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Abstract. Recently several models have been developed to reduce the
annotation effort which is required to perform semantic segmentation.
Instead of learning from pixel-level annotations, these models learn from
cheaper annotations, e.g. image-level labels, scribbles or bounding boxes.
However, most of these models cannot easily be adapted to new anno-
tations e.g. new classes since it requires retraining the model. In this
paper, we propose a similarity measure between pixels based on a mu-
tual information objective to determine whether these pixels belong to
the same class. The mutual information objective is learned in a fully
unsupervised manner while the annotations (e.g. points or scribbles) are
only used during test time. For a given image, the unlabeled pixels are
classified by computing their nearest-neighbors in terms of mutual infor-
mation from the set of labeled pixels. Experimental results are reported
on the Potsdam dataset and Sentinel-2 data is used to provide a real
world use case where a large amount of unlabeled satellite images is
available but only a few pixels can be labeled. On the Potsdam dataset,
our model achieves 70.22% mIoU and 87.17% accuracy outperforming
the state-of-the-art weakly-supervised methods.

Keywords: Mutual information maximization · Weakly supervised learn-
ing · Similarity measure · Image Segmentation · Satellite datasets.

1 Introduction

Most of the successful models for semantic segmentation rely on a supervised
learning approach [17]. Even though these models achieve remarkable results,
the effort of collecting carefully annotated data to train these models make
them impractical to use in many contexts. Generally, these models require a
training dataset composed of images with pixel-level annotations, e.g. a class
label is assigned to every pixel in the image. The task of labeling images is
very time-consuming, e.g. the reported time to segment a single image from the
PASCAL VOC 2012 dataset is around 240 seconds [2]. Consider the particular
case of satellite data, many missions have been launched to observe the Earth
producing massive amounts of satellite images which are absolutely impossible
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to be annotated by human operators. For example, each of the Sentinel-2 mission
satellites [6] provides up to 1.6TB of images per day.

Different methods have been developed to reduce the need of carefully pixel-
level annotations for large-scale data analysis. These methods propose a weakly
supervised approach for semantic segmentation where the required annotations
are less tedious to obtain than pixel-level annotations such as image-level anno-
tations [13], points [2], scribbles [16] or bounding boxes [14]. These annotations
are included during the training stage for learning semantic segmentation mod-
els. As a consequence, these models are not easily adaptable to new annotations
(e.g. to refine the segmentation results or add new class labels) since retraining
the models using these new annotations is required. For this purpose, few-shot
learning techniques for semantic segmentation have been proposed [25] but it still
requires a significant number of labeled samples from seen classes to perform well
on unseen classes. Additionally, these methods often produce suboptimal results
without providing the user with an interactive way to make corrections without
the need to retrain the model.

Recent work has focused on mutual information estimation and maximization
to perform representation learning in an unsupervised manner [3, 9, 19, 20]. The
main goal of these unsupervised approaches is to capture the most salient at-
tributes of data to perform downstream tasks using the learned representations.
Extensions of the previous models have been proposed using a self-supervised
approach in order to capture the shared attributes from multiple views of a
common context [1, 22, 24]. We think that designing a self-supervised task to
learn suitable representations for semantic segmentation is an appealing idea.
In particular, our work is inspired by these models [1, 9, 22] to learn a similarity
measure without supervision.

In this work, we take a step forward and propose a model that performs
semantic segmentation by computing the similarity between pixels based on
a mutual information approach without requiring annotations during training.
Using an ideal similarity measure as distance metric, pixels belonging to the
same class are close while simultaneously distant from pixels belonging to other
classes. A very few pixel-level annotations are only used during test time. Our
model computes the mutual information similarity between labeled pixels and
unlabeled pixels and then performs a per-pixel nearest-neighbor search from the
set of labeled pixels to classify the unlabeled pixels.

Our model provides several advantages. First, there is no need to retrain
our model when new annotations are included since the similarity measure is
learned using an unsupervised learning approach. Second, our model requires
a small amount of annotated data which can be acquired in multiple formats
e.g. points, scribbles, bounding boxes. Third, we propose a simple neural net-
work architecture that achieves competitive semantic segmentation results while
keeping a reasonable processing time.

The following contributions are made in this paper:
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• We propose a model that combines a similarity measure based on mutual
information between pixels using self-supervised techniques [1, 9, 22] and a
nearest-neighbor search to perform semantic segmentation.

• We show that excellent results can be achieved by labeling less than 0.75%
of the total number of pixels in an image.

• We present quantitative results for image segmentation on the Potsdam
dataset [12] outperforming the state-of-the-art weakly-supervised methods
and qualitative results on Sentinel-2 data [6] to show a real world use case.

• We analyze the impact of using multiple views via data augmentation tech-
niques [1] on the segmentation performance and we perform an ablation
study to evaluate the contribution of each element of the model.

2 Related work

Image segmentation Exceptional results have been achieved by fully super-
vised models on semantic segmentation [17]. To reduce the annotation effort
required by supervised learning settings, several methods have been proposed
which use cheaper annotations e.g. points [2], scribbles [16], image annota-
tions[13] or bounding boxes [14]. Labels provided by points or scribbles are then
propagated to unlabeled pixels during training [2, 16]. The main drawback is
that these models are not easy to adapt to new annotations for refining the seg-
mentation results or adding new class labels as it requires retraining the whole
model. GrabCut [21] performs interactive image segmentation using a bound-
ing box to separate foreground and background. On the other hand, Khoreva
et al. [14] propose a semantic segmentation method requiring a costly recursive
training where bounding boxes are refined iteratively. Recent work has been pre-
sented [25] to segment classes containing few labels in the dataset. However, this
method still requires many training examples from the known classes to perform
well on the unknown classes.

Self-supervised learning In contrast to the prevalent paradigm based on
generative or reconstructive models, recent work has been focused on mutual in-
formation maximization for representation learning. These models maximize the
mutual information between an input and its representation. Mutual informa-
tion is computed using different estimators based on the Kullback–Leibler [3],
Jensen-Shannon [9], Wasserstein [20] divergences or noise-contrastive estima-
tion[19]. Interesting extensions of these mutual information based frameworks
have been presented to capture the common attributes from paired images [1,
22, 24]. Learning representations that capture the most significant attributes of
an image from multiple views is useful for semantic segmentation.

Deep metric learning Measuring the similarity between pixels is a useful
tool for image segmentation since similar pixels under a given criterion belong
to the same class while dissimilar pixels belong to different classes. Generally,
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raw pixels are mapped to a representation space by a deep neural network and
then similarity between pixels is computed in the representation domain [5, 8,
23]. For instance, Sun et al. [23] propose a neural diffusion distance to perform
segmentation. However, it requires labeled data during training to be consistent
with a human criterion. For video segmentation, Chen et al. [5] propose a metric
based on the triplet loss [4] which is trained in a supervised manner.

In this paper, we propose a model that performs image segmentation in a
weakly-supervised setting. The segmentation procedure is split into two stages.
First, the model learns a mapping function from the pixel domain to a represen-
tation domain which captures relevant attributes for image segmentation using a
mutual information based framework that combine the approaches [1, 22]. After
training the mapping function, we use a mutual information objective to measure
the similarity between pixels. In contrast to the models [5, 8, 23], the similarity
measure is learned in a completely unsupervised manner. Second, our model
computes the mutual information similarity between labeled pixels provided by
an operator and unlabeled pixels and then performs a per-pixel nearest-neighbor
search from the set of labeled pixels to propagate the labels to unlabeled pixels.
The labeled pixels are only used during test time instead of training time like
the models [2, 13, 14, 16].

3 Background

3.1 Mutual information

The mutual information between two random variables X ∈ X and Z ∈ Z is
defined in Equation 1 where p(x, z) is the joint probability density function of
X and Z while p(x) and p(z) are the marginal probability density functions of
X and Z, respectively.

I(X,Z) =

∫
X

∫
Z
p(x, z) log

(
p(x, z)

p(x)p(z)

)
dxdz (1)

It is straightforward to see that I(X,Z) is defined as the Kullback-Leibler di-
vergence between the joint probability distribution PXZ and the product of the
marginal distributions PXPZ , i.e. I(X,Z)=DKL (PXZ ∥ PXPZ). Generally, com-
puting the mutual information between high dimensional variables is a difficult
task since the distributions PXZ and PXPZ are unknown. Thus, some methods
based on deep neural networks have recently been proposed [3, 9, 19, 20].

3.2 Representation learning

Equation 1 can be used as objective for unsupervised learning where X is a
variable corresponding to a given input (image, speech, text, etc) and Z is the
representation of X. The representation Z is extracted by an encoder function
defined by a deep neural network of parameters ψ, Eψ : X → Z, i.e. Z = Eψ(X).
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The Deep InfoMax framework [9] proposes a mutual information estimator
Î(X,Z) based on the Jensen-Shannon divergence instead of the Kullback-Leibler
divergence, i.e. I(JSD)(X,Z) = DJS (PXZ ∥ PXPZ).

Intuitively, let Xi and Xj be two observations of X. Let Zi and Zj be the
representations ofXi andXj respectively extracted via Eψ. Therefore, (Xi, Zi) is
an input-representation pair sampled from the joint probability density function
p(x, z) while (Xi, Zj) is an input-representation pair sampled from the product
of the marginal probability density functions p(x)p(z).

We define a discriminator function defined by a deep neural network of pa-
rameters ρ, Dρ : X × Z → [0, 1] which represents the probability of a sample
(X,Z) coming from p(x, z) instead of p(x)p(z), i.e. the probability that Z is the
representation of X. The discriminator Dρ and the encoder Eψ are trained to as-
sign a high probability to samples from p(x, z) (close to 1) and a low probability
to samples from p(x)p(z) (close to 0) as shown in Equation 2.

max
Eψ,Dρ

Î(X,Z) = Ep(x,z) [logDρ(X,Z)] + Ep(x)p(z) [log (1−Dρ(X,Z))] (2)

By redefining the discriminator function [18] Dρ(X,Z) = e−Tθ(X,Z)

1+e−Tθ(X,Z) where

Tθ : X×Z → R is called the statistics network, we obtain the mutual information
objective proposed by the Deep InfoMax framework [9] in Equation 3.

max
Eψ,Tθ

Î(X,Z)=Ep(x,z)
[
− log

(
1+e−Tθ(X,Z)

)]
−Ep(x)p(z)

[
log

(
1+eTθ(X,Z)

)]
(3)

Two mutual information objectives are proposed in the Deep InfoMax frame-
work. Maximizing the mutual information between an input X and a repre-
sentation Z is called global mutual information, i.e. Lglobal

θ,ψ (X,Z) = Î(X,Z).
Additionally, maximizing the mutual information between patches of the image
X represented by a feature map Cψ(X) of the encoder Eψ and a feature represen-

tation Z is called local mutual information i.e. Llocal
ϕ,ψ (X,Z) =

∑
i Î(C

(i)
ψ (X), Z).

4 Method

In this paper, we propose a model that combines the mutual information based
methods [1, 22] to learn a suitable representation domain to measure the simi-
larity between pixels. Our model is trained in a fully unsupervised manner by
leveraging large amounts of unlabeled data. Sanchez et al. [22] extends the Deep
InfoMax framework to separate the common information and the exclusive infor-
mation for paired images. Bachman et al. [1] use the Deep InfoMax framework
to perform self-supervised representation learning by maximizing the mutual
information between representations extracted from multiple views of a shared
context, e.g. the context is provided by an image and the multiple views are
generated via data augmentation techniques. Learning the common information
between images [1, 22] provides a way to compute how similar these images are.
In Section 4.1, we present the mutual information objective to learn the similar-
ity measure and we explain how to use this similarity measure to perform image
segmentation in Section 4.2.
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4.1 Shared mutual information

To create a suitable representation domain for image segmentation, we propose
to capture the common information between images of the same context (e.g.
satellite images from the same forest) into a shared representation. By removing
the particular information of each image, we create a representation that distills
the class information which is useful for image segmentation. We propose to
learn this shared representation by using the principle presented in [1, 22]. Let
X and Y be two images of the same context and let SX and SY be the respective
shared representations extracted by an encoder Eψ. In order to enforce learning
only the common information between images X and Y , the methods [1, 22]
maximizes the mutual information between the image X and the representation
SY and similarly, between the image Y and the representation SX . In order to
create pairs of images of the same context, we follow the approach of Bachman
et al. [1] and we use data augmentation techniques (rotation, flip, pixel shift,
color jitter) to create a second image from a given image, i.e. X = f(Y ) where
f is a data augmentation function. We use the objective function proposed by
Sanchez et al. [22] since it is simpler to optimize. Equations 4 and 5 displays the
global and local mutual information maximization objectives.

Lglobal
MI (X,Y ) = Lglobal

θ,ψ (X,SY ) + Lglobal
θ,ψ (Y, SX) (4)

Llocal
MI (X,Y ) = Llocal

ϕ,ψ (X,SY )+Llocal
ϕ,ψ (Y, SX) (5)

Sanchez et al. [22] also includes a L1 constraint to force the shared represen-
tations to be identical as shown in Equation 6. The final objective function is
displayed in Equation 7, where α, β and γ are constant coefficient.

L1(X,Y ) = Ep(sx,sy) [|SX − SY |] (6)

max
ψ,θ,ϕ

Lshared = αLglobal
MI (X,Y ) + βLlocal

MI (X,Y )− γL1(X,Y ) (7)

4.2 Mutual information as similarity measure

Similarly to Chen et al. [5], we perform per-pixel retrieval to find the closest
pixel from the reference pixel set using the learned representations. A k-nearest-
neighbors approach is used to determine the class of unlabeled pixels by prop-
agating the information from labeled pixels. A common way of computing the
distance between pixels is to measure the L1 or L2 distance between their cor-
responding representations [5]. Alternatively, we propose to use the global and
local mutual information objectives introduced in Section 3.2.

During training, the mutual information objective is computed using an im-
age X and a different view of X generated via data augmentation techniques,
i.e. Y = f(X). In contrast, during test time the mutual information objective
is computed using two different images. Let Xi and Xj be two image patches
centered at the pixels i and j respectively and let SXi and SXj be the shared
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Input X

Conv 0 (k=3, f=64, BN, leaky ReLU)

Conv 1 (k=3, f=128, BN, leaky ReLU)

Conv 2 (k=3, f=256, BN, leaky ReLU)

Conv 3 (k=3, f=512, BN, leaky ReLU)

Conv 4 (k=1, f=zdim, no norm., no act.)

Output

Input F = Cψ(X)

Conv 0 (k=3, f=1024, no norm., leaky ReLU) Input Z = Eψ(X)

Concatenate [Flatten Conv 0, Z]

Dense 0 (units=512, no norm., ReLU)

Dense 1 (units=512, no norm., ReLU)

Dense 2 (units=1, no norm., no act.)

Output

Input F = Cψ(X) Input Z = Eψ(X)

Concatenate [Input F , Tile Z]

Conv 0 (k=1, f=512, no norm., ReLU)

Conv 1 (k=1, f=512, no norm., ReLU)

Conv 2 (k=1, f=1, no norm., no act.))

Output

a) Encoder network Eψ b) Global statistics network Tθ c) Local statistics network Tφ

Fig. 1. Network architecture. The encoder and statistics networks are implemented
using convolutional and dense layers defined by the number of units, k: kernel size,
f : feature maps, BN: batch normalization [11] and activation function. The statistics
networks and the encoder share weights: the input F of the statistics network is the
output of the Conv 2 layer of the encoder, Cψ(X).

representations provided by the encoder function. The similarity between pixels
i and j is measured by computing Lglobal

θ,ψ (X,SX) and Llocal
ϕ,ψ (X,SX).

After training, our model is capable to predict whether a shared represen-
tation SXi corresponds to the image Xi. Since the shared representation SXi
contains the class information of Xi, it provides a means to identify pixels be-
longing to the same class of Xi. For example, consider that Xi and Xj are
two different images (e.g. a satellite image from an urban area and another

from an agricultural area), the mutual information objective Lglobal
θ,ψ (X,SX) (or

Llocal
ϕ,ψ (X,SX)) achieves a high score since it is easy to distinguish both images.

On the other hand, suppose that Xi and Xj are two similar images (e.g. satellite

images from the same forest), the mutual information objective Lglobal
θ,ψ (X,SX)

(or Llocal
ϕ,ψ (X,SX)) achieves a low score since it is hard to distinguish the images.

4.3 Implementation details

Our model is composed of three deep neural networks: the encoder Eψ, the
global statistics network Tθ and the local statistics network Tϕ. The architecture
details are provided in Figure 1. Every network is trained from scratch by using
randomly initialized weights. To optimize the objective Lshared defined in Equa-
tion 7, we use the Adam optimizer with a learning rate of 0.0001, β1=0.9 and
β2=0.999. We use a batch size of 512 images. Images pairs are created by apply-
ing data augmentation techniques (flip, rotation, pixel shift, color jitter). Our
baseline model use the following coefficients to weight the terms of the objective
function Lshared: α=0.5, β=1.0 and γ=0.1. The size of the shared representation
is zdim=10. The training algorithm was executed on a NVIDIA Tesla K80 GPU.
The training and image segmentation procedures are summarized in Algorithms
1 and 2. More details are provided in the additional material section.
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Algorithm 1 Training algorithm.

1: Random initialization of model parameters ψ(0), θ(0), ϕ(0).
2: for k = 1; k = k + 1; k < number of iterations do
3: Sample a batch of C image patches {X1, . . . , XC}. Image patches have a size s.
4: Create a new view of Xi via a data augmentation technique Yi = f(Xi).
5: Create a batch of C paired images X : {(X1, Y1), ..., (XC , YC)}.
6: Create a batch of C unpaired images X̃ by shuffling the Y dimension of X.
7: Compute L(k) = Lshared(X, X̃, ψ(k), θ(k), ϕ(k)):

L(k) = α
[
−
∑

X sp (−Tθ(Cψ(Xi),Eψ(Yi)))−
∑

X̃ sp (Tθ(Cψ(Xi),Eψ(Yi)))

−
∑

X sp (−Tθ(Cψ(Yi),Eψ(Xi)))−
∑

X̃ sp (Tθ(Cψ(Yi),Eψ(Xi)))
]
+ β

∑
j

[
−
∑

X sp
(
−T (j)

ϕ (Cψ(Xi),Eψ(Yi))
)
−
∑

X̃ sp
(
T

(j)
ϕ (Cψ(Xi),Eψ(Yi))

)
−

∑
X sp

(
−T (j)

ϕ (Cψ(Yi),Eψ(Xi))
)
−
∑

X̃ sp
(
T

(j)
ϕ (Cψ(Yi),Eψ(Xi))

)]
− γ

∑
X (|Eψ(Xi)− Eψ(Yi)|)

where the softplus function is defined by sp(x) = (1+ex)

8: Update the parameters ψ(k+1), θ(k+1) and ϕ(k+1) by gradient ascent of L(k).
9: end for

Algorithm 2 Image segmentation algorithm.

1: Select an image Xt from the dataset. Image Xt has a size t≫ s.
2: Label a set of L pixels into N classes P = {(p1, c1), . . . , (pL, cL)} from Xt.
3: where pi defines the coordinates and ci is the class of the i-th labeled pixel.
4: for unlabeled pixel at qj ∈ Xt do
5: for labeled pixel at pi ∈ P do
6: Select the image patches Xj and Xi of size s centered at qj and pi.
7: Extract the representations SXi = Eψ(Xi) and SXj = Eψ(Xj).
8: Extract the feature maps CXi = Cψ(Xi) and CXj = Cψ(Xj).
9: Create the image-representation sets X = {(CXi , SXi), (CXj , SXj )}
10: and X̃ = {(CXi , SXj ), (CXj , SXi)}
11: Compute the global/local mutual information between Xj and Xi:
12: Di = Lglobal

θ,ψ = −
∑

X sp (−Tθ(CXk ,SXk ))−
∑

X̃ sp (Tθ(CXk ,SXk )) or

13: Di = Llocal
ϕ,ψ =

∑
j

[
−
∑

X sp
(
−T (j)

ϕ (CXk ,SXk )
)
−
∑

X̃ sp
(
T

(j)
ϕ (CXk ,SXk )

)]
14: end for
15: Assign the pixel qj the class ci∗ of the nearest pixel i∗ = argmini{Di}Li=1.
16: end for

5 Experiments

5.1 Datasets

Potsdam The Potsdam dataset [10] contains 8550 aerial images of the city of
Potsdam. Each image has a size of t=200 × 200 pixels and is composed of four
channels: red, green, blue and infrared (RGBI). The dataset is split into three
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Input image

Ground truth

M = 50 M = 10 M = 5 M = 1

Fig. 2. Image segmentation examples. During test time, only M points per class ran-
domly sampled from the ground truth are used to perform image segmentation. As M
increases the accuracy and mIoU are improved. Best viewed in color and zoom-in.

parts: 3150 unlabeled images, 4545 training labeled images and 855 test labeled
images. Images are labeled into 6 classes (road, car, vegetation, tree, building
and clutter). Similarly to [12], we also perform image segmentation using a 3-
label version by merging classes (road and car, vegetation and tree and building
and clutter). Image patches of size s=13× 13 pixels are randomly sampled from
the unlabeled images to optimize the model objective (Equation 7) and the test
labeled images to report the experimental results. We use this dataset to provide
quantitative results and comparisons to other models.

Sentinel-2 We collected 100GB of Sentinel-2 time series [6] by selecting several
regions of interest on the Earth’s surface. Images are acquired at 13 spectral
bands using different spatial resolutions. We use the RGBI bands which corre-
spond to bands at 10m spatial resolution. Our dataset is composed of 4200 time
series of 12 images acquired at different dates between 2016 and 2018. The size
of each image is t=512×512 pixels. Image patches of size s=9×9 pixels are ran-
domly sampled from these images. In addition to data augmentation techniques,
the function f creates an image pair by selecting an image patch Y from the same
location of X but on a different date. Since there are no labels available, we use
this dataset to provide qualitative results in a real world use case where a huge
amount of unlabeled data is available and a few annotated pixels are provided
by a human operator. Data can be downloaded from the Sentinel Hub [7]. More
dataset construction details are provided in the additional material section.
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Mutual
Metric

N = 6 N = 3
information M = 1 M = 5 M = 10 M = 50 M = 1 M = 5 M = 10 M = 50

Global
Accuracy 0.4576 0.6366 0.7147 0.8517 0.5310 0.6626 0.7362 0.8843
mIoU 0.2793 0.4598 0.5354 0.6777 0.3333 0.4888 0.5691 0.7407

Local
Accuracy 0.5013 0.6894 0.7670 0.8717 0.5397 0.7274 0.8045 0.9163
mIoU 0.3332 0.5085 0.5818 0.7022 0.3632 0.5589 0.6415 0.7866

Table 1. Segmentation results. Accuracy and mIoU for N classes, M points per class
and zdim=10 using the global/local mutual information in the Potsdam dataset.

5.2 Image segmentation on Potsdam

Global and local mutual information We train our model as described in
Section 4.3 using the unlabeled images of the Potsdam dataset. Image segmenta-
tion is performed on test images where M pixels per class are known. Typically,
these annotated pixels are provided by a human operator. To simplify the eval-
uation, annotated pixels are simulated by randomly sampling M pixels per class
from the ground truth. We use several values of M ∈ {1, 5, 10, 50} to evaluate
the performance on image segmentation. An example of the impact of M on the
segmentation results is shown in Figure 2. By using the learned mutual infor-
mation based similarity measure, nearest neighbor search is applied to classify
pixels into one of N ∈ {3, 6} classes. The performance is reported in terms of
mean intersection over union (mIoU) and accuracy. To measure the pixel simi-
larity, we use either the global mutual information objective or the local mutual
information objective (see Algorithm 2). Results are reported in Table 1. As
expected, the performance is improved asM increases. Our experiments suggest
that using the local mutual information objective achieves a better performance
than the global mutual information when a few pixels are annotated while the
performance is similar when a larger amount of annotated pixels is provided
(M = 50). Many segmentation examples are shown in Figure 3.

Model comparison To provide a comparison, we perform image segmentation
using different similarity measures to search the nearest neighbor of the unlabeled
pixels. First, we compute the nearest neighbor using the L1 distance between raw
pixels. Secondly, we use the L1 distance between the representations extracted
from the VAE model [15], Deep InfoMax model [9] and our model. Similar images
do not necessarily have to be close in the representation domain in terms of the
L1 distance. Therefore, a low performance is expected at image segmentation
using the L1 distance between representations. Finally, we use the mutual infor-
mation objective of Deep InfoMax [9]. As Deep InfoMax representations keeps
all the image information, i.e. more than just class information, we expect this
representation to be less appropriate for image segmentation. Table 2 displays
the segmentation results. As shown, the local mutual information objective out-
performs the other similarity measures for image segmentation. Segmentation
examples are shown in Figure 4.
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Input image Ground truth M = 50 M = 10 M = 5 M = 1 Input image Ground truth M = 50 M = 10 M = 5 M = 1

Fig. 3. Image segmentation examples usingM points per class randomly sampled from
the ground truth. The image segmentation performance is improved as M increases.

Model
N = 6 N = 3

Accuracy mIoU Accuracy mIoU

Raw pixels (L1) 0.6073 0.3962 0.7267 0.5337
VAE (L1) 0.5844 0.3826 0.7045 0.5230
DIM (L1) 0.4063 0.2103 0.4754 0.2887
Ours (L1) 0.6498 0.4570 0.7391 0.5685
DIM 0.5973 0.4114 0.6497 0.4649
Ours 0.8717 0.7022 0.9163 0.7866

Table 2. Model comparison in terms of accuracy and mIoU for N classes,M = 50 and
zdim = 10 using the local mutual information in the Potsdam dataset.

Ablation study We analyze two important factors in our model: the influence
of data augmentation techniques to generate multiple views (pixel shift, color
jitter, image flip and image rotation) and the importance of some model com-
ponents, e.g. the statistics networks. Results are displayed in Table 3. Several
conclusions can be drawn from our experiments. First, the model architecture
can be simplified since the global statistics network can be removed (α = 0)
without modifying the performance on image segmentation. The local statistics
network plays the most important role during training as pointed out by Bach-
man et al. [1]. Second, removing the L1 distance between shared representations
(γ = 0) leads to a slightly reduction in the performance. Third, when the shared
representations are not swapped in Equations 4 and 5 (no SSR) the performance
drastically decreases since these representation contains more information than
the class information required for image segmentation. Concerning the data aug-
mentation techniques, we surprisingly notice that the performance remains the
same by individually removing the color jitter, image rotation and image flip.
We believe that the effect of the color jitter is ignored since it is an attribute
which is not captured in the shared representation. Additionally, the impact of
removing the image rotation or image flip is minimal due to the local information
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Input image Ground truth Ours DIM VAE Raw pixels

Fig. 4. Image segmentation model comparison. Our model produce the closest predic-
tions to the ground truth using N=6, M=50 and zdim=10 in the Potsdam dataset.

objective where the mutual information is maximized between the representation
and image patches instead of the whole image. On the other hand, removing the
pixel shift degrades the performance considerably. By removing the data aug-
mentation techniques and not swapping the shared representations (no SSR + no
DA) the performance is significantly degraded. We also study the impact of the
representation space dimension without noticing significant differences between
zdim=10 and zdim=32.

5.3 Image segmentation on Sentinel-2 time series

Since the Sentinel-2 mission does not provide pixel-level annotations for image
segmentation, we perform only qualitative experiments. In contrast to the Pots-
dam case where the annotated pixels are randomly sampled from the available
ground truth, now we ask a human operator to label M pixels per class for each
image during test time. The reader must note that scribbles, points or bounding
box can be used to annotate the pixels. As these pixels are annotated under a
human criterion, these pixels carry more significant information than pixels ran-
domly sampled from the ground truth and thus the quality of the segmentation
results improves significantly using just a few well-selected pixels. As shown in
Figure 5 as the number of pixels per class M increases, the segmentation results
considerably improve. Nevertheless, the percentage of annotated pixels remains
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Model
N = 6 N = 3

Accuracy mIoU Accuracy mIoU

Baseline 0.8717 0.7022 0.9163 0.7866
Baseline + α = 0 0.8724 0.7068 0.9147 0.7863
Baseline + γ = 0 0.8636 0.6934 0.9026 0.7655
Baseline + no jitter 0.8767 0.7131 0.9097 0.7800
Baseline + no flip 0.8730 0.7077 0.9123 0.7815
Baseline + no rotation 0.8759 0.7094 0.9114 0.7819
Baseline + no shift 0.7584 0.5710 0.7949 0.6280
Baseline + no SSR 0.7230 0.5405 0.7576 0.5918
Baseline + no SSR + no DA 0.5973 0.4114 0.6497 0.4649
Baseline + random ϕ 0.3994 0.2384 0.5834 0.3986

Table 3. Ablation analysis results in terms of accuracy and mIoU for N labels,M = 50
and zdim = 10 in the Potsdam dataset.

M = 10 M = 5 M = 1 M = 10 M = 5 M = 1

a) b)

Fig. 5. Image segmentation examples in the Sentinel-2 dataset. A human operator
identifies N classes in the satellite image and selects M pixels per label. a) Buenos
Aires, Argentina; b) Valencia, Spain. Best viewed in color and zoom-in.

insignificant. For instance, 60 annotated pixels in a 512 × 512 pixel image rep-
resent less than 0.03% of the total number of pixels. Also the time required for
image segmentation is reasonable, an image of 512×512 pixels with 60 annotated
pixels takes around 33 seconds to be segmented.

Segmentation over the time Since we maximize the mutual information
between images from the same time series, the learned representation ignores
the temporal information. As a consequence, by annotating pixels from a single
image our model is capable to segment the whole time series the image belongs
to. In Figure 6, it can be seen that the segmentation results are coherent over the
time. For instance, agricultural areas are belonging to the same class regardless
of whether these areas are grown or harvested.

Segmentation over the space In the same manner we perform image seg-
mentation over the time using a single image, our model is able to do it over the
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Input image t = 0 t = 2 t = 4 t = 6 t = 8 t = 10

a)

b)

Fig. 6. Image segmentation over the time in the Sentinel-2 dataset. In the first column,
the input image and the selected pixels are displayed for M=10. Our method is able
to perform image segmentation with few labeled pixels on the entire time series the
input image belongs to. The time series and the corresponding predictions are shown
in the remaining columns for a) Toulouse, France; b) Valencia, Spain. Best viewed in
color and zoom-in.

space. The annotated pixels provided by a human operator are generally used
to perform image segmentation on the image these pixels are extracted from.
We also use these annotated pixel to segment other images from the same area
achieving satisfactory results as can be seen in Figure 7. In general, using anno-
tated pixels from a single image we can perform image segmentation on images
of the same area independently of the acquisition time.

6 Conclusion

In this paper, we have proposed to use a mutual information based similarity
measure to perform image segmentation. Our approach offers the advantage of
learning the proposed similarity measure in an unsupervised manner leveraging
large amounts of unlabeled data. Then, per-pixel nearest-neighbor search using
the proposed similarity measure is carried out to assign classes to the unlabeled
pixels from the labeled pixels provided by a human operator. In particular, we
have studied the case of aerial/satellite data where massive amounts of unlabeled
images are available while the annotations are scarce. In the Potsdam case, our
experiments suggest that the local mutual information objective is useful to
measure similarity between pixels. Our approach outperforms other approaches
based on state-of-the-art methods demonstrating the usefulness of our learned
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Input image Image 0 Image 1 Image 2 Image 3 Image 4

a)

b)

Fig. 7. Image segmentation over the space in the Sentinel-2 dataset. Selected pixels
are not only useful for propagating the information from labeled pixels to unlabeled
pixels in the same image but also in different images of the same area. a) Toulouse
area, France; b) Tubarjal area, Saudi Arabia. Best viewed in color and zoom-in.

representation domain. On the other hand, the ablation experiments show that
the model can be further simplified as some data augmentation techniques are
more relevant and the global mutual information objective can be removed. In
the Sentinel-2 case, we have shown that image segmentation can be performed
over the time and over the space using a very few amount of annotated pixels,
e.g. labeled pixels are less than 0.002% of the total number of pixels of a time
series and it can be achieved in a reasonable amount of time.
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