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Abstract

A convergence analysis of the modified unscented Kalman filter (UKF), used as an observer for a class
of nonlinear deterministic continuous time systems, is presented. Under certain conditions, the extended
Kalman filter (EKF) is an exponential observer for non-linear systems, i.e., the dynamics of the estimation
error is exponentially stable. It is shown that unlike the EKF, the UKF is not an exponentially converging
observer. A modification of the UKF – the unscented Kalman observer – is proposed, which is a better
candidate for an observer.
This paper is a first step towards a proof of the global convergence of the high-gain version of the UKO.

Keywords: Nonlinear observers, Unscented Kalman filter, Unscented Kalman Observer.

1. Introduction

y(t) = AK(1 − e−tτ H(t) For technological reasons (material, feasibility), reliability (failure of mea-
surements) or economic (cost of sensors), in many applications the measurement of the whole state of
a system is not possible, but the knowledge of the state at any moment is essential, for example: the
synthesis of a command [2] or the diagnosis [44] and detection of defects in an industrial process [52].

State observers (sometimes called soft sensors or intelligent sensors) are a way to handle this problem.
The task of an observer is to provide an estimate (in some sense, asymptotic or exponential) of the state of
a studied system according to the information available about this system (the input control and output
measurements and the dynamic model of the process, [51]).

The first observers dedicated to the estimation of the state of a linear system that are characterized
by necessary and sufficient conditions, were published around the 1960s by Kalman (Kalman filter, [25])
in a stochastic framework and subsequently by Luenberger in a deterministic framework (Luenberger
observer, [31, 32]). These two observers are widely used today, but linear systems cover only a small
percentage of industrial processes. Indeed, most real applications have non-linear behavior, which has
prompted the development of non-linear filters and observers ([7, 11, 47]).

Among these non-linear systems, we consider those non-linear dynamic systems in continuous time
which have the form {

dx(t)

dt
= f(x(t), t)

y(t) = h(x(t), t)
(1)

x(t) ∈ Rn, y(t) ∈ Rp. Since f and h depend explicitly on the time t, we omit writing explicitly the
control variable u(t) without loss of generality. The extended Kalman filter (EKF) is an important
and widely used tool for state estimation in such non-linear dynamic systems [8, 18]. It is based on a
linearization of the system along the estimated trajectory. However, this linearization can lead to poor
performance (and even the divergence of the filter for highly non-linear problems), and the required
derivation of Jacobian matrices may not be easy in many applications (see, for instance, [27] and a way
to work around the problem). Although the linearization around the estimated trajectory of the system
usually prevents analytically proving the observer’s convergence for any initial error, such proofs exist in
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the deterministic and stochastic cases when the initial estimation errors and disturbing noise are small
enough (see [3, 6, 37, 39, 38, 45, 41, 40]).

A recent improvement to the EKF is the unscented Kalman filter (UKF) [20, 21]. The UKF approx-
imates the probability density resulting from the non-linear transformation of a random variable instead
of approximating the non-linear functions with a Taylor series expansion. The approximation is done by
evaluating the non-linear function on a minimal set of carefully chosen sample points [42, 43, 22, 24].
Consequently, the UKF has received great attention in many areas such as control theory, aerospace
navigation, eye tracking, and information fusion [53, 29]. This approach may be seen as a Monte Carlo
approach, although the number of points used to propagate the law of probability remains small (see
[15]).

To summarize, there exist two approaches to non-linear state estimation.

• The first one is non-linear filtering, which consists in studying the probability law of the state of a
stochastic dynamic system conditionally on the observations. The extended Kalman filter is based
upon an approximation by a normal distribution of a pair of random vectors X ∈ Rn and Y ∈ Rp
such that X is a Gaussian random vector obeying the law N(m,P ) and Y = g(X) where g is a
non-linear transformation (see [36, 35]). The usual approximation of the law of the pair (X, Y )
uses the first-order approximation(

X
Y

)
∼ N

((
m
g(m)

)
,

(
P PAt

AP APAt

))
(2)

where A is the Jacobian matrix of g at the point m. To better take into account the non-linear
transformation of a Gaussian vector, the unscented transformation has been developed, which
consists of writing (

X
Y

)
∼ N

((
m
µU

)
,

(
P CU
CtU SU

))
(3)

where the vector µU and the matrices CU and SU are approximated from g(m) and from the image
by g of 2n+1 σ-points, (2n points are placed around m, we will explain further this construction in
Section 2.1, (8), (9) and (10), see also [22, 48, 23, 1]). This non-linear version of the Kalman filter has
several advantages, the first being a better consideration of the propagation of a Gaussian noise in a
non-linear system. The second advantage is that this non-linear version does not require calculating
two Jacobian matrices, which are sometimes complex and sources of numerical instabilities (see [12]
for a concrete example).

• The second approach to the problem of estimating the state of a system is purely deterministic. It
consists in constructing another dynamic system (‘the observer’), which uses as input the available
measurements and whose state converges asymptotically (and generally exponentially) to the state
of the system [4, 14]. A classical way to construct an observer is to apply a stochastic filter in the
deterministic framework. In this approach, the matrices Q and R that represent the covariance
matrices of the state noise and the measurement noise are interpreted as tuning parameters (and
corresponds to quadratic cost matrices in a quadratic cost minimization framework).

There are some techniques that show that the observer/filter (EKF, UKF), converges exponentially
locally to the state of the system under certain conditions (observability). Some authors use the Lyapunov
method [6, 40], or the contraction theory, developed by Lohmiller and Slotine [30, 33] for estimating
the state of the stochastic or deterministic non-linear systems. In the stochastic framework, a novel
stochastic analysis based on exponential concentration inequalities and uniform χ-square type estimates
for stochastic quadratic type systems, has been adapted to complement the above-mentioned techniques.
For more details, see [10, 26].

Compared to the extended Kalman filter, little research has been done to analyse the convergence
of the UKF. Some proofs have been established for non-linear stochastic discrete time systems (see
[49, 28, 13, 17, 16]) and in the stochastic continuous-time case (see [50]). However, in the case of nonlinear
stochastic systems with linear state equation, such as the tightly coupled INS/GPS integrated system
[17], the use of the UKF causes a great amount of redundant computation in the prediction process,
because the system state equation is used to propagate 2n+1 σ-points. For remedy this the authors have
proposed a derivative unscented Kalman filter (DUKF) to reduce the computational complexity by uses
the original Kalman filter (KF) in the prediction process and they have analyse the stochastic stability
of the DUKF in [16].
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Despite its interest (due to the fact that it does not require a priori Jacobian computation), UKF
convergence has not been studied in a deterministic setting. Two reasons may explain this lack: the first
one is that the UKF is an improvement of EKF only because it tackles Gaussian noise more efficiently.
The second one is because without modification, it is not convergent, as we will see in Section 2.3. We
claim that our study explains theoretically several experimental studies comparing EKF and UKF (see,
e.g. [34, 46]) as well as what can be expected from the UKF when the noise is small (and how to tune
the UKF in such cases).

The structure of this paper is as follows. In Section 2, we recall the unscented transformation and
the unscented Kalman filter, and we show that the unscented Kalman filter does not converge in a deter-
ministic setting, as soon as the system is non-linear. Therefore, in Section 3, we propose a modification
which avoids the bias of the UKF. This new algorithm is called the unscented Kalman observer (UKO). In
Section 4 we prove the convergence of the UKO, as a deterministic observer for continuous-time systems,
when the initial estimation errors are small enough. The proof relies heavily on the existence of bounds
for the solution of the Riccati-like observer equation. The bounds on the solution of this Riccati-like
equation are obtained by small perturbation of a Riccati equation. For the sake of clarity, the proof
of this technical result is relegated to Appendix A. It basically follows the ideas developed in [14] (to
prove that the solution of the disturbed Riccati equation is bounded, we followed the ideas developed in
[14] which require several lemmas. In our article, only the significantly different proofs are detailed). A
simulation has been done to illustrate the UKO’s performance against the UKF and EKF in Section 5.2.

2. Continuous-Time Unscented Kalman Filter

In this section, we present the unscented Kalman filter in matrix form (see [42], it having been first
introduced by Julier and Uhlmann in [20]). It uses the unscented transformation which propagates
σ-points, (denoted by X) through the non-linear equation and uses the results to capture the means
and covariance of the posterior distribution [23, 48]. In the following, we will recall the unscented
transformation algorithm, tuning parameters, and weights.

2.1. The unscented transformation

We now introduce some notation that will be convenient for the calculations and proofs.

Notation 1. Let 1n and 0n denote, respectively, the row vector 1n = (1, 1, · · · , 1) ∈ Rn and the column
vector 0n = (0, 0, . . . , 0)t ∈ Rn. Let u denote the row vector u = [1, 1n, 1n] ∈ R2n+1 and U the n×(2n+1)
matrix U = [0n, Idn,−Idn] (The brackets [ ] denote matrix concatenation).

The procedure to implement the UKF in continuous-time is summarized as follows [42]

1. Choose 2n+ 1 points in Rn called σ-points:

X(t) = m(t)u+
√
c
√
P (t)U (4)

• X(t) is the matrix of σ-points (written in columns), X(t) ∈ Mn,2n+1(R), the set of matrices
of dimension n× (2n+ 1)1,

• k ≥ 0 and c ∈]0, n+ k] are parameters to be set,

In the proofs, the parameter c will play a crucial role and will be used as a tuning parameter.√
P (t) denotes the principal square root of P (t), that is, the symmetric definite positive matrix

such that P (t) =
√
P (t)

2
. We remark that

√
P (t) is not the Cholesky decomposition of P (t), as is

often the case in the UKF literature (see, e.g. [42]). This does not change any basic results (since

P (t) =
√
P (t)

√
P (t)

t
as usual).

Remark 1. In [34], several alternatives for the square root in the UKF are considered, without any clear
empirical or theoretical reasons for making a choice between the Cholesky or the principal square root
(or anything else). In [46], a divergence problem is noted when using the Cholesky decomposition, and
the principal square root was chosen, which performed well. In the present paper, we reach the same
conclusion from purely theoretical considerations.

1More generally, Mq,p(R) is the set of real-valued matrices of dimension q × p.
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2. Calculate the weights Wm = (W
(0)
m ,W

(1)
m , . . .W

(2n)
m )t ∈M2n+1,1(R) associated with the σ-points:

W (0)
m =

λ

n+ λ
;

W (i)
m =

1

2(n+ λ)
, i = 1, . . . , 2n

(5)

and Wc = (W
(0)
c ,W

(1)
c , . . .W

(2n)
c )t ∈M2n+1,1(R) :

W (0)
c =

λ

n+ λ
+ 1 + β − c

n+ k

W (i)
c =

1

2(n+ λ)
, i = 1, . . . , 2n

(6)

where λ is a scalar parameter defined by λ = c − n. Some authors set k = 0. β is a non negative
weighting term which can be used to incorporate knowledge of the higher order moments of the
distribution. For a Gaussian distribution the optimal choice is β = 2 [19].

3. Propagate each σ-points via the non-linear transformation g

Y = g(X) (7)

where X ∈ Mn,2n+1(R), Y ∈ Mp,2n+1(R), and g : Rn → Rp, (7) means that the ith column Yi of
the matrix Y is calculated from the ith column of X, as follows:

Yi = g(Xi),

i.e. g(X) = [g(X0) · · · g(X2n)].

4. The mean and the covariance of g(X) are given by

E[g(X)] ≈ µu
def.
= g(X)Wm =

2n∑
i=0

W (i)
m g(Xi) (8)

Cov(g(X)) ≈ Su
def.
=

2n∑
i=0

W (i)
c (g(Xi)−m)(g(Xi)−m)t. (9)

5. The cross-covariance of X and g(X) can estimated as

Cu
def.
=

2n∑
i=0

W (i)
c (Xi −m)(g(Xi)− µu)t. (10)

Finally, we define the matrix W ∈M2n+1,2n+1(R) by

W =
(
I −

[
Wm · · · Wm

])
× diag

(
W

(0)
c · · · W

(2n)
c

)
×
(
I −

[
Wm · · · Wm

])t
. (11)

2.2. The unscented Kalman filter algorithm

The equations for the UKF in the continuous case for the system (1) are derived from the unscented
transformation and given in [42, 43]:

K(t) = X(t)Wh(X(t), t)tR−1(t)

dm(t)

dt
= f(X(t), t)Wm +K(t) (y(t)− h(X(t), t)Wm)

dP (t)

dt
= X(t)Wf(X(t), t)t + f(X(t), t)WX(t)t +Q(t)−K(t)R(t)K(t)t.

(12)

In this algorithm, Q(t) and R(t) are the covariance matrices of the state measurements and the noise,
respectively. They are symmetric and positive definite. In the deterministic case, these two matrices will
be considered as parameters to be set.
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2.3. The non-convergence of UKF as an observer

The unscented Kalman filter is not a good candidate for an exponential observer. Indeed, assume that
the function h (in (1)) is linear, and suppose that x(t) = 0 is an equilibrium state. If m(t) = 0, one expects
that the observer remains at the equilibrium state 0 (since the innovation term y(t) − h(X(t), t)Wm is
equal to zero). The state equation in (12) becomes

dm(t)

dt
= f(X(t), t)Wm =

1

2(n+ λ)

n∑
i=1

f(
√
c
√
P (t)i, t) + f(−

√
c
√
P (t)i, t). (13)

The right-hand side of (13) is equal to zero if f is linear (or simply odd): if it were different from zero, 0
would not be an equilibrium state of (13).

For instance, and to be more concrete, set f(x, t) = −x(1 + (2x− 1)2) and h(x, t) = x with x(0) = 0.
This example is constructed so that 0 is a globally asymptotically stable point of the system, in which
x −→ f(x, t) is not odd function (obviously non-linear), as mentioned above. Indeed, if m(t) = 0, i.e. if
the observer perfectly estimated the state, then (13) would become

dm(t)

dt
= f(X(t), t)Wm =

1

2(n+ λ)
4c
√
P (t)

2
= 2P (t) (14)

where P (t) > 0. Thus, this result contradicts the hypothesis that m(t) converges asymptotically to the
solution.

The result of a numerical simulation of the example above is shown in Figure 1. A logarithmic scale
was used for the time axis to deal with the exponential convergence rate.

Figure 1: The biased estimation of UKF

Figure 1 shows that the UKF (dashed red curve) does not converge (unlike the EKF, the dash-dotted
green curve), and that there remains an estimation bias, consistent with Eq. (14). Figure 1 also shows
the performance of the UKO (dotted blue curve), which will be explained below.

3. Unscented Kalman Observer

3.1. Equations for the UKO

The UKF does not converge as an observer because of the differential equation for m(t) in (12). To
resolve this, we introduce a variant using both the approximation of the first order (2) and the unscented
approximation (3): (

X
Y

)
∼ N

((
m
g(m)

)
,

(
P CU
CtU SU

))
. (15)
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Like the two previous ones, this transformation makes it possible to establish the equations of an
observer for system (1), which we will call the unscented Kalman observer (UKO) (for which a simulation
has been shown in Figure 1):

K(t) = X(t)Wht(X(t), t)R−1(t)

dm(t)

dt
= f(m(t), t) +K(t) (y(t)− h(m(t), t))

dP (t)

dt
= X(t)Wf t(X(t), t) + f(X(t), t)WXt(t) +Q(t)−K(t)R(t)Kt(t).

(16)

3.2. Perturbed Riccati equation

In this section, we will prove that, unlike the UKF used as an observer, the UKO is a locally expo-
nentially converging observer.

We first give a sketch of the proof. First of all, we will develop each term of the Riccati equation with
respect to c. Recall that c is a scaling parameter representing the dispersion of σ-points. We will see
that the limit when c goes to 0 of the matrix equation in (16) is the classical Kalman’s Riccati equation.
We will then prove, using a perturbation argument, that P (t) remains bounded if c is small enough
(Appendix A).

Remark 2. The fact that c should be small in our result may be considered as a strong hypothesis
regarding the meaning of c in the UKF. However, it should be recalled that

• if c is large and non-linearities are too important, the quality of the unscented transformation may
be very poor;

• we want to establish the exponential convergence of an observer, so we need to use an observability
hypothesis to ensure convergence without noise. If c is not small enough, the solution of the Riccati-
like equation may even be undefined.

We will then conclude, using the classical Lyapunov approach, that the UKO converges exponentially.

Before calculating f(X(t), t)WXt(t) (and h(X(t), t)WXt(t), which is similar), we remark that uWm =
1, UWm = 0n and UU t = 2Idn (see Notation 1 in section 2.1). We omit the time variable t in the equations
below for lighten the notations in calculations.

WXt = (Id2n+1 −Wmu) diag(Wc)(Id2n+1 −Wmu)t(mu+
√
c
√
PU)t

= (Id2n+1 −Wmu) diag(Wc)(mu+
√
c
√
PU −muWm︸ ︷︷ ︸

=1

u−
√
c
√
P UWm︸ ︷︷ ︸

=0n

u)t

= (Id2n+1 −Wmu) diag(Wc)U
t
√
c
√
P

= W (1)
c (Id2n+1 −Wmu)U t

√
c
√
P =

1

2c
U t
√
c
√
P

since

diag(Wc)U
t =

W
0
c

. . .

W 2n+1
c


 0tn
Id2n+1

−Id2n+1

 = W (1)
c U t.

We will write, temporarily, B =
√
P to lighten the notation:

f(X, t)WXt =
1

2
√
c
f(mu+

√
cBU, t)U tB

=
1

2
√
c

[
f(m, t), f(m1n +

√
cB, t), f(m1n −

√
cB, t)

]
U tB

=
1

2
√
c

(
f(m1n +

√
cB, t)− f(m1n −

√
cB, t)

)
B.
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We now remark that setting f = Idn, we see that XWXt = P and hence the UKO is, in the linear case,
just a Kalman filter. Using Taylor’s formula, develop each coefficient of the n × (2n + 1) matrix up to
second order f(m1n +

√
cB, t)− f(m1n −

√
cB, t)

(
f(m1n +

√
cB, t)− f(m1n −

√
cB, t)

)
i,j

= 2
√
c

n∑
k=1

∂fi
∂xk

(m, t)Bk,j

+ c

n∑
k,l=1

∂2fi(m+ τi,j
√
cB·,j , t)

∂xk∂xl
Bk,jBl,j

(17)

where −1 ≤ τi,j ≤ 1 and B·,j denotes the jth column of B. The approximation of f in matrix form is
then

f(X, t)WXt =
1

2
√
c

(
f(m1n +

√
cB, t)− f(m1n −

√
cB, t)

)
B = AP +

√
c

2
Hf

√
P (18)

and similarly for h:

h(X, t)WXt =
1

2
√
c

(
h(m1n +

√
cB, t)− h(m1n −

√
cB, t)

)
B = CP +

√
c

2
Hh

√
P (19)

where A = A(t) and C = C(t) are time-varying matrices (the Jacobian of f and h respectively)

A(t) =
∂f

∂x
(m, t) and C(t) =

∂h

∂x
(m, t), (20)

Hf ∈Mn,n(R) (and Hh ∈Mn,n(R) which is similar) being defined as

(Hf )i,j =

n∑
k,l=1

∂2fi(m+ τi,j
√
cB·,j , t)

∂xk∂xl
Bk,jBl,j = Bj,·∂

2fi(m+ τi,j
√
cB·,j , t)B·,j . (21)

We assumed that each coefficient of the Hessian matrices2 are bounded from above by Mf > 0
(respectively, Mh > 0), that is to say,

Mf = max
1≤i,k,l≤n

sup
x∈Rn,t≥0

‖∂
2fi(x, t)

∂xk∂xl
‖ (22)

and the same with Mh:

Mh = max
1≤i,k,l≤n

sup
x∈Rn,t≥0

‖∂
2hi(x, t)

∂xk∂xl
‖. (23)

Using the expressions in (18) and (19), the system (16) becomes

K(t) = P (t)C(t)tR−1(t) +

√
c

2

√
P (t)Hh(t)tR−1(t)

dm(t)

dt
= f(m(t), t) +K(t) (y(t)− h(m(t), t))

dP (t)

dt
= P (t)A(t)t +A(t)P (t) +Q(t)

+

√
c

2
(
√
P (t)Hf (t)t +Hf (t)

√
P (t)

t
)− P (t)C(t)tR−1(t)C(t)P (t)

−
√
c

2
(P (t)C(t)tR−1(t)Hh(t)

√
P (t)

t
+
√
P (t)Hh(t)tR−1(t)C(t)P (t))

− c

4

√
P (t)Hh(t)tR−1(t)Hh(t)

√
P (t)

t
.

(24)

2Hf and Hh are not strictly speaking Hessian matrices, and can not be written as the product of Hessian matrices with
B, since the coefficients are second derivatives of f (respectively, h) but are not evaluated at the same points.
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Rewriting the system (24) with S(t) = P (t)−1, we obtain

K(t) = S−1(t)C(t)tR−1(t) +

√
c

2

√
P (t)Hh(t)tR−1(t)

dm(t)

dt
= f(m(t), t) +K(t) (y(t)− h(m(t), t))

dS(t)

dt
= −A(t)tS(t)− S(t)A(t)− S(t)Q(t)S(t)

−
√
c

2
(S(t)

√
P (t)Hf (t)tS(t) + S(t)Hf (t)

√
P (t)

t
S(t)) + C(t)tR−1(t)C(t)

+

√
c

2
(C(t)tR−1(t)Hh(t)

√
P (t)

t
S(t) + S(t)

√
P (t)Hh(t)tR−1(t)C(t))

+
c

4
S(t)

√
P (t)Hh(t)tR−1(t)Hh(t)

√
P (t)

t
S(t).

(25)

4. Convergence analysis

First, we will consider the matrix equation in (25). We will prove the following result, which is a crucial result
for the proof of the convergence of the UKO. This result applies to the matrix equation of the UKO, which is the
same matrix equation as for the UKF. Therefore, this result may be applied to establish a priori bounds on S(t)
(or, equivalently, on P (t)), as required in Theorem 3.1 in [50].

Definition 2. (See, for instance, [5]). We define the observability Gramian as

WT (t) =

∫ t

t−T
Ψt(τ, t)Ct(τ)R−1(τ)C(τ)Ψ(τ, t)dτ

for T > 0 and t ≥ T , where Ψ(τ, t) is the state-transition matrix associated to the linear system defined by A(t),
that is, 

d

dt
Ψ(τ, t) = A(τ)Ψ(τ, t)

Ψ(t, t) = Idn.
(26)

If WT (t) is symmetric positive definite and uniformly bounded for any t ≥ 0, then the system characterized by
the pair (A(t), C(t)) and written as {

dx(t)

dt
= A(t)x(t)

y(t) = C(t)x(t)
(27)

is said to be completely uniformly observable.

Before proving that the proposed observer is an exponential observer, we need to expand the functions f and
h of the system (1) up to first order, and make the following assumptions (see (20) for notation):

f(x(t), t)− f(m(t), t) = A(t)(x(t)−m(t)) + ψ(x(t),m(t)),

h(x(t), t)− h(m(t), t) = C(t)(x(t)−m(t)) + φ(x(t),m(t))
(28)

where A(t) and C(t) have been defined in (20), and ψ(x(t),m(t)), and φ(x(t),m(t)) are the remaining non-linear
terms.

Assumption 1. There are positive real numbers κψ, κφ, εψ, εφ > 0 such that the non-linearities are bounded by

‖ψ(x1(t), x2(t))‖ ≤ κψ‖(x1(t)− x2(t))‖2,

‖φ(x1(t), x2(t))‖ ≤ κφ‖(x1(t)− x2(t))‖2.
for x1(t), x2(t) ∈ Rn such that ‖x1(t)− x2(t)‖ ≤ εψ and ‖x1(t)− x2(t)‖ ≤ εφ, respectively.

Assumption 2. There are positive real numbers c̄, rmin and qmin > 0 such that Q(t), R(t) and C(t) are time-
varying matrices bounded by

‖C(t)‖ ≤ c̄
√
nrmin ≤ ‖R(t)‖
qminIdn ≤ Q(t).

with c̄ is the lower bound of the matrix C(t), rmin and qmin are the smallest eigenvalue of Q(t) and R(t) respec-
tively.
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Theorem 3. We now consider the UKO in continuous time, and the following Riccati-like equation,
dS(t)

dt
= −A(t)tS(t)− S(t)A(t)− S(t)(Q(t) + Ω(S(t)))S(t) + C(t)tR−1(t)C(t)

S(0) = S0,

(29)

where

Ω(S(t)) =−
√
c

2
(
√
P (t)Hf (t)t +Hf (t)

√
P (t)

t
) +

√
c

2

(
P (t)C(t)tR−1(t)Hh(t)

√
P (t)

t
+
√
P (t)Hh(t)tR−1(t)C(t)P (t)

)
+
c

4

√
P (t)Hh(t)tR−1(t)Hh(t)

√
P (t)

t

(30)

and where (A(t), C(t)) is a time-dependent observable pair (Definition 2). We assume that all the elements of the
matrices A(t) and C(t) are uniformly bounded, Q(t) and R(t) are symmetric positive definite matrices and S(0) is
a symmetric positive definite matrix taken in the compact set S = {S ∈ S+

n , aIdn ≤ S(0) ≤ bIdn}, with 0 < a < b.
Assuming (22) and (23) hold for f and h, under Assumptions 1 and 2, there exist c0 and 0 < α < β such

that for any c ≤ c0,
αIdn ≤ S(t) ≤ βIdn.

α and β are called the lower and upper bounds of S(t) respectively.

Proof. The proof is detailed in the Appendix.

Let us define ε(t) = x(t)−m(t), then

ε̇(t) = ẋ(t)− ṁ(t) = f(x(t), t)− f(m(t), t)−K(t) (h(x(t), t)− h(m(t), t)) . (31)

Definition 3. The equilibrium point ε(t) = 0 is an exponentially stable equilibrium point of Eq. (31) if there exist
constants m, α > 0 and ε such that

‖ε(t)‖ ≤ η‖ε(0)‖e−αt (32)

holds for every t ≥ 0 and for all ‖ε(0)‖ ≤ ε.

Theorem 4. Consider the non-linear system (1) and the observer (UKO) given by system (25) and suppose that
all the assumptions of Theorem 3 are fulfilled, so that αIdn ≤ S(t) ≤ βIdn.

Then, for all t ≥ 0, there are positive constants k,L,δ and η, hence the following inequality is satisfied:

‖ε(t)‖2 ≤ β

α
‖ε(0)‖2e

(
−αqmin+

(2k̄+
√
cβL)ε0
α

+
√
c
α

(βδ+
√
cβη)

)
t

(33)

Remark 5. As can be seen from (33), c is defined as in Section 2.1 and it must be small enough to ensure the

negativity of −αqmin + (2k̄+
√
cβL)ε0
α

+
√
c
α

(βδ+
√
cβη). Exact expressions for k,L,δ and η appear at the end of the

proof.

Proof. The proof of this theorem relies on an analysis of the dynamics (31) of the estimation error ε(t).
Using the development (25) :

ε̇(t) = [A(t)−K(t)C(t)]ε(t) + ψ(x(t),m(t))−K(t)φ(x(t),m(t))

= A(t)ε(t)− P (t)C(t)tR(t)−1C(t)ε(t)− P (t)C(t)tR(t)−1φ(x(t),m(t)) + ψ(x(t),m(t))

−
√
c

2

√
P (t)Hh(t)tR(t)−1C(t)ε(t)−

√
c

2

√
P (t)Hh(t)tR(t)−1φ(x(t),m(t)).

(34)

We choose the classical quadratic Lyapunov function

V (ε(t)) = ε(t)tS(t)ε(t), (35)

where S(t) is the solution of the Riccati equation (25), and we will compute its time derivative

V̇ (ε(t)) = 2ε̇(t)tS(t)ε(t) + εtṠ(t)ε(t). (36)

In the following, to ease the notation and as long as there is no ambiguity, we omit again the time variable t in
the equations. Inserting ε̇, Ṡ in (36), we obtain

V̇ (ε) = 2[Aε− PCtR−1Cε−
√
c

2

√
PHt

hR
−1Cε+ ψ(x,m)− PCtR−1φ(x,m)−

√
c

2

√
PHt

hR
−1φ(x,m)]tSε

+ εt[−AtS − SA− SQS −
√
c

2
(S
√
PHt

fS + SHf
√
P
t
S) + CtR−1C

+

√
c

2
(CtR−1Hh

√
P
t
S + S

√
PHt

hR
−1C) +

c

4
S
√
PHt

hR
−1Hh

√
P
t
S]ε.

(37)
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With a few rearrangements, V̇ (ε) becomes

V̇ (ε) = −εtSQSε− εtCtR−1Cε+ 2εtSψ(x,m)− 2εtCtR−1φ(x,m)

−
√
cεtS[

√
PHt

hR
−1φ(x,m) +

√
PHt

fSε−
√
c

4

√
PHt

hR
−1Hh

√
P
t
Sε].

(38)

Using Theorem 3 and Assumptions 1 and 2 we have

V̇ (ε) ≤ −αqminε
tSε+

(
(2k̄ +

√
cβL)‖ε‖+ (

√
cβδ + cβη)

)
‖ε‖2 (39)

with k̄ = (βκψ +
c
√
nκφ

rmin
), L =

n2Mhκφn
3/4

rminα
3/2 , δ =

n3/2Mfβn
3/4

α3/2 and η =
n5M2

hβ

4α3rmin
.

For ‖ε‖ ≤ ε0 with ε0 ≤ min(εψ, εφ),

V̇ (ε) ≤ −αqminε
tSε+

(
(2k̄ +

√
cβL)ε0 + (

√
cβδ + cβη)

)
‖ε‖2. (40)

From (40) and ‖ε‖2 ≤ 1
α
εtSε we obtain

V̇ (ε) ≤
(
− αqmin +

(2k̄ +
√
cβL)ε0
α

+

√
c

α
(βδ +

√
cβη)

)
εtSε (41)

and hence

V (ε(t)) ≤ V (ε(0))e
−
(
αqmin+

(2k̄+
√
cβL)ε0
α

+
√
c
α

(βδ+
√
cβη)

)
t
.

(42)

Since the Lyapunov function is bounded by

α‖ε(t)‖2 ≤ V (ε(t)) ≤ β‖ε(t)‖2 (43)

then

‖ε(t)‖ ≤
√
β

α
‖ε(0)‖e

1
2

(
−αqmin+

(2k̄+
√
cβL)ε0
α

+
√
c
α

(βδ+
√
cβη)

)
t

(44)

Let ε0 and c be small enough such that

−αqmin +
(2k̄ +

√
cβL)ε0
α

+

√
c

α
(βδ +

√
cβη) < 0

and let ‖ε(0)‖ ≤
√

β
α
ε0 such that

‖ε(t)‖ ≤ ε0e
1
2

(
−αqmin+

(2k̄+
√
cβL)ε0
α

+
√
c
α

(βδ+
√
cβη)

)
t
. (45)

This ensure that ‖ε(t)‖ ≤ ε0, ∀t ≥ 0 and that the inequality (45) holds, which proves Theorem 4.

5. Applications and simulations

5.1. Distillation column : the binary distillation process

To illustrate the theorem, let us consider the classical CMO (constant molar overflow) model of a binary
distillation column. In the following, we will only consider a three plates model, which is very simple and easy
to describe (see [11] for a more general presentation). The difference between this low-dimension model with the
CMO model of a depropanizer or debutanizer is only quantitative. In particular, nonlinearities are exactly the
same. The CMO model is only a material balance of the lightest component on each plate of the column:

H1
dx1

dt
= V (t)(k(x2)− x1)

H2
dx2

dt
= F (ZF − x2) + L(t)(x1 − x2) + V (t)(k(x3)− k(x2))

H3
dx3

dt
= (L(t) + F )(x2 − x3) + V (t)(x3 − k(x3))

(46)

where H1, H2, H3 (liquid holdups), F (feed flow) and ZF (feed composition) are positive constants, k(x) =
αx

1+(α−1)x
with α > 1, and L (liquid flow) and V (vapor flow) are smoothly varying positive functions of time

(control variables). The state is (x1, x2, x3) (composition in liquid phase) and the output is x3 (bottom composi-
tion). This system has been extensively used to illustrates high-gain observer approach because it is already in a
canonical form of observability, see [11, 14]).
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Figure 2: k (in red, between 0 and 1) and its odd (black) C2-continuation,
spline prolongation between 1 and 1 + ε (blue), linear beyond (green).

The state of this system belongs to [0, 1]3 but the state of the filter may leave the state space so one should
extend k such that it remains twice differentiable and Lipschitz. It is an easy task, see for instance Figure 2 where
the function have been extended between 1 and 1 + ε using a polynomial function of degree 3 (a spline), and
extended linearly beyond 1 + ε such that k remains Lipschitz. For negative values, k is extended so as to be an
odd function. Therefore, k(x) is clearly Lipschitz (linear outside a compact interval). We have

A(t) =

−
V (t)
H1

V (t)
H1

dk
dx

(m1(t)) 0
L(t)
H2

1
H2

(−F − L(t)− V (t) dk
dx

(m2(t))) V (t)
H2

dk
dx

(m3(t))

0 L(t)+F
H3

1
H3

(−L(t)− F + V (t)(1− dk
dx

(m3(t))))


and C(t) =

(
0 0 1

)
. Therefore, matrix are bounded and second derivatives also (since k is Lipschitz twice

differentiable on R). Moreover, the system is clearly uniformly observable since the following matrix is triangular
and its diagonal is bounded from below by a positive constant: C(t)

C(t)A(t)
C(t)A(t)2

 =

 0 0 1

0 L(t)+F
H3

•
(L(t)+F )L(t)

H2H3
• •


(The coefficients below the diagonal do not have to be calculated) The non-linearities of the system being only
on k, it is clear that Assumption 1 is satisfied, as well as (22) and (23), and since C is constant, Assumption 2 is
also verified.

5.2. Numerical Simulations

Now, we simulate the model of the binary distillation column (46). For that we choose H1 = 40, H2 = 10,
H3 = 80, F = 10, ZF = 0.4, L = 13, V = 17 and α, the parameter of the function k(x), is set to 2. The initial
conditions are x0 = [0.5, 0.5, 0.5]t for the system and m0 = [1, 0.6, 0.3]t for the observer. The initial condition of
the Riccati differential equation (16) is set to P (0) = Id3, while the positive definite matrix Q is set to Q = Id3

and R = 1. We have set β = 0, k = 0 and c = 0.03 in UKO (see (4), (5) and (6)).
Figure 3 shows the evolution of the state and estimates of the system as a function of time for both algorithms

UKO and EKF. We did not add noise, our objective being to compare the convergence rates.
Observers UKO and EKF converge locally and perform similarly. They only differ in the calculation made:

EKF requires the calculation of the Jacobian of the non-linear functions f(.) and h(.), rather than the propagation
of the σ-points, as does the UKO.

6. Conclusion

In this paper, we have shown that the unscented Kalman filter is not an exponentially convergent observer,
and we have proposed a slight modification of it which allows building an exponentially convergent observer,
called the unscented Kalman observer.
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Figure 3: State estimation with UKO and EKF.

The convergence of this observer has been proved locally if the tuning parameter c of the observer is small
enough.

In [9], we built a high-gain version of the unscented Kalman observer and performed some comparison of the
performance of each observer ( the unscented Kalman filter, the unscented Kalman observer, and the high-gain
unscented Kalman filter). Moreover, if we assume that the solution of the Riccati equation is bounded, then
the unscented Kalman observer becomes a globally converging observer. Using Theorem 3 of this paper and the
proof in Appendix A, we should be able to prove the global exponential convergence of the high-gain unscented
Kalman observer under the same observability conditions.

Appendix A. Bounds on the solution of the Riccati equation

In this appendix, we prove Theorem 3, following [14]. However, the Riccati-like equation of UKO is different
from the classical Kalman Riccati equation, and we interpret the difference as a perturbation of the Kalman
Riccati equation. Only proofs notably different from those of [14] will be given in detail.

First of all, we introduce some notation and recall some basic properties.

Notation 4.

• Mn is the set of (n× n) matrices having real entries;

• Sn is the set of symmetric matrices of Mn;

• S+
n is the set of positive definite matrices of Sn;

• Tr(A) denotes the trace of the matrix A ∈Mn;

• For any matrix A, ‖A‖2 denote the matrix norm induced from the Euclidean vector norm : ‖A‖2 =
sup‖x‖2=1 ‖Ax‖2;

• For any matrix A, ‖A‖F denote the Frobenius norm: ‖A‖F =
√

Tr(AtA);

• ‖ · ‖ denotes any matrix norm;

• For any matrix Q ∈ Sn, qmin (respectively, qmax) denotes the smallest (respectively, largest) eigenvalue of
Q.

We now recall some properties.

Properties 6.

• d
dt

Tr(M) = Tr dM
dt

for any M ∈Mn;

• let A,B ∈Mn, | Tr(AB) |≤
√

Tr(AtA)
√

Tr(BtB);

• if S ∈ S+
n , then 1

n
Tr(S)2 ≤ Tr(S2) ≤ Tr(S)2, and Tr(SQS) ≥ qmin

n
Tr(S)2;

12



We consider the Riccati equation with a disturbance term depending on time as follows.
dS(t)

dt
= −A(t)tS(t)− S(t)A(t) + C(t)tR−1(t)C(t)− S(t)(Q(t) + ω(t))S(t)

S(0) = S0

(A.1)

In addition, we assume that ω(t) is symmetric and ‖ω(t)‖F ≤ ω0 so that (Q(t)+ω(t)) remains symmetric positive
definite. Since qminIdn ≤ Q(t) ≤ qmaxIdn, it is sufficient that ω0 < qmin.

The proof is divided into three parts:

• In the first part, we prove the existence and the positive definiteness of S(t) and the existence of an upper
bound on S(t);

• In the second part, we prove the existence of a lower bound on S(t);

• Finally, we deduce the result when ω(t) is replaced by Ω(S(t)) as in Theorem 3.

Appendix A.1. Upper bound with perturbation ω(t)
Lemma 7. (Lemma 2.12 in [14] For any µ ∈ R∗ and any solution S : [0, T [→ Sn of (A.1) (possibly T = +∞),
we have, for all t ∈ [0, T [

S(t) = e−µtΦ(t, 0)S0Φt(t, 0) +

∫ t

0

e−µ(t−τ)Φ(t, τ)Ct(τ)R−1(τ)C(τ)Φt(t, τ)dτ

+µ

∫ t

0

e−µ(t−τ)Φ(t, τ)(S(τ)− S(τ)(Q(τ) + ω(τ))S(τ)

µ
)Φt(t, τ)dτ,

(A.2)

Proof. Let Ŝ:[0, T[→ Sn , Ŝ(t) = eµtS(t), and dŜ(t)
dt

= µeµtS(t) + eµtṠ(t). Then Ŝ(t) satisfies

dŜ(t)

dt
= µeµtS(t)− eµtAt(t)S(t)− eµtS(t)A(t) + eµtCt(t)R−1(t)C(t)− eµtS(t)(Q(t) + ω(t))S(t)

= µŜ(t)−At(t)Ŝ(t)− Ŝ(t)A(t) + eµtCt(t)R−1(t)C(t)− e−µtŜ(t)(Q(t) + ω(t))Ŝ(t).

for t ∈ [0, T [. Applying the variation of constants formula to

Λ(t)

dt
= −A(t)tΛ(t)− Λ(t)A(t) + F (t).

and writing Φ(t, τ) for the state-transition matrix defined by dΦ(t,τ)
dτ

= −A(t)tΦ(t, τ), Φ(τ, τ) = Idn, we get the
relation (A.2), due to the fact that Φ(t, τ) = Ψt(τ, t). Where Ψ(τ, t) is defined in (26) (Definition 2).

Lemma 8. (Lemma 2.14 in [14]). If S : [0, T [→ S ∈ S+
n is a solution of Equation (A.1), then, for all t ∈ [0, T [,

dTr(S(t))

dt
≤ −aTr(S(t))2 + 2bTr(S(t)) + c (A.3)

where a = qmin−ω0
n

, b = sup
t

√
Tr(A(t)tA(t)), and c = n

rmin
sup
t

(Tr(C(t)tC(t)).

Moreover,
Tr(S(t)) ≤ max(Tr(S(0)), s1)

where s1 is the unique positive solution of −as2 + 2bs+ c = 0.
As a consequence,

‖S(t)‖2 ≤ ‖S(t)‖F =
√

Tr(S(t)2) ≤
√

Tr(S(t))2 = Tr(S(t)) ≤ max(Tr(S(0)), s1)

hence, setting β = max(Tr(S(0)), s1), for all t < T , S(t) ≤ βIdn.

Proof.

d

dt
Tr(S(t)) = −Tr(A(t)tS(t))− Tr(S(t)A(t))− Tr(S(t)(Q(t) + ω(t))S(t)) + Tr(C(t)tR−1(t)C(t))

≤ 2 | Tr(A(t)tS(t)) | −Tr(S(t)(Q(t) + ω(t))S(t)) + Tr(C(t)tR−1(t)C(t)).

The matrix is bounded due to Assumption 2, so using the properties of the trace (Properties 6),

Tr(S(t)(Q(t) + ω(t)))S(t) ≥ qmin − ω0

n
(Tr(S(t)))2

| Tr(A(t)tS(t)) |≤
√

Tr(A(t)tA(t)
√

Tr(S(t)tS(t)) ≤ Tr(A(t)tA(t))
1
2 [Tr(S(t))2]

1
2 ≤ sup(Tr(A(t)tA(t))

1
2 Tr(S(t))

and

| Tr(C(t)tR−1(t)C(t)) |=| Tr(C(t)C(t)tR−1(t)) |≤Tr(C(t)C(t)t) Tr(R−1(t)) ≤ n

rmin
sup(Tr(C(t)tC(t)).

Therefore, (A.3) holds. The fact is that Tr(S(t)) ≤ max(Tr(S(0)), s1) is independent of the perturbation as
soon as ‖ω(t)‖F ≤ ω0. Roughly speaking, this is a direct consequence of (A.3), by noting that

13



• −as2 + 2bs+ c = 0 has two roots s0 and s1 s.t. 0 < s0 < s1,

• dTr(S(t))
dt

is negative once S(t) > s1.

Lemma 9. (Lemma 2.15 in [14]). Let S : [0, e(S)[→ S+
n be a maximal semi-solution of (A.1). If S(0) = S0 is

positive definite, then e(S) = +∞ and S(t) is positive definite for all t ≥ 0 (and therefore, T = +∞ in Lemma
8).

Proof. Suppose that S is not always positive definite. Let θ = inf
{
t|S(t) /∈ S+

n

}
. Then S(t) ∈ S+

n for all t ∈ [0, θ[.

Using lemma 2.13 in [14] and Lemma 8, we see that Tr(S(t)) ≤ max(Tr(S0), s1). Then, ‖S(t)‖ =
√

Tr(S(t)2) ≤
Tr(S(t)) ≤ max(Tr(S0), s1). Choose µ >| (Q(t) + ω(t)) | max(Tr(S0), s1). Apply Lemma 7 with t = θ.
S(θ) = (I) + (II) + (III),

(I) = e−µθΦ(θ, 0)S0Φt(θ, 0),

(II) =

∫ θ

0

e−µ(θ−τ)Φ(θ, τ)Ct(τ)R(τ)−1C(τ)Φt(θ, τ)dτ,

(III) = µ

∫ θ

0

e−µ(θ−τ)Φ(θ, τ)(S(τ)− S(τ)(Q(τ) + ω(τ))S(τ)

µ
)Φt(θ, τ)dτ.

• (I) is obviously positive definite, hence S(0) is positive definite.

• (II) R(t) is symmetric positive definite and C(t) is bounded by c > 0 hence (II) is symmetric positive definite.

• (III) depends on S(τ)− S(τ)(Q(τ)+ω(τ))S(τ)
µ

, which can be rewritten

√
S(τ)

(
Idn −

√
S(τ)(Q(τ) + ω(τ))

√
S(τ)

µ

)√
S(τ)

Since S(t) is positive definite for 0 < t < θ. Therefore the positiveness of (III) depends on Idn −√
S(τ)(Q(τ)+ω(τ))

√
S(τ)

µ
. From the definition of µ we have√

S(τ)(Q(τ) + ω(τ))
√
S(τ)

µ
) < Idn

and

|
√
S(τ)(Q(τ) + ω(τ))

√
S(τ) |≤| S(τ) | × | (Q(τ) + ω(τ)) |≤| (Q(τ) + ω(τ)) | max(Tr(S0), s1)

Hence S(τ)− S(τ)(Q(τ)+ω(τ))S(τ)
µ

is positive definite. So is (III). This is in contradiction with the supposition
that S(θ) is not positive definite.

Now by Lemma 8, Tr(S(t)) ≤ max(Tr(S0), s1) for all t ∈ [0, e(S)[ and e(s) = +∞.

Appendix A.2. Lower bound with perturbation ω(t)
Lemma 10. For each time T0 > 0, there exists a constant γ0 > 0 such that if S : [0,+∞[→ Sn is a solution of
(A.1) such that S(0) = S0 ∈ S+

n , then

S(t) ≥ γ0Idn, for t ≥ T0.

Moreover, if S(0) > 0, there exists α such that S(t) ≥ αIdn, ∀t ≥ 0.

Proof. We use formula (A.2) from Lemma 7. The first and the third terms are positive (as soon as µ is large
enough, see the proof of Lemma 9). Now consider the second term,∫ t

0

e−µ(t−τ)Φ(t, τ)Ct(τ)R−1(τ)C(τ)Φt(t, τ)dτ ≥
∫ t

t−T0

e−µ(t−τ)Φ(t, τ)Ct(τ)R−1(τ)C(τ)Φt(t, τ)dτ

≥ e−µT0

∫ t

t−T0

Φ(t, τ)Ct(τ)R−1(τ)C(τ)Φt(t, τ)dτ︸ ︷︷ ︸
WT0

(t)

≥ e−µT0K(T0)

for any t ≥ T0, with K(T0) > 0 by definition of persistent observability (see [5]). We get the lemma taking
γ0 = e−µT0K(T0).

Therefore, S(t) > 0 for all t ≥ 0 (Lemma 9) and S(t) ≥ γ0Idn ∀t ≥ T0. So, α0 = inf0≤t≤T0 S(t) is strictly
positive and α = inf(α0, γ0) is such that S(t) ≥ αIdn ∀t ≥ 0, which proves the result.
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Appendix A.3. Bounds on the Riccati-like equation

Let us come back to the Riccati-like equation with perturbation Ω(S(t)) :

dS(t)

dt
= −A(t)tS(t)− S(t)A(t) + C(t)tR−1(t)C(t)− S(t)(Q(t) + Ω(S(t)))S(t)

Lemma 11. Suppose there exists α1 and β1 such that α1Idn ≤ S(t) ≤ β1Idn. Then there exists Ω0 > 0, and
c0 > 0 small enough such that for any 0 < c < c0,, we have

‖Ω(S(t))‖F ≤
√
cΩ0

Proof. From (30), we have

‖Ω(S(t))‖F ≤
√
c

2
(2‖
√
P (t)‖F ‖Hf (t)‖F ) +

√
c‖P (t)‖F ‖C(t)‖‖R−1(t)‖‖Hh(t)‖F ‖

√
P (t)‖F

+
c

4
‖
√
P (t)‖2F ‖Hh(t)‖2F ‖R−1(t)‖.

(A.4)

Under Assumption 1 on the second order derivatives of f and h, and Assumption 2, and the bound on S(t)

‖
√
P (t)‖2F = Tr(P (t)) ≤ n‖P (t)‖F , then, ‖

√
P (t)‖F ≤

√
n‖P (t)‖

1
2
F , it follows that

‖Ω(S(t))‖F ≤
√
cn3/2Mfn

3/4

α
3/2
1

+

√
ccn2Mhn

3/4

rminα
3/2
1

+
c

4

n5M2
h

rminα3
1

, (A.5)

for c small enough and ‖Ω(S(t))‖F ≤
√
cΩ0, with

Ω0 =
n3/2Mfn

3/4

α
3/2
1

+
cn2Mhn

3/4

rminα
3/2
1

+

√
c0

4

n5M2
h

rminα3
1

. (A.6)

t0 t0 t1

α
2

α

β

2β

S(t)

Figure A.4: Bounds on S(t)

To prove the Theorem 3, which bounds the solution S(t) of the Riccati-like equation,

• We first choose ω0 such that if ‖ω(t)‖F ≤ ω0 then αIdn ≤ S(t) ≤ βIdn (Lemmas 8, 9 and 10);

• Then we choose c such that if α
2
Idn ≤ S(t) ≤ 2βIdn then ‖Ω(S(t))‖F ≤

√
cΩ0 ≤ ω0 (Lemma 11).

We have to prove that ∀t ≥ 0, αIdn ≤ S(t) ≤ βIdn.
Using a reductio ad absurdum, let t0 be the largest time value such that, ∀t ≤ t0, αIdn ≤ S(t) ≤ βIdn.

Then there exist t1 > t0 (see Figure A.4) such that α
2
Idn ≤ S(t) ≤ 2βIdn because S(t) is continuous, and so

‖Ω(S(t))‖F ≤ ω0 for t ∈ [t0, t1], and therefore for any t0 < t ≤ t1, αIdn ≤ S(t) ≤ βIdn. This contradicts the
existence of t0.
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