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ABSTRACT. With the large expansion of available textual data, text mining has become of special
interest. Due to their unstructured nature, such data require important preprocessing steps.
Among them, stemming is a popularly used preprocessing method that extracts the root of the
words. However, the most popular algorithms are based on the application of rules, and there-
fore highly language-related. We propose a new approach, the RFreeStem, that is rather based
on corpus and can therefore be applied on many languages.

RÉSUMÉ. La grande disponibilité de données textuelles a rendu populaire les recherches de
fouille de texte. Parmi les importants prétraitements nécessaires, la racinisation s’est imposé
comme une étape incontournable. Pourtant, les algorithmes les plus utilisés sont basés sur
l’application successives de règles. Cette construction les rend fortement dépendants de la
langue d’application. Nous proposons ici une nouvelle approche, le RFreeStem, qui se base sur
le corpus étudié et promet de pouvoir être appliqué à plusieurs langues.

KEYWORDS: Text mining, information retrieval, Sentiment analysis, Stemmer, NLP
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1. Introduction

In the past decades, the overwhelming progress in technologies and Web researches

has lead to a high increase of available machine readable documents (Moral et al.,
2014). Such unstructured data represent a huge potential of information to retrieve.

Yet, the absence of structure, along with their high dimensionality make them dif-

ficult to process, with an important amount of necessary pre-treatment. Among the

numerous pre-processing tasks for text analysis, the idea of stemming the words in

the textual data has emerged since the late sixties (Lovins, 1968) and is now almost

systematically used (Marcos-Pablos, García-Peñalvo, 2019).

Stemming can be described as the process of replacing a word by its morphological

root — the stem. Such an algorithm is referred to as a stemmer. The stem can be a

sub-string or a concatenation of sub-strings of the word, or even a modified sub-string,

as in (Porter, 1980), who stems happy to happi. More than the obtain stem itself, the

main result of a stemmer stands in the groups created by regrouping words identically

stemmed. Such groups are often referred to as conflation groups (Frakes, Baeza-

Yates, 1992). For example, (Porter, 1980) would conflate happy and happier, both

stemmed to happi. Having words stemmed together automatically reduces the size of

the vocabulary since it removes the morphological variants of the words of a lexicon

(Jivani et al., 2011).

The assumption made here is that morphologically related words have similar

meanings and represent the same idea. However, this hypothesis is questionable, that

is why many research papers decided to work on lemmatizing algorithms instead.

(Moral et al., 2014) describes lemmatization as linguistic-based approach that relies

on Part of Speech(PoS) and context. They are less dependants on the morphological

variants of the words than stemmers are. To do so, they often draws on dictionaries or

thesauri. Even if they offer prospectively more accurate results, their high complex-

ity make them unpopular. Lemmatization will therefore not be detailed furthermore

in this paper, since it is another field of research. We will rather focus on stemmers,

reputed to be faster and more popular (Jivani et al., 2011).

Indeed, stemming has become an almost inescapable step in some text mining

tasks. Among them, Information Retrieval (IR) algorithms automatically analyze doc-

uments to extract information to answer user queries (Hull, 1996): since the stem rep-

resents a broader concept than the word, more documents are expected to match the

query. Other text mining fields extensively use stemming pre-processing. (Jivani et
al., 2011) describes it as a requirement for many Natural Language Processing (NLP)

applications, including text clustering and categorization or sentiment analysis — the

process to automatically describe the sentiments of the author of a message.

However, the most widely used stemmer are based on rules to be applied on the

words, in order to remove irrelevant parts. These rules rely on the morphological

forms of the words and thus are necessarily language-specific. Whereas highly-spoken

languages have their rules well described, it is difficult to find an implementation of

those algorithms for rare languages or dialects. Moreover, the number of rules, as well



as the quality of the stemmer, seem to highly depend on the language it is applied on

(Kraaij, Pohlmann, 1996). To be more specific, linguistics distinguish two different

types of language structures (Moral et al., 2014):

– Analytic (or isolating) languages, with little morphology structures, where the

variants are more likely to be expressed by helper words than by word variations (e.g.

Chinese, Vietnamese, modern English).

– Synthetic languages, with strong morphology structures. Among them we find:

(i) The inflective language, like Latin languages (French, Italian) or Germanic lan-

guages (German, Dutch, Swedish, (Braschler, Ripplinger, 2004)). They have numer-

ous prefixes and suffixes applied to modify the grammatical nature or even the mean-

ing of the words.(ii) The agglutinative language, like Finnish, Japanese or Basque. In

those languages the suffixes do not only represent inflections but can also be the con-

catenation of other morphemes. For example, in basque, exte means house and etxean
means in the house.

Regarding those different categories of languages, (Jivani et al., 2011) affirms that

stemming has proven more efficient on languages with complex morphology, that

is to say on synthetic languages. (Braschler, Ripplinger, 2004) come to the same

conclusion with its study on Germanic ones. Yet, on such languages, a great number

of rules would be needed, in order to remove all the affixes, which would make the

stemmer poorly flexible.

Furthermore, stemming evaluation can be performed by comparing its results to a

set of validated labels. In this case, further than the traditional precision and recall,

(Paice, 1994) defines the overstemming and understemming errors. Overstemming

error counts the number of words stemmed together whereas they shouldn’t have and

understemming error census the words with different stems that should have been

stemmed together. Paice proposes the calculation of indicators based on such metrics.

However, they all assume the access to an objective label set, which is difficult to

census in practice, especially on rare languages.

In the light of these observations, our contribution consists in a rule-free stemmer,

that can be applied on multiple languages. To cope with the previously mentioned

evaluation issues, we will evaluate our stemmer by measuring its impact on the results

of data mining tasks. We will also assess what we call compression power — the

ability of a stemmer to compress the size of a vocabulary. We will measure it thanks

to the famous Index Compression Factor (Sirsat et al., 2013), that asses the strength

of stemmers. Finally, we shall be paying special attention to the stem produced. Al-

though (Jivani et al., 2011) mentions that stemmers do not need to be words from the

language, it can nevertheless be crucial that the stems are humanly readable in tasks

like query expansion or dictionary look-up (Hull, 1996).

In accordance with those matters, we first propose to census the different types

of stemming methods found in the literature in section 2, before describing ours, the

RFreeStem in setion 3. We will finally describe, in section 4 an evaluation framework

to assess the results of our stemmer on different text mining tasks and languages.



2. Related work

The literature offers an important variety of stemming algorithms that can mostly

be categorized in two types of approach : (a) the rule-based methods, (b) the corpus-

based methods. The following subsections propose to census some of the most impor-

tant studies on stemming algorithms in those two categories.

2.1. Rule-based methods

Most of the well-known stemming methods are based on the application of rules.

Among them, affix stripping gathers procedures to remove the suffixes and, some-

times, the prefixes of the words. In 1968, (Lovins, 1968) proposed a first suffix strip-

ping method. Aggressive and fast, the algorithm matches the end of the word with

the longest element of a suffix list, and applies rules to modify the matching end.

Lovins’s algorithm is reputed to be unreliable since its list of suffixes is based on a

very technical-oriented vocabulary. Yet, technical and scientific words tend to derive

from Latin languages and therefore to be highly inflectional, whereas common modern

English is rather isolating1.

The now most popular algorithm was soon proposed by (Porter, 1980). With 5

successive steps, it is a bit slower than its 2-step predecessor, but has experimentally

proven more accurate (Willett, 2006), (Paice, 1996). Initially, Porter exclusively de-

fined those successive rules to stem English words. Yet, its popularity motivated the

implementation of snowball(Porter, 2001), a detailed framework that enables users

to implement their own version of Porter stemmer in any language. However, it re-

mains a current subject of study to find such implementations for less common or

highly inflectional languages (e.g. Bahasa Indonesian (Tala, 2003), Dutch (Kraaij,

Pohlmann, 1994)).

Many other rule-based methods were proposed afterwards. Among them, the light

S stemming only deals with plural forms, and so presents little compression power.

On the other hand, (Paice, 1990) proposed a strong algorithm that applies successive

deletion and replacement rules. (Jivani et al., 2011) argues that this method often

presents a high over-stemming error. (Dawson, 1974) implemented an adaptation of

Lovins method with much more suffixes and rules, which unfortunately makes the

algorithm hardly reusable (Jivani et al., 2011). (Krovetz, 1993) proposes an approach

based on inflections and derivations, with its Krovetz stemmer, KSTEM. It relies on

an inflection-free lexicon to withdraw inflections, before analyzing the derivations —

variants that change the grammatical nature of words. The author acknowledges that

the performance strongly depends on the chosen lexicon. We even add that finding

such an exhaustive lexicon might not be feasible for rare language or dialect.

1. English language is actually slightly inflectional, due to its heritage of old English. Thus, modern English

is more fit for stemming than purely isolating languages like Mandarin or Indonesian (Moral et al., 2014).



Those rule-based methods are undeniably the most recognized and used in in-

formation retrieval, thanks to their fast computation skills and easy implementations

(Harman, 1991). Nevertheless, adapting those methods to highly-inflectional lan-

guages would lead to a large number of necessary rules. Consequently, recent pa-

pers that focus on stemming text from those languages are inclined to look for other

approaches than rule-based ones.

2.2. Corpus-based methods

In order to cope with the strong language dependence of rule-based stemming tech-

niques, some corpus-based methods were proposed. Most of them rely on statistical

principles. (Hafer, Weiss, 1974) developed a Successor variety stemmer which cuts

the words in two parts : if the first part belongs to the corpus, this first part becomes

the stem. The cutting algorithm is based on the evolution, within the word’s letters,

of the successor variety : the number of distinct characters that follow a string within

all the words of the corpus. Thus, the resulting conflations strongly depend on the

corpus, and yet, systematically choosing the first part of the word as a stem seems to

be a language-dependant approach.

Another method, — the ngram stemmer— proposed by (Adamson, Boreham,

1974), uses a common string clustering method to create conflation groups : a hi-

erarchical single linkage clustering of the words. To evaluate the word pairwise dis-

tance, the authors used the Dice distance, corresponding to the number of distinct

shared digrams — sequence of two consecutive letters. Using an unsupervised clus-

tering method to create conflation groups makes the stemming corpus-dependant but

also offers a very flexible way to manage stemming strength. However, single linkage

clustering is known for its important algorithm complexity, due to the creation of a

quadratic distance matrix. Very similarly, YASS (Yet Another Stripping Stemmer), de-

scribed in (Majumder et al., 2007), clusters words with linkage hierarchical methods,

but has also implemented word distance metrics that encourage long suffix matching.

According to (Jivani et al., 2011), they make the method more adapted for languages

that are richly suffixed.

As a last interesting example, (Soricut, Och, 2015) proposed an unsupervised

corpus-based method that automatically identifies meaningful rules to strip prefixes,

with overall good results. The unsupervised learning on the corpus makes this method

highly flexible and potentially adaptable to many languages.

From our reading of the literature, some stemming features appear to be interesting

and have constituted the baseline of the method we propose. A rule-free method

offers the possibility for the stemmer to be applied on many languages. Moreover, an

unsupervised hierarchical clustering method does not need any prior knowledge and

enables a high flexibility in the stemmer strength. Finally, the use of ngrams seems

particularly fit for strings classification. The following section describes how those

features were implemented for the RFreeStem algorithm.



3. The RFreeStemer: a new stemmer

Figure 1. The general approach of RFreeStem stemmer. First step (1) is presented in
section 3.1. Second step (2) is detailed in section 3.2

To answer the detected issues of existing stemmers, we propose a new approach

with RFreeStem stemmer. Our corpus-based algorithm clusters the words of a corpus

in order to create conflation groups. It is therefore an unsupervised learning method,

that does not need any external knowledge. The proposed clustering is hierarchical —

which allows flexibility in term of stemmer strength — and based on ngram similarity.

Moreover, the clustering method promises to be much faster than any distance-matrix-

based clustering. Indeed, instead of creating such a quadratic matrix, the algorithm

only runs through the ngrams once. The RFreeStem stemmer is divided in two steps:

after extracting all the words from the corpus, the group generation step clusters the

words into conflation groups, and the dictionary generation step creates a readable dic-

tionary out of the stemmed groups. Those steps are resumed in Figure 1 and describes

in the following subsections.

3.1. Word clustering

Figure 2. The clustering method (1) with (a) the recursive division (see 3.1.1) and (b)
the dendrogram cutting (see 3.1.3

The first step of our process consists in clustering the corpus words. After the

extraction of all the words of the corpus, they are processed to be regrouped by con-



flation. To do so, we use a hierarchical clustering method — generally more adapted

for text clustering— with a divisive approach : starting from the whole set of words,

we recursively split it into clusters, as illustrated in Figure 2. We call those recursive

steps divisive steps, and describe them in the subsection 3.1.1. We therefore discuss

the choice of the number of divisive step needed in section 3.1.3. Indeed, deciding

how to cut the dendrogram directly impacts the conflation groups and the stemmer

strength.

3.1.1. Divisive step algorithm

At each divisive step, a set of several words is divided into several groups. The

algorithm 1 formally describes this process.

Algorithm 1: Divisive step algorithm

input : A set of (unique) words W , an integer n; // n as in ngram

output: A set of word groups

1 ngram.set← findnGram(words = W , n = n);

2 ngram.set← scoreFunction(set = ngram.set);

3 ngram← first(ngram.set);

4 G← emptyGroup();

5 while ngram != last(ngram) and size(W) > 0 do
6 matching.words = grep(pattern = ngram, set = W);

7 if 0 < size(matching.words) < size(W) then
8 remove(elementsToRemove = matching.words, set = W);

9 g← createGroup(elements = matching.words);

10 addGroup(element = g, group = G);

11 end
12 ngram = next(ngram);

13 end
14 return G;

The algorithm uses the functions : (i) findnGram that extracts all the unique

ngrams within a set of words (ii) scoreFunction that sorts a set of ngram and

returns it. The implementation of that function is described in subsection 3.1.2. (iii)

first, last and next which respectively returns the first, last or next element

of a set (iv) createGroup that creates a group with words (v) emptyGroup and

addGroup which respectively initializes a empty set of clusters and a cluster to a set

(vi) grep which returns the words that match a pattern.

In the first divisive step, the input set of words is the whole corpus, whereas in each

intermediate ones, the input is an already formed cluster. For an input W , w ∈ W

is a word of the set, on an alphabet A. If w = a1a2..ak, where k is the length of w

and ∀i, ai ∈ A, then a ngram of w is a subset ai..ai+n, i ∈ [[1; k − n]]. Notice that w

exactly has k − n+ 1 ngrams. We propose to extract all the distinct ngrams of all the

words. Let N be such a set of ngrams. Our method then sorts the ngrams (subsection

3.1.2), which are then browsed exactly once. For each ng ∈ N , all the words that

contain ng are clustered together. This one-browse clustering offers an interesting

decrease in computational execution time, compared with traditional distance-based

clustering algorithms. In addition, the condition size(W ) = 0 — all the words are

clustered — is generally reached before the end of the browse, stopping the execution.



3.1.2. Scoring function choice

It appears from the previously described algorithm that the definition of the func-

tion that sorts the ngram is crucial — We call it the scoring function. Indeed, it is

designed to give a score to each ngram, knowing they will be browsed according to

these scores. A ngram with a high score will be responsible for the clustering of all the

words that contain this ngram together. We define the generated group of an ngram

as the set of words that contain this ngram. Regarding our algorithm, the generated

groups of well-scored ngrams will become clusters, and the final generated groups

will gather words that will be stemmed together. Hence, if the ngram tion has a better

score than clas, then classification will be clustered with the tion-words — like imita-
tion, attention — instead of being united with words like class or classify. To avoid

this situation, we discuss interesting features that can define a "good" ngram:

– The number of words containing this ngram, which also is the size of the gener-

ated group. A small value only groups a few words together, which conflicts with the

divisive approach of our hierarchical clustering. On the other hand, the biggest-size

ngrams — the most frequent ones — are often common affixes (e.g. tion). A middle

ground size could be the mean size of all the generated groups.

– The homogeneity of the generated group, that can be evaluated with: (i) A string

distance within the generated group (e.g. edit distance) (ii) The number of ngrams in

the generated group. An homogeneous group is expected to have few ngrams. (iii)

A ngram distance on those ngrams, like Dice distance (vi) The number of common

letters within the generated group words. This idea relates to the further dictionary

creation we propose : a high number of common letters means a longer stem.

– The heterogeneity of the generated group. One measure could be the number

of other generated groups that contain the ngram. Indeed, we easily imagine that tion
is likely to appear in almost every natural conflation group. However, the relation

"ng1 belongs to the generated group of ng2" is reciprocal. Therefore, this quantity is

precisely the number of ngrams in the generated group of ng1 (see homogeneity).

– Another intuition while refining this algorithm on English datasets was to penal-

ize ngrams that were likely to be affixes — ngrams whose positions in the words are

often either at the beginning or at the end. We feel however that this criteria is highly

language-related and thus, in conflict with our rule-free principle.

We finally propose to score the ngrams with the following function :

s(ngi) =
1

2
× (mean(DiceDistance(Ni)) + ||Ni| − id.size|)

where Ni ⊂ N is the set of ngrams in ngi’s generated group, id.size is the ideal size

of a group, namely the mean size of all the generated groups and DiceDistance

function returns all the pairwise Dice distance for a set of ngrams. The first member

represents the group homogeneity : a low Dice distance between the ngrams of a

generated group reflects a group with similar words. The second member penalizes

the gap between the ideal and the real size of a generated group. Based on several



experiments, we are confident that this scoring function will grant a good score to the

ngrams reflecting the real stem of words.

3.1.3. Cutting the dendrogram into clusters

Once the dendrogram is generated, a valuable question is to know how to deduce

the groups. Indeed the example of figure 2 shows three possible variants : the example

chooses to stop after the second iteration. Though, we could have stopped at the first

one, or continue to split another time. We define the depth of the clustering as the

chosen number of iterations. A high depth value leads to a very light stemming, with

many words stemmed alone or in small groups. This configuration will decrease the

risk of overstemming. On the contrary, a low value of depth leads to large and fewer

groups. Such an aggressive stemming decreases the understemming error rate, and

increases the compression power of the stemmer. Since we think that depth value

is highly data-dependent, we do not fix it, and will rather compare the experimental

results obtained for different values of depth.

For this first version of the RFreeStem stemmer, we only consider homogeneous

value of depth : the clustering process stops at the same iteration for each group.

Though, it could have been more accurate to allow groups to have different depths.

This approach would have required the definition and implementation of a stopping

criteria, to automatically decide when a cluster is considered homogeneous enough.

We let that interesting question for a future work extension.

3.2. Dictionary generation

The second step of our algorithm aims to generate a dictionary out of the groups

previously created. In each homogeneous group Wg , this step consists in finding the

fix and variable parts in the words of the conflation group. A fix part is defined as

a sequence of consecutive letters that can be found in each word of the group. For

instance, the group formed by the two words classification and unclarified has two fix

parts : cla and ifi. The variable parts are simply the non-fix parts of the words.

In the example, we would respectively find {ss, cation} and {un, r, ed}. The

goal is to obtain a dictionary censusing the stems of the group (fix parts) and all the

possible values taken by the variable parts, as shown in the last part of Figure 1. In

the minimal example of the words classification and unclarified, we actually want to

align the matching variable parts, to obtain :

{

un

_
cla

{

r

ss
ifi

{

ed

cation

Yet, the number of variable is not constant. In order to be able to align them, we

refine our definition : a variable part vij is an ngram between the ith and i + 1th

fix parts, with i ∈ [[0;F ]], where F is the number of fix parts in a group, and j ∈
[[1; |Wg|]]. For instance here, we have v11 = r and v12 = ss. For a given i, the vector

vi = {vij , j ∈ [[1; |Wg|]]} is the set of all the value taken by the variable parts.



To illustrate the difficulty of finding the fix parts, we extend our example toWg =
{ classification, declaration, unclarified, clarity, claimed, cleansing, classic }. Of

course, obtaining such a heterogeneous cluster is not desirable. Though, in case the

scoring function did not behave as expected, the dictionary generation method has to

handle such heterogeneity. To find fix parts, we first look for letters that are in every

words ofWg . We call message types such fix letters — c, l, a and i in the example.

For the word clarity, we can immediately deduce the variable parts. Though, for the

words declaration, classification and unclarified multiple occurrences of the message

types c, i and a appear and we need to know which one is a real fix part. The

following table census the frequencies of the fix parts in each words.

clarity claimed cleansing classical unclarified declaration classification min.

c 1 1 1 1 1 1 2 1

l 1 1 1 1 1 1 1 1

a 1 1 1 1 1 2 2 1

i 1 1 1 1 2 1 3 1

We define the perfect examples as the words with the minimum frequencies of each

message type — the first four words of the table. We aim to chose, for the words

unclarified, declaration and classification, the occurrences of the message types that

are fix parts. We call αi the ith occurrence of letter α in a word : in unclarified, i1

is the i between the r and the f. To decide which occurrences of the message types

to keep, we first look at the order in which the fix parts appear. Based on our perfect

examples, the order is always c,l,a,i. This helps us chosing the c1 occurrence

of classification rather than c2. However, it does not promote any of the a and i

occurrences in the three problematic words. We therefore add another feature to the

selection : the gap between the fix parts for each perfect example. This value cannot be

calculated for the other words, since we would not know which occurrence to chose.

gap lengths clarity claimed cleansing classical mean interquartile range

c - l 1 1 1 1 1 0

l - a 1 1 2 1 1.25 0.25

a - i 2 1 3 2 2 0.5

The mean of the gaps can be seen as the ideal gaps that should separate the fix parts.

For unclarified, the gap between a and i1 is 2, and between a and i2 is 4. Therefore,

we successfully select the i1 occurrence. Moreover, for classification we have the

following gaps between occurrences of a and i :

a-occurrence i-occurrence occurences gap expected gap difference with expected

a1 i1 3 2 1

a1 i2 5 2 3

a1 i3 9 2 7

a2 i3 2 2 0



However, the huge gap between a2 and l will fortunately have us chose a1 — since

we take the mean of the gaps. Nevertheless, it not sufficient for the word declaration :

a-occurrence observed difference with expected mean difference

l - a a - i l - a a - i

a1 1 4 0 2 1

a2 3 2 2 0 1

Indeed, the two occurrences of a are assigned the same score. We therefore add a last

feature to our decision method : a measure of gap stability. In the previous example,

we observe that the gap between the letters l and a has more stable values than the

gap between a and i. Hence, the difference between the real and the ideal values

of the gap should take into account the reliability of the gap. Thus, we propose to

calculate the interquartile range of each gap (last column of table 2). This interquartile

is inversely proportional to the coefficient attributed to the gaps. In our example, since

the relation l - a is quite stable, it will be highly penalized for a2 to have an extra

gap of 2. The a2 occurrence will finally be chosen as a fix part. With all the defined

process of fix part selection, we simply deduce the variable parts as the variable letters

and the unselected common letters. We obtain, in our example, the wanted result :
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The stemmed extracted from this group could then be _cl_a_i_. In practice, we

hope not to obtain such an heterogeneous group. In a well-formed group we can hope

to have more intelligible stemmers like _classif_ or _clar_. This new version

of the generated stem could enhance string comparison results, which might be needed

in NLP tasks. Moreover, dictionary look-ups will be easier for the user.

4. Evaluation

We propose to assess the results of our implementation of the RFreeStem stemmer.

We aim to demonstrate that our stemming method offers better accuracy results than

the traditionally used Porter stemmer, while proposing a better compression power. To

do so, we propose to run our stemmer and Porter’s on raw data before the application

of a NLP task.

4.1. Evaluation framework

Our evaluation is divided in two discussions : the efficiency of our stemmer in two

different text mining tasks in English, and the comparison of this efficiency depending



on the language of the corpus. For each discussion, we will compare the different

versions of our algorithm — due to the possible values of the depth of the cut — with

both Porter’s and the unstemmed data.

Task 1: Text categorization is a popular text mining task that aims at automatically

determining the class of a document within a corpus. To test the efficiency of our

stemmer as a preprocessing step for text categorization, we implemented our method

on the AustLII case report corpus 2. We retrieved 6480 citations out of 717 different

XML files. Those files contain both the text of the legal citation and a manually

labelled category, among the following :

cited referred to applied followed considered discussed Others(12)

2847 1372 715 529 361 323 170

Our dataset is highly imbalanced since 43.9% of the citations have the label cited,

whereas half of the classes only contains 1.25% of the data. Imbalanced datasets are

reputed to be harder to process, so it will be interesting to see if our stemmer can help

in that matter.

Task 2: Sentiment analysis has become a very popular task, in particular with the

high expansion of social networks and their textual data. The aim is to evaluate sen-

timents in human written comments or reviews. To evaluate the ability of RFreeStem

to can improve the results of this complex task, we chose the commonly used movie

review dataset 3. Firstly mentioned in (Pang, Lee, 2004), the corpus is still popularly

used today (Ba et al., 2016), (Shen et al., 2018). It contains 10662 perfectly balanced

reviews of movies, with 18196 different terms.

Since the state-of-the-art seems to agree that stemming is more adapted to in-

flectional languages, we propose to compare our stemming on related datasets from

different languages. We therefore studied the amazon reviews in French and German4

for sentiment analysis task (Task 2). Among the large amount of available data, we

chose, for each language, a sample of 2000 reviews, respectfully of the proportion of

positive and negative labels. Since the products are evaluated with a rating from 1 to

5, we extracted the binary labels with the following simple transformation rule : if the

rating is strictly over 3, assign to positive class. Otherwise, assign to negative. We

obtain the following datasets:

Language #reviews Positive values Negative values #features

French 2000 1634 81.7% 366 18.3% 11 583

German 2000 1704 85.2% 296 14.8% 16 143

2. http://www.austlii.edu.au/ (Galgani et al., 2012) uses it for categorization

3. http://www.cs.cornell.edu/people/pabo/movie-review-data/

4. https://s3.amazonaws.com/amazon-reviews-pds/readme.html



Similarly to the full datasets, the reviews are highly imbalanced, which allows us to

test the robustness of our stemmer. We also note that German has more than 30%

features more than French. Indeed, besides being highly inflective, German language

tends to compose new words by juxtaposing two smaller ones. Moreover, it uses

declensions to construct its articles and adjectives, which adds a large variety of word

variants. German therefore seems like a perfect fit for stemming algorithms.

Finally, since our method is corpus-based, we claim that it is not language-dependant

and could be applied on any language, especially the rarely documented ones, where

it is hard to find a Porter-like stemmer. We propose to study a rare Roman Urdu data

set5 for a 3-class sentiment analysis (Task 2):

#reviews Positive Neutral Negative #features

20229 6013 29.8% 8929 44.1% 5287 26.1% 31888

The process we apply is as follow : for each dataset, we apply the different versions

of our method to the whole raw data and therefore generate a stemming dictionary

where each entry is a {word: stem} couple. As mentioned before, we want to observe

the effect of the depth of the cut on the results. Therefore, we generate as many

dictionary as we have candidate depths for the cut. Thanks to the study of (Harman,

1991), we have the idea of chosing to use 4-grams, that seem to be the most relevant,

both on analytic and inflective languages.

We then run a supervised classification algorithm on different versions of the

data : the raw data (pre-processed without stemming), the Porter data (pre-processed

and stemmed with Porter stemmer) and all the d-RFreeStem data (pre-processed and

stemmed with our algorithm, cut with a depth of d). We choose to train a Naive

Bayesian classifier on 70% of the data, respecting the proportion of the labels. The

30% left are predicted with the trained classifier and the results are compared with

their labels. To select the classifier input features, we simply calculate the document-

term matrix, and sort the features in decreasing frequency order. For each config-

uration, we run several versions of the feature selection step. While i is less than

max(feature.frequencies), we select the features whose frequency is at least i.

Each value of i gives a different number of features as input of the classifier. For each

stemmer, we run several times all the features selection step to have a robust mean

value.

4.2. Results and discussions

By running 20 times all the version of our algorithms, Porter’s and the raw version,

for all the possible feature selection configurations, we obtain the results presented in

that subsection. As a measure of result improvement, we calculate the traditional F-

measure, as well as the accuracy. We also evaluate the ICF value, to measure the

5. http://archive.ics.uci.edu/ml/datasets/Roman+Urdu+Data+Set, (Sharf, Rahman, 2018)



compression power of the understudied stemmer. Firstly, let us compare the accuracy

Figure 3. Accuracy comparison for different #features between (Task 2) movie
reviews binary classifier and (Task 1) AustLII multinomial classifier

obtained in the two English mining tasks. We observe slighlty different results on

those two evaluations. In the classification task, stemming systematically improves

the results. The most aggressive versions of our algorithm 2-RFreeStem performs

better than Porter, while 3-RFreeStem and Porter present similar results. Yet, the ac-

curacy range is rather law : multiclass categorization seems to be a hard task to be

applied on documents, and stemming can significantly help preserving a correct level

of prediction. On the other hand, the sentiment analysis results are lukewarm. Almost

all the stemming methods deteriorate the accuracy compared to the unstemmed ver-

sion, apart from our most aggressive stemmer 2-RFreeStem. The movie review is also

reputed to be a difficult task and it seems that stems might have masked the discrim-

ination out of the variant forms of the words. Moreover, as explained before, better

results are expected on inflective languages. To prove it, we compare this last result to

the Amazon review ones.

Since French is a highly inflective language, each root has many variants and thus

many words can be stemmed together while respecting their meanings. However, let

us note that this corpus regroups human informal speeches. In informal speech, French

tends to be less inflective : we would rather say not happy than unhappy. Neverthe-

less, our two most aggressive versions perform well and better than Porter (Figure

4). Similar results are observed with German texts, where 4 of our algorithms have

at least one configuration where they outperform Porter, which struggles to reach the

unstemmed performances. Actually, there is a clear segregation between Porter or the

unstemmed version and our methods. This makes us think that our stemming algo-

rithm is well adapted for German. Indeed, Porter stemming does not include any treat-

ment for complex composed words, whereas (Braschler, Ripplinger, 2004) argues that

decompounding task is an even more decisive factor than stemming for the German

language. On the other side, our algorithm is theoretically capable of retrieving such

complex linguistic structures, which can explains those encouraging results. Eventu-



Figure 4. Accuracy comparison for different #features between French and German
Amazon reviews dataset for a binary sentiment analysis

ally, those two highly inflective languages clearly show the compression power of our

stemmer. Indeed, the maximum number of features for the unstemmed version is far

greater than for our methods, due to the important vocabulary reduction performed.

We naturally also detect a slight difference in that matter between the d-versions of

our algorithms : the lower d value, the lower maximum number of features.

Finally, we propose to see how our method behaves on a poorly documented lan-

guage as Urdu. For this language, we did not have a Porter version implemented and

therefore only compared our results to the unstemmed one in Figure 5. We discover

that only our most aggressive version can compete with the raw data. The improve-

ment observed is far from being significant, but at least, we take satisfaction in propos-

ing a method that will not deteriorate the accuracy for this left-behind language.

Figure 5. Comparison of the accuracy of the binary classifier prediction on Roman
Urdu data for different #features

To conclude, the following table summarizes the evaluation features we wanted

to observe: (i) F1 is the best F1 measure (over #features), (ii) is similarly the best

accuracy value and ICF is the index compression factor of the method. For the English



version, we took the AustLII data since it is wider and shows more sensitivity to

stemming. The following results are presented in percentage.

English French German Urdu

F1 Acc ICF F1 Acc ICF F1 Acc ICF F1 Acc ICF

No 33.4 54.4 0 70.3 81.3 0 70.3 84.0 0 59.1 60.0 0

P 33.4 54.4 44.6 69.9 81.5 27.0 71.1 83.7 14.4 _ _ _

d2 33.0 54.6 145 70.7 82.0 109 71.2 84.7 131 59.1 60.1 114

d3 32.5 53.6 58.9 70.4 82.2 46.3 71.5 84.2 53.4 58.6 59.5 34.4

The best result are often obtained by our 2-RFreeStem version. This fact might be

disappointing : in this version, only one clustering step is achieved, and no hierarchical

tree is ever created. With this actually flat clustering, our method only consists in

clustering the words depending on one of their 4-grams. A very similar method is

proposed by (Pande et al., 2013), yet they sort the ngrams very differently. However,

our 3-RFreeStem version has sometimes proven more accurate (accuracy in French,

F1-measure in German), and we argue that an even better solution could be found in

refining our cutting algorithm. According to the results, for every groups created in

the first splitting iteration, we could either chose to stop there or to split one more

time, depending on an homogeneity criteria that is still to be defined.

5. Conclusion

Stemming is still systematically used as preprocessing step for text mining tasks.

Since the sensitivity of stemming is highly language-dependant, we have proposed a

multilanguage rule-free stemmer, based on corpus data. We have shown that it outper-

forms the famous Porter algorithm, and that its performance are even more spectacular

on inflectional languages. An improvement of our method could be done by refining

our dendrogram cutting method, thanks to a group homogeneity criteria. Moreover,

instead of always working with 4-grams, we will soon try to enable the variation of

the n length. We could also have proposed a wider evaluation framework by (i) an-

alyzing the RFreeStem performance on agglutinative or rare languages (ii) assessing

our stemmer accuracy improvement on Informational Retrieval, and even, since it is

multilingual, on Cross Language Information Retrieval (iii) confronting our stemmer

to other corpus-based methods, like (Soricut, Och, 2015). We let those interesting

questions opened for a future contribution.
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