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Flying insects have evolved to develop efficient strategies to navigate in nat-

ural environments. Yet, studying them experimentally is difficult because of

their small size and high speed of motion. Consequently, previous studies were

limited to tethered flights, hovering flights or restricted flights within confined

laboratory chambers. Here, we report the development of a cable-driven par-

allel robot, named lab-on-cables, for tracking and interacting with a free-flying

insect. In this approach, cameras are mounted on cables, so as to move auto-

matically with the insect. We design a reactive controller that minimizes the

online tracking error between the position of the flying insect, provided by an

embedded stereo-vision system and the position of the moving lab, computed

from the cable lengths. We validate the lab-on-cables with Agrotis ipsilon moths

(c.a. 2 centimeters long) flying freely up to 3 meters per second. We further

demonstrate, using pre-recorded trajectories, the possibility to track other in-
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sects such as fruit flies or mosquitoes. The lab-on-cables is relevant to free-

flight studies and may be used in combination with stimulus delivery to assess

sensory modulation of flight behavior (e.g. pheromone-controlled anemotaxis

in moths).

Introduction

Despite their miniaturized brain, insects are not simple reflex automata; instead, they exhibit a

rich behavioral repertoire. Drosophila melanogaster, for example, a tiny insect weighting half

of a milligram, has only 100,000 neurons –a million times less than the human brain– and this

reduced number of neurons does not prevent the fly from sensory processing and flight ma-

neuvers that are unmatched with current technology (1, 2). Understanding how miniaturized

insect brains control sensory processing and flight behavior could serve as a source of inspira-

tion for future developments in robotics, e.g., micro-aerial vehicles mimicking flapping flight at

the insect scale (3, 4) or olfactory robots inspired by odor tracking in moths (5).

For decades, researchers have developed laboratory experimental setups to study and un-

derstand the flight behavior of insects. There are two approaches: one consists of maintaining

the insect in position so that flight kinematics can be analyzed in great detail with high-speed

cameras, and the other considers more natural conditions, that is, free flight.

Restraining the animal movements can be done in two ways: by taking advantage of the

specificity of particular insects, e.g., the ability for hawkmoths to hover in front of artificial

flowers while feeding on nectar (6, 7) (Fig. 1A), or by physically constraining the insect with a

tether, e.g. (8) (Fig. 1C). Both techniques have critical limitations. The former is restricted to

studying a steady condition, that is, hovering flight, whereas a rigid tether affects flight dynam-

ics, as it does not allow roll or pitch motions.

In free flight approaches, a few studies attempted to record muscle activities with miniature
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electrophysiology devices carried by the insect during flight (9). Yet, they have been of limited

success because the carried load affects flight performance. This approach is thus restricted

to the largest insects (e.g. hawkmoths with body mass from 1 to 3 g) that have the capability

to carry loads up to 10% of their weight. Wind tunnels (ca. 1 to 2 m long and 30 cm wide)

equipped with motion capture are common tools to record the trajectories of insects in free

flight. They have been used to characterize the attractiveness of insects in turbulent odor plumes

such as the anemotactic response of male moths to sexual pheromone; see Reviews (10, 11).

Flight paths are typically zigzags along the wind axis with decreasing amplitude as the insect

approaches the source. Yet, these are only average or indirect observations because wind tunnels

do not allow the precise delivery of stimuli in space and time, and the use of external cameras

positioned far away from the insect prevents any analysis of flight behavior. Consequently,

synchronous measurement of the airborne cues actually encountered by the animal at any point

of its displacement and of the animal orientation towards the source is difficult to achieve.

Recently, Stower et al. (12) used virtual reality to manipulate the optomotor response of the

insect so that the flight is kept within a limited volume and can be tracked with motion capture

(Fig. 1B).

Thus, the vast majority of experimental research on insect flight has been limited to the

study of hovering flights (Fig. 1A), tethered flights (Fig. 1C), or restricted flights in confined

environments (Fig. 1B). Here, we report a cable-driven robot, named lab-on-cables, which

endeavors to overcome these limitations. In our approach, the lab equipment is mounted on

cables so that it can move along with the animal (Fig. 1D). Cable robots belong to a special class

of parallel robots in which rigid links are replaced by flexible cables (13). They offer several

advantages, such as the possibility of moving objects with high precision in a large workspace.

Famous applications are the SpiderCam or SkyCam (14), a suspended camera moving over

stadiums and the RoboCrane (15), a robotic crane used in construction sites. Cable robots have
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also been used as motion simulators for humans (16) and motion generators in wind tunnels

(17). The task of moving lab rigs along with a flying insect is challenging because the insect

trajectory is not known in advance and the flight speed can be high (several meters per second)

(18). In this Article, we describe the design of the lab-on-cables that fulfills this task and its

experimental validation.

Figure 1: Experimental setups for studies with flying insects. (A) Hovering flight of a Man-
duca sexta (100-mm wingspan) in front of an artificial flower (6,7). Photo credit: Kiley Riffell
photography. (B) Virtual reality flight arena (Drosophila melanogaster) (12). Photo credit:
IMP/IMBA Graphics Department, https://strawlab.org/freemovr. (C) Tethered moth (Agrotis
ipsilon) from our lab. Photo credit: Patrice Latron photography. (D) Lab-on-cables (A. ipsilon
moths) from our lab. All photos used with permission.
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Results

Lab-on-cables implementation

We built the lab-on-cables, a 6-degrees of freedom (DOF) cable robot that tracks flying insects

in a (6 m long by 4 m wide by 3 m high) workspace (Fig. 2A and Movie 1). Here, we sketch

the main ideas of the design and refer the reader to Materials and Methods for the details. The

end effector, called flying frame, is an open cube (edge length of 30 cm) in which the insect

can fly freely. To follow the insect trajectory, we mounted the flying frame on cables operated

by motorized winches (Fig. 2, B and C). An optical system, which computed online the three-

dimensional (3D) position XT of the insect using infrared (IR) illumination and calibrated

cameras, was integrated onto the flying frame. A control strategy that consists of chasing the

current target position is risky and can lead off the track because insects may fly at a relatively

high speed. Instead, the control scheme takes into account the direction of motion of the insect

to anticipate what its future location would be and points towards it (Fig. 2D). This strategy

can be seen as a type of deviated pursuit used in missile guidance (19). One major difference,

however, is that a missile aiming at target interception flies at its maximum speed, whereas

the lab-on-cables tracking an insect adjusts its speed continuously. The tracking speed can be

described as follows

V = Kp (XT −X) +KdẊT (1)

where X is the position of the robot (center of flying frame), ẊT is the insect velocity (time

derivatives are indicated with a dot throughout the paper) and Kp and Kd are proportional and

derivative gains.
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Figure 2: Lab-on-cables setup. (A) Photo of the cable robot (6 m by 4 m by 3 m) and (B)
Schematic view of the setup. (C) Photo of the flying frame (30 cm by 30 cm by 30 cm). The
flying frame supports the lab equipment, i.e., an IR source and a pair of calibrated cameras (Pixy
cam 1 and 2) for online insect location. The flying frame moves automatically to keep the insect
within the detection range of the cameras. (D) Robot control as deviated pursuit. Robot and
insect locations are X and XT , respectively. The insect speed is denoted ẊT . The tracking
speed V is the sum of a pure pursuit term pointing along the line of sight (LOS) toward the
target current location and a corrective term, taking into account the direction of motion of the
target. This is like anticipating where the target will be to point ahead of the target and cover
less distance.
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Movie 1. Lab-on-cables at 1 m/s superimposed with long-exposure photo of robot movement.

Experimental validation of control design

We first performed robotic experiments with insect trajectories that had been previously recorded

in wind tunnels (20, 21). The trajectories corresponded to various insects flying in attractive

odor plumes: fruit flies (Drosophila melanogaster, n = 169 insects) with ethanol plume (20),

mosquitoes (Aedes aegypti, n = 65 insects) with CO2 plume (20) and moths (Agrotis ipsilon,

n = 38 insects) with pheromone plume (21). The objective in replaying prerecorded trajectories

was twofold: to conduct pretests with different insects and to bypass the embedded detection

system to validate the control design of the robot.

Figure 3 (A to C, left) shows three examples of trajectories tracked by the robot (control

gains Kp = 8.4 and Kd = 1). The robot was programmed to reach, every 10 ms, a new

target position that was read sequentially from the data file of prerecorded trajectory. To test

the effectiveness of the robot, we computed the tracking error for all points in all trajectories as

the Euclidean distance between the target (flying insect) and the end effector (center of flying

frame). Overall, the tracking error increased with the speed of the insect, so that small (or large)

errors are made at low (respectively high) speed (Fig. 3, A to C, right). The connected points

7



in Fig. 3 (A to C, right) indicate the evolution of the tracking error along the trajectories. We

noted, in some trajectories, that large residual errors experienced at high speed persisted from

one operating cycle to the next (i.e., 10 ms) when the insect slowed down. This observation

suggests some limitations for the robot in terms of speed and acceleration. To assess these

limits, we used speed-step control inputs and analyzed the transient response of the robot. We

estimated the robot limitations to 3.6 m/s and 17 m/s2.

For all species, the error distribution is well described by a gamma distribution with fitted

shape and scale parameters. The cumulative distributions plotted in Fig. 3D for the various

insects indicate that, in more than 90% of the cases, the tracking error was less than 1 cm,

which is small compared with the length of the flying frame (30 cm). The experimental tracking

errors could be reproduced in simulation by incorporating the speed and acceleration limits into

a simple model of the robot (compare Fig. 3, E and C, right). The simulated model merely

consisted in integrating Eq. 1 using Euler method. The fact that Eq. 1 can account for the

behavior of the robot validates the control design. Among the three species, the trajectories of

A. ipsilon moths are the most difficult to follow; see intermittent large errors (ca. 10 cm) due to

high flight speeds (ca. 5 m/s) in Figure 3C (right). In the next section, we use the lab-on-cables

to track free-flying A. ipsilon moths.

Tracking free-flying A. ipsilon moths and analysis of flight kinematics

A prerequisite to tracking flying insects is the takeoff procedure depicted in Fig. 4A (see also

movie S1). The insect is gently placed onto a takeoff platform (2 cm2) positioned near the

center of the flying frame, and the robot starts tracking immediately. If spontaneous takeoff

does not occur within 5 min, insect flight is initiated by thermal stimulation (Peltier element on

the takeoff platform). After takeoff, an electromagnet allows the fall of the platform in order

not to hamper the tracking of the insect by the robot. We did not notice any difference between
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Figure 3: Tracking prerecorded insect trajectories. (A to C) Left: Examples of insect tra-
jectories (red curves) versus robot trajectories (black curves). Right: Tracking errors of the
robot (in centimeters) versus flight speed of the insect (in meters per second). (D) Cumulative
distributions of the tracking error for experimental data (plain curves) and theoretical gamma
distribution (dashed curves). (E) Tracking errors of the simulated model (Euler integration of
Eq. 1) versus flight speed of the insect (moth data).
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spontaneous takeoffs and those provoked by thermal stimulation. In either case, A. ipsilon

moths jumped from the platform by using both their wings and legs to power the takeoff. This

flight initiation is similar to one of the jumping strategies identified for moths in (22).

We performed tracking experiments with n = 32 moths. During flight, the insect is located

online from the embedded optical system, and therefore, in contrast to previous experiments,

the target position is noisy. To improve stability in the presence of noise, we reduced the pro-

portional and derivative gains to Kp = 3 and Kd = 0.9. The flight trajectories ranged from 0.5

to 3 m (Fig. 4B). The cumulative distribution in Fig. 4B indicates that the insect speed during

flight is lower than 3 m/s in 99% of the cases.

For n = 6 moths (shown as colored points in Fig. 4B), we recorded images at 400 frames

per second (fps) (i.e., 10 times the wingbeat frequency of A. ipsilon moths) with a high-speed

camera mounted on the flying frame (Fig. 5A, left). To extract the body kinematics from the

video sequence, we modeled A. ipsilon moth in 3D using Blender, a computer graphics software

(Fig. 5A, right). The model was rigged to be fully articulated; i.e., the position and rotation of

body and wings could be set freely under the constraint of symmetry between the left and right

wings. The position and rotation of body and wings were optimized semi-automatically, so as

to match those of the real insect in each image of the recorded video sequences (see Materials

and Methods). From the fitted model, we extracted the body kinematics represented by the body

angle α and the stroke plane angle β with respect to the horizontal plane, as depicted in Fig.

5A (right). The stroke plane was identified by least square fitting from the positions of the wing

base and tip during an entire wing beat (i.e., approximately 10 consecutive 3D points).

We analyzed the kinematics for six moths representing a total of 154 wingbeats (Movie 2).

The wingbeat frequency as well as body and stroke plane angles change with the flight speed.

As flight speed increases from 0 to 3 m/s, the wing beat frequency increased from 39 to 47 Hz

[P < 0.05, one-way analysis of variance (ANOVA); Fig. 5B] while the insect body tends to
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be be more horizontal, with α decreasing from 59◦ to 15◦ [P < 0.001, one-way ANOVA; Fig.

5C]. The opposite is observed in Fig. 5D for the stroke plane angle, with β increasing from 25◦

to 57◦ (P < 0.001, one-way ANOVA). Body and stroke plane angles are not independent. We

note in Fig. 5E that α = −β + 82◦ (Pearson correlation R2 = 0.74), so that the angle α + β

between the stroke plane and the longitudinal axis of the body is approximately constant. These

results are consistent with those obtained in (6), albeit in different situations: hovering moths

in the presence of a steady air flow versus moths flying freely with variable acceleration and

repeated changes of direction in our study.

Figure 4: Tracking A. ipsilon moths. (A) Takeoff procedure. (B) Tracking of free flights
(n = 32 moths). Top: Flight length versus flight duration fitted by linear regression (Peason
correlation R2 = 0.79). The colored points are for the six moths used in the analysis of the
flight kinematics. Bottom: Cumulative density function (CDF) of the insect flight speed during
tracking.
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Figure 5: Analysis of flight kinematics. (A) A high-speed camera is mounted on the flying
frame, and the pose of the 3D model of the moth is optimized semi-automatically to match the
one of the real insect in the recorded videos. The inclination of the body is represented by the
body angle α, i.e., the angle between the longitudinal axis of the body and the horizontal plane.
The angle β is between the horizontal and the stroke plane defined by the positions of wing base
and tip during an entire wing beat. (B) Wingbeat frequency versus flight speed. (C) Body angle
versus flight speed. (D) Stroke plane angle versus flight speed. In (B) to (D), the mean values
±SE represent averages within speed intervals (bin size, 0.5 m/s). (E) Body angle versus stroke
plane angle.

12



Movie 2. Tracking A. ipsilon moths with extraction of flight kinematics by 3D
model-based matching (real moth in white and 3D model in pink).

Discussion

We validated the lab-on-cables with A. ipsilon moths flying freely up to 3 m/s and measured the

moth kinematics with an on-board high-speed camera. The data analysis indicates that, when

flight speed increases, A. ipsilon moths pitch their body down while the stroke plane becomes

more vertical, as body and stroke plane angles vary in accordance. This result is consistent with

a helicopter model of insect flight (6, 23, 24), whereby flight speed is controlled by body pitch

via changes in the stroke plane angle.

Measurements of insect flight with high-speed cameras are usually hampered by the trade-

off between spatial resolution and field of view, which requires the insect to stay in the vicinity

of the camera system. The insect is thus traditionally kept within the detection range (typically

a few tens of centimeters) by imposing some sort of movement restriction, whether by means

of a tether or by confining the flight space. With the lab-on-cables, the insect evolves freely in

an open space, albeit with a detection range that is constrained by the size of the workspace.

In its present form, the lab-on-cables was located indoor in a relatively small room, which

limits the operational workspace; however, because it relies on a lightweight cable structure and

mechanically simple winches, one can envisage rescaling the design to perform experiments at
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a larger scale and even in the wild.

When studying flying insects, we also need to bear in mind that experimental setups may

lead to unnatural flight behavior. This is known for tethered insects which tend to exaggerate

their movements because they do not support their own body mass, and for insects flying in

confined environments which modulate their speed according to the distance from the wall (18).

The lab-on-cables is not likely to alter the flight kinematics, because our results are consistent

with previous studies in free flight. Yet, it could be argued that the flying frame might still be

considered a threat by the insect. However, it is worth noting that the flying frame moves with

the insect, so the situation is totally different from a looming stimulus produced by a rapidly

approaching predator. If the flying frame had been perceived as a threat, evasive maneuvers

would have been observed in the flight of moths, and our experiments do not support this claim.

The typical escape behavior in moths, which consists in cessation of flight and dropping to the

ground, was not observed in any of the 32 moths tested.

We are not aware of any apparatus or concept comparable to the lab-on-cables, which has

thereby the potential to become an important tool in the study of flying insects. The lab-on-

cables uses the advantages of cable robots to track flying insects, namely, very fast dynamics

with little air disturbance and the possibility to be deployed over a large workspace, thanks

to the lightweight cable structure. Moreover, taking other equipment on-board would allow

for stimulus delivery during flight so that one could then study sensory-driven behaviors in an

unprecedented manner. A typical example would be to study pheromone-controlled anemotaxis

in moths with a precise control of the olfactory cues during their flight. Despite the advantages

of the lab-on-cables, there is still room for performance improvement in this technology. For

example, the use of cameras with increased spatial and temporal resolution may prove beneficial

to limit noise in the estimation of the target position. Similarly, the use of more powerful motors

can push forward the maximum attainable limits in speed and acceleration (currently estimated
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at 3.6 m/s and 17 m/s2, respectively). Such technological adaptations are feasible, because

ultrafast cable robots have been reported [e.g., the Falcon robot with velocities and accelerations

up to 13 m/s and 430 m/s2, respectively (25)], and thus would be useful as future additions.

Materials and Methods

Hardware design

We built the cable robot partly from hardware provided by Haption (26). The base frame is a

parallelepiped of dimensions 6 m by 4 m by 3 m (Fig. 2, A and B). The robot with eight cables

for 6 DOF is overconstrained. The cables are driven by motorized winches (Maxon DC motor

RE65 with COMBIPERM P1-03 brake) located at the corners of the base frame. The cables

have anchor points at the vertices of the end effector (flying frame) (Fig. 2C). As in previous

designs [e.g. (27)], the cables are crossed in a way that increases the stiffness of the system.

Because no cable goes through the flying frame, it represents a safe environment for the insect

to fly in. The flying frame supports laboratory rigs, that is, a stereo-vision system for online

insect tracking.

The IR filter was removed from all cameras and scene illumination was provided by an IR

source. The IR source did not disturb the insect because its intensity spectrum (Fig. 6, in-

set), measured with a spectrometer (Ocean Optics STS-NIR 650-1100 nm), is well beyond the

detection range of insect photoreceptors (28). For online insect tracking, we embedded two

calibrated Pixy cameras (CMUcam5) that captured images and extracted the 2D pixel coordi-

nates (effective resolution of 320 x 200 pixels) of the insect at 50 fps. The 2D pixel coordinates

of the two cameras were transmitted wirelessly to the control computer using Arduino UNO

and Xbee. The 3D triangulation was performed based on a least-square fit of the intersection

between the two lines derived from the 2D pixel coordinates and the 3D camera centers. The

triangulation result was filtered with a constant velocity Kalman filter (29) to provide the 3D
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position (xT , yT , zT ) of the target (insect).

Control design

The control design of the robot follows classical methods for cable robots, as described in (13).

The control scheme is outlined in Fig. 6 and consists of four steps.

- First, the combination of position and orientation of the flying frame –referred to as the

pose, X = (x, y, z, α, β, γ)T , with (α, β, γ) representing yaw, pitch and roll angles, respectively–

is estimated from the cable lengths by solving the forward kinematic problem. This approach

is preferable to a motion capture system because it does not rely on markers, i.e., retroreflective

materials placed on the flying frame. Thus, it covers a larger workspace with increased robust-

ness (no failure due to occluded markers as in optical motion capture systems). To quantify

the positioning error, we estimated the position of the flying frame from the cable lengths at

each time step on random walk trajectories and compared it to ground truth data provided by a

motion capture system (Qualisys Mocap 6 cameras Oqus 700+). The positioning error was 1.5

± 0.6 cm, which is small compared with the length of the flying frame (i.e., 30 cm).

- Second, the tracking speed is determined by a controller acting on the tracking error,

as defined by the distance between the target (flying insect) and the end effector (center of

flying frame). Here, we consider that the target pose is XT = (xT , yT , zT , 0, 0, 0)
T , because

the aim of the controller is to track the insect position while maintaining a zero orientation

(flying frame aligned to base frame). The tracking speed is given by Eq. 1 with diagonal

matrices Kp = diag(Kp, Kp, Kp, 1, 1, 1) and Kd = diag(Kd, Kd, Kd, 0, 0, 0). The proportional

and derivative gains Kp and Kd have been set by using Ziegler-Nichols initial estimation (30)

followed by manual fine tuning.

- Third, the inverse kinematic model allows us to convert the tracking speed into a (wind-

ing/unwinding) speed vector for the winches which can be written as ˙̀ = J V with J being
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the Jacobian matrix. The Jacobian matrix can be seen as a local linearization of the system at

the current pose X. Its expression is given in supplementary text.

- Fourth, the winding/unwinding speed vector is converted into a motor speed command

with constraints on the cable tension. It is necessary to ensure a sufficient tension in the cables

to prevent sagging (as forward and inverse kinematics consider taut cables) while avoiding, at

the same time, an excessive tension that can lead to cable breaking. This optimization problem

is framed as a Quadratic Programming problem (see supplementary text). The motor speed

command is sent to the motorized winches every 10 ms.

The methods used for solving the forward and inverse kinematics problems in the lab-on-

cables and determining the suitable tension in the cables are derived from a textbook (13). They

are detailed in supplementary text.

Extraction of flight kinematic variables by 3D-model-based matching

For n = 6 A. ipsilon flights, we recorded images at 400 fps with an embedded high-speed

camera (FPS 4000 with 22 mm lens). To extract flight kinematics from the video sequence,

we modeled A. ipsilon moths in 3D using Blender (Fig. 5A). The model was rigged to be

fully articulated; i.e., the position and rotation of body and wings could be set freely. We also

modeled the flying frame and used the same parameters (position and focal length) for the

Blender camera as those of the high-speed camera. The video sequence was also preprocessed

by increasing brightness and contrast. All these adjustments ensured a relatively realistic render

which accurately matched the real video sequence. The next step was to achieve semi-automatic

shape matching between the 3D model and the real moth in the video sequence. To process

the video sequence, we applied the 3D position of the insect provided by the Pixy cameras

to the model every 10 frames. These positions were then manually corrected if needed, and

the remaining frames were interpolated (Bézier). The rotation of the body and wings was set
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Figure 6: Control scheme. After insect detection by the IR optical system (normalized intensity
spectrum provided in the inset), the control scheme of the robot consists in four steps: (1)
estimation of the robot pose by using forward kinematics, (2) computation of the tracking speed
to minimize the tracking error, (3) transformation into a winding speed vector by using the
Jacobian and inverse kinematics, and (4) conversion to motor command with constraints on
the cable tensions. The vectors Im = (I1m, · · · , I8m)T , `m = (`1m, · · · , `8m)T and vm =
(v1m, · · · , v8m)T are measurements of the motor currents, of the winding/unwinding speeds,
and of the cable lengths, respectively.
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manually until the superimposed model matched the insect in the frame. We considered that the

wings always remain symmetrical. The flying frame was also animated to reproduce the real

robot movement. Once matching was achieved, the whole video sequence could be rendered

and model parameters could be extracted (positions of the head, tail, center of mass, and base

and tip of both wings); see Movie 2.

Supplementary materials

Text S1. Details on the control of the robot.

Fig. S1. Geometry of the lab-on-cables.

Movie S1. Insect take-off
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General methods for solving the forward and inverse kinematics problems in cable robots

and determining the suitable tension in the cables can be found in the textbook (1). The appli-

cation of these methods to our particular lab-on-cables design is detailed in this Supplementary

text in which the following notations are used: scalar variables are indicated by lowercase let-

ters, e.g., x. Time derivatives are indicated with a dot, e.g., ẋ := dx
dt

. Vectors and matrices

are indicated by boldface letters, e.g., X with XT denoting its transpose. Euclidean vectors

connecting an initial point X with a terminal point Y are denoted by arrows
−−→
XY .

Geometric model

The geometry of the lab-on-cables is detailed in Figure S1. Given the two components (mobile

end-effector and fixed base-frame), we consider two coordinate systems:
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• A fixed frame of reference, centered at the origin Of = (0, 0, 0)T of the base frame.

• A mobile frame of reference, centered in the middle of the flying frame at the point Om

with coordinates (x, y, z)T . The rotation of the flying frame is specified by yaw, pitch and

roll angles, i.e. rotations along the z, y and x axes, respectively. The pose of the flying

frame is determined by the vector X = (x, y, z, α, β, γ)T .

Change in the coordinate system, from mobile to fixed, is performed with the translation

vector
−−−→
OfOm = (x, y, z)T and the rotation matrix R given below:

R =

cosα cos β cosα sin β sin γ − sinα cos γ cosα sin β cos γ + sinα sin γ
sinα cos β sinα sin γ + cosα cos γ sinα sin β cos γ − cosα sin γ
− sin β cos β sin γ cosα cos γ


Consequently, the target T (i.e. flying insect) has coordinates XT = (xT , yT , zT )

T , ex-

pressed in the mobile reference frame, and XT =
−−−→
OfOm +R XT in the fixed reference frame.

In Figure S1, the points Ai, i = 1 · · · 8, in the base frame correspond to the positions of the

pulleys at the entrance of the winches and the points Bi are the vertices of the flying frame. The

latters are denoted Biref when the flying frame is aligned to the base frame, that is, when the

yaw, pitch and roll angles are zero. The relationship between the two is expressed as

−−−→
OmBi = R

−−−−→
OmBiref

The cables are indexed according to the winches that pull them, i.e. the ith cable connects

the pointAi of the ith winch to a particular vertexBi of the flying frame. The cables are crossed

as in Figure S1. Given the above considerations, the geometry of the lab-on-cables (Fig. 1) is

completely determined by:

• the coordinates of the pulley points Ai expressed in the fixed frame of reference from the

dimensions H1, H2 and H3 of the base frame (parallelepiped), e.g. A1 = (H1, 0, 0)
T ,
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• the coordinates of the anchor points Bi expressed in the mobile frame of reference from

the edge length C of the flying frame (cube), e.g. B1 = (C
2
, C
2
,−C

2
)T .

The length of the i-th cable is denoted by `i = ‖
−−→
AiBi‖. Its winding/unwinding speed is ˙̀

i with

˙̀
i < 0 when the cable winds and ˙̀

i > 0 when it unwinds. The unit vector in the direction of the

i-th cable is denoted by

−→ni =

−−→
AiBi

‖
−−→
AiBi‖

•

•T

B2

•
B1

•
B6

•B5•
B4

•
B3

•B8

•
B7

•
Om

•
A1

•A2

•
A3

•A4•A5

•
A6

•A7

•
A8

Of ~x

~y
~z

Figure S1: Geometry of the lab-on-cables. The vertices of the flying frame are at the points Bi,
i = 1 · · · 8, and the target (i.e. flying insect) at the point T . The origin of the fixed and mobile
frame of reference is Of and Om, respectively. The dashed lines represent the cables changing

the pose of the flying frame via motorized winches. The i-th cable connects the points Ai

corresponding to the position of the pulley at the entrance of the i-th winch to the distal anchor
point Bi.

3



Inverse kinematics and Jacobian matrix

The inverse kinematic problem consists in finding the cable length vector ` = (`1 · · · `8)T for a

given pose X = (x, y, z, α, β, γ)T of the end-effector, i.e. flying frame. We thus define f as the

function providing the cable lengths given the pose; that is, ` = f(X) where each i-th element

of ` is `i = ‖
−→
`i ‖ with

−→
`i =

−−−→
OfOm +

−−−→
OmBi −

−−−→
OfAi (1)

Let us recall that
−−−→
OmBi = R

−−−−→
OmBiref. Let J be the (8×6) Jacobian matrix of f at the current

pose X so that ˙̀ = J Ẋ. The Jacobian matrix is written as:

J =


∂`1
∂x

∂`1
∂y

∂`1
∂z

∂`1
∂α

∂`1
∂β

∂`1
∂γ

· · · · · · · · · · · · · · · · · ·
∂`8
∂x

∂`8
∂y

∂`8
∂z

∂`8
∂α

∂`8
∂β

∂`8
∂γ

 (2)

To derive the Jacobian matrix, we consider the time derivative of Eq. (1), that is

−̇→
`i =

˙−−−→
OfOm +

˙−−−→
OmBi

since
˙−−−→

OfAi = 0. Moreover,
˙−−−→

OmBi is the motion of a fixed point on a rigid body; that is,
˙−−−→

OmBi = −
−−−→
OmBi × w with ‘×’ denoting the cross product and w the rotation vector of Euler

matrix R given by

w = K

α̇β̇
γ̇

 with K =

0 − sinα cosα cos β
0 cosα cosα cos β
1 0 − sin β


We thus have

−̇→
`i =

ẋẏ
ż

−−−−→OmBi × K

α̇β̇
γ̇

 (3)
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Finally, as
−→
`i = `i

−→ni one has
−̇→
`i = ˙̀

i
−→ni + `i

−̇→ni

Multiplying both side of the previous equation by −→ni
T leads to

−→ni
T −̇→`i = ˙̀

i
−→ni

T −→ni + li
−→ni

T −̇→ni

= ˙̀
i (4)

since −→ni is the unit vector along the i-th cable (−→ni
T −→ni = 1 and −→ni

T −̇→ni = 0). Using Eqs.

(3) and (4), we can write

˙̀
i =
−→ni

T

ẋẏ
ż

−−→ni
T (
−−−→
OmBi × K

α̇β̇
γ̇

)

Thus, the entries in the Jacobian matrix Eq. (2) are expressed as follows:

(
∂`i
∂x

∂`i
∂y

∂`i
∂z

)
= −→ni

T

∂`i
∂α

= −−→ni
T

−−−→OmBi ×

0
0
1


∂`i
∂β

= −−→ni
T

−−−→OmBi ×

− sin(α)
cos(α)

0


∂`i
∂γ

= −−→ni
T

−−−→OmBi ×

cos(α) cos(β)
sin(α) cos(β)
− sin(β)


Forward kinematics and pose estimation

The forward kinematics problem consists in finding the pose X of the flying frame for a given

cable length vector ` = (`1 · · · `8)T , that is, finding g such that

X = g(`)
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Each taut cable i defines a spherical workspace of radius `i centered at the point Ai. Finding g

is thus related to computing the intersection of the workspace of all taut cables. As there is a

priori no analytic expression for g, we resort to an optimization technique which involves the

(easier) inverse kinematics problem. It consists in minimizing the distance between the cable

length vector `m measured for the current, yet unknown, pose and the one provided by the

inverse kinematics equation ˆ̀= f(X̂) for the estimated pose X̂. The error function then can be

written as follows:

E =
8∑

i=1

(`im − ˆ̀
i)
2

and its gradient with respect to X̂ is:

∇E :=
∂E

∂X̂
= −2 JT (`m − f(X̂))

The pose is found by gradient descent according to

X̂← X̂− η ∇E

This pose estimation was implemented in C++ and incorporated in our real time controller.

In practice, a few number of iterations (i.e. n < 90) with step size η = 0.01 is sufficient to

achieve convergence (i.e. ∇E < 1 mm).

Motor speed command and tension control

The tension in each cable is estimated using measurements from the winches (actual motor

speed vm and motor current Im) and is corrected using a feed-forward approach. For our DC

motors, the following linear relationship holds : Im = Kmotor(u−vm), withKmotor = −1.646.

The motor speed command, so that vm = ˙̀ then writes as u = ˙̀ + Im
Kmotor

. Yet, a corrective

term c = (c1 · · · c8)T is added in order to keep the cable tension within a safe interval, i.e. that

prevents cable sagging due to insufficient tension and cable breaking due to excessive tension.
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The motor speed command then becomes u′ = u + c with cmin ≤ c ≤ cmax. The upper

and lower bounds on the corrective term are given by c(min,max) =
I(min,max)−Im

Kmotor
+ (vm − ˙̀)

with (Imin, Imax) being the admissible range of motor current associated to the safe interval

of cable tension. Although several options are possible, we choose to minimize the norm of the

corrective term, under the constraint that the correction does not change the pose of the flying

frame. The latter can be expressed by considering the static equilibrium equation stating that

the additional forces and moments resulting from the corrective term and acting on the flying

frame should be zero, that is:

8∑
i=1

ci
−→ni = 0

and
8∑

i=1

ci
−−−→
OmBi ×−→ni = 0

Rewriting the above equations in matrix form leads to the linear constraint Ac = 06×1 with

A =

( −→n1 · · · −→n8−−−→
OmB1 ×−→n1 · · ·

−−−→
OmB8 ×−→n8

)
Thus the optimization of the corrective term c can be formulated as the following quadratic

programming (QP) problem : Min cTc s.t. cmin ≤ c ≤ cmax and Ac = 06×1. The QP

problem was solved at each time step (i.e. 10 ms) in our real time controller by using a dual

active-set method (2, 3).
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