM (e.g. because some dij comes from a noisy
measurement), then G is not PSD. Still, a solution in the least-squares sense is provided

by V + =
√
Λ+
KQ
>
K , where Λ+

K = max(ΛK , 0), where the max(·, ·) is componentwise.
The approximate realization V + is a solution of the following optimization problem

min
V ∈RK×n

‖V >V −G‖2F =
∑
i

∑
j

(〈vi, vj〉 −Gij)2 (4)

where vi is the i-th column of V = (v1 v2 . . . vn).
Since this approach relies on spectral decomposition of a matrix of order n, in

general, its complexity is bounded by O(n3) [Golub and Van Loan, 1996]. See [Demmel
et al., 2007] for better estimates.

3 Methodology

A natural question, which is preliminary to the use of DG methods, is whether there exists
a distance between words that measures their “semantic difference”. Using DG methods,
such a distance, even if only partially defined, would yield a set of word vectors satisfying
the property: (A) two words are semantically correlated if their corresponding vectors
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are close. Here, semantic correlation can be interpreted loosely (e.g synonymy, antonym,
or more complicated forms of semantic correlation). However, a function verifying
the property (A) may not satisfy the distance axioms. Furthermore, as discussed in
[Globerson et al., 2007], co-occurrence rates also do not satisfy metric constraints. It
is more reasonable to consider the statistical nature of the co-occurrence data [Turney
and Pantel, 2010], and to interpret observed object pairs i and as drawn from a joint
distribution that is determined by distances or inner products between vectors of the
underlying low-dimensional embedding.

In this work, similarly to [Globerson et al., 2007], we consider the following model:

p(i, j) ∝ p(i)p(j)e〈vi,vj〉 (5)

where p(i, j) is the probability of finding words i and j in the same window in a
corpus (see Sect. 3.1), p(i), p(j) are the marginal probabilities, and vi, vj ∈ RK are
the corresponding word vectors. This model allows us to devise an approximation for
the inner product based on the PMI. It then makes it possible, using DG methods, to
construct the vectors to be assigned to words.

3.1 Co-occurrences and PMI estimator

A corpus is a set of documents. Each document is a sequence of elements called tokens
whose values are words. The set of all distinct words in the corpus is called vocabulary.
We consider a window of w consecutive tokens which slides over a document. By
convention, windows do not overlap document boundaries. Let W be the number of
windows in the corpus and n the vocabulary size. We denote by B ∈ RW×n a matrix
whose columns are binary vectors Bi ∈ {0, 1}W , for i = 1, . . . , n with components
Bi` such that Bi` = 1 if word i appears in window `, and Bi` = 0 otherwise. We define
the symmetric n × n matrix C = B>B as the matrix of word-word co-occurrence
counts. Notice that Cij = 〈Bi, Bj〉 is the number of windows in which words i and j
co-occur and Cii is the number of windows in which word i appears. Furthermore, the
vectors (Bi)1≤i≤n are sparse and can be efficiently computed in both time and memory.
Recall that p(i, j) is the probability of words i and j appearing together in a window
in a corpus and p(i) =

∑
j p(i, j) and p(j) =

∑
i p(i, j) the marginal sums. Following

[Levy and Goldberg, 2014], we use an information theoretic measure, the pointwise
mutual information PMI(i, j) = log(p(i, j)/(p(i)p(j))) as a measure of association
between words [Church and Hanks, 1990].

Approximating probabilities by relative frequencies, we have

∀{i, j}, p(i, j)

p(i)p(j)
≈ Cij∑

k Ckj
∑
k Cik

∑
k,l

Ckl =: ρij (6)

where Cij is an entry of the co-occurrence matrix. A natural definition for the empirical
PMI matrix is the matrix M whose entries are Mij = log ρij . However, notice that
entries of M corresponding to zero co-occurrences Cij = 0 are not well defined. An
alternative, commonly used in NLP [Church and Hanks, 1990, Levy and Goldberg,
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2014], is to consider the corrected empirical PMI matrix M0, where

M0
ij =

{
log ρij , Cij > 0

0, Cij = 0
(7)

which is, moreover, a sparse matrix. A variant of Eq. (7), also considered in the literature
[Levy and Goldberg, 2014], is the Positive PMI (PPMI): M+ = max(M, 0).

As we shall see in Sect. 3.6, many methods for word embeddings employ PMI(i, j)
as a surrogate model for the inner product 〈vi, vj〉, at least implicitly [Levy and Goldberg,
2014, Arora et al., 2016, Hashimoto et al., 2016]. Since there is no evident reason for
∀i < j; 〈vi, vj〉 ≥ 0, and, in view of model in Eq. (5), we choose Eq. (7) instead of the
PPMI matrix.

3.2 Geometric Build-up

In Sect. 2, we saw that if all pairwise squared distances d2ij are available, then we can
solve Eq. (1) by computing an eigendecomposition in O(n3) operations. It is sometimes
possible to do better than O(n3). Assume the graph G admits a vertex order such that:
(i) the first m ≥ K + 1 vertices form a clique; (ii) for all other vertices i > m, vertex i
has at least K + 1 adjacent predecessors. Then a solution to the corresponding DGP
can be found in linear time [Dong and Wu, 2002]. Such vertex orders, also known as
(K + 1)-lateration orders [Cassioli et al., 2015], can be found in polynomial time by a
greedy algorithm [Lavor et al., 2012].

For i > m, let δ(i) ⊂ U(i) := {j ∈ V : {j, i} ∈ E ∧ j < i} be a subset, of size
M ≥ K+1, of the set U(i) of adjacent predecessors of i, with “<” being defined by the
vertex order. Let us call vertices in δ(i) the reference vertices. The first m vertices can
be realized using the process described in Sect. 2, leading to a cost O(m3). Assuming
|δ(i)| = K + 1, for every i > m, then, following the vertex order, the position of every
other vertex i = m+ 1, . . . , n can be found by solving the quadratic system:

∀j ∈ δ(i), ‖vj − vi‖2 = d2ji (8)

where δ(i) = {j1, . . . , jK+1} and vj1 , . . . , vjK+1
are the position vectors of K + 1

adjacent predecessors of vertex i. It is not hard to show that when Eq. (8) admits
a solution, it coincides with the one of a K × K linear system Ax = b, where A
is nonsingular, provided vj1 , . . . , vjK+1

are affinely independent. See [Dong and Wu,
2002, Liberti et al., 2014] for further details.

This approach is known in the DG literature as Geometric Build-Up (GBU) [Dong
and Wu, 2002, Wu and Wu, 2007]. The total cost of GBU is given by O(m3) + (n−
m)O(K3), if the involved matrices show no special structure. In the following, we
discuss our DG methods for word embeddings, which are based on this idea. We assume
that an (K + 1)-lateration vertex order is given.

3.3 GBU with inner products and fixed references

If all pairwise distances between vertices in δ(i) ∪ {i} = {j1, . . . , jM , i}, with M ≥
K + 1, are known, then, in view of Eq. (2), the system in Eq. (8) is equivalent to

∀j ∈ δ(i), 〈vj , vi〉 = Gij (9)
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where Gij denotes an entry of the Gram matrix G which, if not directly available, can
be computed from the linear isomorphism between distance and Gram matrices, i.e by
applying Eq. (3) to a submatrix of D containing the squared distances corresponding to
the subset of vertices δ(i) ∪ {i}. Notice that Eq. (9) is also a linear system of the form
Ax = b, with A> = (vj1 . . . vjM ) ∈ RK×M and b = (Gj1,i, . . . , GjM ,i)

>.
Let us suppose that the reference vertices for every vertex i > m ≥ K + 1 are

fixed as δ(i) = {1, . . . ,K + 1, . . . ,m}. In this case, in the linear system of Eq. (9),
although the right hand side vector b = (G1,i, . . . , Gm,i)

> changes in function of i, the
coefficient matrix A> = (v1 . . . vm) is the same for every i > m. Thus, concerning
the solution of linear systems Avi = bi, for i = m+ 1, . . . , n, we can factor the matrix
A ∈ Rm×K only once and exploit its factorization to actually solve triangular systems
of order K for each i > m. Recall that the least-squares solution of an overdetermined,
full-rank system of linear equations Ax = b, i.e x that minimizes ‖Ax− b‖2, is given
by the solution of the triangular system Rx = Q>b, where A = QR, with R ∈ RK×K
and Q ∈ Rm×K is the “economy size” QR decomposition of A.

This scheme leads to a cost of O(m3) + (n−m)O(K2), where the first submatrix
of G of order m is realized using spectral decomposition (see Sect. 2), followed by QR
decomposition of A = (v1 . . . vm)>, and the positions of the remaining n−m vertices
are found by solving the triangular systems Rx = Q>bi, for i = m+ 1, . . . , n.

3.4 Vertex order and loss function

Usually DGP graphs arising from many problems are quite sparse in practice. Even if
they admit a (K + 1)-lateration order, the set of reference vertices δ(i) usually changes
for each i > m ≥ K+1. However, when the underlying graph G is complete, any vertex
order is in fact a (K+1)-lateration order. We remark that this is our case, since we know
all of the entries of the co-occurrence (or empirical PMI) matrix, from which we obtain
the adjacency information. Thus, we are able to apply GBU with fixed references from
Sect. 3.3, where δ(i) = {1, . . . ,m}, for every i > m ≥ K + 1.

Therefore, in the GBU-based methods discussed in this paper, the proposed vertex
(word) orders are simply aimed at improving the quality of the word vectors. These
orders will determine which entries of the Gram matrix G (≈ PMI matrix) are taken
into account in the GBU method. Thus, in the objective function of Eq. 10, the vertex
order determines the weight of the terms (〈vi, vj〉 −Gi,j)2 in the objective Eq. 10: 1 for
edges {i, j} used in the sequential build-up process and 0 for the others. This leads to
the unconstrained optimization problem

min
V ∈RK×n

m∑
i=1

m∑
j=i+1

(〈vi, vj〉 −Gij)2 +
n∑

i=m+1

∑
j∈δ(i)

(〈vi, vj〉 −Gij)2 (10)

wherem ≥ K+1 is the size of the initial clique. We remark that, when |E| = n(n−1)/2
and δ(i) = U(i), problem (10) is equivalent to (4).

3.5 Divide and conquer (DC)

Given a Gram matrix G ∈ Rn×n, the DC method consists in the two following steps:
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• Divide: consider submatrices Gi (for i ≤ P ) of G, each having size ni × ni, such
that the following conditions hold. (i) Each Gi is centered along the diagonal; (ii) Gi and
Gi+1 have at leastK+1 points in common indexed by Ii; (iii)

∑P−1
i=1 (ni−|Ii|)+nP = n.

Each submatrix defines a DGP sub-instance. Each such sub-instance is solved with a
method such as matrix factorization or GBU to realize the corresponding points.
• Conquer (Merge): after the solution of each sub-instance, we have to combine the

partial realizations consistently in order to obtain a realization of the whole graph. This
operation is carried out sequentially as follows. The solution of the first sub-instance is
saved. Then, for an instance i+ 1, for i ≥ 1, the number I of common points between
sub-instances i and i+1 must be at least K+1 in order to define unique translations and
rotations for the common points to be aligned. Let Xi+1 be the current solution obtained
in the divide step, Vi ∈ RK×ni be aligned vectors obtained at the previous step i, and
let A(:, j) denote the j-th column of a matrix A. Then Xi+1 can be aligned by using
Procrustes analysis [Schönemann, 1966]: the best alignment rotation Q̂i and translation
T̂i are

Q̂i, T̂i = argmin
Q∈Od,T∈Rd

I∑
k=1

‖Vi(:, ni − I + k)− (QXi+1(:, k) + T )‖22. (11)

The aligned vectors are then given by Vi+1 = Q̂iVi + T̂i 1>.

3.6 Relationship with other PMI-based methods

In this section, we perform a theoretical comparison between the DG methods proposed
in this paper and other word embedding methods. To assess similarities and differences
between them, we analyze their underlying optimization problems.

We recall that the empirical PMI matrix M0, defined by Eq. (6) and Eq. (7), is used
as an approximation of the Gram matrixG [Levy and Goldberg, 2014, Arora et al., 2016].

PMI-eigs. Word vectors obtained from the spectral decomposition of the empirical
PMI matrix M0 have been used in NLP literature [Levy and Goldberg, 2014]. In view
of Eq. (4), these word vectors are obtained from

min
V ∈RK×n

‖V >V −M0‖2F =
∑
i

∑
j

(〈vi, vj〉 −M0
ij)

2. (12)

The solution of Eq. (12) is constructed from the top K eigenpairs of M0 as discussed in
Sect. 2. Due to the sparsity of M0 ∈ Rn×n, such eigenpairs are usually computed by
an Implicitly Restarted Lanczos method (IRLM) [Sorensen, 1992] as implemented in
the Matlab routine eigs. Its cost per iteration is given by qγn+ (6K + 9)qn+ 4q2n+
2K2n + O((K + q)3), where q is the number of shifts and γ is the average number
of nonzero elements of rows of M0, see [Lehoucq et al., 1998] for more details. If we
denote m̃ = K + q, then the above cost is (m̃−K)γn+ nO(K2) +O(m̃3).
GBU. By considering the GBU method of Sect. 3.3 with m fixed references, where
δ(i) = {1, . . . ,m}, for all i > m, we aim at solving the optimization problem (10),
with M0

ij in place of Gij . In this case, the objective function is similar to (12), but the
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sum is not over all pairs {i, j}, but only those implied by the vertex order. For GBU, we
consider a vertex order in which words are sorted in decreasing order of frequency in the
corpus.

DC. The underlying objective function of DC is a variation of (12) but summing over
the pairs {i, j} corresponding to rows and columns of at least one of the submatrices
M0

1 ≈ G1, . . . ,M
0
P ≈ GP in the divide step. Concerning the vertex order, in DC we

have ordered the vertices by decreasing coreness. The coreness of a vertex is defined
as the maximum k such that it belongs to a k-core and not to a (k + 1)-core, where a
k-core is the maximum cardinality subgraph such that each vertex has an induced degree
at least k. Computing k-cores can be done in linear time [Batagelj and Zaversnik, 2003].

Notice that the above methods try to fit the inner products 〈vi, vj〉 to the empirical
PMI M0

ij . In [Arora et al., 2016], the relation between 〈vi, vj〉 and PMI(i, j) is studied
based on a generative model, whereas in [Hashimoto et al., 2016] the authors suggest
that when the corpus size tends to infinity, for a window of size w sufficiently large,
for each {i, j}, there exist ai e bi, such that ‖vi − vj‖2 ≈ − log(Cij)− ai − bj . Both
models claim to be consistent with matrix factorization methods [Levy and Goldberg,
2014] and others based on regression [Pennington et al., 2014] under certain assumptions.

GloVe. In [Pennington et al., 2014], the goal is to find an embedding v : V → RK , by
solving a weighted least-squares regression problem

min
v,â,b̂

∑
i

∑
j

f(Cij)
(
〈vi, vj〉+ âi + b̂j − log(Cij)

)2
(13)

where f(Cij) = min(Cij , 100)
3/4. Therefore, if â and b̂ were known, one could see

(13) as a variant of (12) weighted by f(Cij), by using Gij ≈ log(Cij) − âi − b̂j .
Furthermore, for âi = log(Ci/

√
S) and b̂j = log(Cj/

√
S), where Ci =

∑
j Cij and

S =
∑
i

∑
j Cij , we have Gij ≈M0

ij = log ρij , for Cij > 0, i.e our empirical approx-
imation for PMI(i, j). Whenever Cij = 0, the corresponding term does not appear in
Eq. (13), but in Eq. (10), it may contribute to the objective function if either the pair
{j, i} is in the initial clique or j ∈ δ(i).

fastText. In [Bojanowski et al., 2017], an extension of the skip-gram with negative
sampling (SGNS) [Mikolov et al., 2013a] is proposed. This extension takes into account
the morphology of words: a vector representation is associated to each character s-gram
and words are represented as the sum of these vectors. It was shown in [Levy and Gold-
berg, 2014] that, under certain assumptions, SGNS corresponds to a matrix factorization
problem whose objective is to factor a shifted PMI matrix.

Therefore, all the methods discussed in this section are somehow associated, at least
implicitly, to a weighted factorization problem where the matrix to be factored is some
variant of the PMI matrix.
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Table 1. Computational complexity for several word vectors realization algorithms

Method Complexity

PMI-eigs O((nK2 + m̃3)niter)
GBU (fixed references) O(m3 + (n−m)K2)

Divide and conquer (DC) O(
∑P

i=1(niK
2 + m̃3

i )n
′(i)
iter + (K + 1)3(P − 1))

GloVe O(p0.8nepochsK)

3.7 Complexity analysis

The complexity of the co-occurrence based methods discussed in the previous section
are summed up in Table 1. Recall that n = |V| is the size of the vocabulary and
K the dimension. Computation of the top K eigenpairs of the PMI matrix requires
O((nK2 + m̃3)niter), where niter is the number of Implicitly Restarted Lanczos method
(IRLM) iterations, and m̃ = K + q, where q is the number of shifts, discussed in
Sect. 3.6. For the DC method, n′(i)iter represents the number of iterations to solve each sub-
instance i using IRLM. We consider exactlyK+1 anchors (also for our experiments), i.e
|I1| = ... = |IP−1| = K + 1. Finally, it should be noted that usually n′iter � niter hence
PMI-eigs complexity is not necessarily lower. The number of shifts q, qi is internally set
in the implementation of eigs in Matlab and it is difficult to estimate, even though it is
likely that K ≤ q � n and K ≤ qi � ni. Besides, the number of iterations n′iter, niter
depends on the distribution of the eigenvalues of the corresponding matrices. For these
reasons, we do not know how to compare their theoretical complexity. However, we will
compare their empirical running times in Sect. 4.

The complexity study for Glove is detailed in [Pennington et al., 2014, Sect. 3.2]
and indicates O(p0.8nepochs) where p is the total number of tokens in the corpus, and
nepochs the number of epochs of the stochastic gradient descent [Carpentier and Cohen,
2017, Bottou et al., 2018]. For a fair comparison with other methods, this complexity
also depends linearly on the dimension. For the first three methods of Table 1, the
dimension seems to be a drawback, but their complexities are good in practice. For
example, for a corpus composed of p = 2.66× 108 tokens (corpus described in Sect. 4),
nepochs = 15 (standard corpus size and parameters), containing about n = 105 different
words, dimension K = 50, with m = 200 references, we have CGlove = p0.8nepochsK ≈
4.13× 109 and CGBU = m3 + (n−m)K2 ≈ 2.50× 108.

These complexity estimates are consistent with running times in our experiments.
It should be noted that these estimates do not take pre-processing of the corpus into
account, which is O(p) in all cases: this corresponds to one pass through the corpus in
order to construct the vocabulary, and possibly ignore low-frequency terms.

4 Experiments

To construct our word vectors, we used a corpus of 106 documents from Wikipedia
2016, which we cleaned using standard pre-processing methods in NLP (stop words and
punctuation removal). The corpus is composed of 266561061 tokens and 81653 distinct
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words. We used a window size of w = 10. We provide two experimental evaluations of
our word vectors. First, an intrinsic evaluation of word vectors, using QVEC [Tsvetkov
et al., 2015], which was shown to have good correlation with the performance of the
word vectors on semantic evaluation tasks, based on alignment of features extracted from
lexical resources. These evaluations are reported in Table 2. Second, we evaluate the
quality of these representations over three text classification tasks compared with other
word vectors. Our implementation includes 3 datasets: WebKb (Multiclass), Subjectivity
(Binary) and Amazon (Binary). Results are reported in Table 3. We compare with a
baseline of random word vectors whose components are drawn from a standard Gaussian.
For our classification experiments, we use an implementation of a Convolutional neural
network (CNN) [Kim, 2014] using Tensorflow library [Abadi et al., 2016] version 1.123.
We also compare with bidirectional encoders (BERT).

Table 2. Intrinsic evaluation (QVEC). First and second best are in bold and underline, respectively.

Representation K = 50 K = 100 K = 200

Random 9.59 14.89 21.82
GBU (m = M = 4K) 22.72 30.01 37.41
DC (n1 = 20000, ni≥2 = 800) 26.83 34.21 41.42
PMI-eigs 29.20 36.55 43.74
Glove 28.22 35.43 42.06
fastText 28.17 36.06 43.51

Table 3. F1 score - Text classification. First and second best are in bold and underline, respectively.

K = 50 K = 100 K = 200
Representation Subject WebKB Amazon Subject WebKB Amazon Subject WebKB Amazon

Random 77.07 90.01 74.96 80.09 91.12 74.26 81.34 91.84 76.33
GBU (m = M = 4K) 87.67 92.33 79.65 88.21 93.04 80.58 88.05 93.68 81.39
DC (n1 = 20000, ni≥2 = 800) 87.87 91.42 81.97 87.86 92.03 80.61 88.28 92.65 82.49
PMI-eigs 87.85 91.67 79.23 88.17 92.19 80.0 88.10 92.52 81.86
Glove 86.34 92.99 79.35 87.96 93.07 79.75 87.62 93.24 79.76
fastText 87.65 92.84 78.67 87.71 93.37 80.64 88.02 93.57 81.57
BERT + fine tuning 91.19 91.56 84.28 91.19 91.56 84.28 91.19 91.56 84.28

We provide some practical computing times, in the line of our complexity study. The
word vectors and corresponding times for PMI-eigs, GBU and DC were generated using
Matlab [v.2018.b], running on a CPU of 2 cores Intel(R) Core i5 1.8Ghz with 8 Gb of
Ram. GloVe and fastText were compiled in the same machine using GCC Apple LLVM
version 10.0.0 (clang-1000.10.44.4).

3 We noticed a significant drop of performance when using version 2.1, the reasons remain
unknown.
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Table 4 reports the times for obtaining the word vectors (left) only, for dimensions
K = 50, 100, 200, and the total time including the CNN training for K = 200 (right);
parsing time is not included. Besides, for PMI-eigs, DC and GBU, we added the time for
computing the matrix M0 from co-occurrence counts (≈ 120s) and for DC and GBU we
also consider the time for computing the corresponding vertex order (≈ 90s and ≈ 30s,
respec.). The parameters used in GBU were M = m = 4K and the ones of DC were
n1 = 20000 and np≥2 = 800. For GloVe and fastText we kept the default parameters
from the official code.

Table 4. Computing times (Left: Word Vectors, Right: Total). First and second best are in bold
and underline, respectively. NA: BERT embeddings are trained only for the end-task (right table).

Dimensions Datasets
Representations 50 100 200 Represent. + Classif. Subject Amazon WEBKB

Glove 44m 1h07m 2h07m Glove + CNN 7815s 8640s 9120s
fastText 26m 30m 48m fastText + CNN 3075s 3900s 4380s
PMI-Eigs 284s 412s 836s PMI-Eigs + CNN 1031s 1856s 2336s
DC (n1 = 20000, ni≥2 = 800) 307s 348s 452s DC + CNN 602s 1368s 1952s
GBU (m = M = 4K) 159s 168s 188s GBU + CNN 383s 1208s 1688s
BERT NA NA NA BERT + fine tuning 663s 3260s 4647s

From Table 4 we observe that the training times for the DG based methods are
remarkably smaller than those of standard word vectors construction (and also than
the training time of bidirectional encoders such as BERT). They also improve the
computational time with respect to the spectral decomposition of the PMI matrix. The
price to be paid for these extremely fast word vectors, whose performance in text
classification is close to the state-of-the-art (Table 3), is possibly a slightly inferior
performance in intrinsic tasks (Table 2).

5 Conclusion

We proposed a formulation based on the Distance Geometry (DG) problem to generate
word vectors. The resulting Geometric Build-up and Divide and Conquer algorithms are
considerably faster than state-of-the-art algorithms, as GloVe and fastText.

The word vectors obtained by DG methods have performance close to state-of-the-art
in our intrinsic evaluation (QVEC). Also, combined with a convolutional neural network,
DG word vectors lead to F1 scores close to those of BERT in three text classification
tasks, but demanding about half to a quarter of the computing time, depending on the
dataset.

We believe there are two possible ways to extend this work. The first one is to
enrich the information in order to construct context-aware and out of training samples
representations, which would help to address other NLP problems. A potential way
to address their construction would be to consider “multichannel” distance geometry,
stacking different distances (or a corresponding scalar product) in different channels, and
solve the different instances in order to obtain a family of realizations. An example of
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channel could correspond to subword information (subword similarities), or information
from other networks (e.g dictionaries, reference networks [Niwa and Nitta, 1994]).

Second, the employed DG algorithms to obtain word vectors scale well with the vo-
cabulary size and dimension. Therefore, Distance Geometry seems a promising paradigm
not only for natural language processing but also for representation learning for other
tasks, such as graph classification or other applications in machine learning.

Broader Impact

1 - NLP

The superior speed of our proposed methodology goes towards the aim of rapidly gener-
ating word embeddings from given corpora relating to specific applications. Contextual
word embeddings (ELMo, BERT) have significantly improved performance for many
NLP tasks recently. However, these models have been minimally explored on specialty
corpora, such as clinical text, as reported in [Alsentzer et al., 2019]. In such cases,
there is no publicly-available pre-trained BERT models. A first possibility is to retrain
contextualized word embeddings on the new corpus, which can turn out to be time
consuming. In this context, representations which can be trained much faster with a
negligible quality loss can turn out to be useful. In particular, we showed in this paper that
DG based (non contextual) word embeddings have this property, and are also competitive
on general NLP classification tasks. These preliminary results motivate us to investigate
the construction of contextualized representations with DG by capitalizing on the time
gain.

2 - DG and Machine Learning

In machine learning, DG represents a different paradigm for representation learning
based on distances between objects. The advantages of DG over standard metric-based
representation learning are

a) only a proportion of distances is required to obtain realizations, e.g standard
methods such as GBU require only O(κn), where n is the number of objects and κ is a
constant such that κ� n.

b) the existence of scalable algorithms in several situations, and a dedicated literature
with theoretical guarantees.
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