
HAL Id: hal-02891652
https://hal.science/hal-02891652

Submitted on 7 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Drowsy-DC: Data center power management system
Mathieu Bacou, Grégoire Todeschi, Alain Tchana, Daniel Hagimont, Baptiste

Lepers, Willy Zwaenepoel

To cite this version:
Mathieu Bacou, Grégoire Todeschi, Alain Tchana, Daniel Hagimont, Baptiste Lepers, et al.. Drowsy-
DC: Data center power management system. 33rd IEEE International Parallel & Distributed Process-
ing Symposium (IPDPS), May 2019, Rio de Janeiro, Brazil. pp.825-834, �10.1109/IPDPS.2019.00091�.
�hal-02891652�

https://hal.science/hal-02891652
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is a publisher’s version published in:
http://oatao.univ-toulouse.fr/26182

To cite this version: Bacou, Mathieu a es hi
 r ire and Tchana, Alain-Bouzaïde and Hagimont,
Daniel and Lepers, Baptiste and Zwaenepoel, Willy
Drowsy-DC: Data center power management system.
(2019) In: 33rd IEEE International Parallel &
Distributed Processing Symposium (IPDPS), 20 May
2019 - 24 May 2019 (Rio de Janeiro, Brazil)

Official URL

DOI:10.1109/IPDPS.2019.00091

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

mailto:tech-oatao@listes-diff.inp-toulouse.fr
http://oatao.univ-toulouse.fr/26182
doi:10.1109/IPDPS.2019.00091

Drowsy-DC: Data center power management system

Mathieu Bacou†∗, Grégoire Todeschi†,
Alain Tchana†, Daniel Hagimont†

†IRIT, Université de Toulouse, CNRS, Toulouse, France

{first.last}@enseeiht.fr
†Atos Integration, Toulouse, France

Baptiste Lepers‡, Willy Zwaenepoel‡
‡Operating Systems Laboratory

École Polytechnique Fédérale de Lausanne

Lausanne, Vaud, Switzerland

{first.last}@epfl.ch

Abstract—In a modern data center (DC), a large majority of
costs arise from energy consumption. The most popular technique
used to mitigate this issue is virtualization and more precisely
virtual machine (VM) consolidation. Although consolidation may
increase server usage by about 5–10%, it is difficult to actually
witness server loads greater than 50%. By analyzing the traces
from our cloud provider partner, confirmed by previous research
work, we have identified that some VMs have sporadic moments
of data computation followed by large periods of idleness. These
VMs often hinder the consolidation system which cannot further
increase the energy efficiency of the DC. In this paper we propose
a novel DC power management system called Drowsy-DC, which
is able to identify the aforementioned VMs which have matching
patterns of idleness. These VMs can thus be colocated on the
same server so that their idle periods are exploited to put the
server to a low power mode (suspend to RAM) until some data
computation is required. While introducing a negligible overhead,
our system is able to significantly improve any VM consolidation
system; evaluations showed improvements up to 81% and more
when compared to OpenStack Neat.

Index Terms—virtualization, consolidation, long-lived mostly
idle, low-power state, power consumption

I. INTRODUCTION

Cloud platforms have proven to be able to provide very

attractive prices. The enabling element of cloud computing

is the virtualization technology. It allows a server to execute,

simultaneously and in an isolated manner, multiple operating

systems (OSs) called virtual machines (VMs). Reducing

datacenters (DC) energy consumption is a major concern for

cloud providers and an important center of interest for the

research community. According to the scale at which the issue

is addressed, previous works can be organized in two categories:

(1) those interested in minimizing the power consumption

of a single server; and (2) those which act at the DC scale,

leveraging the virtualized nature of the workload.

In the first category, the holy grail is to achieve energy
proportional servers [1]. Such a server consumes energy in

exact proportion to its utilization. Thereby, a server with

no load would theoretically consume no energy. In this

respect, an essential goal is to independently control the power

state of each hardware component (e.g. by leveraging the

ACPI1). Subsequently, this modular system is able to adapt the

energy consumed by each component according to its current

solicitation. Although these solutions improve the energy

1The Advanced Configuration and Power Interface (ACPI) is an standard
used by OSs to manage the power of hardware components.

efficiency for CPUs, HDDs and NICs, state-of-the-art proposals

are still a long way from the ideal energy proportional machines.

Therefore, some DC-level power management techniques such

as VM consolidation have been proposed.

VM consolidation seeks to dynamically assign VMs to a

minimum number of servers, so that empty servers — which are

consequently inactive — can be transitioned to low power states

(suspend to RAM or suspend to disk, respectively ACPI S3 and

S4). By increasing the load of active servers, this technique also

improves the energy efficiency of the DC. However, the general

utilization boost is around 5–10% which makes it difficult to

actually witness server loads greater than 50% for even the

best adapted workloads [1, 2, 3, 4]. This is explained by several

reasons. First, VM consolidation is a bin-packing problem

which is NP-complete. Second, the resource partitioning

depends on the resource type. For instance, unlike CPU which

is time-shared, memory is space-shared between the VMs and

is not preempted. Consequently, memory is often the limiting
resource in the consolidation process [5]. Several solutions tried

to address this problem by minimizing VMs memory footprints

(e.g. page sharing [6, 7, 8], page compression [9, 10]) and

allowing memory overcommitment (ballooning [11, 12, 7]).

However, these techniques are generally not employed in

mainstream cloud DCs for several reasons. First, despite the

achieved memory gains, they all have a detrimental impact on

the performance of user applications. Second and specifically

for ballooning, these solutions depend on efficiently estimating

the memory footprint which is a fairly difficult task considering

the variance of the working-set over time [13, 14].

In this paper, we propose a new DC power management

system called Drowsy-DC, based on an innovative idea which

combines concepts from the two previous categories: we state

that using consolidation, we can create situations where a DC

server may be suspended despite not being empty (i.e. it is

hosting VMs), thus greatly improving its power consumption.

We observed patterns in VMs activity traces. From the point

of view of their activity patterns, VMs may be classified in

three categories: short-lived mostly-used VMs (noted SLMU,

e.g. MapReduce tasks), long-lived mostly-used VMs (noted

LLMU, e.g. popular Web services), and long-lived mostly-idle

VMs (noted LLMI, e.g. seasonal Web services). In this paper

we focus on LLMI VMs, as defined by Zhang et al. [15]. Their

activity pattern is composed of isolated operations followed by

long periods of idleness. Notice that LLMI VMs do exist in a

825

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/19/$31.00 ©2019 IEEE
DOI 10.1109/IPDPS.2019.00091

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 23,2020 at 14:48:27 UTC from IEEE Xplore. Restrictions apply.

proportion significant enough in public clouds, that Amazon

and Microsoft recently provided special pricing for such cases,

despite the implementation of Function-as-a-Service [16]. As

for private clouds host a majority of LLMI VMs: for instance,

at least half of Nutanix’s workload is made of enterprise

applications which are typically LLMI [17]. Based on this

observation, the basic idea of Drowsy-DC is to enforce as far

as possible2 the colocation of VMs exhibiting similar idleness
patterns. In this way, the hosting servers can be suspended

during idle periods. Such suspended servers are called drowsy
servers in the paper. To the best of our knowledge, we are

the first to investigate this approach in the context of cloud

DCs. To implement it, Drowsy-DC is composed of three main

components: a consolidation support module, a suspension

subsystem and a resuming subsystem. In summary we make

the following contributions:

• A consolidation approach based on modeling VM behavior

of idleness, which enables VM colocation based on

matching idleness periods.

• An algorithm allowing to efficiently detect the right time

for suspending a server. It keeps a server awake as long

as any of its VMs need computation power. Our algorithm

also prevents the server from quickly alternating between

high and low power states.

• An optimized waking system which minimizes perfor-

mance degradation for interactive workloads.

• The evaluation of each component as well as the global

system. Experiments confirm the effectiveness of Drowsy-

DC and the energy gains as well as the negligible

overhead concerning the consolidation process and the

performance of user VMs. Concerning the energy gains,

the evaluation results show that Drowsy-DC improves the

OpenStack [18] consolidation system (Neat [19]) by about

50%. We also compared Drowsy-DC with another VM

consolidation supports named Oasis [20].

The rest of the paper is organized as follows. Section II gives

a high-level architecture of a datacenter managed by Drowsy-

DC. Sections III to V describe every Drowsy-DC component.

We present the evaluation results in section VI. We compare

our contributions with related work in section VII. Finally, we

conclude in section VIII.

II. GENERAL OVERVIEW

A datacenter managed by Drowsy-DC must include two

software modules:

Waking module: an extension to the already existing data-

center manager, which wakes up suspended servers when

hosted VMs require computing resources, and includes

optimizations to guarantee optimal resuming time;

Suspending module: an extension for server monitoring, that

takes the enlightened decision of suspending a server, and

works hand-in-hand with the waking module to ensure

optimal resuming time.

2That is to say, with respect to resource availability.

With these two modules in place, the existing dynamic

consolidation solution can be augmented with Drowsy-DC

idleness-based consolidation algorithm. The resulting system

can make VM placement decisions based on classic criteria,

such as resource requirements, as well as the new criterion of

VMs’ idleness patterns. Drowsy-DC’s idleness-based consoli-

dation algorithm is described in the next section.

III. IDLENESS AWARE VM PLACEMENT

The central concept that rules placement decisions in Drowsy-

DC is idle periods. We want to colocate VMs which are likely

to be idle during the next time interval (e.g. the next hour) so

that their host can remain suspended during that interval. To

this end, Drowsy-DC continually builds each VM’s idleness
model (noted IM), which summarizes its past idleness. By so

doing, each time a VM is candidate for placement, Drowsy-DC

derives from its IM an idleness probability (noted IP), which

quantifies the likelihood of this VM being idle in the next

time interval. We also define a server’s IP as the average of its

VMs’ IPs: as we add a special consolidation step to keep the

range of IPs on a server small (see section III-D), it is better

to use the average in order to represent the general behavior

of a server from the IPs of its VMs. The placement algorithm

then chooses the destination server which satisfies both the

traditional placement constraints (e.g. resource availability)

to enforce SLA, and the constraint of proximity between the

VM’s IP and the server’s IP while aiming to increase the latter.

This section describes how the IM is built and explains how

to compute the IP. Finally, it shows how to integrate into an

existing data center management system using OpenStack.

A. Content of the idleness model (IM)

The purpose of a VM’s idleness model (IM) is to provide

data to compute its idleness probability (IP) for future time

intervals. A naive solution is to consider that the IP of the

next time interval only depends on the current time interval.

However, this leads to a very high false positive rate. Instead,

this paper proposes an approach that comes from studying the

idleness of VMs from the production DC of Nutanix, a private

cloud provider [21]. We identified three types of VMs: short-

lived mostly-used VMs (noted SLMU, e.g. MapReduce tasks),

long-lived mostly-used VMs (noted LLMU, e.g. popular web

services), and long-lived mostly-idle VMs (noted LLMI, e.g.

seasonal web services). This paper focuses on LLMI VMs.

We extensively inquired about them and we found a periodic

idleness at four different scales: (1) the hour in the day (e.g.

morning); (2) the day in the week (e.g. week-end); (3) the day

in the month (e.g. end of the month); and (4) the month in the

year (e.g. seasons). This observation is in line with other trace

analysis works [4, 22, 23].

Based on this study, we decided to use the hour as the time

interval, which can be seen as the resolution of the IM —

and thus the resolution of the IP-based placement decisions.

Nonetheless, in order to define a VM’s idleness, we take into

account all four scales presented above. We want to express

the following information: "the probability the VM is idle at

826

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 23,2020 at 14:48:27 UTC from IEEE Xplore. Restrictions apply.

hour h, on the day dw of the week, which is also the day dm
of the month m, is X". For instance, a national diploma results

website is mostly used at some specific hours (2 p.m., 3 p.m.)

of a specific day (20th) of one month (July), every year.

Each server runs a model builder which collects every hour

the activity level of each VM and updates its synthesized
idleness (SI) scores contained in its IM (see section III-C). The

activity level of a VM is based on the number of scheduler

quanta that were allocated to the VM during an hour. There

are four types of SI scores, for each time scale:

• SId(h): synthesized idleness during h regarding its

position in the day;

• SIw(h, dw): synthesized idleness depending on h and the

day of the week dw;

• SIm(h, dm): synthesized idleness depending on h and the

day of the month dm;

• SIy(h, dm,m): synthesized idleness depending on h, dm
and the month m of the year.

The model also takes into account the importance of the

time scale (represented by each type of SI scores) in the

VM’s idleness. For instance, in the previous diploma results

website example, we can see that the position of the hour in

the week (SIw) is the least important factor in the idleness

periodicity. Therefore, each time scale is given a weight —

higher means more important. Its value is periodically corrected

(see section III-C for the update algorithm).

In summary, a VM’s idleness model is composed of

many synthesized idleness scores (24 SId, 24× 7 SIw, 24×
31 SIm, 24× 365 SIy) and 4 weights (wd, ww, wm, and wy).

B. Computing the idleness probability (IP)

Having the VM’s model, its idleness probability (IP) for a

given hour h of the day dw of the week, which is also the day

dm of the month m, is computed using the formula in eq. (1).

IP(h, dw, dm,m) = wd · SId(h) + ww · SIw(h, dw)
+ wm · SIm(h, dm) + wy · SIy(h, dm,m)

= wᵀ · SI
(1)

w is the vector of the weights (ᵀ is the transpose operator),

and SI is the vector of the four SI scores associated with the

time interval for which the IP is being computed.

C. Updating the idleness model

As said above, a VM’s IM is revised each hour: its SI scores

are updated and the weights are corrected.

a) Computing SI∗ scores: At VM creation time, all SI∗
are set to zero (i.e. undetermined behavior); they will be kept in

bounds [−1, 1] when being updated. Further, they are updated

periodically at the end of each hour in the following way: if

the VM was seen idle the whole hour, SI∗ are incremented,

otherwise they are decremented. The update value v(SI∗) that

is added to or removed from a SI∗ is calculated as follows.

The update value depends first on the activity level a of the

VM: either the activity level ah of the hour considered for

update if the VM was active, or the average activity level a
of past active hours if the VM was idle. This way, whenever

a VM is seen idle during an hour after showing high activity

levels during active hours, its SI∗ for this hour increases fast

to indicate that seeing idleness is significant. The activity level

is the ratio of CPU quanta scheduled for the VM, over the

total possible quanta during an hour; very short scheduling

quanta — noise — are filtered out. Choosing the activity level

for the update value v is summarized in eq. (2).

a =

{
ah, if ah > 0.

a, if ah = 0.
(2)

The activity value is then scaled to the SI∗ bounds [−1, 1]
to give a∗ (eq. (3)). The scaling ratio σ = 1

365×24 is defined

so that a VM needs constant activity (ah = 1) during an entire

year to bring its SId from 0 to −1 (ignoring the coefficient u
described below).

a∗ = σ · a =
a

365× 24
(3)

Then, the update value v also depends on the current value

of the SI∗ via the coefficient u(|SI∗|) expressed in eq. (4)

(notice that we use the absolute value of SI∗). It exists so that

(1) SI∗ increase or decrease quickly when undetermined to

learn the VM’s behavior quickly; and (2) SI∗ do not reach

very extreme values so that the IM can respond to unexpected

VM behavior quickly. In eq. (4), α and β are used to control

the effect of u: α can be seen as the decrease speed of the

update value when the threshold set by β is reached; and

β is interpreted as the threshold above which the SI∗ (in

absolute value) is considered to start reaching extreme values.

α was empirically set to 0.7, while β was set to 0.5 (halfway

between undetermined and determined). We did not explore

the possibility of dynamically setting α nor β based on VM

activity level variations, which could be a way for improvement.

u(|SI∗|) = 1

1 + eα(|SI∗|−β)
(4)

Finally, the update value v(SI∗) that is added to (if ah = 0)
or removed from (if ah > 0) SI∗ is:

v(SI∗) = a∗ · u(|SI∗|) (5)

b) Computing weights: The weights are learned through-

out the lifetime of the VM: they are recomputed and corrected

after each hour. To this end, we use an unsupervised feature

learning method which consists in minimizing the quadratic

error function Q defined in eq. (6).

Q(w) = (IP′− IP)
2

(6)

IP′ is the IP that should have been predicted given full

knowledge, and IP is the IP that is calculated with the weights

that are under learning process. However, due to its nature of

probability estimation, there is no correct value for IP′. Thus
it is replaced with the mixed expression given in eq. (7).

827

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 23,2020 at 14:48:27 UTC from IEEE Xplore. Restrictions apply.

IP′ = w0
ᵀ · SI′ (7)

w0
ᵀ is the transpose of the weight vector at the beginning

of h and SI′ is the vector of the four SI scores with their

updated values. Therefore, the expression of the quadratic error

function that we seek to minimize in order to learn the weights

becomes as shown in eq. (8).

Q(w) = (w0
ᵀ · SI′ −wᵀ · SI)2 (8)

In order to minimize this function, we use a steepest descent

algorithm [24]. It iteratively takes steps proportional to the

negative of Q’s gradient, thus converging toward the value of

w that minimizes the quadratic error. It has the advantage of

being fast, while yielding good results. Its precision can be set

to not incur any overhead in the consolidation system.

D. Integration with OpenStack

Our contribution applies to any cloud management system.

We use OpenStack [18] for illustration. Before presenting how

our VM placement algorithm can be integrated into OpenStack,

let us first introduce its VM placement-related components.

A VM placement operation can be triggered for two reasons:

VM creation and dynamic VM consolidation. In OpenStack,

the former is handled by the cluster manager (Nova). It

includes a Filter Scheduler which selects suitable hosts for

the VM, by executing the following steps: (1) discard the

unsuitable hosts based on a large panel of parameters such

as available resources; and (2) weight and sort the remaining

hosts based on parameters like colocation rating. Concerning

VM consolidation, OpenStack relies on Neat which splits

the problem into four sub-problems [25]: (1) determine the

underloaded hosts (all their VMs should be migrated and the

hosts should be switched to low-power state); (2) determine

the overloaded hosts (some of their VMs should be migrated

in order to meet the QoS requirements); (3) select VMs

to migrate; and (4) place the selected VMs to other hosts.

Because Nova and Neat are flexible, we can easily implement

our idleness-aware placement algorithm.
a) Initial placement at VM creation time: Nova allows

an easy integration of new filters and weighers. In order to

integrate our solution, we added our own weigher so as to

favor hosts with best-matching idleness probability.
b) VM migration at consolidation time: Neat is designed

such that one can plug in a custom consolidation algorithm.

Concerning the algorithm presented above, we are interested

in steps (3) and (4). We have adjusted them as follows:

(3) Besides the classic parameters involved in selecting the

VMs to migrate (e.g. migration speed), we select the ones

with the IP the furthest from the host’s IP. We sort VMs

first by classic criteria, and then by decreasing distance

between their IP and their host’s IP. Thus VMs with the

most different IPs are selected first, and then for a similar

distance between IPs3 the classic criteria are used.

3There is a tolerance when sorting by distance between VM’s IP and host’s
IP so close distances are considered equal.

(4) For a VM to migrate, we want to select the destination

host with the closest IP. We first treat VMs with the

biggest resource requirements, and then find the hosts that

can host it; among all the suitable hosts, we then select

the one with the IP the closest to the VM’s IP.

After Neat has managed overloaded and underloaded host,

the VMs in the DC occupy a minimal set of hosts. Drowsy-DC

adds an opportunistic consolidation step that is purely based

on the IP. Imitating Neat’s process, it does the following:

(1) Determine the hosts with a range of VMs’ IP that is too

wide: on a same host, if the IP of the most active VM

(lowest IP) and the IP of the most idle VM (highest IP)

are too far apart, Drowsy-DC must migrate the VMs with

the most extreme values of IP until the IP range is under a

threshold. We empirically set the threshold of a too wide

IP range to 7σ (with σ the activity scaling factor defined

in section III-C): it roughly represents a difference of a

week of constant maximum activity in a SId.
(2) Select VMs to migrate: they are the VMs with the IP the

most different with the host’s IP (recall that the host’s IP

is the average of its VMs’ IPs).

(3) Place the selected VMs to other hosts: this is the same

algorithm as when treating overloaded or underloaded

hosts (see hereabove).

The overall goal of IP-augmented consolidation is to put
VMs with similar IPs together. The rationale is that servers with

VMs of high IPs have a high chance of sleeping, while servers

with VMs of low IPs will probably never sleep. The latter are

servers where Drowsy-DC can do nothing, because they do not

host LLMI VMs. Among them, normal performance issues are

addressed by the classic consolidation algorithm. Servers with

VMs of average IPs — thus VMs of undetermined nature —

are separated from servers with VMs of high IPs, but still have

a better chance to go to sleep than servers with VMs of low

IPs. They also serve as initial hosts for newly scheduled VMs,

until the nature — LLMI or not — of these VMs is learned.

c) Synthesis: As a final note, we stress the fact that there

is no overhead in the case of wrong predictions. As explained

above, the IM is solely used by the consolidation algorithm for

hinting at VM placement. Actual suspension or wake up of a

server is always executed because of real factors such as host

activity or incoming query, by the suspending or the waking

modules that are described in the following sections.

IV. HOST SUSPENSION

As shown in section II, Drowsy-DC adds a suspending

module to managed hosts. This software addition monitors its

host’s idleness and takes the decision of suspending it. It also

communicates crucial information to the waking module —

including a waking date — as explained in section V-B. We

detail here the factors that the suspending module takes into

account before suspending its host.

In a naive way, a system is idle if none of its processes is

in the running state. However, there are false negatives and
false positives. The former are processes that are running but

828

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 23,2020 at 14:48:27 UTC from IEEE Xplore. Restrictions apply.

should not be considered as such in this context. This includes

monitoring solutions running on the drowsy server, or kernel-

related background services such as watchdogs. We easily

address this issue with a black-listing system.

False positives are VMs’ processes that are not running but

the service they provide must not be considered idle. First, a

process may be blocked waiting for resources, such as a disk

read: in this case, the drowsy server should not be suspended.

This highlights the need to determine the reason a process is not

running. Second, a VM’s process may be idle but the service

embedded in it may not. For instance, the service may have

open sessions or connections such as SSH or TCP. If nothing

is exchanged on them, the VM is seen idle but suspending the

drowsy server would induce an unexpected latency. Identifying

this second type of false positives mostly requires some kind

of introspection [26] to get parameters that are linked to the

real activity of the VM. We do not adopt this way for two

reasons. First we want to implement a system which is able

to work with unmodified applications. Second, we mitigate

the potential overhead by implementing a very quick resuming

mechanism (see section V). It is also possible to use a heuristic

based on the fraction of currently used resources. One example

of a metric is VM page dirtying rate, that can be monitored

from the hypervisor [20].

Moreover, the idleness monitoring takes into account a

grace time: when a drowsy server is resumed, there is some

time during which it cannot be suspended again, whatever its

activity level. This is to avoid an oscillation effect of servers

alternating between fully awake and suspended states, which

would incur unwanted behavior, bad quality of service and

increased power consumption. The grace time is calculated by

the suspending module when the host resumes, based on the

idleness probability of the host: if the IP tells that it is likely

that the host is active, the grace time is longer to accommodate

for predicted activity and avoid overhead. We empirically set

the grace time between 5s and 2min, exponentially increasing

as the IP decreases in order to be conservative with the quality

of service of undetermined and active VMs.

V. HOST WAKING

Guaranteeing the quick waking of a drowsy server is an

essential part of Drowsy-DC. This is under the responsibility

of the waking module, located on a server that manages the

datacenter, and for this purpose never sleeps. For scalability

purposes, one waking module can be used per rack, instead of

one component for the entire DC. In our prototype, it is located

on the software defined network (SDN) switch. Moreover,

knowing that the waking module is at the heart of our solution,

its implementation is fault tolerant. To this end, all waking

modules work in a collaborated manner. Each waking module

monitors — via a heart beat mechanism — and mirrors another

one. In this way, when a waking module is defective, it is

replaced with an identical version.

Two event types can trigger a server resume: (1) inbound

network request; and (2) scheduled waking date.

A. Waking on an inbound network request

The waking module includes a lightweight packet analyzer.

Each request received by the SDN switch is first analyzed

in order to check whether the destination VM is hosted on

one of the currently suspended servers. This is performed

efficiently thanks to a hashmap, mapping VMs IP addresses to

the MAC addresses of the drowsy servers that host them.4 If

the destination server is indeed suspended, the waking module

sends it a Wake-on-LAN (WoL) packet beforehand.

B. Waking on a scheduled date

Upon suspending its host, the suspending module described

in section IV computes a waking date. To this end, it scans

the high-resolution timers5 that are registered in the kernel.

When a process sleeps, it registers a timer which will wake it

up when the time comes. The waking date is then the earliest

of these high-resolution timers. In practice, we obtain this

information via a helper kernel module we developed, that

walks the red-black tree structure that is used internally by

the kernel to store the timers. This may yield false positives,

i.e. timers of processes that shouldn’t trigger the waking of

the host. They are most likely the same processes as the false

negatives that the suspending module ignores when checking

the host’s idleness (see section IV). Thus, we filter the timers

according to the processes that registered them.

Because of the filtering, it may happen that no timer is valid

when choosing a waking date: it means that no work of interest

is scheduled. The host can remain suspended indefinitely until

the waking module wakes it up because of an external request.

Finally, before suspending its host, the suspending module

sends the waking module the scheduled waking date. The

waking module manages a hashmap, that maps waking dates

to the MAC addresses of the hosts that registered them.

Subsequently, when a waking date approaches, the waking

module sends a WoL packet to the associated drowsy server

(and removes the mapping). This request is sent ahead of time

in order to take into account the waking latency.

VI. EVALUATION

A. Evaluation in a real environment

1) Methodology: This experiment demonstrates the effec-

tiveness of Drowsy-DC: we make it periodically relocate all

VMs, instead of waiting for the need of a migration decision

(e.g. when a host is overloaded). This behavior is unpractical

because it would perform too many migrations in a real situation

— leading to performance degradation across the datacenter, but

this allows to observe the efficacy of Drowsy-DC. Moreover,

while Drowsy-DC is always evaluated with the suspended

power state enabled on the hosts, we compare it to Neat with

both suspension disabled (current real world case) and with

suspension enabled. Transitioning to suspended state is based

on the exact same algorithm as Drowsy-DC, the grace time

4The VM to host mappings are only updated when a host is suspended.
5These timers are designated as "high-resolution" in the Linux kernel because

they usually feature a resolution of a few nanoseconds.

829

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 23,2020 at 14:48:27 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6

10

20

Days

A
ct
iv
it
y
(%

)

VM3, VM4

VM6

Figure 1. Examples of real workloads we used.

excepted because it requires computing idleness models, which

is a Drowsy-DC feature (see section IV). Comparing Drowsy-

DC to Neat with suspension enabled shows the usefulness of

our idleness probability-based consolidation.

2) Experimental setup: To this end, we built an OpenStack

cluster composed of six HP machines (noted P1-P6) embedding

Intel Core i7-3770 CPU @ 3.40GHz processors, 16GB memory,

10GB network cards, running Ubuntu Server 14.04, and

virtualized with QEMU/KVM. They are linked together with

a software defined network (SDN) switch, provided by P1.

This one also hosts both the waking module and all the

OpenStack controllers. OpenStack uses P2-P5 as the resource

pool. The cluster hosts 8 VMs (6GB memory and 2 vCPUs each,

maximum 2 VMs per machine) set up as follows: 2 LLMU VMs

(noted V1 and V2) and 6 LLMI VMs (noted V3-V8). Each VM

runs an application from CloudSuite [27]: Media Streaming

for LLMU VMs and Web Search for LLMI VMs. P6 hosts

all CloudSuite client simulators. Web Search client simulators

are configured to generate the traces of 5 VMs we monitored

during seven days in Nutanix’s private production DC, with V3

and V4 receiving the exact same workload. Figure 1 depicts a

few of these traces. The two LLMU VMs are initially placed

on distinct machines. Every machine implements the ACPI S3

state (suspend to RAM). The energy consumed by a host when

suspended is about 5W, around 10% of the consumption in

idle S0 state. The evaluation results are as follows.

3) General results: Figure 2 shows the percentage of time

each VM co-ran with every other VM. We can see that Drowsy-

DC accurately identified that V1 and V2 are LLMU VMs, thus

they were packed on the same machine for the majority of the

experiment. It also predicted among LLMI VMs those having

the same idleness periods in the near future, and packed them

on the same machine during the matching periods. For instance

V3 and V4, which received the same workload (see fig. 1), also

shared the same machine for a significant duration and after

only one migration of V4. The last column of fig. 2 shows the

number of migrations each VM experienced: it is low, meaning

that a migrated VM reaches a stable state.

Moreover, we measured the fraction of time each machine

spent in suspended state,6 with Drowsy-DC’s IP-based consol-

idation and with Neat; results are shown in table I. In total,

6Because there were 8 VMs and 4 hosts that could only host exactly 2 VMs
each, no host ever slept, i.e. ever transitioned to "suspend to disk" state.

V1 V2 V3 V4 V5 V6 V7 V8 #mig

V1 100 85 0 0 0 15 0 0 1

V2 85 100 0 0 0 0 0 15 0

V3 0 0 100 76 0 0 24 0 0

V4 0 0 76 100 23 0 0 1 1

V5 0 0 0 23 100 77 0 0 2

V6 15 0 0 0 77 100 0 8 1

V7 0 0 24 0 0 0 100 76 1

V8 0 15 0 1 0 8 76 100 3

Figure 2. Colocation percentage of each VM — black cells: V1 and V2 were
LLMU VMs; dark gray cells: V3 and V4 received the same workload. Last
column is the number of migrations a VM experienced.

Table I
FRACTION OF TIME (PERCENT) SPENT BY HOSTS IN SUSPENDED POWER

STATE, WITH DROWSY-DC AND WITH NEAT

Algorithm P2 P3 P4 P5 Global

Drowsy-DC 0 94 79 91 66
Neat 89 7 8 93 49

hosts managed by Drowsy-DC were suspended for a duration

35% longer than with Neat; i.e. Drowsy-DC’s consolidation

algorithm that optimizes VM placement in order to maximize

periods of host suspension, increased the total duration of such

periods by 35%. Notice that in Drowsy-DC’s evaluation, P2

is the machine which eventually hosted the two LLMU VMs

(V2 was initially placed on it), so it was never suspended.

In summary, Drowsy-DC reduced the total energy consump-

tion by about 55%, 18kWh instead of 40kWh when consolidat-

ing using Neat, with host suspension disabled. Evaluation with

Neat and enabled suspension shows a consumption of 24kWh,

which means that Drowsy-DC’s consolidation algorithm saved

27% of energy compared with simply implementing the

S3 power state. As a side note, Drowsy-DC’s effectiveness

increases with time, as idleness models get updated and as the

consolidation algorithm continues to make better placement

decisions than Neat idleness-wise.

Last but not least, we observed that Drowsy-DC guarantees

all application’s SLA. For instance, more than 99% of the web

search requests were serviced within 200ms as required by

CloudSuite. However, we observed that the response time of

every request triggering the waking of a drowsy server was

up to about 1500ms. This does not impact the overall SLA

because such requests are a minority, and our work on quick

resume brings down the waking time to 800ms.

As a final note, we also experimented Drowsy-DC with

applications that rely on timers for triggering their activity (a

backup service in our case). We observed the effectiveness of

every Drowsy-DC’s module, while incurring no performance

degradation. The latter is explained by the fact that the waking

module anticipates the timer expiration date — which is

provided in advance by the suspending module, thus it wakes

up the drowsy server ahead of time.

4) Specific results: the suspending module: We evaluated

this module from three perspectives: (1) effectiveness (detection

of idle states, prevention of power states oscillations and

calculation of the next working date); (2) overhead (resource

consumption and suspension time); and (3) scalability (evolu-

830

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 23,2020 at 14:48:27 UTC from IEEE Xplore. Restrictions apply.

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

a) Daily backup
(once a day)

Precision

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

c) Real trace 1

Recall

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

e) Real trace 3

F-measure

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

g) Real trace 5

Specificity

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

Time (years)

b) Comic strips
(three times a week, except holidays)

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

Time (years)

d) Real trace 2

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

Time (years)

f) Real trace 4

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

Time (years)

h) Long-lived mostly used
(always active)

Figure 4. Idleness model efficiency: evaluation of idleness modeling over 3 years (higher is better). Except for subfig. h whose evaluation metric is specificity,
the reader should focus on F-measure.

Table II
TRACE TYPES FOR IDLENESS MODEL EVALUATION

Subfig. Periodicity Description

a daily backup service running each day at 2am

b three times a
week, yearly

online comic strip publication, none in July
nor August

c~g daily, weekly real traces from production DC (see fig. 1),
extended from one week to three years

h none long-lived, mostly used VM

Table III
EFFICIENCY METRICS FOR IM EVALUATION

Recall Precision F-measure Specificity

TP
TP+FN

TP
TP+FP

2×recall×precision

recall+precision
TN

TN+FP

The IM’s objective is to predict whether the VM will be

idle during the next hour, so we use four standard prediction

accuracy metrics shown in table III to evaluate its efficiency.

In the table, TP is the number of true positives; FP is the

number of false positives; and same with N for negatives. The

case is positive when the VM is idle, or predicted idle — its

IP is higher than 50%.

Recall is sensitive to false negative cases, that is to say cases

where the model predicted activity but the VM was actually

idle; while Precision is sensitive to false positives, cases where

the VM was predicted idle but was actually active. We also

add Specificity, which is the equivalent of Precision for negative

cases: it characterizes the capacity of the model to predict active

periods of the VM, and is important for LLMU VMs. Finally,

the F-measure summarizes both Recall and Precision, and is

the main evaluation score. However, avoiding false positives

is especially important: predicting idleness for an active VM,

could have it colocated with idle VMs, preventing their host

to be suspended and loosing power saving opportunities. Thus

Precision is also an important metric on its own. Figure 4

presents the evaluation results. Evaluation was done over three

years to show a more complex pattern such as in subfig. b.

a) LLMI VM results: (figures 4 (a)–(g))

First the model needs some time to gain in accuracy — there is

a short ramp-up at the beginning of each curve, because it is an

unsupervised learning technique. For some VM traces, this first

knowledge is enough for their lifetime (e.g. real traces, subfig.

c to g); in more complex cases, the IM needs improvement

over months. This is the case for subfig. b, which requires

about 2 years to completely learn the periodicity: we observe a

change in prediction quality when learning the idleness during

the holidays months. The beginning of the second year also

shows a loss of precision, because it takes some time for the

IM to understand that the day of the year has no influence

during this period; the beginning of the third year is more

stable because the IM now knows it. For the predictable case

of subfig. a, and for the real traces, the IM provides very good

prediction results, with an F-measure of more than 97% after

a few weeks. Even for the more complex case of subfig. b, the

F-measure is about 82%.

b) LLMU and SLMU VM results: (figure 4 (h))

We also evaluated the model with a mostly used VM trace.

We can see that the model perfectly and quickly recognizes

such workloads (Specificity is very close to 1) since they are

almost constantly active.

B. Evaluation with simulations

This section presents the evaluation results of Drowsy-DC

simulated with real VM traces using CloudSim [31] simulator.10

LLMU VM traces are provided by Google traces [32] while

LLMI VM traces come from the commercial production DC

10Drowsy-DC implementation for CloudSim is available here: https://
git.bacou.me/?p=Drowsy-DC/SimulationCloudSim.git.

832

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 23,2020 at 14:48:27 UTC from IEEE Xplore. Restrictions apply.

algorithm is more general because it is not limited to checking

pairs of VMs, and is more scalable (Drowsy-DC’s complexity

is O(n), compared to O(n2) for the other system [38], with

n the number of VMs). This is why Drowsy-DC is suitable

for DCs that host an large number of LLMI VMs.

VIII. CONCLUSION

This paper introduces an innovative management system

which aims to reduce the energy consumption in DCs. The

system identifies VMs with matching idleness patterns and

colocates them on the same physical hosts. The latter are

suspended during idle periods, until one of their hosted VMs

needs the CPU to accomplish a task. Likewise, our thorough

experiments prove its applicability and the benefits for cloud

DCs. Depending on the fraction of LLMI VMs in the DC,

our system may improve up to 82% upon vanilla OpenStack

Neat. Also, our solution outperforms Oasis, a comparable VM

consolidation support system, by an average of 81%.

REFERENCES

[1] L. A. Barroso and U. Hölzle, “The case for energy-proportional
computing,” Computer, no. 12, pp. 33–37, 2007.

[2] C. Delimitrou and C. Kozyrakis, “Quasar: resource-efficient and QoS-
aware cluster management,” ACM SIGPLAN Notices, vol. 49, no. 4, pp.
127–144, 2014.

[3] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating server
idle power,” in ACM SIGPLAN notices, vol. 44, no. 3. ACM, 2009.

[4] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and
R. Bianchini, “Resource central: Understanding and predicting workloads
for improved resource management in large cloud platforms,” in
Proceedings of the 26th Symposium on Operating Systems Principles.
ACM, 2017, pp. 153–167.

[5] C. Norris, H. Cohen, and B. Cohen, “Leveraging IBM eX5 systems
for breakthrough cost and density improvements in virtualized x86
environments,” White paper, 2011.

[6] S. K. Barker, T. Wood, P. J. Shenoy, and R. K. Sitaraman, “An empirical
study of memory sharing in virtual machines.” in USENIX Annual
Technical Conference, 2012, pp. 273–284.

[7] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI, pp.
181–194, 2002.

[8] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman, “Satori:
Enlightened page sharing,” in Proceedings of the 2009 conference on
USENIX Annual technical conference, 2009, pp. 1–1.

[9] M. Ekman and P. Stenstrom, “A robust main-memory compression
scheme,” in ACM SIGARCH Computer Architecture News, vol. 33, no. 2.
IEEE Computer Society, 2005, pp. 74–85.

[10] J. Zhao, S. Li, J. Chang, J. L. Byrne, L. L. Ramirez, K. Lim, Y. Xie,
and P. Faraboschi, “Buri: Scaling big-memory computing with hardware-
based memory expansion,” ACM Transactions on Architecture and Code
Optimization (TACO), vol. 12, no. 3, p. 31, 2015.

[11] T.-I. Salomie, G. Alonso, T. Roscoe, and K. Elphinstone, “Application
level ballooning for efficient server consolidation,” in Proceedings of the
8th ACM European Conference on Computer Systems. ACM, 2013.

[12] J.-H. Chiang, H.-L. Li, and T.-c. Chiueh, “Working set-based physical
memory ballooning.” in ICAC, 2013, pp. 95–99.

[13] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “Geiger:
monitoring the buffer cache in a virtual machine environment,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 5, 2006.

[14] P. Lu and K. Shen, “Virtual machine memory access tracing with
hypervisor exclusive cache.” in Usenix Annual Technical Conference,
2007, pp. 29–43.

[15] L. Zhang, J. Litton, F. Cangialosi, T. Benson, D. Levin, and A. Mislove,
“Picocenter: Supporting long-lived, mostly-idle applications in cloud
environments,” in Proceedings of the Eleventh European Conference on
Computer Systems. ACM, 2016, p. 37.

[16] A. Silver, “Mostly idle at work? Microsoft Azure has some bursty VMs
it’d love to sell you,” The Register, 2017. [Online]. Available: https:
//www.theregister.co.uk/2017/09/12/microsoft_azure_offers_bursty_vms

[17] “Nutanix investor data sheet,” https://s21.q4cdn.com/
380967694/files/doc_financials/2019/Q1/Nutanix-Q119-Earnings-
Infographics_vFINAL_11272018.pdf, Nutanix, October 2018, online;
accessed Dec. 2018.

[18] “Openstack website,” https://www.openstack.org/, OpenStack, 2017,
online.

[19] A. Beloglazov and R. Buyya, “Openstack Neat: a framework for dynamic
and energy-efficient consolidation of virtual machines in OpenStack
clouds,” Concurrency and Computation: Practice and Experience, vol. 27,
no. 5, pp. 1310–1333, 2015.

[20] J. Zhi, N. Bila, and E. de Lara, “Oasis: energy proportionality with
hybrid server consolidation,” in Proceedings of the Eleventh European
Conference on Computer Systems. ACM, 2016, p. 10.

[21] “Nutanix website,” https://www.nutanix.com/, Nutanix, online; accessed
Dec. 2018.

[22] O. Beaumont, L. Eyraud-Dubois, and J.-A. Lorenzo-del Castillo, “Ana-
lyzing real cluster data for formulating allocation algorithms in cloud
platforms,” Parallel Computing, vol. 54, pp. 83–96, 2016.

[23] G. Amvrosiadis, J. W. Park, G. R. Ganger, G. A. Gibson, E. Baseman, and
N. DeBardeleben, “On the diversity of cluster workloads and its impact
on research results,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018, pp. 533–546.

[24] D. G. Luenberger, Y. Ye et al., Linear and nonlinear programming.
Springer, 1984, vol. 2.

[25] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic
consolidation of virtual machines in cloud data centers under quality
of service constraints,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 7, pp. 1366–1379, 2013.

[26] I. K. Kim, S. Zeng, C. Young, J. Hwang, and M. Humphrey, “A supervised
learning model for identifying inactive VMs in private cloud data
centers,” in Proceedings of the Industrial Track of the 17th International
Middleware Conference. ACM, 2016, p. 2.

[27] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,
C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the
clouds: a study of emerging scale-out workloads on modern hardware,”
in ACM SIGPLAN Notices, vol. 47, no. 4. ACM, 2012, pp. 37–48.

[28] C. Isci, S. McIntosh, J. Kephart, R. Das, J. Hanson, S. Piper, R. Wolford,
T. Brey, R. Kantner, A. Ng et al., “Agile, efficient virtualization power
management with low-latency server power states,” in ACM SIGARCH
Computer Architecture News, vol. 41, no. 3. ACM, 2013, pp. 96–107.

[29] Intel Ethernet Controller I350 Datasheet, http://www.intel.com/content/
www/us/en/embedded/products/networking/ethernet-controller-i350-
datasheet.html, Intel, 2017, online.

[30] P. Kutch, “Maintaining the Ethernet link to the BMC during server
power actions,” https://www-ssl.intel.com/content/dam/www/public/us/
en/documents/guides/maintaining-the-ethernet-link-to-the-BMC.pdf, Intel,
Tech. Rep., 2012, online; accessed Feb. 2017.

[31] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,”
Software: Practice and experience, vol. 41, no. 1, pp. 23–50, 2011.

[32] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in ACM SIGARCH
Computer Architecture News, vol. 43, no. 3. ACM, 2015, pp. 450–462.

[33] Y. A. S. Savage and R. Gupta, “Sleepserver: A software-only approach for
reducing the energy consumption of PCs within enterprise environments,”
Power (KW), vol. 100, no. 150, p. 200, 2010.

[34] J. Reich, M. Goraczko, A. Kansal, and J. Padhye, “Sleepless in Seattle
no longer.” in USENIX Annual Technical Conference, 2010.

[35] M. Lentz, J. Litton, and B. Bhattacharjee, “Drowsy power management,”
in Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 2015, pp. 230–244.

[36] D. Meisner and T. F. Wenisch, “DreamWeaver: architectural support for
deep sleep,” in ACM SIGPLAN Notices, vol. 47, no. 4. ACM, 2012,
pp. 313–324.

[37] N. Bila, E. de Lara, K. Joshi, H. A. Lagar-Cavilla, M. Hiltunen,
and M. Satyanarayanan, “Jettison: efficient idle desktop consolidation
with partial VM migration,” in Proceedings of the 7th ACM european
conference on Computer Systems. ACM, 2012, pp. 211–224.

[38] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,
“Efficient resource provisioning in compute clouds via VM multiplexing,”
in Proceedings of the 7th international conference on Autonomic
computing. ACM, 2010, pp. 11–20.

834

Authorized licensed use limited to: UNIVERSITE PAUL SABATIER TOULOUSE 3. Downloaded on June 23,2020 at 14:48:27 UTC from IEEE Xplore. Restrictions apply.

