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Power partitions and saddle-point method

Introduction

Let p(n) denote, as usual, the number of unrestricted partitions of an integer n, i.e. the number of solutions to the equation n = a 1 + a 2 + • • • + a d , where d 1 and the a j are positive integers such that a 1

a 2 • • • a d 1.
In 1918, Hardy and Ramanujan [START_REF] Hardy | Asymptotic formulae in combinatory analysis[END_REF] proved the asymptotic formula

(1.1) p(n) ∼ exp(π 2n/3) 4 √ 3 n (n → ∞).
by using modular properties of Jacobi's ∆-function.

More generally, given an integer k 1, let p k (n) denote the number of partitions of the integer n into k-th powers, i.e. the number of solutions to the equation

n = a k 1 + • • • + a k d
where, as before, d 1 and a 1 a 2 • • • a d 1. Thus, p 1 (n) = p(n).

In 1918 too, Hardy and Ramanujan [START_REF] Hardy | Asymptotic formulae in combinatory analysis[END_REF] stated without proof the asymptotic formula

(1.2) p k (n) ∼ b k exp c k n 1/(k+1) n (3k+1)/(2k+2) (n → ∞),
where the constants b k and c k are defined by

a k := {k -1 ζ(1 + k -1 )Γ(1 + k -1 )} k/(k+1) , (1.3) b k := a k (2π) (k+1)/2 (1 + 1/k) , (1.4) c k := (k + 1)a k , (1.5)
and ζ is the Riemann zeta-function. In 1934, introducing a number of complicated objects including generalised Bessel functions, Wright [START_REF] Wright | Asymptotic partition formulae, III. Partitions into k-th powers[END_REF] obtained an asymptotic expansion of p k (n): for any integer k 1, there is a real sequence {α kj } j 1 such that, for any J 1, we have

(1.6) p k (n) = b k exp(c k (n + h k ) 1/(k+1) ) (n + h k ) (3k+1)/(2k+2) 1 + 1 j<J (-1) j α kj (n + h k ) j/(k+1) + O 1 n J/(k+1)
, where

h k := 0 if k is even, (-1) (k+1)/2 (2π) -(k+1) k!ζ(k + 1) if k is odd,
and the implied constant depends at most on J and k. Apart from an explicit formula for α k1 , no further information was given about the α kj beyond the statement that they depend only on k and j and that they "may be calculated with sufficient labour for any given values of k, j".

Of course, taking J = 1 in (1.6) yields an effective form of (1.2). More recently, appealing to a relatively simple implementation of the Hardy-Littlewood circle method, Vaughan [START_REF] Vaughan | Squares: additive questions and partitions[END_REF] obtained an explicit version of (1.6) in the case k = 2 and Gafni [START_REF] Gafni | Power partitions[END_REF] generalised the argument to arbitrary, fixed k.

Gafni states her result in the following way. Let X = X k (n) denote the real solution to the equation

(1.7) n = (a k X) 1+1/k -1 2 X -1 2 ζ(-k), and write (1.8) Y = Y k (n) := (1 + 1/k)a 1+1/k k X 1/k -1 4
• Then, given any k 1, there is a real sequence {β kj } j 1 such that for any fixed J 1, we have

(1.9) p k (n) = exp (k + 1)a 1+1/k k X 1/k -1 2 (2π) (k+1)/2 X 3/2 Y 1/2 1 + 1 j<J β kj Y j + O 1 Y J .
It may be checked that the asymptotic formulae (1.6) and (1.9) match each other.

In this note, our aim is to provide a new proof of (1.2), and indeed also of (1.6) and (1.9), by applying the saddle-point method along lines very similar to those employed in [START_REF] Tenenbaum | Applications de la méthode du col[END_REF] in the case of p(n).

Our approach appears to be significantly simpler than those of the quoted previous works. Indeed, as mentioned above, Wright's method, which provides a sharper error term, rests on the introduction of generalised Bessel functions and so may be regarded as far more difficult. Note that Vaughan [START_REF] Vaughan | Squares: additive questions and partitions[END_REF] does motivate his study by the search of a 'relatively simple argument'.

Our method simplifies the matter further. Actually, the saddle-point method may be seen as a crude version of the circle method in which the major arcs are reduced to a single neighbourhood of one point. In the present context, it actually provides the same accuracy.

We thank the referee for pointing out to us that the Vaughan-Gafni method has been very recently generalised to enumerate other classes of partitions-see [START_REF] Berndt | Partitions into kth-powers of terms in an arithmetic progression[END_REF] and [START_REF] Dunn | Polynomial partition asymptotics[END_REF]. We believe that the saddle-point method could still be used in these contexts, with expected substantial simplifications in the analysis.

The constants b k and c k being defined as in (1.4) and (1.5), we can state the following.

Theorem 1. Let k 1 be a fixed integer. There is a real sequence {γ kj } j 1 such that, for any given integer J 1, we have

(1.10) p k (n) = b k exp(c k n 1/(k+1) ) n (3k+1)/(2k+2) 1 + 1 j<J γ kj n j/(k+1) + O 1 n J/(k+1)
uniformly for n 1. The implied constant depends at most on J and k.

The coefficients γ kj can be made explicit directly from the computations in our proof. For instance, we find that γ k1 = -(11k 2 + 11k + 2)/(24kc k ) when k 2, in accordance with the expression given by Wright. (It can be checked, after some computations, that it matches Gafni's formula too.) We also have

γ 11 = -1 48 c 1 -1/c 1 = - 2 3 π 48 + 3 2π .
It may be seen that |γ kj | grows like Γ(j)e O(j) and thus that the series j 1 γ kj z j has radius of convergence 0.

Technical preparation

Define (2.1) F k (s) := n 0 p k (n)e -ns ( e s > 0), so that (2.2) p k (n) = 1 2πi σ+iπ σ-iπ F k (s)e ns ds = 1 2π π -π F n (σ + iτ )e nσ+inτ dτ.
According to the principles of the saddle-point method, we aim at selecting the integration abscissa σ as a solution σ n of -F k (σ)/F k (σ) = n. We plainly have

(2.3) F k (s) = m 1 1 -e -m k s -1 ( e s > 0).
Thus, in the same half-plane, we may define a determination of log F k (s) by the formula

Φ k (s) := m 1 log 1 1 -e -m k s
where the complex logarithms are taken in principal branch. Expanding throughout and inverting summations, we get

(2.4) Φ k (s) = m 1 n 1 e -m k ns n = r 1 w k (r) r e -rs , -Φ k (s) = r 1 w k (r)e -rs ( e s > 0), where w k (r) := m k | r m k (r 1).
Hence -Φ k (σ) decreases from +∞ to 0+ on (0, ∞), and so the equation -Φ k (σ) = n has for each integer n 1 a unique real solution σ n = σ n (k). Moreover, the sequence {σ n } n 1 is decreasing and the trivial estimates 1 w k (r) r 2 yield 1/n σ n 1/ 3 √ n. We start with an asymptotic expansion for the derivatives Φ (m) k (σ n ) in terms of powers of σ n . It turns out that all coefficients but a finite number vanish. Lemma 2.1. Let J 1, k 1. As n → ∞, we have

(2.5) Φ k (σ n ) = ka 1+1/k k σ 1/k n + 1 2 log σ n (2π) k + 1 2 ζ(-k)σ n + O σ J n ,
Moreover, for fixed m 1,

(2.6) (-1) m Φ (m) k (σ n ) = a 1+1/k k σ m+1/k n 1 <m + 1 k - (m -1)! 2σ m n -1 2 δ 1m ζ(-k) + O(σ J n ),
where δ 1m is Kronecker's symbol.

Proof. Considering Mellin's inversion formula

e -s = 1 2πi 2+i∞ 2-i∞ Γ(z)s -z dz ( e s > 0)
and the convolution identity

(2.7) r 1 w k (r) r 1+z = ζ(z + 1)ζ(kz) ( e z > 1/k),
we derive from the series representation (2.4) the integral formula

(2.8) Φ k (s) = 1 2πi 2+i∞ 2-i∞ ζ(z + 1)ζ(kz)Γ(z) dz s z ,
and in turn we may move the line of integration to e z = -J -m -1 2 . The shifted integral is clearly σ J n . Let us first consider the case m = 0 in (2.9). Then the crossed singularities are a pole of order 2 at z = 0, and two simple poles at z = 1/k and z = -1. Indeed, ζ(z + 1)ζ(kz) vanishes at all negative integers -2, so the corresponding zeros compensate the poles of Γ(z) at negative integers -2.

(2.9) (-1) m Φ (m) k (σ n ) = 1 2πi
The residue at z = 1/k is equal to

k -1 ζ(1 + k -1 )Γ(k -1 )σ -1/k n = ka 1+1/k k σ -1/k n .
The residue at z = 0 is the coefficient of z in the Taylor expansion of

z 2 ζ(z + 1)ζ(kz)Γ(z)σ -z n = zζ(z + 1)ζ(kz)Γ(z + 1)σ -z n = (1 -γz){ζ(0) + kζ (0)z}(1 + γz)(1 -z log σ n ) + O(z 2 ) = ζ(0) + {-ζ(0) log σ n + kζ (0)}z + O(z 2 ). Since ζ(0) = -1 2 and ζ (0) = -1 2 log(2π), this residue equals 1 2 log{σ n /(2π) k }. The residue at z = -1 equals 1 2 ζ(-k)σ n .
This completes the proof of (2.5). When m = 1, the three crossed singularities are simple poles. The residues at z = 1/k, z = 0 and z (i) There is a real sequence {a kj } j 1 with a k1 = -k/(2c k ), a k2 = k/(8c 2 k ), such that

= -1 are respectively (1/k)Γ(1 + 1/k)ζ(1 + 1/k)σ -1-1/k n , -1/2σ n and -1 2 ζ(-k). When m 2,
(2.10) σ n = a k n k/(k+1) 1 + 1 j<J a kj n j/(k+1) + O 1 n J/(k+1) (n → ∞).
(ii) There is a real sequence {b kj } j 1 with b k1 = -a k1 /k such that, as n → ∞, we have

(2.11) Φ k (σ n ) = ka k n 1/(k+1) 1 + 1 j<J b kj n j/(k+1) + O 1 n J/(k+1) + 1 2 log σ n (2π) k .
(iii) There is a real sequence {b kmj } j 1 such that, as n → ∞, we have k+1) .

(2.12) (-1) m Φ (m) k (σ n ) + 1 2 δ 1m ζ(-k) = n (mk+1)/(k+1) a m-1 k 1 <m + 1 k 1 + 1 j<J b kmj n j/(k+1) + O 1 n J/(
Proof. We infer from (2.6) that

(2.13) n = a 1+1/k k σ 1+1/k n - 1 2σ n -1 2 ζ(-k) + O(σ J n ).
This immediately implies (2.10) by Lagrange's inversion formula -see, e.g. [8, §7.32]. We may obtain an explicit expression for the a kj from the formula

(2.14) σ n = a k 2πi n k/(k+1) |z-1|= zG (z) G(z) dz + O 1 n (k+J)/(k+1)
where is a fixed, small positive constant and

G(z) := z -1-1/k -1 - 1 2a k zn 1/(k+1) - ζ(-k) 2n •
This is classically derived from Rouché's theorem and we omit the details. The values of a k1 and a k2 may be retrieved from the above or by formally inserting (2.10) into (2.13). Inserting (2.14) back into (2.5) and (2.6) immediately yields (2.11) and (2.12).

With the aim of applying Laplace's method to evaluate the integral on the right-hand side of (2.2), we need to show that it is dominated by a small neighbourhood of the saddle-point σ n . The next result meets this requirement. Here and in the sequel, all constants c j (j 0) are assumed, unless otherwise stated, to depend at most upon k.

Lemma 2.3. We have

(2.15) |F k (σ n + iτ )| |F k (σ n )| e -c1τ 2 σ -(2+1/k) n if |τ | 2πσ n , e -c2σ -1/k n if 2πσ n < |τ | π. Proof. Noticing that 1 -e -m k (σn+iτ ) 2 = 1 -e -m k σn 2 + 4e -m k σn sin 2 ( 1 2 m k τ ) 1 -e -m k σn 2 + 16e -m k σn m k τ /(2π) 2 ,
we can write

|F k (σ n + iτ )| 2 |F k (σ n )| 2 m 1 1 + 16 m k τ /(2π) 2 e m k σn (1 -e -m k σn ) 2 -1 (4σn) -1/k <m (2σn) -1/k 1 + 16 m k τ /(2π) 2 e m k σn (1 -e -m k σn ) 2 -1 .
Thus, there is an absolute positive constant c 3 such that (2.16)

|F k (σ n + iτ )| |F k (σ n )| e -c3S(τ ;σn) with S(τ ; σ n ) := m∈I m k τ /(2π) 2 .
where we have put

I := (4σ n ) -1/k , (2σ n ) -1/k . If |τ | 2πσ n and m ∈ I, we have |m k τ /(2π)| 1 2 . Thus (2.17) S(τ ; σ n ) = (4σn) -1/k <m (2σn) -1/k m 2k τ 2 /4π 2 τ 2 σ -(2+1/k) n . When 2πσ n < |τ | 2πσ 1-1/3k n
, we proceed similarly, noting that for any integer

h with |τ |/4σ n < 2πh |τ |/2σ n there are (1/σ n ) 1/k /h integers m in I such that 1 4
|m k τ /(2π) -h| 1 2 . This yields the the required estimate

(2.18) S(τ ; σ n ) σ -1/k n .
When 2π(σ n ) 1-1/3k < |τ | π, we note that (2.18) follows, via the Cauchy-Schwarz inequality, from the inequalities

m∈I τ m k /(2π) m∈I |1 -e iτ m k | |I| - m∈I e iτ m k
provided we can show the modulus of the last exponential sum is, say, (1 -c)|I| for some positive constant c depending at most upon k. Now Dirichlet's approximation lemma guarantees that there exist integers a ∈ Z * and q, with 1 < q (1/σ n ) 1-1/3k , (a, q) = 1, |τ /(2π) -a/q| (σ n ) 1-1/3k /q.

If q

(1/σ n ) 1/3k , we readily deduce the required estimate from [6, Lemma 2.7 & Theorem 4.2]. If (1/σ n ) 1/3k < q

(1/σ n ) 1-1/3k , we may apply Weyl's inequality, as stated for instance in [6, Lemma 2.4], to get that the exponential sum under consideration is |I| 1-ε k for some positive ε k depending only on k. Hence, (2.18) holds in all circumstances.

Completion of the proof

Proposition 3.1. Let k 1, J 1. Then there is a real sequence {e kj } j 1 such that for any integer J 1 we have

(3.1) p k (n) = exp(nσ n + Φ k (σ n )) 2πΦ k (σ n ) 1 + 2 j<J e kj n j/(k+1) + O 1 n J/(k+1) (n → ∞).
Proof. By (2.2), we have

(3.2) p k (n) = e nσn 2π π -π
e Φ k (σn+iτ )+inτ dτ.

From (2.15), we deduce that

(3.3) 2πσn<|τ | π e Φ k (σn+iτ )+inτ dτ e Φ k (σn)-c4σ -1/k n σ 1+1/3k n <|τ | 2πσn e Φ k (σn+iτ )+inτ dτ e Φ k (σn)-c4σ -1/3k n .
Since these bounds are exponentially small with respect to the expected main term, it only remains to estimate the contribution of the interval

I :=] -σ 1+1/(3k) n , σ 1+1/(3k) n
[, corresponding to a small neighbourhood of the saddle-point.

In this range, we have

Φ k (σ n + iτ ) = 0 m 2J+1 Φ (m) k (σ n ) m! (iτ ) m + O τ 2J+2 σ 1/k+2J+2 n ,
where the estimate for the error term follows from (2.6). The same formula ensures that

|Φ (m) k (σ n )τ m | 1 for m 3. Thus for τ ∈ I, we can write e Φ k (σn+iτ )+inτ = e Φ k (σn)-1 2 Φ k (σn)τ 2 1 + 1 2J 1 ! 3 m 2J+1 Φ (m) k (σ n ) m! (iτ ) m + O τ 2J+2 σ 1/k+2J+2 n = e Φ k (σn)-1 2 Φ k (σn)τ 2 1 + 1 2J 1 ! 3 m (2J+1) λ k, ,m (n)τ m + O τ 2J+2 σ 1/k+2J+2 n , where (3.4) λ k, ,m (n) := i m (σ n ) m r ! •
Since the contributions from odd powers of τ vanish, we get (3.5)

I e Φ k (σn+iτ )+inτ dτ = e Φ k (σn) I 0 + 1 2J 1 ! 3 2m (2J+1) λ k, ,2m (n)I m + O(R) , with 
I m := I e -1 2 Φ k (σn)τ 2 τ 2m dτ, R := σ -1/k-2J-2 n I e -1 2 Φ k (σn)τ 2 τ 2J+2 dτ.
Extending the range of integration in I m involves an exponentially small error, so we get from the classical formula for Laplace integrals

I m = √ 2π(2m)! m!2 m Φ k (σ n ) m+1/2 + O e -c5n 1/(3k+3) , R σ 1+(J+1/2)/k n 1 Φ k (σ n )n J/(k+1)
•

Inserting these estimates back into (3.5) and expanding all arising factors Φ (m) k (σ n ) by (2.12), we obtain (3.1).

Remark. From (3.3) and (3.5) we see that, when k 2, (3.6)

p k (n) = e nσn+Φ k (σn) 2πΦ k (σ n ) 1 - 2k 2 + 5k + 2 24kc k σ n a k 1/k + O σ 2/k n
where, in view of (2.6), the quantity inside curly brackets may be replaced by an asymptotic series in powers of σ 1/k n . Inserting (2.5) and (2.10) in the main term, we thus get a formula which is very close to, but simpler than (1.9), since it follows from (2.13) that X and 1/σ n agree to any power of σ n .

We are now in a position to complete the proof of Theorem 1. We infer from (2.10) and (2.11) that It remains to insert back into (3.1) and expand σ n /Φ k (σ n ) according to (2.10) and (2.12) with m = 2 to obtain the required asymptotic formula.

nσ n + Φ k (σ n ) = c k n 1/(k+1) +

2+i∞ 2 -

 2 i∞ ζ(z + 1)ζ(kz)Γ(z + m) dz σ z+m n (m 0). Using the classical fact that ζ(z) has finite order in any vertical strip a e z b (a, b ∈ R with a < b), or, in other words, satisfies ζ(x + iy) a,b 1 + |y| A (a x b, |y| 1), for suitable A = A(a, b), and invoking Stirling's formula in the form |Γ(x + iy)| = √ 2π|y| x-1/2 e -π|y|/2 1 + O a,b 1/y (a x b, |y| 1)

  the only crossed singularities are two simple poles, at z = 1/k and z = 0, with respective residues (1/k)Γ(m + 1/k)ζ(1 + 1/k)σ -m-1/k n and -1 2 (m -1)!σ -m n . This proves (2.6). Lemma 2.2. Let J 1, k 1, m 1.

  k with a * kj := a k (ka k,j+1 + b k,j+1). Exponentiating and expanding, we get(3.7) exp(nσ n + Φ(σ n )) = √ σ n (2π) k/2 exp c k n 1/(k+1) k/2 exp c k n 1/(k+1) ...,j <J j1+•••+j =j a * kj1 • • • a * kj .

m1,...,m 2J+1 m1+•••+m =m 1 r Φ (mr) k