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Deep learning models specifically CNNs have been used successfully in many tasks including medical image classification. CNN effectiveness depends on the availability of large training data set to train which is generally costly to obtain for new applications or new cases. However, there is a little concrete recommendation about training set creation. In this research, we analyze the impact of different class distributions in the training data to a CNN model. We consider the case of cancer detection task from histopathological images for cancer diagnosis and derive some useful hypotheses about the distribution of classes in the training data. We found that using all the training data leads to the best recall-precision trade-off, while training with a reduced number of examples from some classes, it is possible to inflect the model toward a desired accuracy on a given class.

Introduction

The huge success of deep learning models in visual recognition [START_REF] Lecun | Deep learning[END_REF] [2] and specifically CNN, drove researchers to explore their use in computer-aided diagnosis system for cancer 1 detection from histopathological or whole slide images (WSIs) [START_REF] Bejnordi | Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[END_REF] [4] [START_REF] Liu | Detecting cancer metastases on gigapixel pathology images[END_REF]. This paper contributes to this research topic with the objective to help physicians to detect metastasis by providing them the image regions in which there is a high probability of cancer and the regions where there is no cancer. In that purpose, we employ segmentation (i.e. pixel classification) of the WSIs. Segmentation facilitates readable separation of each class and eases image analysis [START_REF] Srinivasan | Segmentation techniques for target recognition[END_REF].

One of the specificities of CNN is that they need a lot of training examples [START_REF] Dernoncourt | De-identification of patient notes with recurrent neural networks[END_REF]. However, when dealing with biomedical images, precise annotation process needs both expertise and time. As a result, the image data sets that can be built are small. The problem of how to distribute the examples from the different classes to learn is not well studied.

In this paper, we tackle the challenge of deciding which types of examples would be needed to obtain the expected prediction from the trained model. Indeed, when considering segmentation problems, the trained model can be very effective on one class and poorly performing on another. Would the results be different if one class is "over-represented"? Is it better to have about the same number of examples in each class? This paper aims at answering these questions, all related to the balanced/imbalanced nature of the training set [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF]. There are some studies in the literature that tackle this problem [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF] [9] [10] [11] [12] as it has an adverse effect on classification accuracy.

Among the proposed methods to balance classes, the most straightforward and commonly practiced method is the oversampling of the minority class [8] [9]. However, it can lead to overfitting [START_REF] Chawla | SMOTE: synthetic minority over-sampling technique[END_REF] and concrete studies on the effects are lacking. To address the class-imbalance in metastasis detection the existing methods usually adopt random sampling to select an equal number of positive and negative examples [START_REF] Wang | Deep learning for identifying metastatic breast cancer[END_REF] [START_REF] Liu | Detecting cancer metastases on gigapixel pathology images[END_REF] and thus generate a balanced training set. However, there is no analysis to answer whether this balanced distribution is the optimal one for this task. Kubat et al. [START_REF] Kubat | Addressing the curse of imbalanced training sets: one-sided selection[END_REF] suggested downsampling.

In this paper, we consider both balanced and class-biased distributions of the training set and analyze the selection impact on the model accuracy. The result could serve for deciding which examples should be first added in the training set when there are costly to add. We study the impact on the model of a training biased by an over-represented class (what we call a class-biased training). We run a series of experiments in which we train the model in one hand with an over-representation of the cancer class and on the other hand with an over-representation of the non-cancer class. We also consider balanced sets. We found that balanced data not always lead to the best result and suggest solutions to optimize the model toward a specific accuracy on a target class.

The rest of the paper is structured as follows: we first present related work. We then describe the experimental details with results. Finally, we conclude the paper with some future directions.

Related Work

During the last decades, several studies have been done to facilitate computer-aided diagnosis for metastasis detection from WSIs. Most of the methods used classical machine learning techniques [START_REF] Gurcan | Histopathological image analysis: A review[END_REF]. Studies on utilizing deep learning on this topic are comparatively few and new. From 2015, Bejnordi et al. [START_REF] Bejnordi | Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer[END_REF] are organizing a worldwide challenge named CAMELYON on this topic in which most of the participants use CNN-based methods. The winning team [START_REF] Wang | Deep learning for identifying metastatic breast cancer[END_REF] utilized the 22 layers GoogleNet, employed rotation and random cropping for data augmentation and color normalization. Liu et al. [START_REF] Liu | Detecting cancer metastases on gigapixel pathology images[END_REF] utilized the updated version of GoogleNet named Inception (V3) [START_REF] Szegedy | Going deeper with convolutions[END_REF]. To avoid class-bias they selected normal and tumor classes with equal probability then extracted patch of that class from a WSI which was selected by uniformly at random; then it was followed by applying several data augmentation techniques including rotation, mirroring, and extensive color perturbation. Sonia M. et. al. [START_REF] Mejbri | Deep Analysis of CNN Settings for New Cancer Whole-slide Histological Images Segmentation: the Case of Small Training Sets[END_REF] proposed a new data set for different types of breast cancer, and an end-to-end deep learning framework for multilabel tissue segmentation utilizing their data set, while network parameters were determined with a deep analysis.

One of the common problems in machine learning is imbalanced data. In the real world, the availability of some classes makes them the over-presented majority, while the scarcity of some classes makes them the under-presented minority. This imbalance of classes representation makes the classification task challenging for a classifier. A limited amount of studies on this topic is available in the literature, especially on deep learning perspective. Some studies suggest data level modification [START_REF] Jaccard | Detection of concealed cars in complex cargo X-ray imagery using deep learning[END_REF] [17], while other studies suggest network architecture level modification [START_REF] Wang | Training deep neural networks on imbalanced data sets[END_REF]. Buda et al. [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF] present a comparative study of different methods. Oversampling of the minority class is the most prescribed solution [9] [8]. Kubat et al. [START_REF] Kubat | Addressing the curse of imbalanced training sets: one-sided selection[END_REF] suggested downsampling.

To address the class-imbalance in metastasis detection task the existing methods usually adopt random sampling to select the equal number of positive and negative examples [START_REF] Wang | Deep learning for identifying metastatic breast cancer[END_REF] [START_REF] Liu | Detecting cancer metastases on gigapixel pathology images[END_REF]. However, comparative studies among the different distribution of classes in the training set are absence in this domain. In this paper, we consider this issue. The result could serve for deciding which examples should be first added in the training set when there are costly to add.

Experiments

Data Set and Setting

We use the "metastatic LN" data set from Toulouse Oncopole. The data set contains 61 WSIs (34 for training, 27 for test) of lymph nodes stained with hematoxylin and eosin (H&E), for which an expert pathologist has provided the ground truth segmented masks. The masks are annotated with 3 classes: metastasis/cancer(C), lymph-node(¬C), and other(O). Class O can be either background or histological structures not included in the first two classes C and ¬C, such as adipose or fibrous tissue. Metastasis of 16 primary cancer types and organs have been included in the data set.

Although many other parameters may influence the results, in this research we focus on analyzing the impact of the training examples and the classes they belong to. Although, the WSIs are very large in size, here we utilize them by 8 times downsampling in size to save time and memory resource during analysis. However, the full resolution images will give better result [START_REF] Liu | Detecting cancer metastases on gigapixel pathology images[END_REF]. As a network architecture of CNN, we select U-net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF]. We implement the U-net architecture using Keras [START_REF] Chollet | [END_REF] on the TensorFlow backend. In all the experiments, 20% of the training data is kept for validation. All data are normalized by scaling the pixel value from [0, 255] to [0.0, 1.0] by dividing 255. It makes the convergence of training faster [START_REF] Lecun | Efficient backprop[END_REF]. We utilize Adam [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] as an optimizer. After empirical preliminary evaluation, we set the learning rate of Adam as 1e-05. We use the "categorical cross-entropy" (original U-net) as loss function.

We extract squared overlapping patches of dimension d 2 with stride d/2 pixels from each training WSI that correspond to our training examples; we use d=384 pixels and extract 127,898 patches. We use usual recall, precision, and F-measure to evaluate the model; however, rather than considering the pixellevel evaluation, we consider non-overlapping patches of dimension 500 2 on the predicted test images' masks and make a patch-based evaluation. We compute patch-based recall, precision, and Fmeasure for each test image separately, and finally, take the average result of 27 test images to evaluate the performance of models.

Experiment Design

The statistics in Table 1 depicts that most of the pixels (78%) in the training WSIs belong to the class O. 

Results

In Fig. 1 we report the results for both class C and class ¬C. The results are the average results computed from the results of 27 test WSIs. Since recall and precision varies in reverse order, it is important to report both. To evaluate the model performance by considering both recall-precision at the same time, we also report F-measure. Experiments are ordered according to the descending order of precision on class C.

From Fig. 1 we can see that recall is higher than precision for both classes; which implies that in this domain most of the error comes from false positive2 rather than false negative 3 . Another noticeable thing is, unlike it has been reported in [START_REF] Prati | Class imbalance revisited: a new experimental setup to assess the performance of treatment methods[END_REF] for 20 different data sets from UCI machine learning repository [START_REF] Frank | UCI machine learning repository[END_REF], Statlog [START_REF] Michie | Machine Learning, Neural and Statistical Classification[END_REF], and some private data sets, here balanced distribution i.e. experiments (C, ¬C, C&¬C) and (C&¬C) does not produce the best result. On the other hand, the natural distribution i.e. the one that has been used in the experiment (All) is the best trade-off maintaining distribution; it produces reasonable recall and precision for both classes C and ¬C at the same time, however not the best result producing distribution. Since in this research our main objective is helping pathologist in all cancer location detection with less false positive generation, the best trade-off maintaining distribution for both classes is not the desirable one, rather best result producing distribution for cancer (class C) class is the most desirable. For class C, the best precision is found for ¬C-biased training set i.e. for the experiment (¬C, C&¬C), while the best recall is found for C-biased training set i.e. for the experiment (C, C&¬C). However, while considering both recall and precision at the same time i.e. F-measure, ¬Cbiased distribution (¬C, C&¬C) is the best distribution, and C-biased distribution (C, C&¬C) is the worst distribution for class C. According to this result it is obvious that, in the ¬C parts of WSIs, there are some regions which look like class C parts i.e. there are some inter-class similar regions, that is why the absence of enough ¬C examples compared to class C examples in the training set (e.g. experiment (C, C&¬C)) causes false positive for cancer (C) class during test.

When considering the class ¬C, this is the other way around: the best precision is found for C-biased training set i.e. for the experiment (C, C&¬C), while the best recall is found for ¬C biased training set i.e. for the experiment (¬C, C&¬C). However, while considering both recall and precision at the same time i.e. F-measure, C-biased distribution is the best distribution for class ¬C.

In summary, for the cancer class C: In a nutshell for C (resp. ¬C), to increase precision we need ¬C (resp. C) biased training, while to increase recall, we need C (resp. ¬C) biased training. The class O is predicted well whatever the experiment is. Detailed results are presented in Table 2. 

Conclusions and Future Work

In this research, we analyzed the impact of class distribution in the training set for metastasis detection task from WSIs while using U-net deep learning architecture. We utilize our own data set, in which one class, the class O is over-represented compared to the two other classes C and ¬C. This class O-biased data leads us to do a series of experiments with two other artificially class-biased training data: C-biased and ¬C-biased data, and artificially balanced data as well. All these artificially created training data were created by downsampling the over presented class O and in some experiments either downsampling C or ¬C class.

We found that balanced data does not lead to the best result in this domain, rather imbalance data leads to the desired accuracy for a given class. On the other hand, while keeping all possible training examples i.e. keeping the natural distribution in the training set causes the best trade-off in recall-precision, however, does not give the best result either in diagnosis perspective. In fact, the imbalanced distribution gives the most desirable result in this domain. More specifically, for cancer class prediction, non-cancer biased training reduces the confusion due to the interclass similar region between cancer and non-cancer class, thus produces less false prediction for cancer class. Although our analysis gives a preliminary flavor of the behavior of the model towards the different distribution of classes in the training set, it demands deeper analysis. Specifically, here the number of training examples was not the same for all experiments, we will solve this issue in our future work. Moreover, here we tested the class distribution for a fixed set of network parameters, in the future, we will test the same setting for different parameter settings.

Fig. 1 .

 1 Fig. 1. Model performance for class C (top row) and ¬C (bottom row) when using different combinations of the patch categories as a training set, i.e. different distribution of the classes in the training set. Here, experiments are arranged according to the descending order of the precision on class C.

  1) class C-biased training makes recall higher, (2) class ¬C-biased training makes precision higher, (3) balanced training causes an average result, and (4) the natural distribution i.e. training with the original distribution of the training set (experiment, (All)) makes the best trade-off in recall and precision (both are reasonable at the same time). For class ¬C class: (1) most of the experiments give more than 0.95 recall, (2) class C-biased training gives the higher precision, (3) balanced training gives an average result, and (4) the natural distribution i.e. training with the original distribution of the training set (experiment, (All)) makes the best trade-off in recall and precision (both are reasonable at the same time).

Table 1 .

 1 Report on the average number (in million and percentage) of pixels of each class in the training and testset.Since the class O is (i) over-represented, (ii) not the class the pathologists focus on, it imposes us to check the impacts of some other artificial distributions of classes in our training set. To create some other artificial distributions of classes, we need to separate the class examples. In that purpose, we define several patch categories based on the pixel classes they belong to. Throughout the paper, we use the term "class" to indicate pixel type, while, "category" to indicate patch type.

		Pixel class Mean in	Mean in %
			million	
	Training	C	15.2	11
		¬C	14.6	11
		O	107.4	78
	Test	C	20	14
		¬C	9.8	7
		O	114.8	

Table 2 .

 2 Average results computed from the results of 27 test WSIs for the different experiments. Here, R, P, F means the recall, precision, and F-measure respectively.

Throughout the paper, "cancer" and "metastasis" are interchangeably used.

Actually belongs to negative, however, predicted as positive.

Actually belongs to positive, however, predicted as negative.