
HAL Id: hal-02891673
https://hal.science/hal-02891673

Submitted on 7 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and verification method for an early
evaluation of Systems of Systems interactions

Ronan Baduel, Iulian Ober, Jean-Michel Bruel

To cite this version:
Ronan Baduel, Iulian Ober, Jean-Michel Bruel. Modeling and verification method for an early evalua-
tion of Systems of Systems interactions. 35th Annual ACM Symposium on Applied Computing (SAC
2020), Mar 2020, Brno, Czech Republic. pp.1798-1805, �10.1145/3341105.3373944�. �hal-02891673�

https://hal.science/hal-02891673
https://hal.archives-ouvertes.fr

Official URL
https://doi.org/10.1145/3341105.3373944

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/26362

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Baduel, Ronan and Ober, Iulian and Bruel,

Jean-Michel Modeling and verification method for an early evaluation

of Systems of Systems interactions. (2020) In: 35th Annual ACM

Symposium on Applied Computing (SAC 2020), 30 March 2020 - 3

April 2020 (Brno, Czech Republic).

Modeling and verification method for an early evaluation of
Systems of Systems interactions

Ronan Baduel, Iulian Ober and Jean-Michel Bruel
University of Toulouse / CNRS IRIT Laboratory

Toulouse, France
first.last@irit.fr

ABSTRACT

This paper presents the results achieved while pursuing the verifi-
cation and validation of a train system behavior at the first steps
of development in an industrial context. At this stage, and at least
from the industrial point of view, the train can be considered as
a System of Systems (SoS). A method is proposed, supported by
preliminary results through the definition and verification of con-
strained states and preconditions to use cases, as well as a structure
for the behavior.

KEYWORDS

Early Validation, Model-Based Systems Engineering, States and
Modes, Systems of Systems

https://doi.org/10.1145/3341105.3373944

1 INTRODUCTION

How to perform verification and validation (V&V) on a system
behavior is a field of research in systems engineering [9]. Works
[2, 6, 18] show that one should specify, and if possible validate,
the expected behavior of the system as a whole using requirements
and scenarios, before any design or implementation. The main

issue encountered to achieve such a task is that a model of the
system is required to define and support the behavior. In this paper
we consider train systems, due to the industrial context of the
work. Hence, at this level, the system as a whole is considered as a
system of systems (SoS), as illustrated in Figure 1. A train is indeed a
group of one or more vehicules. A single vehicule is an independent
system, that can be bounded to or separated from others, using
master/slaves relationships.

Several techniques exist, such as tests, simulation, model check-
ing, etc. One key aspect, however, is that these techniques tend to
be deployed on design or implementation of a system, in order to
check an integrated behavior that may not have been fully specified

Figure 1: A train as a System of Systems

in the first place. A general truth in system V&V is that the earlier

an error is detected, the lower will be the cost [11]. The most critical

errors are those made when expressing the requirements.

In this paper, we present early validation results obtained thanks

to the definition of global states and modes describing a train and its

behavior at operational level. This work is conducted in the scope

of a project in Bombardier Transport (BT), a train manufacturing

company. This project aims at establishing a continuous validation

method along a train system development process. We believe that

it is highly relevant also for SoS in general, when dealing with

the evaluation of potential feature interactions. The target of the

validation is the system behavior, which we define as the way the

system reacts under given circumstances.

1.1 Context

Over the years, BT has developed its own modeling method and

SysML profile to develop train system behaviors [8], based on ex-

isting approaches [13]. The first step in the specification, once the

requirements have been analyzed, is to define scenarios and the

train life-cycle highlighting the services provided by the system,

and in which circumstances. The system behavior is to be validated.

It requires having an executable model of the whole system, and is

currently done later in the development process, using implemented

software and simulated hardware.

The development process and the V&V activities at system level

are separated in two BT teams: one specifying the system, and one

conducting V&V activities through co-simulation. The first team is

composed of functional engineers. They have skills in requirements

analysis, functional specification and SysML modeling. The second

team focuses on tests, programming and simulation. Both teams

have separate responsibilities, if only due to the organization and

according to good practices.

The behavior of a train system is defined through hundreds of

use cases, classified among hundreds of scopes. A scope is part of a

functional breakdown structure that classifies the use cases and the

functions according to their domain (e.g. energy, traction, etc.). The

scopes are divided among different requirements and functional

engineers. In the chosen metro MOVIA Maxx case study, the speci-

fication at operational level includes 277 use cases contained in 60

root scopes of a classification system, divided among 12 functional

and requirements engineers.

Each use case is described by a sequence diagram. Redundancy in

specification is avoided by having each engineer work on dedicated

scopes. The inconvenient is that they define behaviors separately,

using a non-formalized nor centralized knowledge regarding the

system. Consequently, the specifications are unrelated, without any

integration.

Rather than just specifying what the system-to-be does, we have

to specify “what” system we want to obtain [17], meaning an ab-

stract model of the system induced by the specifications. Such a

model implements an integrated behavior by conditioning the use

cases and tracks their effect on the evolution of the system state.

It does not specify the way the use cases are realized inside the

system.

Regarding the V&V activities, there are limitations in BT. Ex-

ecutable models such as grafcet [5] have been used where parts

were missing in the co-simulation, but they correspond to designs

provided by subsystems developers or external providers. There is

currently no model in BT enabling to check the system behavior

before any implementation. V&V activities are currently performed

later in the process on software or emulated hardware, meaning

that there is already a design.

What the system does and is expected to do is checked later

in the development cycle through tests, using co-simulations or a

test bench. However, there are no practical solutions for capturing

unknown or unwanted behavior. While it is possible to generate

random inputs in a co-simulation, all cases disproving a property

have to be analyzed by an engineer to assess its relevance. BT

stopped using such a solution, as experience showed that checking

a property could result in hundreds or thousands of cases to analyze,

most of them irrelevant as they suppose a use of the train system

that cannot happen in reality. There is a need to constrain either

the system behavior or its inputs.

1.2 Issues

Each functional engineer has a knowledge on a specific scope of the

train and uses informal information from textual requirements and

her own experience to make specifications. There is no integration

by the models. The overview of the whole system is done informally

by an individual. There is a need to express and check a common

information regarding the whole system. The solution should verify

automatically the coherence of the information, so that engineers

do not depend on the validation team for their specifications. On

the other hand, the validation team should receive an integrated,

formalized and verified information to build an executable model.

The integration of properties and behaviors results in a phenom-

enon called emergence [1], as the system is more than the sum of

its elements. There are potential unknown and unwanted aspects

of the system. Integrating the system implies specifying the inte-

gration to avoid emergence. Specifying the integration is the role

of the functional engineers, not of the validation team, which is

currently the one doing the integration when asked for a model of

the system.

The different issues can be listed as a lack of:

• formalized requirements and properties for validation pur-

poses,

• specification on the preconditions and circumstances of exe-

cution of system functions,

• integrated representation of the system,

• solutions to structure the behavior before making a design,

• solutions to check possible (unwanted) behaviors.

The goal of the proposed approach is not to give an optimized

solution to the V&V of the specification at a given level of develop-

ment, or even globally, but to provide away to continuously conduct

these activities along the development process and with traceabil-

ity of both V&V requirements, results and models, based on an

existing modeling method. Accessibility, simplicity and quickness

is preferred over exhaustivity and formalism, taking into account

the industry needs and capabilities. A given solution cannot be

immediately implemented across the entire development process.

It has to be gradual, following the evolution of both the modeling

method and the development process.

1.3 Case study

The solution presented in this paper has been experimented on

real project data, using high-level specifications of a MOVIA Maxx

metro. The focus was on the train main functions when operating

under normal conditions, excluding maintenance, emergencies,

restricted and degraded operations and secondary use cases (e.g.,

comfort features) to concentrate on the train activation and driving

operations. This resulted in the selection of 54 use cases divided

into 12 scopes. Following the presented method, data was captured

or specified in order to build an integrated model of the system and

check its behavior. The following sections use examples from this

case study to illustrate the various steps of the method.

1.4 Paper overview

This paper proposes a behavior integration and verification method

through definition of high-level states at the level of the SoS. These

states are then used for specifying global coherence constraints and

for conditioning the realization of use-cases.

The paper is structured as follows: Section 2 presents related

work in the domain of systems engineering. Section 3 introduces a

modeling method based on high-level states. Section 4 presents a

method for verifying the consistency of the overall behavior based

on the state models. Section 5 introduces a method for structuring

executable models based on the notions of state and mode defined

before. Section 6 integrates the steps presented before in a global

process which complements the existing development process in BT.

Section 7 draws conclusions and discusses future work directions.

2 RELATEDWORK

The proposed description of the system and its behavior is done

using SysML through state machines. The notion of state can be

traced to the general system theory [14]. Is is explained that defining

the state of a system at a point in time is necessary to express its

behavior, which is linked to state evolution. State machines have

long been used to define and check system behaviors [7, 10, 12].

Creating an abstract, integrated model of a system behavior is

possible at a small scale. Works such as [2] explain how to create

abstract models that can be detailed later on and on which we can

perform formal V&V. In such a work, the modeler has a clear view

and understanding of the system to be modeled, and can take inde-

pendent decisions on how it should be represented. The modeler

also specifies the behavior. The meaning behind variables and other

modeling elements are not formalized, they exist in the head of the

modeler. For a complex system in an industrial context, managing

such information is the responsibility of dozens of requirements

and functional engineers. Creating an executable model has to be

done by a limited number of skilled people, but decisions regarding

dynamic aspects, definitions of variables, signals, etc. are to be done

by functional engineers, who do no create the executable model or

use formal methods.

The solution proposed in this paper aims to check a high-level

specification of the system behavior before design. The chosen ap-

proach to build a model is similar to state analysis [15], in the sense

that “states” of the system are modeled separately and used to inte-

grate and control the system behavior, the difference being that in

[15] the model is more detailed, including lower-level aspects such

as hardware control. Ingham developed this approach in response

to several issues, similar to those encountered in BT:

• subsystem-level functional decomposition fails to express

the whole system behavior,

• there is a gap between the requirements and their implemen-

tation,

• the system behavior is not explicitly specified.

3 BEHAVIOR INTEGRATION THROUGH

STATES

As the behavior of an SoS is not defined in a centralized way, but

rather through disparate use cases and scenarios, we propose to

use a high-level description of states at the SoS level in order to

orchestrate these pieces of behavior. For this, we are using concepts

of states and modes defined in a previous work [anonymized].

3.1 State definition

Types of states [3] are modeled as finite state machines arranged in

an structure of holons, similar to what is presented in [16]. A holon

is an element that is both a whole, something that can exist and

function independently, and a part, meaning it can be connected

to other element as part of a structure. Here, each finite state ma-

chine is a holon. Rather than representing the system behavior,

the holonic structure is used to established traceability between

states, some being deduced from others. This allows a first form

of integration by providing an evolving description of the system

using correlated information.

Different types of states can be defined, each characterizing

a kind of information regarding the system. For a train, we can

consider:

• The operability: the readiness of the train

• The energy supply: the source used to power the train

• The environment: the place where the train is operated

• etc.

Each type of state can take the value of a corresponding set of

state values. While they may appear as mere variables, those types

of states are not necessarily measured or calculated, as they can

express a “known” information, as it is the case for the operability.

What truly differentiates a type of state is that its state values

change depending on the target it qualifies and the adopted point

of view.

Types of state express pieces of information that have been iden-

tified and separated to characterize the conditions under which the

system is used and where the different use cases can be performed.

As such, the information contained in a given type of state can

be abstract. Defining a type of state is valuable on its own, as the

following example will show.

Table 1: Definition of the type of state operability

Operability

Target The train system

Information The train operability

Context The train daily life-cycle

Abstraction level System level

View Point of view of the train

Figure 2: State values and transitions of the type of state op-

erability

A good example of a type of state used to describe the train

system is its operability, as defined in Table 1. Its values and con-

straints on transitions are described by a state machine in Figure 2.

It is a type of state that indicates the capability of the train to pur-

sue a mission. It mainly depends on the status of the train energy

supply and the activation of internal systems. This information is

expressed at the system level, which is treated like a black box.

Operability is defined before making a design, and most use

cases can be performed for several states of operability. It means

that, on its own, operability is first an abstract type of state with

no practical ways of evaluating it, is too broad to characterize use

cases on its own but still provides a key information to the user

regarding the train utilization and evolution.

3.2 States in the case study

Fifteen types of states were established to describe the system

operational condition and situation for the selected use cases. A

sample of them with their possible values is shown in Table 2, with

information regarding whether the train moves, if it is on a section

with an electrical line (not neutral) and which source of energy is

supplying the train systems. The State space of each of the 15 types

of states varies from 2 to 6 different values.

Table 2: Example of types of state describing a train opera-

tional status

Movement
Neutral

Section

Electrical

Supply

Moving Neutral Full internal supply

Standstill Not neutral Internal supply depleted

Line supply

No supply

Partial internal supply

Shore supply

Train states characterize the train at its own level of granularity,

from its own point of view, in the context of its whole life-cycle.

This information can be found in part in the scenarios defined in

the operability analysis, as they specify circumstances under which

use cases are performed. Other information are obtained through

empirical experience and requirement analysis. These information,

independently from the behavior, can be constrained by physical

laws, properties to be respected, inter-dependencies, etc.

3.3 State constraints

Without a design and working at system level, there may be an issue

in measuring or evaluating some of the states. What can be done is

defining possible state configurations. To do so, the different types

of states can be linked by constraints and properties that condition

the values (states) they can or should take with regard to each other.

Those constraints are defined in relation to the system, and not

to its functions. Consequently, establishing a correlation between

them through constraints results in an integrated description of the

system that will be navigated through its behavior.

The system behavior depends in part on its circumstances, mean-

ing its situation in relation to a context. These circumstances may

be described by its states. The evaluation of all state types forms a

configuration describing the train circumstances.

In order to check the system behavior, it is important to define

as many relevant constraints as possible on the state values form-

ing configurations to reduce emergence. The more the system is

constrained, the less unknown behaviors there will be, and the

less cases there will be to consider. While over-constraining the

system is a risk, it is not an issue in our setting: since checking the

expected behavior is possible, any issue due to over-constraining

can be detected early enough. The problem can then be solved, or

in the worst case the specifications or the constraints were initially

wrong or cannot be fulfilled or checked at this point. On the other

hand, a lack of constraints will result in more unknown cases and

will present the risk to perform analysis on irrelevant cases while

overlooking errors in others.

Types of states can be used to check properties of the system.

Definition of such properties can lead to the creation of more types

of states, or constraints put on them. For example, a train “visibility”

is ensured when the train has its lights systems activated under

the right circumstances. It can be defined as a constraint on the

other types of states to ensure that the train would be evaluated

as “visible” when the circumstances ask for it. Such constraints

come from requirements and knowledge regarding the expected

system. They can constitute formal validation requirements when

expressed using states.

We define two types of constraints: simple constraints and com-

plex constraints. Simple constraints are defined between pairs of

states values and can be captured and specified by engineers. All

possible simple constraints are considered, leading to new spec-

ifications and a first integration of the system states. Complex

constraints represent known or desired constraints between three

or more states values and cannot be exhaustively captured.

Let us denote T = {t1, ..., tn } as the set of the types of states,

with n the number of types of states defined. Every types of state

corresponds to a set of possible state values: ∀i ∈ {1, ...,n},∃k |

ti = {si1, ..., sik }. For every state value s , we also denote by s the

logical proposition: “the system is in state s”.

Two incompatible states values x ,y of two different types of

state ti , tj are represented by the simple constraint ¬(x ∧y). For all

types of states, we can define simple constraints as a set of clauses

simpleConsts such as:

simpleConsts ⊆ {x ∨ y |∀i, j ∈ {1, ...,n}, i , j,∀x ,y ∈ ti × tj } (1)

The complex constraints are defined by forbidding combinations

of state values taken from subsets of three or more types of states.

Considering a group of types of states t1, ..., tk with k >= 3, a

complex constraint compConst can be defined as all combination

of state values among the subsets t ′
1
, ..., t ′

k
such that t ′i ⊆ ti

compConst = ∧x1, ...,xk ∈t ′1, ...,t
′
k
(x1 ∨ ... ∨ xk) (2)

3.4 State constraints in the case study

Listing the values of the different types of states, a square matrix can

be created were engineers can specify simple constraints between

states values. Compatible pairs of states values of two different types

of states are marked by a 1 in the matrix, and by a 0 otherwise. An

example from the case study is given in Table 3, using values from

the types of states presented in Table 2. Only part of the square

matrix is presented.

Complex constraints are defined as the rows of another matrix.

The columns of this matrix correspond to the states values of each

types of states. Each row specifies the subsets of state values in-

volved in the constraint, represented by the indicator function (i.e,

a 1 means the state is included in the subset). This list has not the

ambition of being exhaustive, only expressing known properties

from requirements and experience. Contrary to simple constraints,

it is not practical, or even possible, to ask for engineers to think of

Table 3: Simple constraints between types of states values

Fu
ll
in
te
rn
al
su
pp
ly

In
te
rn
al
su
pp
ly
de
pl
et
ed

Li
ne
su
pp
ly

N
o
su
pp
ly

Pa
rti
al
in
te
rn
al
su
pp
ly

Sh
or
e
su
pp
ly

neutral 1 1 0 1 1 1

not neutral 1 1 1 0 0 0

Moving 1 0 1 0 0 0

Standstill 1 1 1 1 1 1

Table 4: Example of a complex constraint

In
te
rn
al
su
pp
ly
de
pl
et
ed

Li
ne
su
pp
ly

N
o
su
pp
ly

In
se
rti
on
lin
e

M
ai
n
lin
e

St
at
io
n

N
eu
tra
l s
ec
tio
n

C1 1 1 1 1 1 1 1

all possible complex constraints. It also presents the risk to repeat

complex constraints already induced by simple ones. Besides, spec-

ifying the simple constraints and correcting them often leads to

the definition of new complex ones. Correcting a simple constraint

means deleting it, as it was too strict and blocked the realization

of use cases, and replacing it by a complex constraint that is more

specific and carries the actual intent of the initial simple constraint.

They often would not have been specified or thought of by other

ways. An example of complex constraint C1 is given in Table 4.

3.5 Use case pre-conditions

States capture the circumstances in which a use case is possible. The

preconditions should capture every possible configuration in which

a use case is possible, the limitations being expressed through the

constraints. A precondition has a subset of authorized state values

for each type of state. Considering the subsets t ′
1
, ..., t ′n of the types

of states T for a given precondition precond , we have:

precond = ∧i ∈1, ..,n (∨s ∈t ′
i
s) (3)

Table 5: Exemple of a use case precondition

Fu
ll
in
te
rn
al
su
pp
ly

Pa
rti
al
in
te
rn
al
su
pp
ly

N
eu
tra
l

N
ot
ne
ut
ra
l

M
ov
in
g

St
an
ds
til
l

Wake up

train
1 1 1 1 0 1

Use cases preconditions are defined in a matrix indicating which

values of each type of states are compatible with their realizations.

Compatible values are marked with a one, incompatible ones with

a zero. Those preconditions indicate which values can and should

be found in a configuration satisfying the use case preconditions,

but do not imply that all combinations of compatible values are

possible, as there are constraints to consider. Considering only

preconditions of this form is justified by the fact that engineers can

focus on the use cases preconditions one state at a time. As there

can be thousands of configurations to consider for each use case,

it is not possible for an engineer to think of all the ones satisfying

the preconditions while excluding those violating the constraints.

3.6 Use case pre-conditions in the case study

An example is given in Table 5 (only authorized values have been

displayed for the energy supply). Initially, waking up the train

following a scenario to put it into service was not possible as a

constraint indicated that a train could not be still on a neutral

section. A neutral section is a section where there is no electrical

supply from the line, which is the case where the train is parked.

The reason for this error was that engineers made the specification

while thinking of the train as performing a mission on the main

line. A neutral section can be found on the main line, in which

case a train should indeed not stop, but a train in a depot is also

technically on a neutral section, but still needs to move on its own.

This lead to the definition of types of states expressing that the train

was in a mission or not, and what its environment is, as well as

expressing complex constraints to enforce what was intended in the

original specification. The initial specifications on their own were

either incomplete or not-binding, letting developers of subsystems

interpret the information and correct it.

4 VERIFICATION METHOD

In order to develop an integrated model to verify and validate the

system’s expected behavior, it is necessary to first have proper

inputs. To that end, a solution has been developed for engineers

to check some predefined properties of their specifications. The

solution is automatic and works like a black box: it is a script coded

in R language that takes directly the matrices defined previously as

inputs, without a need for other modeling activities. The technical

details are presented first, the results and errors detected being

discussed after.

4.1 State constraints verification

Two basic sanity checks are performed:

(1) There is at least one compatible value between two state

types.

(2) Each state value appears in at least one possible state config-

uration.

Performing the first sanity check implies checking that the simple

constraint matrix is correctly filled.

Calculating possible configuration is done by a script using ap-

plications of the graph theory [4]. The solution is intended to cor-

respond to the industrial practice and needs, and as such is not

optimal. A more elaborate solution is currently not needed consid-

ering that the calculation only take seconds.

The script performs the following actions, logging errors at each

check step:

• Check that the matrix is correctly filled.

• Calculate all possible configurations according to simple

constraints

• Filter possible configurations using complex constraints.

• Check the presence of each state value in at least one of

configuration of the filtered list.

4.2 Use case preconditions verification

For every use case we check that:

• Its precondition admits at least one possible configuration

regarding the state constraints.

• Each authorized state value appears in at least one possible

state configuration.

The script performs the following actions, logging errors at each

check step and for each use case:

• Calculate possible configurations.

• Check the presence of each authorized state value in at least

one of the possible configurations.

• Filter the configurations with complex constraints. Check

again for the existence of a solution.

• Check the presence of each authorized state value in a least

one of configuration of the filtered list.

Simple constraints and complex constraints are applied and

checked separately to facilitate their analysis and correction.

4.3 Results

The results can easily be formatted and customized, in our case an

Excel file. The case study showed that:

• Out of 15 types of states, 2 pairs initially lacked authorized

values between them.

• Out of 45 state values, 6 were not initially included in any

possible configurations.

• 5 more complex constraints were defined after correcting

the simple constraints.

• Out of 54 use cases, 7 initially lacked authorized values.

• 13 use cases did not initially admit a single configuration as

solution.

• 51 use cases had unused values, for a total of 148 cases.

The lack of authorized values between types of states or in pre-

conditions were simple omissions. State values not included in any

possible configurations were due to the following errors:

• State were ill-interpreted by the engineers.

• Engineers adopted a point of view that was too narrow,

overlooking specific cases were some states values were

compatible.

Nearly all use cases had unused state values, meaning state

values authorized in the preconditions but not present in any of

the related possible configurations. In order of increasing severity,

it could mean that:

• A given state was deemed possible in the preconditions but

was not.

• The use case should have admitted a configuration with this

state but its preconditions were too narrow.

• There was an issue in the way the constraints were defined,

blocking possible configurations.

As the states are used for the preconditions of all use cases and

their constraints are used in the calculations of all possible state

configurations, an error in their definition is where it has the most

severe impact.

The method proved that when integrating specified information

on current validated steps of a project, there were in fact many

errors and misunderstanding that would have to be corrected later

on. Those errors were detected here at an earlier stage in the process.

In addition, this analysis provides new or proper specifications as

opposed to partial or informal ones.

5 EXECUTION MODEL

According to our approach, the fundamental unit for organizing

the system description is the state, and the fundamental unit for

organizing the behavior is the mode. The behavior is modeled by

hierarchical state machines, here SysML statecharts, where “state”

modeling elements correspond to our concept of mode. Each mode

can be activated after checking that the system state configuration

allows it and that the right sequence of activities has been executed.

A mode here characterizes use cases of the system while specific

conditions on the system state are true.

5.1 Holonic structure for states

The system description is modeled following this process:

(1) Create a SysML block for each type of states.

(2) Model each type of state as a non-hierarchical statechart

inside each block.

(3) Create a signal for every transition of state values.

(4) Create the structure around state blocks by creating and

linking ports.

(5) Enclose all states in one SysML block contained by the sys-

tem block.

(6) Define inputs ports for signals updating state values from

environment or the system behavior.

5.2 Structure of the behavior

There is a need for both a specification and an executable model

of the whole system and its behavior. In order to integrate the

specification, it should be possible to specify dynamic aspects of

the use cases. It requires knowing which use case can be realized

in a given situation and how their possible realization evolves.

Conditions enabling the realization of a use case correspond to our

definition of a mode. The preconditions defined earlier enable to

know when a use case can be performed, and can be considered as

a basis for defining modes. We will now define a structure of modes

to analyze, integrate and model the behavior. We define several

types of modes:

• Use case mode: conditions the realization of a given use case.

• Scope mode: a mode defined by a precondition composed

of subsets that are the union of authorized values in all

preconditions of all use casesmodes under the corresponding

scope.

• Abstract mode: conditions the activation of one or several

scope mode.

The way the scope modes and abstract modes are defined is

potentially larger than the disjunction of use case preconditions

and scope mode conditions they refer to, in order to cover a broader

context and follow the evolutions of use case transition. This is also

a way of ensuring that we have implication relationships between

the different modes, something we need to build a structure around

them.

Use case modes directly condition the execution of use cases.

Other types of modes only condition them in an indirect way by

conditioning the use case modes or the modes containing those.

A mode is defined by the use cases it characterizes (directly or

not) and the conditions in which it is activated. As the relationship

between modes and use cases is established, the main characteristic

needed for the definition of new modes is the conditions for which

they are activated.

The conditions for amode can be considered as a group of subsets

of each types of states’s values. As long as all state values of a state

configuration are part of these subsets, the mode is active. Given

T = {t1, ..., tn } the set of all types of states, a mode has the same

structure as a UC precondition (see section 2.5) and is defined by a

set of subsets t ′i ⊆ ti .

The behavior can be modeled using statecharts. As the use

cases are managed in scopes allocated to different engineers and

that they are too numerous to be put in one statechart, all use

cases modes should be put under global modes corresponding to

their scope, where they are to be modeled in a corresponding stat-

echart. Considering {t ′
1
, ..., t ′n } the conditions of a scope mode,

we define the conditions of the k use cases under this scope as

∀j ∈ {1, ...,k}, {t ′j1, ..., t
′
jn }. We have:

∀i ∈ {1, ...,n}, t ′i = ∪kj=1t
′
ji (4)

In order to integrate the statecharts defined in each scope, there is

a need to evaluate whether the different scopes modes are activated

or not. We propose to create a structure of implications enabling to

determine activated modes by evaluating their conditions.

Satisfying the conditions of a use casemodemeans the conditions

of its scope mode are satisfied: activating a use case mode implies

activating its scope mode. In the same way, some scope mode could

imply others, which is the basis for our implication structure. Some

scope modes could also have the same conditions, in which case

we create one statechart in each scope to specify the behavior but

only define one corresponding scope mode.

All scopes modes may not be linked by implication relationships,

in which case we define abstract modes. Abstract modes are ob-

tained by the union of two modes preconditions. We only define

abstract modes for pairs of scope modes that do not imply any

other.

5.3 Structure of modes in the case study

The structure of modes is generated thanks to a script. The result

of its application on the case study is shown in Figure 3, using the

modes of 6 scopes for visibility. As the modes imply each other, a

Figure 3: Implication structure of scope modes and abstract

modes

path of implication correspond to preconditions that are more and

more specific. Keeping only the longest paths, obtained by transitive

reduction (which has been applied in the example), correspond to

progressive definitions of increasing details in the preconditions

that are each evaluated once.

6 METHOD

The system is modeled while considering separately its states and

its behavior. The same approach is then applied on its elements,

detailing the behavior while maintaining states and their traceabil-

ity. The goal is to specify and check an integrated system and its

behavior that would otherwise be either unspecified or emergent

depending on the level of development. The method developed

follows this process:

(1) Define types of states providing information on the system

at its own level of granularity.

(2) Define simple and complex constraints between the values

of different types of states to correlate the information.

(3) Define enabling circumstances of the system use cases using

the system states.

(4) Check all states constraints and use cases preconditions.

(5) Generate the structure of modes.

(6) Build the system description and behavior models.

Once an integrated model of the system is obtained, more V&V

activities can be performed, such as simulation. The model evolves

by completing its elements models, their description (states), and

the behavior detailed amongst all elements.

The information expressed by the states can evolve internally

through deduction amongst types of states. They also can be modi-

fied by the behavior or be communicated by the environment. The

use cases, however, express interaction with the system processed

through its behavior, and do not directly change the system state.

This way, both the behavior and the actions on the system can

evolve and be detailed without modifying the description of the

system.

7 CONCLUSION AND PERSPECTIVES

Our results helped proving that our definition of system states

enables to specify the system and its behavior, its evolution and

the conditions under which use cases can be performed. The most

direct benefit of this work is a means to check the preconditions

of the use cases, not just individually but as part of a constrained

whole. In the same way, it is important to early validate that all the

anticipated use cases for an SoS are realistic and that no feature

interactions will prevent the SoS to fulfill its missions. The simplic-

ity of the solution makes it available to any engineer working on

use case specification and can be easily integrated in an existing

method, process or tool. One of the gains expressed by the BT engi-

neers who experimented our approach was that preconditions were

clearer but more importantly centralized, and instead of repeating

similar information and preconditions in many requirements, those

information are expressed by the same elements, the states.

The method presented does not guarantee to cover all states of

the system, nor all details of its behavior. It simply aims at specifying

the integration of the system to check its coherence and reduce

emergence in its properties and behavior. The method remains to

be deployed on a whole project for validation purposes. It also only

covers discrete event phenomena.

The next step is to perform V&V activities on the model and

then conduct the same analysis on a developed design using part

of the model to check the continuity.

ACKNOWLEDGMENT

This work is supported by Bombardier Transport SAS and the ANRT

CIFRE grant #2016/0262.

REFERENCES
[1] R. J. Abbott. 2007. Emergence and systems engineering: putting complex systems

to work. In Symposium on Complex Systems Engineering, RAND Corporation,
Santa Monica, CA. 11–12.

[2] Jean-Raymond Abrial. 2010. Modeling in Event-B: system and software engineering.
Cambridge University Press, Cambridge; New York. OCLC: 646068815.

[3] R. Baduel, JM Bruel, I. Ober, and E. Doba. 2018. Definition of states and
modes as general concepts for system design and validation. (2018). https:
//hal.archives-ouvertes.fr/hal-01989427

[4] R. Balakrishnan and K. Ranganathan. 2012. A Textbook of Graph Theory. Springer
New York, New York, NY. https://doi.org/10.1007/978-1-4614-4529-6

[5] Paul Baracos. 1992. Grafcet step by step. Famic Automation, Incorporated.
[6] Albert Benveniste, Benoît Caillaud, and Dejan et al. Nickovic. 2015. Contracts

for Systems Design: Theory. Research Report RR-8759. Inria Rennes Bretagne
Atlantique ; INRIA. 86 pages. https://hal.inria.fr/hal-01178467

[7] Egon Börger and Robert Stärk. 2003. Abstract state machines: a method for high-
level system design and analysis. Springer Science & Business Media.

[8] Mohammad Chami, Philipp Oggier, Omar Naas, and Matthias Heinz. 2015. Real
World Application of MBSE at Bombardier Transportation. In The Swiss Systems
Engineering Day (SWISSED 2015), Kongresshaus Zurich.

[9] Richard Fujimoto, Conrad Bock, Wei Chen, Ernest Page, and Jitesh H. Panchal.
2017. Research challenges in modeling and simulation for engineering complex
systems. Springer.

[10] David Harel. 1987. Statecharts: A visual formalism for complex systems. Science
of computer programming 8, 3 (1987), 231–274.

[11] Bill Haskins, Jonette Stecklein, Brandon Dick, Gregory Moroney, Randy Lovell,
and James Dabney. 2004. 8.4.2 Error Cost Escalation Through the Project Life
Cycle. INCOSE International Symposium 14 (06 2004), 1723–1737. https://doi.
org/10.1002/j.2334-5837.2004.tb00608.x

[12] John Hopcroft, Rajeev Motwani, and Jeffrey Ullman. 2001. Introducrion to Au-
tomata Theory, Languages and Computation. Addison-Wesley.

[13] Jesko G. Lamm and Tim Weilkiens. 2010. Functional Architectures in SysML.
Proceedings of the Tag des Systems Engineering (TdSE 10). Munich, Germany (2010).

[14] Jean-Louis Le Moigne. 1994. La théorie du système général: théorie de la modélisa-
tion. Presses Universitaires de France.

[15] Michel D. Ingham, Robert D. Rasmussen, Matthew B. Bennett, and Alex C. Mon-
cada. 2005. Engineering Complex Embedded Systems with State Analysis and
the Mission Data System. AIAA Journal of Aerospace Computing, Information,
and Communication, Vol. 2.

[16] Luca Pazzi. 2014. Modeling Systemic Behavior by State-Based Holonic Mod-
ular Units. In Model-Driven Engineering Languages and Systems, Juergen Din-
gel, Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and Emilio Insfran (Eds.).
Vol. 8767. Springer International Publishing, Cham, 99–115. https://doi.org/10.
1007/978-3-319-11653-2_7

[17] Mathias Soeken and Rolf Drechsler. 2015. Formal Specification Level. Springer
International Publishing, Cham. https://doi.org/10.1007/978-3-319-08699-6

[18] Thiago Rocha Silva. 2018. A behavior-driven approach for specifying and testing
user requirements in interactive systems. PhD Thesis. Université de Toulouse,
Université Toulouse III-Paul Sabatier. http://thesesups.ups-tlse.fr/3940/

