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ABSTRACT

Quantitative acoustic microscopy (QAM) permits the formation

of quantitative two-dimensional (2D) maps of acoustic and me-

chanical properties of soft tissues at microscopic resolution. The

2D maps formed using our custom SAM systems employing a

250-MHz and a 500-MHz single-element transducer have a nom-

inal resolution of 7 µm and 4µm, respectively. In a previous

study, the potential of single-image super-resolution (SR) im-

age post-processing to enhance the spatial resolution of 2D SAM

maps was demonstrated using a forward model accounting for

blur, decimation, and noise. However, results obtained when

the SR method was applied to soft tissue data were not entirely

satisfactory because of the limitation of the convolution model

considered and by the difficulty of estimating the system point

spread function and designing the appropriate regularization

term. Therefore, in this study, a machine learning approach

based on convolutional neural networks was implemented. For

training, data acquired on the same samples at 250 and 500
MHz were used. The resulting trained network was tested on 2D

impedance maps (2DZMs) of human lymph nodes acquired from

breast-cancer patients. Visual inspection of the reconstructed

enhanced 2DZMs were found similar to the 2DZMs obtained at

500 MHz which were used as ground truth. In addition, the en-

hanced 250-MHz 2DZMs obtained from the proposed method

yielded better peak signal to noise ratio and normalized mean

square error than those obtained with the previous SR method.

This improvement was also demonstrated by the statistical anal-

yses. This pioneering work could significantly reduce challenges

and costs associated with current very high-frequency SAM sys-

tems while providing enhanced spatial resolution.

1. INTRODUCTION

Quantitative acoustic microscopy (QAM) uses very high frequency

ultrasound (> 100 MHz) to form quantitative, two-dimensional (2D)

maps of acoustic and mechanical properties of soft tissues at reso-

lutions better than 10 µm [1]. SAM systems use a single-element

transducer and the spatial resolution of the resulting 2D maps is ap-

proximately equal to the wavelength at the center frequency of the

transducer. For instance, our custom SAM systems, which employ

a 250-MHz [2] or a 500-MHz [3] single-element transducer, the re-

sulting 2D acoustic impedance (Z) maps (2DZMs) have a nominal

in plane spacial resolution of 7 µm, and 4µm, respectively. Nev-

ertheless, the design and use of the 500-MHz system is challeng-

ing. Therefore, while increasing the transducer frequency improves

resolution, it often comes with increased costs associated with the

transducer and the necessary electronics (i.e., pulser, amplifier, A/D

conversion, precise motor stages). In addition, experimental difficul-

ties also arise (e.g., sensitivity to nm scale vibrations and tempera-

ture). Therefore, in a previous study, the potential of single-image

super-resolution (SR) reconstruction to enhance 2DZM resolution

obtained using our 250-MHz SAM system was investigated [4]. The

forward image degradation model in [4] linked the non-observed

high-resolution (HR) image to the 250-MHz 2D impedance map

(2DZM) through two operators (2D convolution with the imaging

system point spread function (PSF) and spatial subsampling) and ad-

ditive white Gaussian noise. To invert this model, a reconstruction-

based approach was used by minimizing the HR image total vari-

ation, i.e., assuming it is piece-wise constant [5]. While encour-

aging results were obtained in [4] on simulated and experimental

phantom data, results were less satisfactory, when the SR method

was applied to experimental data acquired from soft tissues. This

outcome can be explained by several factors. First, the considered

image formation model (e.g., spatially-invariant PSF) may not be

sufficient to explain the complex physical phenomena occurring in

QAM. Second, the parameters of the model (e.g., the PSF and the

noise variance), known in simulations, must be estimated in prac-

tical situations increasing drastically the complexity of the inverse

problem. Finally, the data-independent regularization function (e.g.,

total variation) strongly influences the results and making an appro-

priate choice is challenging. Therefore, in the present study, a deep

learning based approach is proposed to improve the flexibility relat-

ing the low-resolution 2DZMs to their high-resolution counterpart

by learning their relationship from training data instead of imposing

a predefined model. Specifically, a U-Net like convolutional neural

network (CNN) was trained to learn the relationship between 250
and 500-MHz 2DZMs in order to enhance 250-MHz previously un-

seen 2DZMs at test time. This kind of architecture has gained popu-

larity in recent years, in particular in the fields of biomedical image

segmentation [6] and image SR [7]. The objective of this study is to

adapt and test this CNN for SAM, which, to the best of our knowl-

edge, is the first attempt of using machine learning in 2D acoustic

map reconstruction from SAM data.

2. MATERIAL AND METHODS

2.1. Experimental SAM data

Experimental data were acquired at 250-MHz and 500-MHz from

the same areas of 6-µm thick sections of cancerous human lymph

nodes. (The protocol was approved by the Internal Review Board

of Kuakini Medical Center in Honolulu, HI, where the samples



Fig. 1. U-net architecture. The colored arrows represent different layer operations: convolution (conv) and transposed convolutions (up-conv),

max-pooling and concatenation (skip connections, in grey). The numbers on top of the rectangles denote the numbers of channels or activation

maps, and width/height dimensions are indicated vertically on each map block.

were prepared.) Briefly, the ultrasound transducer performed a two-

dimensional raster scan of the sample. Data were first collected

using the 500-MHz transducer with 1-µm steps immediately fol-

lowed by the 250-MHz transducer with 2-µm steps. At each scan

location from both scans, an RF signal is digitized with 12-bit accu-

racy at 2.5 GHz [2, 3]. The two 3D block of RF data (2D vs time)

are then processed using an auto-regressive algorithm [8] to yield

2D maps of impedance, speed of sound, and acoustic attenuation. In

total, QAM data were acquired at both frequencies from 15 samples

of an average area of approximately 2 by 2 mm. Without loss of

generality, we focused in this study, both within the training and

testing phases, on 2DZMs.

2.2. U-net convolutional neural network

U-nets are a special type of fully convolutional neural networks

(CNN) that have two particularities: their architecture is symmetric

and they include skip connections. U-nets are encoder-decoder-

like networks: an input image is processed through a number of

stacked convolution-pooling blocks to obtain a new data repre-

sentation (i.e, encoder or contracting/downsampling path) that is

then processed by transposed convolution blocks (the decoder or

expanding/upsampling path).

The specific U-net architecture used in the present study is de-

picted in Figure 1. The encoder is composed of four successive con-

volution (3 × 3 filters, [32, 64, 128, 256] maps, respectively) and

downsampling layers (2× 2 max-pooling). The output of these lay-

ers is of dimension 25 × 25 × 256 (see bottom of Fig. 1). The de-

coder part of the model is symmetric except that transposed convolu-

tion layers are used to upsample the activation maps to progressively

obtain the same dimensions as the input patch. These upsampling

convolutions are depicted as vertical green arrays in Fig 1. Blue

horizontal arrows represent standard convolution layers. The grey

arrows indicate the skip connections, i.e., the activations of the same-

level encoder layers (left part) are concatenated to the current acti-

vations before being processed by two conv-pooling layers at each

level. The final network output is of the same dimension as the in-

put patch. (All the convolution layers use the leaky Rectifier Linear

Unit (leaky-ReLU) activation function: f(x) = max(αx, x) with

α = 0.01 [9].)

The skip connections intend to provide local information to the

global information during upsampling [6]. The U-net design was

chosen for its efficiency in image segmentation and image SR due

to these skip connections: first, these connections enable passing

low-level details to deeper layers, second, they facilitate the training

process by back-propagating the gradients more easily through the

entire network. Furthermore, such a network can be trained end-to-

end from a limited amount of images and was shown to outperform

standard CNNs without skip connections. For instance, U-nets were

used by the winners of the 2015 ISBI challenge for segmentation of

neuronal structures in electron microscopic stacks [6]. (The Tensor-

flow deep learning library1 was used to run the U-net experiments.)

Training: A set of approximately 5600 200× 200-pixel (i.e.,

0.4 by 0.4 mm) patches were generated from thirteen 250 MHz

2DZMs together with the ground-truth patches from the correspond-

ing coregistered 500 MHz 2DZMs. To do so, a 10% (20 pixels)

overlap was used to extract patches. Training mini-batches were

made of eight patches drawn randomly from the training set. A

smooth absolute error function (ℓ1 smooth loss) was used, because

it is less sensitive to outliers than ℓ2 or standard ℓ1 losses, and also

prevents exploding gradients. The learning rate adaptive optimizer

Adam was used with a starting learning rate of 1e−4 [10]. The total

training time on a 1080 Ti NVidia GPU was 40 hours to perform

105 steps (number of processed mini-batches). No development

subset was used so that no specific learning termination criterion

was applied except that of the total number of steps. Several values

were tested and no further gain was observed for longer duration.

Due to the limited amount of experimental data in this initial study,

1https://www.tensorflow.org/



Fig. 2. Illustrative 2DZMs: a) Original at 500-MHz , b) Original at 250-MHz, c) SR approach applied to b), d) proposed machine-learning

approach applied to b).

Fig. 3. Zoomed-in Fig. 2 from the white rectangle in Fig. 2a.

a leave-one-out learning procedure (i.e., where a single full 2DZM

is left apart for testing) was used.

Testing: At test time, in order to reconstruct an entire enchanced

2DZMs instead of a 0.4 by 0.4 mm patch, overlapping patches (this

time 50% overlap, equivalent to 100 pixels) were processed through

the network and output patches were concatenated to form the final

enhanced entire 2DZM.

2.3. Performance quantification

In addition to qualitative visual comparison between enhanced

2DZMs and corresponding 500-MHZ 2DZMs, the results were also

quantitatively analyzed using two standard metrics: the normalized

root mean square error (NRMSE) and the peak signal-to-noise ratio

(PSNR) defined as follows:

NRMSE =

√

‖x− x̂‖2

‖x‖2
, PSNR = 10 log

10

Nhmax(x)2

‖x− x̂‖2
,

where the vectors x and x̂ are the 2DZMs reconstructed from data

acquired at 500 MHz and the one obtained by postprocessing using

either the proposed machine-learning based method or the previous

SR approach in [4], respectively. Note that all the parameters of the

method in [4] (e.g., PSF, balance between total variation and data

fidelity terms) were manually tuned to optimize the NRMSE and the

PSNR. The statistical distribution of the images were also evaluated

through first and second order statistics and Rayleigh fitting.

3. RESULTS

Figures 2a and 2b display illustrative 2DZMs of a section obtained

from a lymph node of a breast-cancer patient using the 500-MHz

SAM system and the 250-MHz SAM system, respectively. Figures

2c and 2d show the resulting 2DZMs obtained using the previous SR

method and the proposed method applied to Fig. 2b, respectively.

These 2DZMs were not part of the CNN training subset and left out

for testing purposes. For further visual inspection at finer scales,

Figure 3 displays the zoomed in region (white rectangle) of Fig. 2 in

the same format.

Visual inspection of Fig. 2c and 2d reveals novel fine details not

previously seen in Fig. 2b, but the spatial resolution improvement

seems far better in Fig. 2d obtained with the methods presented

herein. See for example, the area within the small red circle where

more detailed structures are visible, in particular in the background

(i.e., low Z) regions and also in the high Z values regions as expected

from better resolution images.

These observations are also confirmed by the comparison of Fig.

2c and 2d with Fig. 2a which also reveals the superiority of the

proposed approach. Specifically, Fig. 2d is more similar to Fig. 2a.

For example, the area within the red squares are similar even though

the 500-MHz 2DZMs contains a lot of fine structures.

Another striking feature of the proposed method is its poten-

tial ability to properly account for dispersion. Physics predict that

speed of sound and therefore Z is a slightly increasing function of

frequency. Dispersion is likely responsible for the slightly larger Z

values obtained at 500 MHz (Fig. 2a) compared to those obtained

at 250 MHz (Fig. 2b). The previous SR approach is completely in-

capable of taking that phenomenon into account because it was not

integrated in its model, whereas in the proposed approach the net-

work was able to learn and account for dispersion on its own. This

finding is even more visible in Fig. 4 which shows the estimated

probability density functions (PDFs) of Z for all the 2DZMs of Fig.

4. The peak of the PDFs are nearly identical of the enhanced 2DZM

and the 500-MHz 2DZM. They are also nearly identical for the SR

2DZM and the 250-MHz 2DZM.These observations are consistent



Table 1. Mean, standard deviation, and Rayleigh PDF fit obtained on the PDF of the four 2DZMs of Fig. 3.
2DZM at 500 MHz 2DZM at 250 MHz SR 2DZM Proposed 2DZM

Mean (MRayl) 1.6054 1.5889 1.5889 1.6021

Standard deviation (MRayl) 0.0406 0.0391 0.0449 0.0329

Rayleigh parameter 1.1355 1.1238 1.1240 1.1331

95% confidence interval [1.1323 1.1387] [1.1207 1.1270] [1.1208 1.1272] [1.1299 1.1363]

Fig. 4. Estimated probability density functions of Z for all four

2DZMs of Fig. 3

with the first row of Table 1 displaying the actual mean of the four

PDFs.

Overall, all the above findings are also confirmed by the com-

puted metrics. The SR approach, in spite of its ability of producing

a sharper 2DZM than the native 250-MHz 2DZM, produced worst

PSNR and NRMSE values than the original 2DZM, as shown in

Table 2. This may be explained by the fact that the model con-

sidered (decimation, convolution and Gaussian noise) is not suffi-

cient to explain the entire quality gap between the 250 and 500-MHz

2DZMs. Learning this model from the data, as proposed in this study

through a convolutional neural network, allows to improve the PSNR

and the NRMSE and to get closer to the high-resolution (500-MHz)

2DZMs than the native low-resolution (250-MHz) 2DZM. More-

over, although not perfectly matched, the PDFs of the 2DZMs shown

in Fig. 4d demonstrate that the statistical properties of the proposed

2DZM image are closer to that of the 2DZM at 500 MHz than those

of the SR 2DZM and the native 2DZM at 250 MHz. The visual im-

pression of the histograms in Fig. 4 is confirmed by computing the

maximum likelihood estimate of the Rayleigh distribution parameter

and the 95% confidence interval of the parameter (Table 1). These

results confirm the best statistical matching between the proposed

2DZM and the one computed from the 500-MHz high resolution

data.

Table 2. Numerical results on experimental 2DZM data.
2DZM at 250 MHz SR 2DZM Proposed 2DZM

NRMSE 0.0297 0.0326 0.0286

PSNR [dB] 32.2296 32.1680 32.5662

4. CONCLUSIONS

SAM can provide invaluable new information about the acoustical

and mechanical properties of tissue at microscopic scale. Ultimately,

the required spatial resolution is driven by each specific investiga-

tion, but the most usual way to reach finer resolution is the use of

a higher center frequency transducer. SAM systems at frequencies

greater than 250 MHz are challenging and expensive because pre-

cise motor stages are necessary, fast electronics are needed to excite,

amplify, and digitize RF signals, vibrations must be mitigated, and

temperature control becomes critically important. In this study, a

fundamentally different approach was investigated to improve spa-

tial resolution of SAM data thereby avoiding aforementioned chal-

lenges. Specifically, a machine-learning method based on U-net

CNNs was implemented and trained on SAM data acquired from

samples scanned using two SAM systems operating at 250 and 500-

MHz. Results indicated that this approach can provide a significant

resolution enhancement as well as take into account complex phys-

ical phenomena (e.g., dispersion). The machine-learning method

was also found to be superior than a previous SR approach based

on the standard model including blurring, decimation and Gaussian

noise and using total variation to stabilize the solution. The pro-

posed method could revolutionize SAM technology by significantly

lowering costs, mitigating experimental challenges, while improving

spatial resolution.
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