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POWER PARTITIONS AND SADDLE-POINT METHOD*

GÉRALD TENENBAUM, JIE WU AND YALI LI

Abstract. For k > 1, denote by pk(n) the number of partitions of an integer n into k-th powers. In

this note, we apply the saddle-point method to provide a new proof for the well-known asymptotic
expansion of pk(n). This approach turns out to significantly simplify those of Wright (1934), Vaughan

(2015) and Gafni (2016).

1. Introduction

Let p(n) denote, as usual, the number of unrestricted partitions of an integer n, i.e. the number of
solutions to the equation

n = a1 + a2 + · · ·+ ad,

where d > 1 and the aj are positive integers such that a1 > a2 > · · · > ad > 1. In 1918, Hardy and
Ramanujan [4] proved the asymptotic formula

(1.1) p(n) ∼
exp(π

√
2n/3)

4
√

3n
(n→∞).

by using modular properties of Jacobi’s ∆-function.
More generally, given an integer k > 1, let pk(n) denote the number of partitions of the integer n

into k-th powers, i.e. the number of solutions to the equation

n = ak1 + · · ·+ akd

where, as before, d > 1 and a1 > a2 > · · · > ad > 1. Thus, p1(n) = p(n).
In 1918 too, Hardy and Ramanujan [4] stated without proof the asymptotic formula

(1.2) pk(n) ∼
bk exp

{
ckn

1/(k+1)
}

n(3k+1)/(2k+2)
(n→∞),

where the constants bk and ck are defined by

ak := {k−1ζ(1 + k−1)Γ(1 + k−1)}k/(k+1),(1.3)

bk :=
ak

(2π)(k+1)/2
√

(1 + 1/k)
,(1.4)

ck := (k + 1)ak,(1.5)

and ζ is the Riemann zeta-function. In 1934, introducing a number of complicated objects including
generalised Bessel functions, Wright [9] obtained an asymptotic expansion of pk(n): for any integer
k > 1, there is a real sequence {αkj}j>1 such that, for any J > 1, we have

(1.6) pk(n) =
bk exp(ck(n+ hk)1/(k+1))

(n+ hk)(3k+1)/(2k+2)

{
1 +

∑
16j<J

(−1)jαkj
(n+ hk)j/(k+1)

+O

(
1

nJ/(k+1)

)}
,

where

hk :=

{
0 if k is even,

(−1)(k+1)/2(2π)−(k+1)k!ζ(k + 1) if k is odd,
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2 GÉRALD TENENBAUM, JIE WU AND YALI LI

and the implied constant depends at most on J and k. Apart from an explicit formula for αk1, no
further information was given about the αkj beyond the statement that they depend only on k and j
and that they “may be calculated with sufficient labour for any given values of k, j”.

Of course, taking J = 1 in (1.6) yields an effective form of (1.2).
More recently, appealing to a relatively simple implementation of the Hardy-Littlewood circle method,

Vaughan [7] obtained an explicit version of (1.6) in the case k = 2 and Gafni [3] generalised the argument
to arbitrary, fixed k.

Gafni states her result in the following way. Let X = Xk(n) denote the real solution to the equation

(1.7) n = (akX)1+1/k − 1
2X −

1
2ζ(−k),

and write

(1.8) Y = Yk(n) := (1 + 1/k)a
1+1/k
k X1/k − 1

4 ·

Then, given any k > 1, there is a real sequence {βkj}j>1 such that for any fixed J > 1, we have

(1.9) pk(n) =
exp

{
(k + 1)a

1+1/k
k X1/k − 1

2

}
(2π)(k+1)/2X3/2Y 1/2

{
1 +

∑
16j<J

βkj
Y j

+O

(
1

Y J

)}
.

It may be checked that the asymptotic formulae (1.6) and (1.9) match each other.

In this note, our aim is to provide a new proof of (1.2), and indeed also of (1.6) and (1.9), by applying
the saddle-point method along lines very similar to those employed in [5] in the case of p(n).

Our approach appears to be significantly simpler than those of the quoted previous works.
Indeed, as mentioned above, Wright’s method, which provides a sharper error term, rests on the

introduction of generalised Bessel functions and so may be regarded as far more difficult. Note that
Vaughan [7] does motivate his study by the search of a ‘relatively simple argument’.

Our method simplifies the matter further. Actually, the saddle-point method may be seen as a crude
version of the circle method in which the major arcs are reduced to a single neighbourhood of one point.
In the present context, it actually provides the same accuracy.

We thank the referee for pointing out to us that the Vaughan-Gafni method has been very recently
generalised to enumerate other classes of partitions—see [1] and [2]. We believe that the saddle-point
method could still be used in these contexts, with expected substantial simplifications in the analysis.

The constants bk and ck being defined as in (1.4) and (1.5), we can state the following.

Theorem 1. Let k > 1 be a fixed integer. There is a real sequence {γkj}j>1 such that, for any given
integer J > 1, we have

(1.10) pk(n) =
bk exp(ckn

1/(k+1))

n(3k+1)/(2k+2)

{
1 +

∑
16j<J

γkj
nj/(k+1)

+O

(
1

nJ/(k+1)

)}
uniformly for n > 1. The implied constant depends at most on J and k.

The coefficients γkj can be made explicit directly from the computations in our proof. For instance,
we find that γk1 = −(11k2 + 11k + 2)/(24kck) when k > 2, in accordance with the expression given by
Wright. (It can be checked, after some computations, that it matches Gafni’s formula too.) We also
have

γ11 = − 1
48 c1 − 1/c1 = −

√
2

3

( π
48

+
3

2π

)
.

It may be seen that |γkj | grows like Γ(j)eO(j) and thus that the series
∑
j>1 γkjz

j has radius of
convergence 0.

2. Technical preparation
Define

(2.1) Fk(s) :=
∑
n>0

pk(n)e−ns (<e s > 0),
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so that

(2.2) pk(n) =
1

2πi

∫ σ+iπ

σ−iπ

Fk(s)ens ds =
1

2π

∫ π

−π
Fn(σ + iτ)enσ+inτ dτ.

According to the principles of the saddle-point method, we aim at selecting the integration abscissa σ
as a solution σn of −F ′k(σ)/Fk(σ) = n. We plainly have

(2.3) Fk(s) =
∏
m>1

(
1− e−m

ks
)−1

(<e s > 0).

Thus, in the same half-plane, we may define a determination of logFk(s) by the formula

Φk(s) :=
∑
m>1

log
( 1

1− e−mks

)
where the complex logarithms are taken in principal branch. Expanding throughout and inverting
summations, we get

(2.4) Φk(s) =
∑
m>1

∑
n>1

e−m
kns

n
=
∑
r>1

wk(r)

r
e−rs, −Φ′k(s) =

∑
r>1

wk(r)e−rs (<e s > 0),

where
wk(r) :=

∑
mk | r

mk (r > 1).

Hence −Φ′k(σ) decreases from +∞ to 0+ on (0,∞), and so the equation −Φ′k(σ) = n has for each
integer n > 1 a unique real solution σn = σn(k). Moreover, the sequence {σn}n>1 is decreasing and the
trivial estimates 1 6 wk(r) 6 r2 yield 1/n� σn � 1/ 3

√
n.

We start with an asymptotic expansion for the derivatives Φ
(m)
k (σn) in terms of powers of σn. It

turns out that all coefficients but a finite number vanish.

Lemma 2.1. Let J > 1, k > 1. As n→∞, we have

(2.5) Φk(σn) =
ka

1+1/k
k

σ
1/k
n

+ 1
2 log

( σn
(2π)k

)
+ 1

2ζ(−k)σn +O
(
σJn
)
,

Moreover, for fixed m > 1,

(2.6) (−1)mΦ
(m)
k (σn) =

a
1+1/k
k

σ
m+1/k
n

∏
16`<m

(
`+

1

k

)
− (m− 1)!

2σmn
− 1

2δ1mζ(−k) +O(σJn),

where δ1m is Kronecker’s symbol.

Proof. Considering Mellin’s inversion formula

e−s =
1

2πi

∫ 2+i∞

2−i∞
Γ(z)s−z dz (<e s > 0)

and the convolution identity

(2.7)
∑
r>1

wk(r)

r1+z
= ζ(z + 1)ζ(kz) (<e z > 1/k),

we derive from the series representation (2.4) the integral formula

(2.8) Φk(s) =
1

2πi

∫ 2+i∞

2−i∞
ζ(z + 1)ζ(kz)Γ(z)

dz

sz
,

and in turn

(2.9) (−1)mΦ
(m)
k (σn) =

1

2πi

∫ 2+i∞

2−i∞
ζ(z + 1)ζ(kz)Γ(z +m)

dz

σz+mn
(m > 0).
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Using the classical fact that ζ(z) has finite order in any vertical strip a 6 <e z 6 b (a, b ∈ R with
a < b), or, in other words, satisfies

ζ(x+ iy)�a,b 1 + |y|A (a 6 x 6 b, |y| > 1),

for suitable A = A(a, b), and invoking Stirling’s formula in the form

|Γ(x+ iy)| =
√

2π|y|x−1/2e−π|y|/2
{

1 +Oa,b
(
1/y
)}

(a 6 x 6 b, |y| > 1)

we may move the line of integration to <e z = −J −m− 1
2 .

The shifted integral is clearly � σJn .
Let us first consider the case m = 0 in (2.9). Then the crossed singularities are a pole of order 2 at

z = 0, and two simple poles at z = 1/k and z = −1. Indeed, ζ(z + 1)ζ(kz) vanishes at all negative
integers 6 −2, so the corresponding zeros compensate the poles of Γ(z) at negative integers 6 −2.

The residue at z = 1/k is equal to

k−1ζ(1 + k−1)Γ(k−1)σ−1/k
n = ka

1+1/k
k σ−1/k

n .

The residue at z = 0 is the coefficient of z in the Taylor expansion of

z2ζ(z + 1)ζ(kz)Γ(z)σ−zn = zζ(z + 1)ζ(kz)Γ(z + 1)σ−zn

= (1− γz){ζ(0) + kζ ′(0)z}(1 + γz)(1− z log σn) +O(z2)

= ζ(0) + {−ζ(0) log σn + kζ ′(0)}z +O(z2).

Since ζ(0) = − 1
2 and ζ ′(0) = − 1

2 log(2π), this residue equals 1
2 log{σn/(2π)k}.

The residue at z = −1 equals 1
2ζ(−k)σn.

This completes the proof of (2.5).
When m = 1, the three crossed singularities are simple poles. The residues at z = 1/k, z = 0 and

z = −1 are respectively (1/k)Γ(1 + 1/k)ζ(1 + 1/k)σ
−1−1/k
n , −1/2σn and − 1

2ζ(−k).

When m > 2, the only crossed singularities are two simple poles, at z = 1/k and z = 0, with

respective residues (1/k)Γ(m+ 1/k)ζ(1 + 1/k)σ
−m−1/k
n and − 1

2 (m− 1)!σ−mn . This proves (2.6). �

Lemma 2.2. Let J > 1, k > 1, m > 1.
(i) There is a real sequence {akj}j>1 with ak1 = −k/(2ck), ak2 = k/(8c2k), such that

(2.10) σn =
ak

nk/(k+1)

{
1 +

∑
16j<J

akj
nj/(k+1)

+O
( 1

nJ/(k+1)

)}
(n→∞).

(ii) There is a real sequence {bkj}j>1 with bk1 = −ak1/k such that, as n→∞, we have

(2.11) Φk(σn) = kakn
1/(k+1)

{
1 +

∑
16j<J

bkj
nj/(k+1)

+O
( 1

nJ/(k+1)

)}
+ 1

2 log
( σn

(2π)k

)
.

(iii) There is a real sequence {bkmj}j>1 such that, as n→∞, we have

(2.12)

(−1)mΦ
(m)
k (σn) + 1

2δ1mζ(−k)

=
n(mk+1)/(k+1)

am−1
k

∏
16`<m

(
`+

1

k

){
1 +

∑
16j<J

bkmj
nj/(k+1)

+O
( 1

nJ/(k+1)

)}
.

Proof. We infer from (2.6) that

(2.13) n =
a

1+1/k
k

σ
1+1/k
n

− 1

2σn
− 1

2ζ(−k) +O(σJn).

This immediately implies (2.10) by Lagrange’s inversion formula — see, e.g. [8, §7.32]. We may obtain
an explicit expression for the akj from the formula

(2.14) σn =
ak

2πink/(k+1)

∮
|z−1|=%

zG′(z)

G(z)
dz +O

( 1

n(k+J)/(k+1)

)
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where % is a fixed, small positive constant and

G(z) := z−1−1/k − 1− 1

2akzn1/(k+1)
− ζ(−k)

2n
·

This is classically derived from Rouché’s theorem and we omit the details. The values of ak1 and ak2

may be retrieved from the above or by formally inserting (2.10) into (2.13).
Inserting (2.14) back into (2.5) and (2.6) immediately yields (2.11) and (2.12). �

With the aim of applying Laplace’s method to evaluate the integral on the right-hand side of (2.2),
we need to show that it is dominated by a small neighbourhood of the saddle-point σn. The next result
meets this requirement. Here and in the sequel, all constants cj (j > 0) are assumed, unless otherwise
stated, to depend at most upon k.

Lemma 2.3. We have

(2.15)
|Fk(σn + iτ)|
|Fk(σn)|

6

{
e−c1τ

2σ−(2+1/k)
n if |τ | 6 2πσn,

e−c2σ
−1/k
n if 2πσn < |τ | 6 π.

Proof. Noticing that∣∣1− e−m
k(σn+iτ)

∣∣2 =
∣∣1− e−m

kσn
∣∣2 + 4e−m

kσn sin2( 1
2m

kτ)

>
∣∣1− e−m

kσn
∣∣2 + 16e−m

kσn‖mkτ/(2π)‖2,

we can write

|Fk(σn + iτ)|2

|Fk(σn)|2
6
∏
m>1

(
1 +

16‖mkτ/(2π)‖2

emkσn(1− e−mkσn)2

)−1

6
∏

(4σn)−1/k<m6(2σn)−1/k

(
1 +

16‖mkτ/(2π)‖2

emkσn(1− e−mkσn)2

)−1

.

Thus, there is an absolute positive constant c3 such that

(2.16)
|Fk(σn + iτ)|
|Fk(σn)|

6 e−c3S(τ ;σn)

with

S(τ ;σn) :=
∑
m∈I
‖mkτ/(2π)‖2.

where we have put I :=
]
(4σn)−1/k, (2σn)−1/k

]
.

If |τ | 6 2πσn and m ∈ I, we have |mkτ/(2π)| 6 1
2 . Thus

(2.17) S(τ ;σn) =
∑

(4σn)−1/k<m6(2σn)−1/k

m2kτ2/4π2 � τ2σ−(2+1/k)
n .

When 2πσn < |τ | 6 2πσ
1−1/3k
n , we proceed similarly, noting that for any integer h with |τ |/4σn <

2πh 6 |τ |/2σn there are � (1/σn)1/k/h integers m in I such that

1
4 6 |m

kτ/(2π)− h| 6 1
2 .

This yields the the required estimate

(2.18) S(τ ;σn)� σ−1/k
n .

When 2π(σn)1−1/3k < |τ | 6 π, we note that (2.18) follows, via the Cauchy-Schwarz inequality, from
the inequalities ∑

m∈I
‖τmk/(2π)‖ >

∑
m∈I
|1− eiτmk

| > |I| −
∣∣∣ ∑
m∈I

eiτmk
∣∣∣
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provided we can show the modulus of the last exponential sum is, say, 6 (1 − c)|I| for some positive
constant c depending at most upon k. Now Dirichlet’s approximation lemma guarantees that there
exist integers a ∈ Z∗ and q, with 1 < q 6 (1/σn)1−1/3k, (a, q) = 1,

|τ/(2π)− a/q| 6 (σn)1−1/3k/q.

If q 6 (1/σn)1/3k, we readily deduce the required estimate from [6, Lemma 2.7 & Theorem 4.2]. If
(1/σn)1/3k < q 6 (1/σn)1−1/3k, we may apply Weyl’s inequality, as stated for instance in [6, Lemma
2.4], to get that the exponential sum under consideration is � |I|1−εk for some positive εk depending
only on k. Hence, (2.18) holds in all circumstances. �

3. Completion of the proof

Proposition 3.1. Let k > 1, J > 1. Then there is a real sequence {ekj}j>1 such that for any integer
J > 1 we have

(3.1) pk(n) =
exp(nσn + Φk(σn))√

2πΦ′′k(σn)

{
1 +

∑
26j<J

ekj
nj/(k+1)

+O

(
1

nJ/(k+1)

)}
(n→∞).

Proof. By (2.2), we have

(3.2) pk(n) =
enσn

2π

∫ π

−π
eΦk(σn+iτ)+inτ dτ.

From (2.15), we deduce that

(3.3)

∫
2πσn<|τ |6π

eΦk(σn+iτ)+inτ dτ � eΦk(σn)−c4σ−1/k
n∫

σ
1+1/3k
n <|τ |62πσn

eΦk(σn+iτ)+inτ dτ � eΦk(σn)−c4σ−1/3k
n .

Since these bounds are exponentially small with respect to the expected main term, it only remains

to estimate the contribution of the interval I :=] − σ
1+1/(3k)
n , σ

1+1/(3k)
n [, corresponding to a small

neighbourhood of the saddle-point.
In this range, we have

Φk(σn + iτ) =
∑

06m62J+1

Φ
(m)
k (σn)

m!
(iτ)m +O

(
τ2J+2

σ
1/k+2J+2
n

)
,

where the estimate for the error term follows from (2.6). The same formula ensures that |Φ(m)
k (σn)τm| �

1 for m > 3. Thus for τ ∈ I, we can write

eΦk(σn+iτ)+inτ

= eΦk(σn)− 1
2 Φ′′k (σn)τ2

{
1 +

∑
16`62J

1

`!

( ∑
36m62J+1

Φ
(m)
k (σn)

m!
(iτ)m

)`
+O

(
τ2J+2

σ
1/k+2J+2
n

)}

= eΦk(σn)− 1
2 Φ′′k (σn)τ2

{
1 +

∑
16`62J

1

`!

∑
3`6m6(2J+1)`

λk,`,m(n)τm +O

(
τ2J+2

σ
1/k+2J+2
n

)}
,

where

(3.4) λk,`,m(n) := im
∑

36m1,...,m`62J+1
m1+···+m`=m

∏
16r6`

Φ
(mr)
k (σn)

mr!
·

Since the contributions from odd powers of τ vanish, we get

(3.5)

∫
I

eΦk(σn+iτ)+inτ dτ = eΦk(σn)

{
I0 +

∑
16`62J

1

`!

∑
3`62m6(2J+1)`

λk,`,2m(n)Im +O(R)

}
,
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with

Im :=

∫
I

e−
1
2 Φ′′k (σn)τ2

τ2m dτ, R := σ−1/k−2J−2
n

∫
I

e−
1
2 Φ′′k (σn)τ2

τ2J+2 dτ.

Extending the range of integration in Im involves an exponentially small error, so we get from the
classical formula for Laplace integrals

Im =

√
2π(2m)!

m!2mΦ′′k(σn)m+1/2
+O

(
e−c5n

1/(3k+3)
)
, R � σ1+(J+1/2)/k

n � 1√
Φ′′k(σn)nJ/(k+1)

·

Inserting these estimates back into (3.5) and expanding all arising factors Φ
(m)
k (σn) by (2.12), we

obtain (3.1). �

Remark. From (3.3) and (3.5) we see that, when k > 2,

(3.6) pk(n) =
enσn+Φk(σn)√

2πΦ′′k(σn)

{
1− 2k2 + 5k + 2

24kck

(σn
ak

)1/k

+O
(
σ2/k
n

)}
where, in view of (2.6), the quantity inside curly brackets may be replaced by an asymptotic series in

powers of σ
1/k
n . Inserting (2.5) and (2.10) in the main term, we thus get a formula which is very close

to, but simpler than (1.9), since it follows from (2.13) that X and 1/σn agree to any power of σn.

We are now in a position to complete the proof of Theorem 1.
We infer from (2.10) and (2.11) that

nσn + Φk(σn) = ckn
1/(k+1) +

∑
16j<J

a∗kj
nj/(k+1)

+O
( 1

nJ/(k+1)

)
+ 1

2 log

(
σn

(2π)k

)
with a∗kj := ak(kak,j+1 + bk,j+1). Exponentiating and expanding, we get

(3.7)

exp(nσn + Φ(σn))

=

√
σn

(2π)k/2
exp

(
ckn

1/(k+1)
){

1 +
∑

16`<J

1

`!

( ∑
16j<J

a∗kj
nj/(k+1)

)`
+O

( 1

nJ/(k+1)

)}

=

√
σn

(2π)k/2
exp

(
ckn

1/(k+1)
){

1 +
∑

16j<J

fkj
nj/(k+1)

+O
( 1

nJ/(k+1)

)}
with

fkj :=
∑

16`<J

1

`!

∑
16j1,...,j`<J
j1+···+j`=j

a∗kj1 · · · a
∗
kj`
.

It remains to insert back into (3.1) and expand
√
σn/Φ′′k(σn) according to (2.10) and (2.12) with

m = 2 to obtain the required asymptotic formula.
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