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Summary: Deep learning models specifically CNNs have been used successfully in many tasks including medical image 
classification. CNN effectiveness depends on the availability of large training data set to train which is generally costly to 
obtain for new applications or new cases. However, there is a little concrete recommendation about training set creation. In 

this research, we analyze the impact of different class distributions in the training data to a CNN model. We consider the 
case of cancer detection task from histopathological images for cancer diagnosis and derive some useful hypotheses about 
the distribution of classes in the training data. We found that using all the training data leads to the best recall-precision 
trade-off, while training with a reduced number of examples from some classes, it is possible to inflect the model toward a 
desired accuracy on a given class.
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1. Introduction

The huge success of deep learning models in 

visual recognition [1] [2] and specifically CNN, drove 

researchers to explore their use in computer-aided

diagnosis system for cancer1 detection from 

histopathological or whole slide images (WSIs) [3]

[4] [5]. This paper contributes to this research topic

with the objective to help physicians to detect

metastasis by providing them the image regions in

which there is a high probability of cancer and the

regions where there is no cancer. In that purpose, we

employ segmentation (i.e. pixel classification) of the

WSIs. Segmentation facilitates readable separation of
each class and eases image analysis [6].

One of the specificities of CNN is that they need a

lot of training examples [7]. However, when dealing 

with biomedical images, precise annotation process 

needs both expertise and time. As a result, the image 

data sets that can be built are small. The problem of 

how to distribute the examples from the different 

classes to learn is not well studied. 

In this paper, we tackle the challenge of deciding 

which types of examples would be needed to obtain 

the expected prediction from the trained model. 
Indeed, when considering segmentation problems, the 

trained model can be very effective on one class and 

poorly performing on another. Would the results be 

different if one class is “over-represented”? Is it better 

to have about the same number of examples in each 

class? This paper aims at answering these questions, 

all related to the balanced/imbalanced nature of the 

training set [8]. There are some studies in the 

1 Throughout the paper, “cancer” and “metastasis” 

are interchangeably used.

literature that tackle this problem [8] [9] [10] [11]

[12] as it has an adverse effect on classification

accuracy.

Among the proposed methods to balance classes,
the most straightforward and commonly practiced 

method is the oversampling of the minority class [8]

[9]. However, it can lead to overfitting [11] and 

concrete studies on the effects are lacking. To address 

the class-imbalance in metastasis detection the 

existing methods usually adopt random sampling to 

select an equal number of positive and negative 

examples [4] [5] and thus generate a balanced 

training set. However, there is no analysis to answer 

whether this balanced distribution is the optimal one 

for this task. Kubat et al. [12] suggested 
downsampling. 

In this paper, we consider both balanced and 

class-biased distributions of the training set and 

analyze the selection impact on the model accuracy. 

The result could serve for deciding which examples 

should be first added in the training set when there 

are costly to add. We study the impact on the model 

of a training biased by an over-represented class 

(what we call a class-biased training). We run a series 

of experiments in which we train the model in one 

hand with an over-representation of the cancer class 

and on the other hand with an over-representation of 
the non-cancer class. We also consider balanced sets. 

We found that balanced data not always lead to the 

best result and suggest solutions to optimize the 

model toward a specific accuracy on a target class.

The rest of the paper is structured as follows: we 

first present related work. We then describe the 

experimental details with results. Finally, we 

conclude the paper with some future directions.



2. Related Work

During the last decades, several studies have been 

done to facilitate computer-aided diagnosis for 

metastasis detection from WSIs. Most of the methods 

used classical machine learning techniques [13].

Studies on utilizing deep learning on this topic are 

comparatively few and new. From 2015, Bejnordi et 
al. [3] are organizing a worldwide challenge named 

CAMELYON on this topic in which most of the 

participants use CNN-based methods. The winning 

team [4] utilized the 22 layers GoogleNet, employed 

rotation and random cropping for data augmentation 

and color normalization. Liu et al. [5] utilized the 

updated version of GoogleNet named Inception (V3) 

[14]. To avoid class-bias they selected normal and 

tumor classes with equal probability then extracted 

patch of that class from a WSI which was selected by 

uniformly at random; then it was followed by 

applying several data augmentation techniques 
including rotation, mirroring, and extensive color 

perturbation. Sonia M. et. al. [15] proposed a new 

data set for different types of breast cancer, and an 

end-to-end deep learning framework for multilabel 

tissue segmentation utilizing their data set, while

network parameters were determined with a deep 

analysis.

One of the common problems in machine learning 

is imbalanced data. In the real world, the availability 

of some classes makes them the over-presented 

majority, while the scarcity of some classes makes 
them the under-presented minority. This imbalance of 

classes representation makes the classification task 

challenging for a classifier. A limited amount of 

studies on this topic is available in the literature, 

especially on deep learning perspective. Some studies 

suggest data level modification [16] [17], while other 

studies suggest network architecture level 

modification [10]. Buda et al. [8] present a 

comparative study of different methods.

Oversampling of the minority class is the most 

prescribed solution [9] [8]. Kubat et al. [12] suggested 
downsampling. 

To address the class-imbalance in metastasis

detection task the existing methods usually adopt 

random sampling to select the equal number of 

positive and negative examples [4] [5]. However, 

comparative studies among the different distribution 

of classes in the training set are absence in this 

domain. In this paper, we consider this issue. The 

result could serve for deciding which examples 

should be first added in the training set when there are 

costly to add.

3. Experiments

3.1. Data Set and Setting

We use the “metastatic LN” data set from 

Toulouse Oncopole. The data set contains 61 WSIs 

(34 for training, 27 for test) of lymph nodes stained

with hematoxylin and eosin (H&E), for which an 

expert pathologist has provided the ground truth 

segmented masks. The masks are annotated with 3 

classes: metastasis/cancer(C), lymph-node(¬C), and

other(O). Class O can be either background or 

histological structures not included in the first two 

classes C and ¬C, such as adipose or fibrous tissue.

Metastasis of 16 primary cancer types and organs 

have been included in the data set. 

Although many other parameters may influence 

the results, in this research we focus on analyzing the 
impact of the training examples and the classes they 

belong to. Although, the WSIs are very large in size, 

here we utilize them by 8 times downsampling in size

to save time and memory resource during analysis.

However, the full resolution images will give better 

result [5]. As a network architecture of CNN, we 

select U-net [18]. We implement the U-net 

architecture using Keras [19] on the TensorFlow 

backend. In all the experiments, 20% of the training 

data is kept for validation. All data are normalized by 

scaling the pixel value from [0, 255] to [0.0, 1.0] by 
dividing 255. It makes the convergence of training 

faster [20]. We utilize Adam [21] as an optimizer. 

After empirical preliminary evaluation, we set the

learning rate of Adam as 1e-05. We use the 

"categorical cross-entropy" (original U-net) as loss 

function.

We extract squared overlapping patches of 

dimension d2 with stride d/2 pixels from each training 

WSI that correspond to our training examples; we use 

d=384 pixels and extract 127,898 patches. We use 

usual recall, precision, and F-measure to evaluate the 
model; however, rather than considering the pixel-

level evaluation, we consider non-overlapping

patches of dimension 5002 on the predicted test

images’ masks and make a patch-based evaluation.

We compute patch-based recall, precision, and F-

measure for each test image separately, and finally,

take the average result of 27 test images to evaluate 

the performance of models.

3.2. Experiment Design

The statistics in Table 1 depicts that most of the 

pixels (78%) in the training WSIs belong to the class 

O. 

Table 1. Report on the average number (in million and 
percentage) of pixels of each class in the training and test 

set.

Pixel class Mean in 
million

Mean in %

Training C 15.2 11

¬C 14.6 11

O 107.4 78

Test C 20 14

¬C 9.8 7

O 114.8 79



Since the class O is (i)  over-represented, (ii) not 

the class the pathologists focus on, it imposes us to 

check the impacts of some other artificial 

distributions of classes in our training set. To create 

some other artificial distributions of classes, we need 

to separate the class examples. In that purpose, we 

define several patch categories based on the pixel 

classes they belong to. Throughout the paper, we use 

the term “class” to indicate pixel type, while, 

“category” to indicate patch type. The patches which 

pixels belong to 100% class O, we define them as 
patch category O. The remaining patches belong to 

class C, ¬C, and both C and ¬C with an optional 

presence (0.0 to 99.1%) of class O pixels. The details 

of each patch category in the training set are as 

follows:

- O (only other): 90,374 patches contain almost

100% class O pixels.

- C (metastasis/cancer): 15,328 patches contain

pixels labeled with class C and optionally class O.

- ¬C (lymph node): 17,274 patches contain pixels

labeled with class ¬C and optionally class O.
- C&¬C (mixed): 4,922 patches contain pixels

labeled with both class C and ¬C, and optionally

class O.

These categories are used to design several 

experiments with different class distribution in the 

training set as follows:

· (All): done with all possible patches.

· (C&¬C): done with patches from the C&¬C

category. Here, the three classes are balanced in

terms of pixels, however, the number of training

examples is fewer (4,922).

· (C, C&¬C): patches are from the C and C&¬C

categories. By excluding the ¬C category, here we

limit the presence of class ¬C. Thus the training

set is class C biased.

· (¬C, C&¬C): patches are from the ¬C and C&¬C

categories. This is the twin case of (C, C&¬C).

The training set is class ¬C biased.

· (C, ¬C, C&¬C): patches categories C, ¬C, and

C&¬C are used. Here, class C and ¬C pixels are

almost balanced, however, class O pixels are

downsampled compared to experiment (All) to
make the all three classes pixels almost balanced.

3.3. Results

In Fig. 1 we report the results for both class C and 

class ¬C. The results are the average results computed 

from the results of 27 test WSIs. Since recall and 

precision varies in reverse order, it is important to 

report both. To evaluate the model performance by 

considering both recall-precision at the same time, we 

also report F-measure. Experiments are ordered 
according to the descending order of precision on

class C.

From Fig. 1 we can see that recall is higher than 

precision for both classes; which implies that in this 

domain most of the error comes from false positive2

rather than false negative3. Another noticeable thing 

is, unlike it has been reported in [22] for 20 different 

data sets from UCI machine learning repository [23], 

Statlog [24], and some private data sets, here 

balanced distribution i.e. experiments (C, ¬C, C&¬C) 

and (C&¬C) does not produce the best result. 

Fig. 1. Model performance for class C (top row) and 
¬C (bottom row) when using different combinations of the 
patch categories as a training set, i.e. different distribution 

of the classes in the training set. Here, experiments are 
arranged according to the descending order of the 

precision on class C.

On the other hand, the natural distribution i.e. the 

one that has been used in the experiment (All) is the 

best trade-off maintaining distribution; it produces 

reasonable recall and precision for both classes C and 

¬C at the same time, however not the best result 

producing distribution. Since in this research our 

main objective is helping pathologist in all cancer 

location detection with less false positive generation, 

the best trade-off maintaining distribution for both 

classes is not the desirable one, rather best result 

producing distribution for cancer (class C) class is the 
most desirable. For class C, the best precision is 

found for ¬C-biased training set i.e. for the 

experiment (¬C, C&¬C), while the best recall is 

found for C-biased training set i.e. for the experiment 

(C, C&¬C). However, while considering both recall 

and precision at the same time i.e. F-measure, ¬C-

biased distribution (¬C, C&¬C) is the best 

distribution, and C-biased distribution (C, C&¬C) is 

2 Actually belongs to negative, however, predicted 

as positive.
3 Actually belongs to positive, however, predicted 

as negative.



the worst distribution for class C. According to this 

result it is obvious that, in the ¬C parts of WSIs, there 

are some regions which look like class C parts i.e. 

there are some inter-class similar regions, that is why

the absence of enough ¬C examples compared to 

class C examples in the training set (e.g. experiment 

(C, C&¬C)) causes false positive for cancer (C) class 

during test.

When considering the class ¬C, this is the other 

way around: the best precision is found for C-biased 

training set i.e. for the experiment (C, C&¬C), while 
the best recall is found for ¬C biased training set i.e. 

for the experiment (¬C, C&¬C). However, while 

considering both recall and precision at the same time 

i.e. F-measure, C-biased distribution is the best

distribution for class ¬C.

In summary, for the cancer class C:

(1) class C-biased training makes recall higher,

(2) class ¬C-biased training makes precision higher,

(3) balanced training causes an average result, and

(4) the natural distribution i.e. training with the

original distribution of the training set (experiment,
(All)) makes the best trade-off in recall and precision

(both are reasonable at the same time).

For class ¬C class: 

(1) most of the experiments give more than 0.95

recall,

(2) class C-biased training gives the higher precision,

(3) balanced training gives an average result, and

(4) the natural distribution i.e. training with the

original distribution of the training set (experiment,

(All)) makes the best trade-off in recall and precision

(both are reasonable at the same time).
In a nutshell for C (resp. ¬C), to increase precision 

we need ¬C (resp. C) biased training, while to 

increase recall, we need C (resp. ¬C) biased training. 

The class O is predicted well whatever the experiment 

is. Detailed results are presented in Table 2.

Table 2. Average results computed from the results of
27 test WSIs for the different experiments. Here, R, P, F 
means the recall, precision, and F-measure respectively.

Exp 
Name

Class C Class ¬C Class O Comment

(All) R: .882
P: .614

F: .675

R: .959
P: .526

F: .647

R: .999 
P: .928 

F: .960

Best 
trade-off 

(C, 

C&¬C)
R: .943

P: .468

F: .578

R: .894

P: .675

F: .740

R: .997 

P: .943 

F: .968

Best R 

for C

(¬C, 
C&¬C)

R: .720

P: .779

F: .712

R: .984

P: .363

F: .506

R: .997 

P: .932 

F: .961

Best P

and F for 

C
(C&¬C) R: .939

P: .491

F: .592

R: .961

P: .406

F: .545

R: .996 

P: .950 

F: .972

Average 

for C

(C, ¬C, 
C&¬C)

R: .888

P: .516

F: .608

R: .965

P: .439

F: .574

R: .998 

P: .932 

F: .962

Average 

for C

4. Conclusions and Future Work

In this research, we analyzed the impact of class 

distribution in the training set for metastasis detection 

task from WSIs while using U-net deep learning 

architecture. We utilize our own data set, in which 

one class, the class O is over-represented compared to 

the two other classes C and ¬C. This class O-biased 
data leads us to do a series of experiments with two 

other artificially class-biased training data: C-biased 

and ¬C-biased data, and artificially balanced data as 

well. All these artificially created training data were 

created by downsampling the over presented class O

and in some experiments either downsampling C or 

¬C class. 

We found that balanced data does not lead to the 

best result in this domain, rather imbalance data leads 

to the desired accuracy for a given class. On the other 

hand, while keeping all possible training examples 

i.e. keeping the natural distribution in the training set
causes the best trade-off in recall-precision, however,

does not give the best result either in diagnosis

perspective. In fact, the imbalanced distribution gives

the most desirable result in this domain. More

specifically, for cancer class prediction, non-cancer

biased training reduces the confusion due to the inter-

class similar region between cancer and non-cancer

class, thus produces less false prediction for cancer

class. Although our analysis gives a preliminary

flavor of the behavior of the model towards the

different distribution of classes in the training set, it
demands deeper analysis. Specifically, here the

number of training examples was not the same for all

experiments, we will solve this issue in our future

work. Moreover, here we tested the class distribution

for a fixed set of network parameters, in the future,

we will test the same setting for different parameter

settings.
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