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A generalized likelihood ratio test (GLRT) is derived for

adaptive detection of range and Doppler-distributed targets.

The clutter is modeled as a spherically invariant random

process (SIRP) and its texture component is range dependent

(heterogeneous clutter). We suppose here that the speckle

component covariance matrix is known or estimated thanks

to a secondary data set. Thus, unknown parameters to be

estimated are local texture values, the complex amplitudes and

Doppler frequencies of all scattering centers. To do so, we use

superresolution methods. The proposed detector assumes a priori

knowledge on the spatial distribution of the target and has the

precious property of having a constant false alarm rate (CFAR)

with the assumption of a known speckle covariance matrix or by

the use of frequency agility.
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I. INTRODUCTION

Pulse compression techniques enable radars
to achieve a high range resolution, thus resolving
the target into a number of scattering centers. The
range resolution is inversely proportional to the
transmitted bandwidth of the radar [1]. High-range
resolution radars (HRRs) are then able to form the
range target response (range profile) or to form the
bidimensional target response by radar imagering
techniques (synthetic aperture radar/inverse synthetic
aperture radar (SAR/ISAR)). Current radars scheme is
to first detect the target in a low or medium resolution
(typically 30 m) and then to form the target response.
In the last few years, many works have been

led on high-range resolution detectors, which can
be seen as matched filtering to target response.
These detectors can be based on different signal
and clutter models resulting in various expressions
and performances. Van Trees [2] examined several
detectors designed for range-spread targets. These
techniques and others were further examined by
Steiner [3]. Hughes [4] compared the performances
of two different range-distributed detectors on an
HRR: a 1 out of M detector and a noncoherent
detector that integrates the different range cells. It
was shown that when the target is distributed over
just a few cells, the 1 out of M detector gives the best
results whereas when the target is distributed over
many cells, the noncoherent integrator gives the best
performances. Rose [5] obtained similar results and
Gerlach, et al. [6] compared the performances of the
1 out of M detector with a noncoherent generalized
likelihood ratio test (GLRT) detector where the
a priori scatterers distribution is known. In [7],
[8], Farina, et al. examined more specific aspects
concerning the ultrawideband (UWB) detection
and identification. They derived a likelihood ratio
test (LRT) under the hypothesis that the target is a
zero-mean Gaussian process of known covariance
matrix. The LRT was a quadratic form with respect
to the received signal vector and a function of the
target and clutter covariance matrix. Distributed
target detectors in white Gaussian noise and with
the constant false alarm rate (CFAR) property have
been proposed in [9], [10], [11]. They were based
on the GLRT and the returns of different range
cells were modeled as independent and identically
distributed Gaussian vectors of unknown covariance
matrix. In addition, a secondary data set is present
to estimate the clutter covariance matrix which is
supposed to be the same as for the primary data.
The same approach is adopted by Kelly in [12]. The
considered configurations then assume a homogeneous
background. In [13], Gerlach and Steiner derived
a modified GLRT for the adaptive detection of
range-spread targets. The target amplitudes and
clutter covariance matrix are supposed to be unknown



but the strategy does not resort to secondary data.
The distribution of the modified GLRT, under the
clutter-only hypothesis, depends on the clutter
covariance matrix and thus has not the quality of
being a CFAR detector. However, the authors show
that their detector can be CFAR-bounded. They
proposed another CFAR-bounded detector in [14]
designed for range-spread and Doppler-shifted targets
in disturbance of unknown but structured covariance
matrix. More recently, Conte, De Maio, and Ricci
[15] proposed a GLRT for range-spread targets in
Gaussian clutter with unknown covariance matrix.
They also resort to secondary data, free of signal
components, which power can be different from
primary data. The power ratio is then maximum
likelihood (ML)-estimated. They proposed two
detectors corresponding to two different cases where
the covariance matrix is totally unknown or where
its structure is known. The detectors take the form
of the GAMF (Gaussian adaptive matched filter),
a generalization to distributed targets of the AMF
proposed by Robey, et al. in [16], and the GASD
(generalized adaptive subspace detector). These
detectors have the CFAR quality. Jin and Friedlander
[17] have also studied the case of a target modeled
as a Gaussian vector in Gaussian disturbance with
unknown covariance matrices estimated thanks to a
secondary data set. The detector, based on subspace
decomposition, is CFAR.
In all previous cited detectors, the clutter

distribution was supposed to be Gaussian. However,
in HRR mode, clutter statistics cannot be modeled
as Gaussian random process anymore due to the
observation of spikes. The distribution is usually
modeled as a compound Gaussian vector and more
precisely, as a spherically invariant random vector
(SIRV) [18]. The clutter vector is then the product
of two components: 1) a rapid fluctuation component,
so-called speckle, which decorellation time is about
10 ms in the case of sea clutter and which can be
entirely decorrelated with the use of frequency agility,
and 2) a slow fluctuation modulating component
so-called texture that exhibits a much longer
decorrelation [19] time and which is not affected by
frequency agility. Gerlach [20] and Conte, et al. [21]
extended their CFAR detectors to non-Gaussian clutter
modeled as a SIRV. The texture component is then
ML-estimated in each range cell.
All these works show that a properly designed

detector for range-spread targets on high-resolution
radars gives best performances with respect to a low
or medium resolution radar where the target is entirely
contained in one range cell. In fact, HRRs enable
to give a sampled response of the target so that the
backscattered signal is not a simple delayed replica
of the transmitted waveform but its convolution with
the target response. As Farina, et al. described in [22],
[23], [24], high-range resolution detectors can be seen

as matched detectors to the target response and to the
transmitted waveform. The performance improvement
depends upon the fact that increasing the range
resolution of the radar reduces the clutter energy in
each range cell. Moreover, resolved scatterers are less
fluctuating than a point target fully contained in one
range cell. Indeed, in low-range resolution, the target
response is the vectorial sum of its different scatterers’
contributions which entails great fluctuations. Such
targets are often represented as Swerling [25] or
Nakagami’s [26] models.
We propose here to extend the previously derived

range-distributed detector to the bidimensional case.
The detector is then designed for range and Doppler
distributed target in non-Gaussian clutter. We then
construct a detector matched to the bidimensional
target response in range and Doppler frequency.
Resolving the target on the Doppler axis enables to
reduce the fluctuation of the scatterers with respect to
a detector designed for range-only distributed targets.
Otherwise, whereas the monodimensional response of
the target may be seen as its range profile, estimating
the 2D response of the target may be done with SAR
or ISAR imaging techniques providing useful and
additional information for a further classification step.
This paper is organized as follows. In Section II, the
problem statement is formulated and the clutter and
signal models are described. The GLRT is derived
in Section III, the CFAR property and the false
alarm probability are discussed in Section IV and
Section V is devoted to several results of our detector
on synthetic data.

II. PROBLEM STATEMENT AND SIGNAL MODEL

We consider a signal at the output of the
sensor composed of N samples, corresponding to
N successive pulses of the radar, in each range
cell. Thus, the measured signal is written zr =
(zr(0),zr(1), : : : ,zr(N ¡1))t and Z= [z1,z2, : : : ,zL]
where the subscript r refers to the range cell number.
We assume that the target to detect is spatially

distributed over L range cells. In a realistic scenario,
this assumption cannot be made anymore. The
estimation of L is not tackled here and is left for
future work. It may be based, for example, on an
ML scheme. However, it is worth mentioning that
Section V presents results concerning the influence
of a mismatched length between the model and the
true value.
The disturbance is only constituted of clutter.

Here, we consider a clutter-dominant scenario so
the influence of thermal noise may be neglected.
This situation occurs for example in short-range
detection schemes. The influence of thermal
noise on the detector performances is tackled in
Section V. xr = (xr(0),xr(1), : : : ,xr(N ¡ 1))t denotes



the signal echoed by the target in range cell r and
cr = (cr(0),cr(1), : : : ,cr(N ¡ 1))t is the clutter vector.
The azimuthal extension of the target is supposed
very small with respect to the azimuthal beamwidth
(for example the beamwidth of a radar antenna with
aperture of 3.5 deg, is about 1 km at 10 nmi). As a
consequence, target and clutter are present in each
range cell and thus, the detection strategy is to test
two different hypotheses which can be formulated as
follows:

H0 : zr = cr, r = 1 : : :L

H1 : zr = xr+ cr, r = 1 : : :L:
(1)

The measured signals are supposed to be independent
between each range cell. The H0 hypothesis
corresponds to only the presence of clutter and the
H1 hypothesis to the presence of target embedded in
clutter.

A. Clutter Subspace

The clutter vector cr =
p
¿rsr is modeled as a SIRV

such that sr » CN (0,M), r = 1 : : :L. sr is commonly
named the speckle component and in the case of sea
clutter, its decorrelation time is about 10 ms [19] and
is totaly decorrelated with frequency agility. In that
case, the clutter covariance matrix is then identity:
M= I. ¿r, the so-called texture, is a real positive
random process and exhibits a greater decorrelation
time and is not affected by frequency agility. It is then
assumed that the texture component in each range cell
is constant over the N pulses. This representation
of SIRV is widely used to model the radar clutter
[19, 18, 20, 27]. The multivariate distribution of
the clutter vector is given conditionally to the texture
by

pcr j¿r (cr j ¿r) =
1

(¼¿r)N detM
exp
μ
¡c

H
r M

¡1cr
¿r

¶
:

(2)

In this work, we assume the clutter covariance matrix
M= EfsrsHr g is known and normalized so that [M]ii =
1, i= 1 : : :N. Nevertheless, its estimation is tackled in
Section V to evaluate the influence of thermal noise
and of the size of secondary data. Indeed, in a realistic
scenario, M must be estimated from secondary data as
Gini, et al. [28—30], Pulsone and Raghavan [31] and
Rangaswamy, et al. [32, 33] described for point targets
in non-Gaussian disturbance. Conte, De Maio, and
Ricci [15] also resort to secondary data to estimate the
clutter covariance matrix for their range-distributed
target detector. The loss induced by the lack of the
knowledge of the matrix is investigated for Swerling I
targets by Conte, Lops, and Ricci in [34] and by Gini,
et al. [35—37]. Finally, the selection and cleaning of
secondary data is studied by Conte in [38].

B. Signal Subspace

When the wavelength of the transmitted signal
is small with respect to the target dimensions, the
geometric theory of diffraction (GTD) [39] and its
uniform version [40] applies and the backscattered
field can then be seen as the sum of the different
scatterers contributions of the target. Measures show
that the radar properties of a lot of targets, such as
planes, ships, etc., are well modeled considering that
they are backscattered from few isolated target points.
Furthermore, the isolated reflections are representative
of the physical parameters of the targets [41—43].
We then model the signal vector echoed by the

target, which we note xr = (xr(0),xr(1), : : : ,xr(N ¡1))t,
in each range cell r, as a sum of the contribution of pr
scatterers, so that

xr(n) =
prX
k=1

ar,k exp(jÁr,k(n)), n= 0 : : :N ¡ 1:

(3)

Thus, the signal in each range cell can be expressed in
a matrix formulation as

xr = Erar (4)

where ar = (ar,1,ar,2, : : : ,ar,pr )
t is the vector of the

complex amplitudes reflected by the scatterers. In
the following development, we derive two GLRT
detectors based on different models of ar. The first
one is based on the hypothesis that ar is a Gaussian
random vector so that ar » CN (0,§r). The second
detector is based on the assumption that we have no
a priori knowledge about the distribution of ar which
is then modeled as a deterministic unknown vector. In
that second case, the signal vector xr is consequently
a zero-mean complex Gaussian vector of covariance
matrix Er§rE

H
r . The signal model is equivalent to

the so-called Gaussian linear model. As explained in
[27], two extreme cases are represented by Swerling I
target signals for pr = 1 and Swerling II target signals
for pr =N. This signal model has been often used in
radar detection problems but also in array processing
scenarios, see [27] for references. The steering matrix
Er is expressed as

Er =

0BBBB@
1 1 ¢ ¢ ¢ 1

ejÁr,1(1) ejÁr,2(1) ¢ ¢ ¢ ejÁr,pr (1)

...
...

ejÁr,1(N¡1) ejÁr,2(N¡1) ¢ ¢ ¢ ejÁr,pr (N¡1)

1CCCCA :
(5)

It is assumed that the target motion is slow enough
or that the observation time is short so that the phase
variation is linear:

Ár,k(n) = 2¼fr,kn, n= 0 : : :N ¡ 1 (6)



and we assume the number of scatterers pr per range
cell is lower than the number of integrated pulses N,
i.e., pr < N, r = 1 : : :L and is constant during the N
pulses.
With these definitions, the measured signal

distribution in each range cell is distributed as
zrj¿ ,H1 » CN (Erar,¿rM) in the case of an unknown
deterministic ar and as zrj¿ ,H1 » CN (0,Er§rEHr + ¿rM)
otherwise. For the following developments, it is useful
to consider a different form of the signal vector so
that

xr =Urbr, r = 1 : : :L (7)

where, taking the singular value decomposition, Er =
UrSrV

H
r ,r = 1 : : :L, Ur is the N £pr unitary matrix of

left singular vectors, Sr is the pr£pr diagonal matrix
of non-zero singular values, and VHr is the pr£pr
diagonal unitary matrix of right singular vectors. br is
either an unknown deterministic vector or a zero-mean
complex Gaussian vector of covariance matrix Rbr .

III. GLRT DERIVATION

A. Optimal Detector and GLRT

We derive two different GLRT detectors based on
two different hypotheses about the complex amplitude
vectors ar, r = 1 : : :L. The first detector considers
unknown deterministic ar, r = 1 : : :L and is named
deterministic scatterer model GLRT (DSM-GLRT).
The second detector assumes ar » CN (0,§r), r =
1 : : :L and is referred to as the Gaussian scatterer
model GLRT (GSM-GLRT).
Considering the independence hypothesis of the

range cells, conditionally to the values of the texture
component, the scatterers’ amplitudes and the steering
matrices, the joint density under H1 is, respectively,
for DSM-GLRT detector:

pz1:Lj¿1:L,b1:L,U1:L,M,H1 (z1:L j ¿1:L,b1:L,U1:L,H1)

=
LY
r=1

exp(¡(zr¡Urbr)HM¡1(zr¡Urbr)=¿r)
(¼¿r)N det(M)

(8)
and for the GSM-GLRT detector:

pz1:Lj¿1:L,b1:L,U1:L,M,H1 (z1:L j ¿1:L,b1:L,U1:L,H1)

=
LY
r=1

1
¼N det(Br)

exp(¡zHr B¡1r zr) (9)

where Br =UrRbrU
H
r + ¿rM is the covariance matrix

of the measured vector. For both DSM and GSM
GLRTs, under H0:

pz1:Lj¿1:L,M,H0 (z1:L j ¿1:L,H0)

=
LY
r=1

1
¿Nr ¼

N det(M)
exp
μ
¡z

H
r M

¡1zr
¿r

¶
: (10)

According to the Neyman-Pearson (NP) criterion, the
optimal detector is the LRT, which can be obtained by
averaging with respect to the texture components ¿r,
r = 1 : : :L, and the signal components so that

¤NP(z1:L) =
E¿1:Lfpz1:Lj¿1:L,H1 (z1:L j ¿1:L,H1)g
E¿1:Lfpz1:Lj¿1:L,H0 (z1:L j ¿1:L,H0)g

=

QL
r=1

R1
0 pzr j¿r ,H1 (zr j ¿r,H1)p¿r (¿r)d¿rQL

r=1

R1
0 pzr j¿r ,H0 (zr j ¿r,H0)p¿r (¿r)d¿r

:

(11)

For notation convenience, the averaging over the
signal components Ur and ar, r = 1 : : :L are not
represented. We notice in (11) that the evaluation
of the NP detector needs a heavy computational
integration along the underlying mixing distribution.
For this reason and because we do not know a priori
the distribution p¿ (¿) of the texture component, we
resort to a suboptimum approach based on the GLRT
where the unknown texture component is modeled as
a deterministic parameter and replaced in the GLRT
with its ML-estimate.
The first strategy (DSM) assumes that the

multivariate distribution of the scatterers complex
amplitude vectors br, r = 1 : : :L is not a priori known.
As for the texture component we can then model it
as a deterministic parameter and replace it with its
ML-estimate. This strategy, originally proposed in
[44] and further investigated in [45], is adopted for
the distributed detectors proposed in [14], [15], [20],
[21]. With this strategy, the GLRT is then expressed as

¤DSM-GLRT(z1:L)

= max
U1:L,b1:L,¿1:L

¤(z1:L jU1:L,b1:L,¿1:L)

= ¤(z1:L j Û1:L, b̂1:L, ¿̂1:L)

=
pz1:LjH0 (z1:L¡ Û1:Lb̂1:L j ¿̂1:LjH1 ,H0)

pz1:LjH0 (z1:L j ¿̂1:LjH0 ,H0)

=

QL
r=1

1
¿̂NrjH1

exp

Ã
¡ (zr¡ Ûrb̂r)

HM¡1(zr¡ Ûrb̂r)
¿̂rjH1

!
QL
r=1

1
¿̂NrjH0

exp

Ã
¡z

H
r M

¡1zr
¿̂rjH0

! :

(12)

For notation convenience we name this detector
DSM-GLRT for deterministic scatterer model GLRT.
The second approach models the scatterers’

complex amplitude vector br as a complex Gaussian
vector of unknown covariance matrix br » CN (0,Rbr )
so that the signal covariance matrix is UrRbrU

H
r . This

model has been adopted by McWhorter, et al. in [46]
for their matched subspace detector for stochastic
signals and also by Jin, et al. in [17], [47]. Under this



second approach, the GLRT is expressed as

¤GSM-GLRT(z1:L) =
pz1:L jH1 (z1:L j Û1:L,R̂b1:L , ¿̂1:LjH1 ,H1)

pz1:L jH0 (z1:L j ¿̂1:LjH0 ,H0)

=

QL

r=1

1

¼N det(B̂r)
exp(¡zHr B̂¡1r zr)QL

r=1

1
¿Nr ¼

N det(M)
exp

μ
¡z

H
r M

¡1zr
¿̂rjH0

¶ :
(13)

This second approach GLRT is named GSM-GLRT
for Gaussian scatterer model GLRT. We notice that
this GLRT derivation is more complicated due to
the presence of det(B̂r) = det(ÛrR̂brÛ

H
r + ¿̂rM) and

B̂¡1r = (ÛrR̂brÛ
H
r + ¿̂rM)

¡1.

B. Signal Subspace Estimation with Superresolution
Methods

The signal subspace is determined by the columns
of the matrices Er, and equivalently by the matrices of
eigenvectors Ur. We recall that indices r vary between
1 and L; this is also true in the following. Er, the
so-called steering matrices, contain all the Doppler
components of the backscattered signal from the
target and are then representative of the bidimensional
target response. Their estimation are consequently
an important step. The ML-estimation of the steering
matrices Er is not a straightforward problem. Indeed,
no closed form exists and numerical methods must
be used. We have studied an solution based on the
expectation-maximization (EM) algorithm which
enables to give an ML-estimate of the scatterers
Doppler frequencies. The EM algorithm has been
previously used in source separation [48—51] and
radar imaging [52], [53]. We found that EM as a
spectral estimator can give a better accuracy than
superresolution methods, however, this technique
exhibits a prohibitive computational complexity and
convergence issues.
The previous point is precisely the reason

why we resort to spectral analysis methods to
estimate the signal subspace and more specifically
to superresolution methods in order to give the most
accurate estimation possible. These methods are also
called subspace methods because their implementation
is based on subspace eigendecomposition of the signal
covariance matrix. These techniques need a white
noise model and as a matter of fact, the measured
signal vectors zr = Erar+ ¿rsr must be whitened so
that z̃r =M

¡1=2zr where M
¡1=2 is obtained through

Cholesky factorization of M¡1. Another solution is
to use a frequency agile waveform that enables to
decorrelate the speckle component. In each range cell,
the measured signal covariance matrix then takes the
form

Rr = Ẽr§rẼ
H
r + ¿rI (14)

where Ẽr = Er in the case of using frequency agility
or is Ẽr =M

¡1=2Er after whitening.
The MUSIC algorithm [54] is based on the

eigendecomposition of covariance matrix Rr. With the
signal model adopted in (3), Ẽr§rẼ

H
r has pr positive

eigenvalues and N ¡pr zero eigenvalues. Let the
positive eigenvalues of Ẽr§rẼ

H
r be written

˜̧
1 ¸ ˜̧ 2 ¸ ¢¢ ¢ ¸ ˜̧pr : (15)

The eigenvalues of Rr are

¸k =
˜̧
k + ¿r, k = 1, : : : ,pr

¸k = ¿r, k = pr +1, : : : ,N:
(16)

The eigenvectors of Rr that correspond to the pr
highest eigenvalues ¸1, : : : ,¸pr span the same signal

subspace as Ẽr. Let Ũr be the N £pr matrix of
the whitened signal subspace eigenvectors. The
eigenvectors of Rr corresponding to the N ¡pr
eigenvalues are orthogonal to the signal subspace
and form the so-called noise subspace. Let Ũ?r be the
N £N ¡pr noise subspace matrix.
The Doppler frequencies fr,1,fr,2, : : : ,fr,pr of the

pr components of signal xr are then estimated by
maximizing the MUSIC-pseudospectrum:

SMUSIC(f) =
1

e(f)HŨ?r Ũ?Hr e(f)
(17)

where e(f) = (1,ej2¼f , : : : ,ej2¼f(N¡1))T. The Doppler
frequencies are estimated as the locations of the pr
highest peaks of the pseudospectrum.
From this point, we notice that we could directly

inject the subspace eigenvectors matrix Ur into the
GLRT. However, we found with simulations that
it’s necessary to constrain the structure of the signal
subspace to Er, r = 1 : : :L, i.e., to implement the
superresolution method so that it gives estimates of
the Doppler frequencies, and after to compute the
steering matrices Er. The subspace Ur extracted from
the eigendecomposition is indeed sensitive to the
estimation error of the correlation matrix Rr especially
in small signal dimension cases, that is for small N
values.
Thus, we prefer the root-MUSIC or the ESPRIT

algorithm [55] which gives directly estimates of the
Doppler frequencies without maximizing the MUSIC
pseudospectrum.
Finally, the signal subspace estimation is based on

a specific model of the covariance matrix and needs
the knowledge of the signal subspace dimension pr,
r = 1 : : :L. This knowledge is not obvious and must be
estimated. The theory developed above tells us that pr,
r = 1 : : :L corresponds to the number of eigenvalues
higher than the smallest eigenvalue of the measured
signal covariance matrix. However, the measured



vector dimension N being limited, the estimate of the
covariance matrix is not precise and consequently,
the model order selection is hard to determine. To
avoid this limitation, several criteria coming from
information theory have been proposed to estimate
the signal subspace dimension or equivalently, the
number of signal components. These criteria are
the well-known Akaike information criterion (AIC)
[56] or Rissanen’s minimum description length
(MDL) [57]. MDL is a consistent criterion. Moreover
it is known that AIC tends to overestimate the
signal subspace dimension, even in the presence of
high signal-to-noise ratio, whereas MDL criterion
tends to underestimate pr in the presence of low
signal-to-noise ratio or a small number N of measures.
Let us mention that a strictly related problem has been
considered by Gini and Bordini [58] who studied the
behavior of such theoretical information criteria for
model order selection in the presence of multiplicative
noise. Several variations of AIC and MDL criteria
have also been proposed even in the presence of
colored noise but the signal subspace dimension
remains a tricky issue.

C. DSM-GLRT Expression

After estimating the steering matrices Er, r =
1 : : :L and thus matrices Ur, r = 1 : : :L, we are able
to give the ML-estimates of the scatterers’ complex
amplitudes br, r = 1 : : :L and the texture component
¿r, r = 1 : : :L. The details of the DSM-GLRT detector
derivation are developed in Appendix A.
The GLRT is then given by

¤DSM(Z) =
QL
r=1(z

H
r M

¡1zr)
NQL

r=1(zHr (M¡1¡Qr)zr)N
(18)

where

Qr =M
¡1Ur(U

H
r M

¡1Ur)
¡1UHr M

¡1 (19)

which is the orthogonal projector onto the signal
subspace Ur. In an equivalent way, the generalized
log-likelihood ratio is

ln¤DSM(Z) =N
LX
r=1

ln
μ

zHr M
¡1zr

zHr (M¡1¡Qr)zr

¶
: (20)

It is interesting to note that the case where r = 1
and the steering matrices are reduced to steering
vectors gives a GLRT expression identical to that
given in [27] in the case of a point target embedded
in compound Gaussian clutter. Moreover, considering
a range-only distributed target, i.e., only with one
steering vector per range cell, we find an equivalent
expression to the one derived in [20].
In order to draw a parallel with the following

developments, we reexpress the DSM-GLRT with

whitened data z̃r =M
¡1=2zr,r = 1, : : : ,L:

ln¤DSM(Z) =N
LX
r=1

ln

Ã
z̃Hr z̃r

z̃Hr (I¡ Q̃r)z̃r

!

=N
LX
r=1

ln

Ã
1+

z̃Hr PŨr z̃r
z̃Hr PŨ?r z̃r

!
(21)

where PŨr = Q̃r = Ũr(Ũ
H
r Ũr)

¡1ŨHr is the orthogonal
projector onto the signal subspace and PŨ?r = I¡PŨr is
the orthogonal projector onto the clutter subspace with
Ũr =M

¡1=2Ur.

D. GSM-GLRT Derivation

The derivation of the GSM-GLRT is detailed
in Appendix B. The log-likelihood ratio is then
given by

ln¤GSM(Z)

=¡NL lnN ¡
LX
r=1

ln

Ã
(N ¡pr)

z̃Hr PŨr z̃r
z̃Hr PŨ?r z̃r

¡ (pr ¡ 1)
!

+N
LX
r=1

ln

Ã
1+

z̃Hr PŨr z̃r
z̃Hr PŨ?r z̃r

!
: (22)

We then notice that the GSM-GLRT is equivalent
to the DSM-GLRT modified by the negative term. For
L= 1, the GSM-GLRT is a monotonic function of the
ratio (z̃HPŨz̃)=(z̃

HPŨ? z̃) and so is the DSM-GLRT;
consequently the GSM-GLRT and DSM-GLRT are
equivalent detectors. For L > 1, Monte-Carlo trials
described in Section V show that the performances
of the two detectors are close.

REMARK 1 In the case of a Gaussian-compound
disturbance, both the DSM and GSM GLRTs
expressed in (21) and (22) are then a function of the
ratio between the energy of the component of the
whitened data which lies in the signal subspace, and
the energy of the signal projected on noise subspace.
DSM-GLRT simply integrates this ratio over all the
range cells of the target.

REMARK 2 It is important to emphasize that the
GLRT expression derived is CFAR with respect to the
values of the texture component. This property is due
to the deterministic model of ¿r, r = 1 : : :L and br, r =
1 : : :L and their ML-estimation. The CFAR property is
reached with the knowledge of the clutter covariance
matrix M. This detector could be extended to a CFAR
detector with respect to the clutter covariance matrix
by resorting to a secondary data set as done by Conte,
et al. in [15], [21].



IV. FALSE ALARM PROBABILITY AND THRESHOLD
ASSESSMENT

A detector displays the CFAR property when
the detection threshold is independent of the
clutter power. More generally, in the adaptive
detection literature, the CFAR property refers to the
clutter covariance matrix and more generally to all
disturbance parameters that are unknown [16]. The
derived detector is CFAR. Indeed, with the knowledge
hypothesis of the covariance matrix M (estimated
thanks to a secondary data set or being identity with
an agile waveform), the GLRT is independent of the
texture value. This is an important property which
makes the detector adaptive. However, as we show
in the following development, the detection threshold
depends on the steering matrix and more precisely,
of its rank i.e., the signal subspace dimension or the
number of components.
We define the false alarm probability so that the

log-likelihood ratio is higher than a threshold under
H0:

Pfa = Prfln¤(Z jH0)> ´g: (23)

We then distinguish the two cases for the DSM-GLRT.
1) For L= 1, the log-likelihood ratio is given by

¡ =N ln

Ã
1+

z̃HPŨz̃
zHPŨ? z̃

!
: (24)

Under H0, z̃= c̃. It is shown in [59] that, given a
matrix A, the quadratic form c̃HAc̃ is Â2 distributed
with 2p degrees of freedom, p= rank of A, if and
only if A is idempotent, i.e., A2 =A. With this
property, the numerator of the ratio into brackets in
(24) is Â2 distributed with 2p degrees of freedom.
Indeed, PŨ is an orthogonal projector onto the signal
subspace of dimension p and is thus idempotent. In
the same way, PŨ? is the orthogonal projector onto the
clutter subspace and its rank is N ¡p. Consequently
the denominator of the ratio in (24) is Â2 distributed
with 2(N ¡p) degrees of freedom. Consequently:

z̃HPŨz̃
zHPŨ? z̃

» Â2(2p)
Â2(2N ¡p)

» p

N ¡pF(2p,2(N ¡p)) (25)

where F(2p,2(N ¡p)) is the well-known
F-distribution. The probability density function (pdf)
of the log-likelihood ratio under H0 is then, thanks to
the Jacobian transformation,

p¡ (¡ ) = f1(¡ ) =
p

N ¡pe
¡F2p,2(N¡p)

μ
N ¡p
p

(e¡ ¡ 1)
¶
:

(26)

2) For L > 1, the log-likelihood ratio distribution
is the convolution of previous distribution:

p¡ (¡ ) = f1(¡ ) ¤f2(¡ ) ¤ ¢ ¢ ¢fL(¡ ): (27)

Fig. 1. (a) Normalized pdfs of log-likelihood ratio for N = 8.
(b) False alarm probability with respect to detection threshold for

L= 1 and N = 8.

The GSM-GLRT false-alarm probability is more
complicated to derive in a closed form. That is why
we resort to Monte-Carlo simulations to compute it.
Fig. 1 plots the normalized pdfs of the log-likelihood
ratio, and false-alarm probability with respect to the
threshold fixed for N = 8, L= 1 and different values
of p= 0, 2, 4, and 6.

V. SIMULATION RESULTS

We present in this section the performances of
both the DSM and GSM GLRT detectors on synthetic
signals in different scenarios. The performances
assessment is carried out resorting to computer
simulations, i.e., we resort to Monte-Carlo simulations
to estimate the detection probability and false alarm
probabilities based on 100=Pd and 100=Pfa independent
trials, which enables to obtain a good estimation



TABLE I
Doppler Frequencies of Scatterers

Cell # 1 2 3 4

Frequencies f0:1g f0:1,0:2g f0:1,0:2,0:3g f0:1,0:2g

accuracy. In order to limit the computational burden,
the false alarm probability is chosen so that Pfa = 10

¡4.
In the different simulations, the DSM-GLRT is
compared with the threshold computed by inverting
the distribution given in (27) and the GSM-GLRT
is compared with a threshold computed with
Monte-Carlo trials. To save simulation time, we also
consider small values of N and L. Typically, the
simulations consider N = 8 pulses and L= 4 range
cells.
We consider a synthetic target which is distributed

over L= 4 range cells and in each range cell, the
scatterers are located at different normalized Doppler
frequencies as represented in Table I. For each
scatterer, we fix unitary amplitudes. The scatterers
amplitudes are considered constant during the
simulation in most scenarios. We indeed study the
case of random amplitudes in Section VE. Moreover,
we attribute to each scatterer a random phase
uniformly distributed in [¡¼,¼].
We assume in most tests that the corresponding

steering matrices Er, r = 1, : : : ,L are known.
This a priori knowledge is obviously not always
straightforward and the signal subspace must be
estimated. This aspect is studied in Section VG. The
target total energy is then the sum of the energy in
each range cell so that E =PL

r=1 kErark2.
We assume here a clutter-dominating scenario.

Increasing the radar resolution by a factor L, divides
the clutter power in each range cell by the same factor
L. The local value of texture ¿r, r = 1 : : :L is assumed
to be gamma-distributed:

p(¿r) =
2bº

¡ (º)
¿2º¡1r exp(¡b2¿2r ), r = 1 : : :L

(28)

where b controls the mean of the distribution and º,
the so-called shape parameter, controls the deviation
with respect to the Gaussian distribution. The higher
º is, the more Gaussian the distribution. The statistics
of a univariate clutter amplitude c is then described by
the well-known K-compound distribution:

pc(c) =
2

b¡ (º)

³ c
2b

´º
Kº¡1

³ c
b

´
(29)

where Kº is the modified Bessel function of the
second kind. This distribution models the sea statistics
well [60]. Typical values of º for sea clutter are
greater than 0.4 [61]. In the following, the clutter
covariance matrix is assumed to be identity so that

Fig. 2. Detection probabilities of DSM-GLRT and GSM-GLRT
detectors designed for range- and Doppler-distributed targets (solid
curves) with respect to point-target detector (dashdotted curve) and
range-only distributed target detector (dashed curve) for N = 8,
L= 4, º = 0:5, Pfa = 10

¡4. Steering matrices and vectors are
known.

M= I. The signal-to-clutter ratio (SCR) is

SCR=
PL
r=1(Erar)

HM¡1(Erar)
N¾2

(30)

where ¾2 is the total energy of the clutter.

A. Comparison with Other Detection Strategies

In Fig. 2, the detection probabilities of our
range-and-Doppler spread target detectors are
plotted for N = 8, L= 4, and º = 0:5. This shape
parameter value corresponds to a spiky clutter.
As the detection curves show, the performances
of the GSM and DSM-GLRT detectors are nearly
identical. In fact, in all the following simulations, the
performances of the GSM and DSM detectors are
very close, that is the reason why we only represent
the DSM-GLRT detector performances. Next, in
Fig. 2, the performances of the DSM and GSM are
compared with the point-target-designed detector, i.e.,
the detector designed for L= 1 which corresponds
to a detector on a low or medium resolution range
radar. We also assume that the steering matrix E1 =
e1 = (1,e

j2¼f , : : : ,ej2¼f(N¡1)) reduces to a steering
vector which frequency is fixed on f = 0:1 which
corresponds to the base of the target. This detector is
then equivalent to [27]. In the point-target-designed
detector case, the target is entirely located in one
range cell and the clutter power is increased by a
factor L= 4 versus the range-and-Doppler spread
target detector. We also plot the detection probability
of the range-only distributed target detector, i.e., the
detector designed for L= 4 but in each range cell,
the steering matrix is reduced to a steering vector
so that Er = er = (1,e

j2¼f , : : : ,ej2¼f(N¡1)), r = 1 : : :L



Fig. 3. Detection probability of DSM-GLRT detector for target 1
(solid curve), target 2 (dashdotted curve) and target 3 (dashed
curve). N = 8, L= 4, º = 0:5, Pfa = 10

¡4. Steering matrices are
known.

TABLE II
Doppler Frequencies and Amplitudes of the Scatterers

Cell 1 2 3 4

target 1 fD f0:1,0:2g f0:1,0:2g f0:1,0:2g f0:1,0:2g
a f1,1g f1,1g f1,1g f1,1g

target 2 fD f0:1,0:2g f0:1,0:2g f0:1,0:2g f0:1,0:2g
a f2,2g f1,1g f1,1g f0,0g

target 3 fD f0:1,0:2g f0:1,0:2g f0:1,0:2g f0:1,0:2g
a f3,3g f1,1g f0,0g f0,0g

where the steering vector frequency is f = 0:1. This
detector is equivalent to the one formulated in [20].
The figure shows that increasing radar resolution
capabilities can produce a significant detection gain.
Moreover, our detector (designed for target resolved
on the Doppler axis) enables significant performance
enhancement opposed to a detector designed for
range-only distributed targets. Indeed, we observe
a performance gain of 12 dB with respect to the
point-target detector and approximatively 7 dB against
the range-only distributed target detector, this gain
being estimated for a detection probability of 0.5.

B. Influence of Mismatched Target Length

Fig. 3 studies the consequences on detection
probability of a mismatched length. To do so, we
apply our DSM-GLRT detector on three different
targets which Doppler frequencies and scatterers
amplitudes are summarized in Table II. We witness
a performance loss when the detector is not perfectly
matched to the target. However, by comparing these
results with Fig. 2, we can see that the performances
are still higher than a range-only distributed detector
or than a point-target detector.

Fig. 4. Detection probability of DSM detector for different
numbers of pulses used N = 8 (dashdotted curve), N = 16 (dashed
curve) and N = 32 (solid curve) for L= 4, º = 0:5, Pfa = 10

¡4.
Steering matrices are known.

Fig. 5. Influence of º on detection probability Pfa = 10
¡4, N = 8.

C. Influence of Number of Integrated Pulses

In Fig. 4 the detection probability is plotted for
different values of N = 8, 16, and 32. There is a large
detection performance improvement when the number
of pulses used is increased.

D. Influence of Texture Shape Parameter º

In Fig. 5, the detection probability is plotted
for different shape parameters: º = 1, º = 0:5, º =
0:3, and º = 0:2. We can note that the detection
probability increases when the clutter becomes more
spiky, especially for low SCR. This result about the
influence of º is also observed in [20] and [21] for
range-distributed detectors and in [62] for point target
detector.



Fig. 6. Comparison of DSM-GLRT on steady scatterers (solid
curve) and Swerling I scatterers (dashed curve). Pfa = 10

¡4, N = 8,
º = 0:5.

E. Influence of Target Amplitudes Fluctuations

We assumed in previous Monte-Carlo simulations
that the scattering points’ amplitudes were unitary
and constant over the simulation time. In Fig. 6,
a fluctuation is introduced on the amplitudes
considering that they follow a zero-mean Gaussian
distribution with unit variance. The amplitudes vary
between each simulation but are constant over the N
pulses. This model corresponds to Swerling I [25] for
a single scatterer. The detection probability is slightly
lower but stays very close to the case of constant
amplitudes. The detection loss is approximately of
2 dB for Pd = 0:5.

F. Influence of the Texture Correlation

In the problem statement (Section II), we assumed
that the different range cells were independent. In
some scenarios, this assumption may no longer be
valid and it is interesting to evaluate the detection
loss when a spatial correlation is introduced. Fig. 7
plots the detection probability versus the ratio between
the correlation length and the target length. The
target now considered lies in L= 16 range cells.
The Doppler frequencies of the scattering points in
range cells f1,2,3,4g are equal to f0:1g, in range
cells f5,6,7,8g they are equal to f0:1,0:2g, in range
cells f9,10,11,12g they are equal to f0:1,0:2,0:3g
and in range cells f13,14,15,16g they are are equal
to f0:1,0:2g. The detection probability is plotted for
SCR=¡10 dB and, as we can see, it decreases when
the correlation length increases. The spatial correlation
of the gamma texture component is simulated via a
memoryless nonlinear transform (MNLT) as described
in [63]. The correlation length corresponds to the
value for which the autocorrelation function is equal
to 1=e. Gerlach [20] proposed to pass the different

Fig. 7. Influence of correlation length of texture component.
SCR =¡10 dB, Pfa = 10¡4, N = 8, º = 0:5, L= 16.

pulses through a whitening filter before the detection
stage. The spatial whitening takes then the form
of a whitening matrix derived from the Cholesky
decomposition of the covariance matrix of the input
samples in range on a single pulse. The spatial
correlation function could also be computed thanks
to a secondary data set were it available.

G. Influence of Signal Subspace Estimation

In previous simulations, steering matrices or
steering vectors were assumed to be known. In a
realistic scenario, this a priori knowledge is obviously
not always straightforward and the signal subspace
must be estimated. We have proposed in Section IIIB
to use superresolution methods to estimate the
Doppler frequencies of the signal components. These
methods need the knowledge of the signal subspace
dimension, i.e., the number of signal components. To
do so, we use Rissanen’s MDL [57] criterion which
solve the surestimation problem encountered with
AIC [56] (MDL however tends to underestimate the
number of components for a small signal length).
We use Least Square ESPRIT [55] and root-MUSIC
which enables to give an estimate of the Doppler
frequencies without having to search over the
maxima of a function as is the case when using
the MUSIC algorithm [54]. In Fig. 8, the detection
probability is plotted using on the one hand the
ESPRIT algorithm for the estimation, and on the other
hand the root-MUSIC algorithm. In order to save
simulation time, the considered target is contained
in one range cell and is composed of three unitary
scattering points of respective normalized Doppler
frequencies f0:1,0:2,0:3g. The computed threshold
corresponds to a wanted Pfa = 10

¡2. The data length
is N = 64 samples in order to limit the frequency
estimation error. The correlation matrix is estimated
thanks to a forward-backward averaging or a spatial
smoothing technique [64].



Fig. 8. Comparison of DSM-GLRT on target composed of 3 frequencies in one range cell in case where frequencies are known (solid
curve), ESPRIT-estimated (dashdotted curve) and root-MUSIC-estimated (dashed curve). Pfa = 10

¡2, N = 64, º = 0:5, L= 1.

Forward-backward averaging exploits the fact
that a sinusoid evolves in one spatial direction in the
same manner as the conjugate sinusoid evolves in
the opposite spatial direction, while conjugating and
reversing the clutter/noise contribution effectively
yields an independent realization, thereby doubling
the amount of averaging that occurs [65]. The
correlation matrix estimate of the data sequence
zr = (zr(0),z(1), : : : ,z(N ¡1))t is then computed by
forming subsequences zr,k, k = 1 : : :K of lengths N=K.
The estimate is then given by

R̂zr =
1
2K

Ã
KX
k=1

Zr,k + JZr,kJ

!
, r = 1 : : :L

(31)

where Zr,k = zr,kz
H
r,k and J, the exchange matrix that

makes Jzr,k the reverse version of zr,k, is defined as

J=

0BBBB@
0 ¢ ¢ ¢ 0 1

0 ¢ ¢ ¢ 1 0
... = 0

...

1 0 ¢ ¢ ¢ 0

1CCCCA : (32)

In the simulations, we set K = 2. It is indeed shown in
[66] that the best compromise between the resolution
loss and the decorrelation of different contributors is
reached for 2·K · 3.
In order to take into account the frequency

estimation error, we define the detection probability
as the probability that the GLRT be higher than
the threshold defined earlier and that the frequency
estimation error defined in (33) and (34) be lower

than the arbitrarily fixed value 1=N, corresponding
to the periodogram frequency resolution. Fig. 8 shows
that estimating the steering matrix yields a detection
loss that depends on the frequency estimation
accuracy.
If p̂r · pr:

err =
1
L

LX
r=1

1
p̂r

p̂rX
k=1

min
i
jf̂k ¡fij (33)

otherwise:

err =
1
L

LX
r=1

1
pr

prX
k=1

min
i
jf̂i¡fkj: (34)

Actually, the estimation error on frequency affects
also the false alarm probability. Indeed, frequency
estimation errors or errors on the number of signal
components entail including clutter components in
the steering matrix. As a consequence, the false alarm
probability increases. The influence on mismatched
steering vectors is tackled in [67], [16] and more
recently by De Maio in [68], the authors compute
the false alarm probability and detection probability
as a function of the angle between real and estimated
steering vectors. In Fig. 9, we plot the logarithm of
the root mean square error (RMSE) on frequency
estimation and of the Monte-Carlo computed Pfa.
By looking at Fig. 9, we understand that the false
alarm probability is linked to the error on frequency
estimation. ESPRIT RMSE is higher than root-MUSIC
RMSE for SCRs above 0 dB. The opposite behavior
is usually encountered, see for example [69], but



Fig. 9. Logarithm of root mean square error on frequency estimation and of computed Pfa (dashed curve). Pfa = 10
¡2, N = 64, º = 0:5,

L= 1. Signal subspace dimension is estimated thanks to MDL criterion.

Fig. 10. Detection probability with estimation of covariance matrix from K = 16, K = 32, K = 48 secondary clutter data vectors. N = 8,
L= 4, º = 0:5, Pfa = 10

¡4. Steering matrices are known.

the test we made includes estimation of the signal
subspace thanks to Rissanen’s criterion. In fact, when
the signal subspace dimension is estimated thanks
to the Rissanen’s MDL, we witness that for SCRs
comprised between 0 dB and approximately 20 dB,
the ESPRIT RMSE is higher than the root-MUSIC
RMSE ; and when the target dominates the clutter,
i.e., for SCRs higher than 20 dB, normal behavior is

observed, i.e., the ESPRIT RMSE is slightly lower
than the root-MUSIC RMSE.

H. Influence of Additive Thermal Noise and
Covariance Matrix Estimation

In all previous simulations, we assumed that the
clutter covariance matrix is known. In a realistic



Fig. 11. Influence of clutter to thermal noise ratio (CNR). Covariance matrix estimated from K = 32 clutter+noise secondary data
vectors. N = 8, L= 4, º = 0:5, Pfa = 10

¡4. Steering matrices are known.

scenario, it must be estimated from a secondary data
set. In this section, we present the performances of the
derived detector with the estimation of the covariance
matrix from secondary data only composed of clutter
returns, denoted zr =

p
¿rsr, r = L+1 : : :L+H. The

covariance matrix is supposed to be the same in the
different range cells and the estimate is then computed
from the normalized data so that

M̂=
1
H

L+HX
k=L+1

zrz
H
r

1
N
zHr zr

: (35)

This estimate is also used by Conte, De Maio, and
Ricci in [21]. The estimation of the covariance matrix
leads to a different threshold assessment. In fact, no
closed-form exists and we resort to Monte-Carlo trials
to estimate the new threshold. Fig. 10 then shows the
detection curves when secondary data is composed
of K = 16, K = 32 or K = 48 clutter vectors and
these curves are compared to the case of a known
covariance matrix, which is written K =1. As the
figure shows, the detection probability decreases
when the covariance matrix is estimated. However,
with a sufficient number of secondary data vectors,
the performances corresponding to an estimated
covariance matrix become very close the performances
corresponding to a known covariance matrix.
Next, in the problem statement, we addressed the

problem of detecting targets in a clutter-dominant
scenario, that is, we neglected the influence of thermal
noise. This assumption can be made if we consider
low-range detections since the influence of thermal
noise increases with range. We thus plot in Fig. 11 the

detection performances of the proposed detector when
thermal noise is added to the disturbance vectors. In
that case, the covariance matrix is estimated via (35)
from K = 32 secondary data vectors composed of
clutter and thermal noise. We see that the detection
probability decreases when the clutter-to-noise
ratio decreases. Actually, this phenomenon may be
explained considering the mixture of clutter and
thermal noise. Indeed, the more powerful the thermal
noise, the more the distribution of the mixture tends
to Gaussian-shape statistics. Otherwise stated, this
situation makes the detector behave in the same way
as an increase of the shape parameter º would do.

VI. CONCLUSION

We have proposed in this paper an adaptive
detector for range- and Doppler-spread targets in
non-Gaussian disturbance. The clutter is modeled as
a SIRP with known or estimated speckle covariance
matrices. The target steering matrices are also
assumed to be known or estimated with spectral
estimators such as the root-MUSIC or ESPRIT
superresolution methods. We consider that the local
values of the texture component are deterministic
unknown parameters and are ML-estimated so that
the GLRT can be derived. Two different hypotheses
have been made concerning the complex amplitudes
of the target scatterers: either modeled as deterministic
unknowns or as Gaussien parameters. It has been
analytically shown that both hypotheses lead to
the same results as for a single range cell designed
detector and Monte-Carlo trials show that results



are very close for distributed target designed
detectors. We have shown that our detector, which is
especially designed for range- and Doppler-distributed
targets enables a performance enhancement over
low-resolution detection or range-only-target-designed
detectors and that our detector has the CFAR property.
Our interest is now focused on investigating the
possibility of using our detector to estimate the target
length by maximizing the likelihood with respect to
a sliding window of variable length and to extend the
binary-hypotheses test to a multiple-hypotheses test,
which should enable to differentiate different kinds of
targets.

APPENDIX A. DERIVATION OF THE DSM-GLRT

The ML-estimate of b1:::L under hypothesis H1 is
given by

b̂r = arg max
br

pzr jbr ,Ur ,¿r ,H1 (zr j br,Ur,¿r,H1)

= arg max
br

pzr¡Urbr j¿r ,H0 (zr¡Urbr j ¿r,H0): (36)

The result is thus simply given by computing and
cancelling the likelihood derivative with respect to br.
This is equivalent to computing the derivative in each
range cell so that

@

@br

·
exp(¡(zr¡Urbr)HM¡1(zr¡Urbr)=¿r)

(¼¿r)N det(M)

¸
= 0

, b̂r = (U
H
r M

¡1Ur)
¡1UHr M

¡1zr,

r = 1 : : :L: (37)

The same approach is adopted to find the
ML-estimate of the texture ¿1:::L under H0 and H1.
It is straightforward to show that the estimates are,
respectively, given by

¿̂rjH0 = arg max
¿r

pzr j¿r ,H0 (zr j ¿r,H0)

=
zHr M

¡1zr
N

(38)

and, with (37)

¿̂rjH1 = arg max
¿r

pzr j¿r ,H1 (zr j ¿r,H1)

=
zHr (M

¡1¡Qr)zr
N

(39)

where

Qr =M
¡1Ur(U

H
r M

¡1Ur)
¡1UHr M

¡1 (40)

which is the orthogonal projector onto the signal
subspace Ur. By injecting the ML-estimate of (37),
(38), and (39) in (12), the GLRT is reexpressed as

¤DSM(Z) =
QL
r=1(z

H
r M

¡1zr)
NQL

r=1(zHr (M¡1¡Qr)zr)N
: (41)

APPENDIX B. DERIVATION OF THE GSM-GLRT

Let us consider the whitened data z̃r =M
¡1=2zr,

r = 1 : : :L and the whitened signal covariance matrix
R̃xr =M

¡1=2UrRbrU
H
r M

¡1=2 = ŨrRbr Ũ
H
r . With this

strategy, the likelihood under H1 is

f1(Z) =
LY
r=1

exp(¡z̃Hr (ŨrRbr ŨHr + ¿rI)¡1z̃r)
¼N det(ŨrRbr Ũ

H
r + ¿rI)

: (42)

In order to compute det(ŨrRbrŨ
H
r + ¿rI) and

(ŨrRbr Ũ
H
r + ¿rI)

¡1 and to derive the GSM-GLRT,
we follow the same approach as McWhorter [46] and
Jin [17], [47]. For this purpose, we present the signal
covariance matrix in a different form. Let us write

R̃br = (Ũ
H
r Ũr)

1=2Rbr (Ũ
H
r Ũr)

1=2 =GrDrG
H
r (43)

where Gr is the unitary matrix of eigenvectors of
this new form and Dr = diag[dr,1,dr,2, : : : ,dr,pr ] its
eigenvalues. Then we define

G̃r = Ũr(Ũ
H
r Ũr)

¡1=2Gr = [gr,1, : : : ,gr,pr ]: (44)

It is straightforward to see that the columns of G̃r
are a set of orthonormal vectors. Let G̃?r denote the
null space of G̃r of dimension N £ (N ¡pr). Thus
we have G̃?Hr [G̃rG̃

?
r ] = [0(N¡pr)£prI(N¡pr)£(N¡pr)]. The

covariance matrix ŨrRbrŨ
H
r + ¿rI can then be written

ŨrRbr Ũ
H
r + ¿rI= [G̃rG̃

?
r ]

·
Dr + ¿rIpr 0

0 ¿rIN¡pr

¸
[G̃rG̃

?
r ]
H:

(45)It follows that

(ŨrRbr Ũ
H
r + ¿rI)

¡1

= [G̃rG̃
?
r ]

24 (Dr+ ¿rIpr )¡1 0

0
1
¿r
IN¡pr

35 [G̃rG̃?r ]H
=

prX
k=1

1
dr,k + ¿r

Pg̃r,k +
1
¿r
PG̃?r (46)

where

Pg̃r,k = g̃r,kg̃
H
r,k

PG̃?r = G̃
?
r G̃

?H
r = I¡PG̃r = I¡ G̃rG̃

H
r

(47)

and it can be verified that we also have PG̃r = PŨr . In

the same way, det(ŨrRbrŨ
H
r + ¿rI)

¡1 is given by

det(ŨrRbrŨ
H
r + ¿rI)

¡1 =
prY
k=1

1
dr,k + ¿r

μ
1
¿r

¶N¡pr
:

(48)



The likelihood function under H1 can thus be written
as

f1(Z) =
1
¼NL

pr ,LY
k=1,r=1

1
dr,k + ¿r

μ
1
¿r

¶N¡pr

£ exp
0@¡ pr ,LX

k=1,r=1

z̃Hr Pg̃r,k z̃r
dr,k + ¿r

¡
LX
r=1

z̃Hr PG̃?r z̃r
¿r

1A :
(49)

As a result, the log-likelihood function under H1
becomes

l1(Z) =¡NL ln¼¡N
LX
r=1

ln¿r¡
pr ,LX

k=1,r=1

ln
dr,k + ¿r
¿r

¡
pr ,LX

k=1,r=1

z̃Hr Pg̃r,k z̃r
dr,k + ¿r

¡
LX
r=1

z̃Hr PG̃?r z̃r
¿r

: (50)

The ML-estimates of ¿r and of dr,k + ¿r are obtained
by maximizing this function and are given by

¿̂rjH1 =
z̃Hr PG̃?r z̃r
N ¡pr

dr,k + ¿r = z̃
H
r Pg̃r,k z̃r:

(51)

This implies that

l1(Z) =¡NL ln¼¡N
LX
r=1

ln

Ã
z̃Hr PG̃?r z̃r
N ¡pr

!

¡
pr ,LX

k=1,r=1

ln

Ã
(N ¡pr)

z̃Hr Pg̃r,k z̃r
z̃Hr PG̃?r z̃r

!
¡NL:

(52)
Under H0, the log-likelihood is

l0(Z) =¡NL ln¼¡N
LX
r=1

ln¿r¡
LX
r=1

z̃Hr z̃r
¿r

(53)

and with the ML-estimate of ¿̂rjH0 = z̃
H
r z̃r=N under

H0, obtained by maximizing previous function, the
log-likelihood under H0 is

l0(Z) =¡NL ln¼¡N
LX
r=1

ln
z̃Hr z̃r
N

¡NL: (54)

Thus with (52) and (54), it is straightforward to
show that the log-likelihood ratio is written as

ln¤GSM(Z) =¡NL lnN

¡
pr ,LX

k=1,r=1

ln

Ã
(N ¡pr)

z̃Hr Pg̃r,k z̃r
z̃Hr PG̃?r z̃r

!

+N
LX
r=1

ln

Ã
1+

z̃Hr PG̃r z̃r
z̃Hr PG̃?r z̃r

!
: (55)

We now define hr,k = (N ¡pr)z̃Hr Pg̃r,k z̃r=z̃Hr PG̃?r z̃r.
Then hr,k appears as the signal-to-noise ratio
resolved onto the one-dimensional subspace g̃r,k
and the signal-to-noise ratio resolved onto the
pr-dimensional subspace is Hr =

Ppr
k=1 hr,k =

(N ¡pr)z̃Hr PG̃r z̃r=z̃Hr PG̃?r z̃r. The next step of the
derivation of the GSM-GLRT is then the maximization
with respect to hr,k, k = 1 : : :pr. McWhorter in [46]
and Jin in [17], [47] showed that the maximization of
the likelihood under H1 with respect to g̃r,k, k = 1 : : :pr
is obtained when

max
prY
k=1

1
hr,k

=min
prY
k=1

hr,k =Hr¡ (pr¡ 1): (56)

With the equality PG̃r = PŨr , the GSM-GLRT can thus
be rewritten as

ln¤GSM(Z) =¡NL lnN

¡
LX
r=1

ln

Ã
(N ¡pr)

z̃Hr PŨr z̃r
z̃Hr PŨ?r z̃r

¡ (pr¡ 1)
!

+N
LX
r=1

ln

Ã
1+

z̃Hr PŨr z̃r
z̃Hr PŨ?r z̃r

!
: (57)
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