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ln the context of 2D/3D registration, this paper introduces an approach that allows for matching features detected in two different modalities, photographs, and 3D models, by using a common 2D representation. More precisely, 2D images are matched with a set of depth itnages representing the 3D mode!. After introducing the concept of Curvilinear Saliency, which is related to curvature estimation, we propose a new ridge and valley detector for depth images rendered from 3D models. A variant of this detector is adapted to photographs, first by considering multi-scale features and second by integrating the Cocus curve principle. Finally, a registration algorithm deter nùnes the correct view of the 3D mode! and, thus, the pose of the photograph. This approach relies on the Histogram of Curvilinear Saliency (HCS), an adaptation of the Histogram of Oriented Gradients (HOG) to the proposed features in 2D and 3D. The presented results highlight both the quality of the features detected in terins of repeatability and the interest of the approach for registration and pose estimation.

INTRODUCTION

M ANY computer vision and robotic applications are used to take 2D contents as input; recently, however, 3D contents have become simultaneously available and popular. To benefit from both modalities, 2D/3D matching is necessary. For medical imaging, registration of pre-operative 3D volume data with intra-operative 2D images is increasingly necessary to assist physicians [START_REF] Markelj | A review of 3D/2D registration methods for image-guided interventions[END_REF]. For robotics, the 2D/3D matching can be useful to determine the 3D pose of an object of interest for 3D navigation or object grasping [START_REF] Pomerleau | A review of point cloud registration algorithms for mobile robotics[END_REF]. The main goal is to find the transformation of the 3D model that defines the pose for a query 2D image. Thus, a typical 2D/3D registration problem consists of two mutually interlocked subproblems, that is, point correspondence and estimation.

To match 2D photographs directly to 3D models or point clouds, most systems rely on detecting and describing features on both 2D/3D data and subsequently on matching these fea tures [START_REF] Charvijjat | Building rome in a day[END_REF], [START_REF] Wu | 3D model matching with viewpoint-invariant patches (VIP)[END_REF]. Sorne recent approaches are based on learning by a specific supervision classifier [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF], [START_REF] Tulsiani | Viewpoints and keypoints[END_REF]. In [START_REF] Tulsiani | Viewpoints and keypoints[END_REF], a con volutional neural network (CNN) architecture is introduced to predict a viewpoint. They combine multi-scale appearance with a viewpoint-conditioned likelihood. The objective is to predict key points to capture the finer details to correctly detect the bounding box of the objects. In [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF], the authors have rendered millions of synthetic images from 3D models under varying illuminations, lighting and backgrounds and then have proceeded to use them to train a CNN model for the viewpoint estimation of real images. These methods produce very interesting results, but they require a high volume of viewpoint-annotated images to learn the classifiers. What makes it difficult to match the 3D features of an object to the 2D features of one of its photographs is the appearance of the object. lndeed, this appearance dramatically depends on the intrinsic characteristics of the object, such as texture and color/albedo, as well as the extrinsic characteristics related to the acquisition, such as the camera pose and the lighting conditions. Consequently, some approaches manually define correspondences between the query image and the 3D mode!, such as [START_REF] Dellepiane | Mapping highly detailed colour information on extremely dense 3D models: the case of David's restoration[END_REF]. These manual selections can easily become difficult to apply to large image sets. Moreover, in this paper, we focus on automated approaches. Note that some systems are able to generate a simultaneous acquisition of photographs, and scanning of a 3D mode!; using this kind of system nevertheless induces limited applications. Other methods solve the problem by distinguishing two subproblems: choosing the data's common representation followed by finding the correspondences. More precisely, these methods transform the initial 2D/3D registration problem into a 2D/2D matching problem by rendering multiple 2D images of 3D models from different viewpoints, such as in [START_REF] Campbell | A survey of free-form object representation and recognition techniques[END_REF], [START_REF] Choy | Enriching object detection with 2D-3D registration and continuous viewpoint estimation[END_REF], [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF]. The work presented in this paper focuses on this type of approach.

Consequently, the first task of 2D/3D registration is to find an appropriate representation of 3D models such that reliable features can be extracted in 2D and 3D. In [START_REF] Campbell | A survey of free-form object representation and recognition techniques[END_REF], synthetic images of the 3D mode! are rendered, while depth images are rendered in [START_REF] Choy | Enriching object detection with 2D-3D registration and continuous viewpoint estimation[END_REF]. More recently, [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF] proposes Average Shading Gradients. This rendering technique for a 3D mode! averages the gradient normals over all lighting directions to cope with the unknown lighting of the query image. The advantage of representing the 3D mode! by a set of depth images lies in the fact that it can express the shape model independent of color and texture information. Therefore, we have decided to represent 3D models by sets of depth images; see Fig. 1.

The second diffi culty of 2D/3D registration consists of proposing how to match entities between the two modalities Fig. 1. To compare 2D images with 3D models, a collection of rendered images of the 3D models from different viewpoints is used, and then, points of interest (Multi-Curvilinear Saliency, MCS) are detected with common basis definitions between depth and intensity images. Each depth image is compared with the original 2D image, based on this detection of points of interest, and the proposed algorithm gives as output the depth image with the most similar point.

in this common representation. It can be partial [START_REF] Irschara | From structurefrom-motion point clouds to fast location recognition[END_REF] or dense matching based on local or global characteristics [START_REF] Scharstein | A taxonomy and evaluation of dense twoframe stereo correspondence algorithms[END_REF]. In [START_REF] Campbell | A survey of free-form object representation and recognition techniques[END_REF], silhouettes extracted from synthetic images are matched to those extracted from the color images. However, this method does not have the capacity to account for most of the occluding contours useful for accurate pose estimation. In turn, in [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF], Image Gradients are matched with their 3D representation, but Image Gradients are still affected by image textures and background. A key requirement for these features, as in classic 2D matching, is that the computation should be performed with a high degree of repeatability. Here, similar to the definition in [START_REF] Szeliski | Computer Vision-Algorithms and Applications[END_REF], the repeatability of a feature is defined as the frequency at which an element detected in the depth image is also detected within pixels around the same location in the corresponding intensity image (if it is supposed that the features are not moving or are following a slight displacement). Subsequently, by supposing that an individual photograph of an object of interest is acquired in a textured environment, we will focus on comparing pre-processed features of color images with features extracted in a depth image set; see Fig. 1.

More precisely, the 3D object will be given by a set of 3D depth surfaces, which describe how the object surface is shortened by a perspective viewing, and the image is given by the 3D intensity surface. Since the depth and the intensity surfaces have a different order of representation, the two surfaces cannot be directly matched. Thus, bringing both rendered depth images and photographs into a common representation, such as gradient and edge representation, allows for the establishment of robust sparse 2D-to-3D matching [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF]. The extraction of gradient-based features corresponding to the object's shapes in both depth and intensity images regardless of illumination and texture changes is proposed. In other words, as 2D intensity images are affected by background, textures and lighting changes, these difficulties are taken into account by reducing the influence of non-redundant information (i.e., colour and texture) on the features extracted from photographs. This means that the features in depth images that highlight the object's geometric characteristics are extracted. For photographs, a refinement step is needed, which consists of selecting salient points acquired by a camera in focus. These points depend on the degree of blurring in an image. Thus, the detected points are analyzed based on measuring the blurring volume of every feature point. Finally, what we call focus points should be able to detect the approximate shape and to discard the other components, such as textures.

To summarize, the contributions of this paper are as follows:

1) A ridge and valley detector for depth images rendered from the 3D model. We have called this Curvilinear Saliency (CS), as it is related to the curvature estimation. This representation directly relates to the discontinuities of the object's geometry, and the extracted features should be robust in the face of texture and light changes.

2) A variant of this detector adapted to photographs.

This Curvilinear Saliency detector is applied at multiple scales by searching over all scales and all image locations to identify scale-invariant interest points. To reduce the influence of structures due to texture and background regions, the extraction of focus Curvilinear Saliency features is introduced. This corresponds to ridges unaffected by blurring. 3) A registration algorithm for determining the correct view of the 3D model and thus the pose. We have introduced the Histogram of Curvilinear Saliency (HCS), which is a descriptor computed similarly to the Histogram of Gradients (HOG) proposed in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. The HCS descriptor is computed on both depth images (i.e., curvilinear features extracted with Curvilinear Saliency detection) and photographs (i.e., curvilinear features in focus extracted with Multi-Scale Curvilinear Saliency detection), and it combines the Curvilinear Saliency value with the curvature orientation. The repeatability score measures the set of repeatable points detected both in a photograph and in the rendered depth images. After presenting the related work and notations, § II and III, the 3D model representation is introduced, § IV, followed by the image representation, § V. In addition, we describe how robustness to background and texture can be achieved by using the same principle as focus curve detection, § VI. The results obtained illustrate how this new global approach for 2D/3D matching allows for obtaining more repeatable features, compared to the state of the art, § VII. Finally, we explain how 2D/3D registration is estimated, § VIII, and how pose estimation is computed, § IX before the conclusions, § X.

II. RELATED WORK

As mentioned earlier, a typical 2D/3D registration problem consists of two subproblems: feature correspondence and pose estimation. Thus, the related work is divided into three parts related to these subproblems: (1) Detection of features in 2D photography, (2) detection of features in a 3D model and (3) matching of 2D/3D features to estimate the 3D pose. We briefly present classical detectors in 2D and 3D and highlight that the associated points of interest, in 2D and 3D, are not comparable, i.e., cannot be directly matched.

In 2D, edge detection [START_REF] Canny | A computational approach to edge detection[END_REF] based on the first-order derivative information is the initial technique. It can detect any kind of edge, even low contrasted edges, not due to the structure but more to texture. The second technique is to detect the points of interest [START_REF] Smith | SUSAN-A new approach to low level image processing[END_REF] by, for example, analyzing the eigenvalues of the structure tensor [START_REF] Harris | A combined corner and edge detector[END_REF]. Complementary to these methods, blob detection [START_REF] Tuytelaars | Matching widely separated views based on affine invariant regions[END_REF] provides a description of image structures in terms of regions. More recently, multi-scale approaches have been introduced, such as a generalization of Harris or Laplacian detectors [START_REF] Mikolajczyk | Scale & affine invariant interest point detectors[END_REF] or the well-known approach of SIFT, scale-invariant feature transform [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. In [START_REF] Bay | Speeded-up robust features (SURF)[END_REF], SURF, speeded up robust features, a detector that is also based on Hessian matrix analysis, is introduced to be faster than these multi-scale techniques. All these techniques are robust to light changes, rotations and translations and consequently are invariant to viewpoint changes. However, they totally rely on texture and/or intensity changes. Curvature detection is one of the most important techniques of second-order derivative-based approaches. Recently, [START_REF] Fischer | Image descriptors based on curvature histograms[END_REF] has proposed a detector based on curvature κ, expressed as the change of the Image Gradient along the tangent to obtain a scalar q approximating κ. In addition, [START_REF] Deng | Principal curvature-based region detector for object recognition[END_REF] presented PCBR, principal curvature-based regions, the detector using the maximum or minimum eigenvalue of the Hessian matrix in a multi-scale space.

Feature extraction of 3D models/scenes can be classified into point-based and image-based approaches. Most of the point-based methods use SIFT in 3D by proposing an adaptation of the initial SIFT [START_REF] Sattler | Fast image-based localization using direct 2D-to-3D matching[END_REF]. In image-based approaches, the 3D model is first rendered to form images or geometric buffers. Image processing methods are then applied such as edge [START_REF] Lee | Line drawings via abstracted shading[END_REF] or SIFT detection [START_REF] Lee | Multi-scale feature matching between 2D image and 3D model[END_REF]. The apparent ridges, AR [START_REF] Judd | Apparent ridges for line drawing[END_REF], are a set of curves with points that are local maxima on a surface; a view-dependent curvature corresponds to the variation of the surface normal with respect to a viewing screen plane. Average Shading Gradients, ASG, was proposed in [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF]. This rendering technique is based on averaging gradients over all lighting directions to cope with the unknown lighting conditions.

In computer vision research, the problem of automatically aligning 2D photographs with an existing 3D model of the scene has been investigated over the past fifteen years. It can be approached through indirect and direct methods [START_REF] Paudel | Localization of 2D cameras in a known environment using direct 2D-3D registration[END_REF]. For indirect registration, these methods are implemented either by 3Dto-3D registration or by finding some appropriate registration parameters, such as the standard iterative closest point, ICP, algorithm [START_REF] Besl | A method for registration of 3-D shapes[END_REF]. For direct registration, in [START_REF] Sattler | Fast image-based localization using direct 2D-to-3D matching[END_REF], correspondences are obtained by matching SIFT feature descriptors between SIFT points extracted both in 2D and 3D. However, establishing reliable correspondences may be difficult due to the fact that the set of points in 2D and 3D are not always similar. This is particularly due to the variability of the illumination conditions during the acquisitions. Methods relying on higherlevel features, such as lines [START_REF] Xu | Pose estimation from line correspondences: A complete analysis and a series of solutions[END_REF], planes [START_REF] Tamaazousti | Nonlinear refinement of structure from motion reconstruction by taking advantage of a partial knowledge of the environment[END_REF] and building bounding boxes [START_REF] Liu | Automatic 3D to 2D registration for the photorealistic rendering of urban scenes[END_REF], are generally suitable only for Manhattan world scenes. Similarly, skyline-based methods [START_REF] Ramalingam | Geolocalization using skylines from omni-images[END_REF] as well as methods relying on a predefined 3D model [START_REF] Clarkson | Using photo-consistency to register 2D optical images of the human face to a 3D surface model[END_REF] are of limited applicability. Recently, the Histogram of Gradients, HOG, detector [START_REF] Aubry | Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models[END_REF] or a fast version of HOG [START_REF] Choy | Enriching object detection with 2D-3D registration and continuous viewpoint estimation[END_REF] have been used to extract the features from rendering views and real images. Finally, in [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF], 3D corner points are detected using the 3D Harris detector and the rendering Average Shading Gradient images on each point. For a query image, similarly, corner points are detected on multiple scales. As the next step, the gradient computed for patches around each point is matched with the database containing Average Shading Gradient images using the HOG descriptor. This method still relies on extracting gradients of photographs affected by textures and background. Consequently, they propose a refining stage based on RANdom SAmple Consensus, RANSAC [START_REF] Fischler | Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[END_REF], to improve the pose estimation. All these approaches yield interesting results, but they do not evaluate the repeatability between the set of points detected in an intensity image and those detected in an image rendered from the 3D model.

In this paper, structural cues (e.g., curvilinear shapes) based on Curvilinear Saliency are extracted instead of only considering silhouettes since they are more robust to intensity, color, and pose variations. In fact, they have the advantage of both representing outer and inner (self-occluding) contours, which also characterize the object and are useful for estimating the pose. To merge in the same descriptor Curvilinear Saliency values and curvature orientation, the HOG descriptor, which is widely used in research and correctly describes the object shape, is employed.

III. NOTATIONS

In the rest of the paper, we use the following notations:

• x, y, Z , f, I : scalars (and scalar-valued functions), including Cartesian coordinates, are simply denoted with letters without special formatting. • x, ỹ: if needed, local Cartesian coordinates are distinguished by adding a tilde over the symbol.

• P, M, and x: vectors (and vector-valued functions) are denoted by bold letters. • J: matrices (and matrix-valued functions) are denoted by typewriter-style letters. • S: regular surfaces are denoted by calligraphic mode. We also use these special notations:

• ∇ f : the gradient vector of a scalar-valued function f . • F x : the partial first-order derivative ∂F ∂ x of a vector-valued function F w.r.t. variable x.

• Similarly, F xy : the partial second-order derivatives ∂2 F ∂ x∂ y of F w.r.t. variables x and y. For the two last notations, if the vector function is 1D, then the scalar rule is applied.

IV. 3D MODEL REPRESENTATION

The work most related to that proposed in this paper is the Average Shading Gradient (ASG) approach, which was proposed in [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF]. After introducing how the object surface can be represented, the differences between these two approaches are highlighted. For interested readers, a reminder on differential geometry is given in the appendix Reminder on Differential Geometry as supplementary material.

Object Surface Representation: Let M be the object surface parameterized by M(x)

[X (x), Y (x), Z (x)]
, where x = [x, y] varies within the restricted image domain of a given camera delimited by the occluding contour of the object. We assume that M is such that all of its points M(x), as seen from the camera viewpoint, are in one-to-one perspective correspondence with the image point x = [x, y] , such that x = X (x)/Z (x) and y = Y (x)/Z (x). As a result, we obtain

M(x) = Z (x)[x , 1] (1) 
Let n be the unit normal of M at P = M(x). The Gaussian map N : M → of M at P is the map that assigns to P the vector N(P) = ±n on the unit sphere such that N is differentiable. Using the notation N(P) = M x (x) × M y (x) for x = M -1 (P), it can be computed as N(P) = N(P) N(P) , where

N = M x × M y = Z -Z x , -Z y , x Z x + y Z y + Z (2)
It can be shown that the Jacobian 3 × 2 matrix of N is written as

J N = N x N y = I -NN J N (3) 
where the columns of J N = Nx Ny have the form

N = ⎡ ⎣ Z x Z -Z x Z Z Z y -Z y Z x Z x Z + y Z y Z + Z (x Z x + y Z y + 3Z ) ⎤ ⎦ (4)
and represents either x or y.

A. Average Shading Gradient (ASG) Feature [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF] Plötz et al. assumed that the image intensity function obeys the Lambertian shading function for parallel light source s:

I (x, y) ∝ max(0, -N(x, y) • s) with s ∈ R 3 (5)
Eq. ( 5) means that the reflectance describing the object material is assumed to be Lambertian with constant albedo. 1 In addition, the image background is assumed to be constant (e.g., as on a plane). The authors propose the magnitude of the gradient of the shading function as a feature in the intensity image. To register the intensity image to the 3D (untextured) model, the idea is to generate virtual images when viewing the object from different camera pose candidates. Nevertheless, it is clearly impossible to render any such virtual image obeying the shading function [START_REF] Campbell | A survey of free-form object representation and recognition techniques[END_REF] without prior information about the lighting direction and therefore about s.

Thus, the authors propose to replace the gradient magnitude feature in the virtual images by a feature corresponding to the average value of the gradient magnitude computed over all light directions, which is the so-called Average Shading Gradient magnitude. Denoting ∇ I as the magnitude of the gradient of the shading function ( 5), the magnitude of the Average Shading Gradient is then

∇ I = S ∇ I ds (6) 
with ∇ I 2 = I 2 x + I 2 y and where the vector s, cf. ( 5), varies over the unit sphere S in R 3 , and ds is the volume element. The nice contribution of Plötz et al. is, by applying Jensen's inequality, to derive the following closed-form bound on

∇ I ∇ I ≤ S ∇ I 2 ds = γ N x 2 + N y 2 with γ = π 3 (7) 
It is reported by the authors to behave like a very good approximation of ∇ I . This is the elegant way that the authors do away with the unknown lighting direction s.

B. Proposed Curvilinear Saliency Features (CS)

As already mentioned, our goal is to find a common representation between the 3D model and the 2D image to match them. For that purpose, we first show how the 3D model can be represented from different points of view and how these different viewpoints can be compared to a 2D image. The observed 3D object is represented by a set of synthetic depth maps generated from camera locations distributed on concentric spheres encapsulating it, by sampling elevation and azimuth angles, as well as distances from the camera to the object. A depth map Z (x, y) associates to every image point (x, y) the Z -coordinate, w.r.t. the camera frame, of the object 3D point (1) that projects at image location (x, y). Let D denote the depth surface that is the 3D surface with graph parameterization is 2 D(x, y) = [x, y, Z (x, y)] . It is worth noting that any two depth surfaces (from two different views) are not equal to some Euclidean transformation.

Which features should be extracted in the depth map? We aim at detecting depth discontinuities by searching points on D having high principal curvature in one direction and low principal curvature in the orthogonal direction. We denote this as the curviness saliency features of surface loci of such points that correspond to the ridges and valleys of this surface. Here, the difference of the principal curvatures κ 1 -κ 2 is used to describe the ridges and valleys, and we explain why.

1) Principal Curvatures and Directions: Consider a point P = D(x, y). Let N (x, y) denote the Gaussian map of D, assigning to P the unit normal of D:

N = N N where N = D x × D y = α -∇ Z 1 ( 8 
)
with

∇ Z = [Z x , Z y ] and α = 1/ 1 + ∇ Z 2 .
As the two columns of the Jacobian matrix J D of D are D x = [1, 0, Z x ] and D y = [0, 1, Z y ] , the first fundamental form of D can be computed as

I P = I 3 + ∇ Z ∇ Z
and the second fundamental form of D can be computed as

II P = αH Z
where H Z is the Hessian matrix of Z , i.e., with the secondorder partial derivatives of Z w.r.t. x and y as elements.

The principal curvatures of D at P coincide with the eigenvalues κ α (α = 1, 2) of I -1 P II P , which are always real. In the tangent plane T P (D), the local coordinates of the principal directions of D at P are given by the eigenvectors e α of I -1 p II p , so the 3D principal directions in 3D are written as J D e α . As Koenderink wrote in [START_REF] Koenderink | Surface shape and curvature scales[END_REF], "it is perhaps not superfluous to remark here that the simple (eigen-)interpretation in terms 3 of II P = αH Z is only valid in representations where ∇ Z = 0", which is the condition for the point to be a local extremum.

Thanks to proposition 1, presented on page 3 of the supplementary material, we know that that the principal curvature κ α at P associated to the principal 3D direction T α = J D e α is equal to the absolute magnitude of the change in the normal

|κ α | = dN P (T α ) (9)
where dN P (T) denotes the differential of N at P in direction T. We will make use of this result for the image representation, cf. §V. Now, let us explain the difference κ 1 -κ 2 , where κ 1 ≥ κ 2 is proposed as a feature.

2) Curvilinear Feature: Without loss of generality, let κ 1 and κ 2 be the principal curvatures computed as ordered eigenvalues of I -1 p II p so that κ 1 ≥ κ 2 . We aim at detecting points 3 i.e., by neglecting I P .

lying on "elongated" surface parts. In this work, we detect points at which this difference is high:

C S(x, y) = κ 1 (x, y) -κ 2 (x, y) ( 10 
)
We call [START_REF] Dellepiane | Mapping highly detailed colour information on extremely dense 3D models: the case of David's restoration[END_REF] the Curvilinear Saliency (CS) feature. Curvilinear means a feature that belongs to a curved line. The rest of this paragraph justifies such a choice. Given a point P on D, let ( x, ỹ) be the Cartesian coordinates on the tangent plane T P (D)) w.r.t. the 2D frame whose origin is P, and the orthonormal basis is formed by the principal directions {e 1 , e 2 }. As a result, D can now locally be associated to the new parameterization F( x, ỹ) = x, ỹ, F( x, ỹ) , for some height function F. In that case, it can be readily seen that I P is the identity matrix, and so, I -1 P II P = II P = diag(κ 1 , κ 2 ) is exactly the Hessian matrix of F. For some sufficiently small > 0, consider, on the two planes parallel to T P (D) at distances ± from T P (D), the curves

C ± = {( x, ỹ), F( x, ỹ) ∈ T P (D) | F( x, ỹ) = ± }.
It can be shown [15, p500] that the first-order approximation of the intersections of D with the two parallel planes is the union of two conics (one real and one virtual) with equations II P ( x, ỹ) = ±2 . This union is known as the Dupin indicatrix when written in canonical form (i.e., by replacing 2 by 1).

The real Dupin conic characterizes the local shape of D and provides local information on the first-order geometry of the surface, at least at points where the conic is non-degenerate. It specializes as a parabola if the Gauss curvature vanishes, i.e., κ 1 κ 2 = 0, to an ellipse if κ 1 κ 2 > 0 and to a hyperbola if κ 1 κ 2 < 0; see Fig. 2. Points are said to be elliptical, hyperbolic or parabolic; more details are given in the appendix Analysis of the Dupin central conics of the supplemental materials. The Curvilinear Saliency C S is significant when κ 1 κ 2 , which is in the presence of distant foci and therefore a highly elongated ellipse or a "squashed" hyperbola; see Fig. 2. This occurs, for example, when the point is located on a depth "discontinuity". In turn, when κ 1 κ 2 , the conic approaches a circle, and the distance between foci becomes very small.

3) A Simple Way to Compute the Curvilinear Feature: After algebraic manipulations, it can be shown that I -1

P II P = 1 α M where M (Z 2 y + 1) Z x x -Z x Z y Z xy (Z 2 y + 1)Z xy -Z x Z y Z yy (Z 2 x + 1) Z xy -Z x Z y Z x x (Z 2 x + 1)Z yy -Z x Z y Z xy Proposition 1:
The squared curviness feature can be computed as

CS 2 ∇ Z 2 (trace M) 2 -4 det M (11) = 4 ∇ Z 2 ( κ2 -K ) ( 12 
)
where κ is the mean curvature of D, and K is its Gaussian curvature (a proof is available in the appendix). The reliance on the highest or smallest principal curvature alone is not adequate for defining accurate ridges [START_REF] Rashwan | Towards multi-scale feature detection repeatable over intensity and depth images[END_REF]. In Fig. 3, we show the different detections obtained using the minimum or the maximum principal curvature. The maximum provides a high response only for dark lines on a light background, while the minimum gives the higher answers for the light lines on a dark background. The difference in the principal curvatures, κ 1 -κ 2 , improves robustness as it responds in both settings.

V. IMAGE REPRESENTATION

We recall these notations:

• I (x, y) denotes the value of the image intensity function y). • The intensity image can also be treated as an intensity surface I defined by the vector function

I : U ⊂ R 2 → R at image point (x,
I(x, y) = [x, y, I (x, y)] ( 13 
)
Proposed Curvilinear Features for Images: Similar to the work of [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF], the Lambertian shading model ( 5) is assumed, i.e., I (x, y) ∝ max(0, -N(x, y) • S). Recall that the unit normal is N(x, y) = N(x, y)/ N(x, y) where N is defined in (2) and so only depends on the depth Z (x, y) and its derivatives up to order-1.

We would like to detect features in the intensity surface I and check whether they are good candidates to be matched to detected curvilinear features in the depth surface D w.r.t. a given camera pose. The key issue here is that detected features in I can be matched to detected features in D on the condition that both are based on measurements with the same order of derivation in Z (x, y) to yield a "compatible" matching that ensures repeatability. The fact that I depends on Z (x, y) and its derivatives up to order-1 entails that the detection of features in I must rely on order-1 variations of the surface I(x, y), e.g., on its differential along some adequate direction. Consider a point Q = I(x, y) on the image surface. Let dI Q : U → R 3 be the differential of I at Q. Given a unit direction v = [a, b] in the image x y-plane, we have that dI Q (v) = aI x + bI y = J I v is the Jacobian matrix of I, I x = [1, 0, I x ] and I y = [0, 1, I y ] , where

I = 1 2 (sign (N • s) -1) (N • s) (14) 
represents either x or y. It is an order-1 measurement of the image surface variation at Q and is compatible with our curvilinear measurements of the depth surface (i.e., with same order of the derivatives of Z ).

To a obtain a scalar measurement, define the unit vectors

T 1 = J I ∇ I ∇ I and T 2 by rotating T 1 by π 2 . For α = 1, 2, define |μ α | = dI Q (T α ) ( 15 
)
which is the differential of I along unit direction T α in the image plane. It can be readily seen that ∇ I / ∇ I is the eigenvector of

J I J I = I x • I x I x • I y I x • I y I y • I y = 1 + (I x ) 2 I x I y I x I y 1 + (I y ) 2 = I + ∇ I ∇ I ( 16 
)
associated with the largest eigenvalue μ α . The similarity between the expression of the principal curvature computed for the depth surface is noteworthy, cf. [START_REF] Gallier | Geometric Methods and Applications: For Computer Science and Engineering[END_REF]. In addition, note that the matrix ( 16) is that of the first fundamental form of I.

Clearly, 4 the maximum and minimum values of the quadratic form dI Q (v) 2 correspond the two eigenvalues of the first fundamental form matrix given in [START_REF] Harris | A combined corner and edge detector[END_REF]. By a similar approach to §IV-B, we can propose a feature μ 1 -μ 2 , where μ 1 ≥ μ 2 . Proposition 2: Let μ 1 , μ 2 be the two eigenvalues of the first fundamental form matrix J I J I of I, in descending order. Then, we have

μ 1 -μ 2 = ∇ I 2 (17)
Proof: The ordered eigenvalues of I I P = J I J I can be deduced from those of ∇ I ∇ I , i.e., ∇ I 2 and 0, so μ 1 = ∇ I 2 + 1 and μ 2 = 1. This concludes the proof stage. The local shape of I at Q can be described by means of the eccentricity of a conic, here given by the quadratic form v J I J I v = ±1. How can this conic be interpreted? The firstorder Taylor expansion for infinitesimal changes (dx, dy) in the vicinity of Q = I(x, y) yields

I(x + dx, y + dy) -I(x, y) ≈ J I [dx, dy] (18) 
For any unit direction v = [a, b] in the x y-plane, the quadratic form v J I J I v returns the linear part g of growth in arc length from I(x, y) to I(x + a, y + b). In addition,

g 2 = dI Q ((dx, dy) 2 = v J I J I v (19) 
The following is an important remark that we highlight here and is not mentioned in [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF]. The AVG feature defined in [START_REF] Choy | Enriching object detection with 2D-3D registration and continuous viewpoint estimation[END_REF] is actually the Frobenius norm of the Jacobian matrix J N of the map N(x, y), see (3), up to constant γ . Clearly, this describes the second-order behavior of the surface M relative to the normal at one of its points in the immediate vicinity of this point. Using the results in (2), ( 3) and ( 4), we can claim that the extracted feature in the virtual image only depends on X, Y, Z and their derivatives up to order-2. This is consistent (regarding the considered orders of the derivatives of X, Y, Z ) with the feature ∇ I = I 2

x + I 2 y detected in the intensity image, where I , with ∈ {1, 2}, is given in [START_REF] Fischler | Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[END_REF].

We have presented how some information relative to Curvilinear Saliency can be extracted, both in 3D and 2D. In the next section, this Curvilinear Saliency measurement is improved in 2D to be robust to texture and to background.

VI. ROBUSTNESS TO TEXTURE AND BACKGROUND

A. Multi-Curvilinear Saliency (MCS)

Contrary to depth images that represent textureless 3D shapes, intensity images are composed of shape and texture components. Consequently, the Curvilinear Saliency (CS) estimated from intensity images is affected by the textured regions. Our idea is to put forward the assumption that multiscale analysis can discriminate between key points (those with high CS value in the image) due to shape and key points due to texture. 5 At a coarse level, edges detected are reliable but with a poor localization, and they miss small details. At a fine level, details are preserved, but detection suffers greatly from clutter in regions. In addition, the CS values of small details and textures are high at the coarse level, whereas these values decrease in the finest levels. To combine the strengths of each scale, the CS value of each pixel over n scales is analyzed. If this value at all scales is higher than a threshold T , the maximum Curvilinear Saliency (MCS) value of this pixel over all scales is then kept. This threshold is a function of the number of the smoothed images, n, (i.e., T = e -n : when n is small, then T is high, and vice versa). However, if the CS value is lower than T in one level, it is considered a point that belongs to a texture (or a small detail) point; thus, it is removed from the final Multi-Scale Curvilinear Saliency image. Adding this multi-scale step should help reduce the impact of the texture; however, in the next section, we propose introducing the principle used for estimating focus maps to increase the robustness to the background and to the presence of the texture. Before introducing the proposed improvement, we briefly present existing works concerning texture detection and, in particular, those concerning focus curve estimation.

B. Extraction of Texture: State of the Art

Various methods, such as [START_REF] Karacan | Structure-preserving image smoothing via region covariances[END_REF], [START_REF] Xu Zhang | Rolling guidance filter[END_REF], have been proposed for extracting the texture from a natural image. In these approaches, the image is separated into two components while preserving edges by first smoothing the intensity image, as a pre-processing stage, and then extracting the shape/the structure from that image relying on prior knowledge. These methods are analogous to the classical signal processing low pass-high pass filter decomposition. However, even if it is correct to consider that the structure part of an image contains strong edges, the texture can also contain medium and high frequencies. Another possibility is to consider focusness.

Usually, focusness, which is related to the degree of focus, is defined as being inversely proportional to the degree of blur (blurriness) [START_REF] Jiang | Salient region detection by ufo: Uniqueness, focusness and objectness[END_REF]. It is a valuable tool for depth recovery [START_REF] Zhuo | Defocus map estimation from a single image[END_REF] and also for blur magnification or image quality assessment. Blurring is usually measured in regions containing edges since edges would appear in images as blurred luminance transitions of unknown blurring scale [START_REF] Elder | Local scale control for edge detection and blur estimation[END_REF]. Then, the estimation of the blur can be propagated to the rest of the image. Since blur occurs for many different reasons, this task is challenging, and in research, many methods have been proposed [START_REF] Tai | Single image defocus map estimation using local contrast prior[END_REF]. Interested readers can find details about techniques that take into account penumbra blur or shading blur [START_REF] Zhuo | Defocus map estimation from a single image[END_REF], in particular, with multiple scales [START_REF] Jiang | Salient region detection by ufo: Uniqueness, focusness and objectness[END_REF].

Finally, most of the existing algorithms [START_REF] Jiang | Salient region detection by ufo: Uniqueness, focusness and objectness[END_REF], [START_REF] Zhuo | Defocus map estimation from a single image[END_REF] depend on measuring the blur amount using the ratio between the edges at two different scale levels (i.e., the original image and the re-blurred image). Consequently, we propose using the ratio between the two Curvilinear Saliency images that contain robust edges at different scales to determine the blur amount based on the methods developed in [START_REF] Zhuo | Defocus map estimation from a single image[END_REF]. Concerning the multi-scale aspect, our approach is inspired by the principles explained in [START_REF] Jiang | Salient region detection by ufo: Uniqueness, focusness and objectness[END_REF].

C. Removing Background With Focus Curves: State of the Art

Based on the mapping between the depth of a point light source and the focus level of its image, shape from defocus (SFD) approaches recover the 3D shape of a scene from focused images that represent the focus level of each point in the scene [START_REF] Pentland | A new sense for depth of field[END_REF]. Consequently, it seems interesting to introduce what is called the detection of "focus curves". More precisely, these curves mean that the scale of blurring is estimated at the Curvilinear Saliency feature of the 2D image and that these features are supposedly related to discontinuities.

Focal blurring occurs when a point is out of focus. When the point is at the focus distance d f from the lens, all the rays from it converge to a sharp single sensor point. Otherwise, when d = d f , these rays generate a blurred region in the sensor area. The blurred pattern generated in this way is called the circle of confusion (CoC), the diameter of which is denoted c.

In [START_REF] Jiang | Salient region detection by ufo: Uniqueness, focusness and objectness[END_REF], [START_REF] Zhuo | Defocus map estimation from a single image[END_REF], the defocus blur can be modelled as a convolution of a sharp image with the point spread function (PSF). The PSF is usually approximated by a Gaussian function g(x, σ ), where the standard deviation σ ∝ c measures the blurring amount and is proportional to the diameter of the CoC:

c = |d -d f | d f d -f ,
where d, d f , f are the focus distance, defocus distance and focal length, respectively. A blurred edge i (x) is then given by

i (x) = f (x) ⊗ g(x, σ ) ( 20 
)
where f (x) = Au(x) + B is an ideal edge, and u(x) is the step function. The terms A and B correspond to the amplitude and the offset of the edge, respectively. Note that the edge is located at x = 0. In [START_REF] Zhuo | Defocus map estimation from a single image[END_REF], the blur estimation method was described for a 1D case. The gradient of the re-blurred edge is

∇i 1 (x) = ∇(i (x) ⊗ g(x, σ 0 )) = ∇((Au(x) + B) ⊗ g(x, σ ) ⊗ g(x, σ 0 )) = A √ 2π(σ + σ 0 ) exp - x 2 2(σ 2 + σ 2 0 ) ( 21 
)
where σ 0 is the standard deviation of the re-blur Gaussian kernel. Thus, the gradient magnitude ratio between the original and the re-blurred edges is

R = | ∇i (x) | | ∇i 1 (x) | = σ 2 + σ 2 0 σ 2 exp - x 2 2(σ 2 ) - x 2 2(σ 2 + σ 2 0 ) . ( 22 
)
It can be proven that the ratio is a maximum at the edge location (x = 0), and the maximum value is given by

R = σ 2 + σ 2 0 σ 2 (23)
Finally, given the maximum value R at the edge locations, the unknown blurring amount σ can be estimated using

σ = σ 0 √ R 2 -1 (24) 

D. Multi-Focus Curves (MFC) Based on Curvilinear Saliency

We propose using the Curvilinear Saliency computation instead of the edge response to estimate the focus curves of an input image. In addition, focus curves are estimated at multiple scales rather than at one scale as proposed in [START_REF] Zhuo | Defocus map estimation from a single image[END_REF]. All the information obtained from different blurring scales is combined. In consequence, the Curvilinear Saliency is given by

C S = α((I 2 x + I 2 y )) ⊗ g(x, y, σ ) (25) 
Then, the re-blurred Curvilinear Saliency image, denoted C S i , at multiple scales can be defined as

C S i = α((I 2 x + I 2 y )) ⊗ g(x, y, σ ) ⊗ g(x, y, σ i ) ( 26 
)
with n being the number of scales, and i = 1, 2, . . . , n.

Hence, the ratio between the original and the re-blurred Curvilinear Saliency is

R i = C S i C S = σ 2 + σ 2 i σ 2 exp - x 2 + y 2 2(σ 2 ) - x 2 + y 2 2(σ 2 + σ 2 i )
Within the neighborhood of a pixel, the response reaches its maximum when x = 0 and y = 0; thus,

R i | 0 = C S i C S = σ 2 + σ 2 i σ 2 = 1 + σ 2 i σ 2
Finally, given the maximum value R i at each scale level, the unknown blur amount σ i can be estimated using

σ i = σ i √ R i | 0 -1 , ( 27 
)
For n scales, n -1 focus curve scales are computed by using the ratio between the Curvilinear Saliency of the coarse level (i.e., the original image) and the next scale levels. By following the same remarks as in section VI-A, we define Multi-Focus Curves (MFC) that correspond to the fusion of all the focus curves into one map by keeping only the pixels that have a high focus value in all the n -1 scales (i.e., a high value means a value larger than T = e -n , chosen in the same way as in section VI-A). If the pixel has a high value at all scales, the maximum value of the scale of blur is taken into account to build the final multi-scale curve map:

M FC = 1 arg max i (s i ) . ( 28 
)
In conclusion, the highest values of the estimated M FC indicate edges that have low blurring (i.e., sharp edges). On the contrary, low values indicate ones that have a high level of blurring. Consequently, we expect that focus curves highlight salient Curvilinear Saliency in images that are approximately similar to the detected Curvilinear Saliency features in depth images.

VII. EXPERIMENTS FOR FEATURE DETECTION

A. Comparison With Existing Methods

One of our most important objectives in this work was to introduce a detector that is more repeatable between 2D images and 3D models than classical detectors. Consequently, we compare the features detected on 3D models with the proposed Curvilinear Saliency detector with features detected on real images with these three 2D detectors: Image Gradient (IG), Multi-Scale Curvilinear Saliency (MCS) and multi-scale focus curves (MFC). In addition, the repeatability is measured between the two other 3D model detectors, i.e., Average Shading Gradient (ASG) [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF] and Hessian Frobenius Norm (HFN), and the same three 2D detectors. In addition, MFC and MCS are then compared with nine classical 2D detectors:

(1) Edge detectors: (i) Sobel, (ii) Laplacian of Gaussian (LoG), (iii) Canny [START_REF] Canny | A computational approach to edge detection[END_REF] and (iv) Fuzzy logic technique [START_REF] Kiranpreet | Fuzzy logic based image edge detection algorithm in MATLAB[END_REF];

(2) Corner detectors: (v) Harris detector based on autocorrelation analysis and (vi) Minimum Eigenvalues detector based on analysis of the Hessian matrix [START_REF] Shi | Good features to track[END_REF];

(3)Multi-scale detectors: (vii) SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], (viii) SURF, speeded up robust features, a multi-scale technique based on the Hessian matrix [START_REF] Bay | Speeded-up robust features (SURF)[END_REF] and (ix) A multi-scale principal curvature image (PCI) detector [START_REF] Deng | Principal curvature-based region detector for object recognition[END_REF].

B. Evaluation Criteria

The eleven 2D detectors are evaluated with two measures:

(1) Intersection percentage (IP): the probability that a 2D intensity-based key feature can be found close to those extracted in a depth image [START_REF] Rashwan | Towards multi-scale feature detection repeatable over intensity and depth images[END_REF].

(2) Hausdorff distance (HD): the classical measurement is defined for two point sets A and B by

H D(A, B) = max (h(A, B), h(B, A)) , TABLE I

MEAN INTERSECTION PERCENTACE (IP) (Higher [s Better) OF ALL DEPTH IMAGES RENDERED FROM DIFFERENT VIEWPOINTS AND ALL REAL IMAGES CAPTURED UN DER DIFFERENT TEXTURES AND LIGHTING FOR THE Web Co/lec/ÎOII

Metbods MFCMCSPCJ [39] 

C. Datasets

Two datasets are evaluated:

(1) Web collection: we have collected 10 abjects and 15 real images of each abject on the web by choosing views as close as possible to the views used for the generation of the depth images. Moreover, to highlight the robustness of the approach to different acquisition conditions, many real images of a similar mode! are taken.

(2) PASCAL3D+ dataset [START_REF] Xiang | Beyond pascal: A benchmark for 3D object detection in the wild[END_REF]: it is used to assess scalabil ity. It contains real images corresponding to 12 rigid abjects categories. We have computed average results for ail non occluded abjects in each category, i.e., approximately 1000 real images and 3 or more reference models per category. The real images are acquired under different acquisition conditions (e.g., lighting, complex background, and low contrast). We have rendered the depth images of the corresponding 30 CAO mode! using the viewpoint information from the dataset. Only non-occluded and non-truncated abjects in the real images were used. Furthermore, we choose 30 textureless abjects (available online: http://tf3dm.com/), For ail the tested 30 models, depth images have been rendered using MATLAB 30 Mode! Renderer: http://www. openu.ac.il/home/hassner/projects/poses/.

D. Analysis of the Results

As shown in tables I and II, and as expected, the proposed approach using focus curves based on Curvilinear Saliency, named MFC, is able to find the highest number of features in the intersection with the features detected on real images captured under different textures and lighting conditions. More precisely, MFC obtains an average mean intersection per centage greater than 56%, whereas for MCS and PCI, it is, respectively, greater than 50% and 44% for the web collection dataset. With the PASCAL+3D dataset, MFC also yields the highest mean average 1P among ail the tested detectors: 46%.

In addition, as shown in tables III and IV, the average Hausdorff distance (HD) with MFC is less than 35 and, with MCS, is Jess than 52. For all the presented results, the two proposed approaches always give the lowest HD. Ali these quantitative results support that MFC is able to detect Curvilinear Saliency features that are more repeatable between an intensity image and its corresponding depth image than the state of the art.

In the rest of this section, we illustrate the results for the most significant dataset, PASCAL3D+ [START_REF] Xiang | Beyond pascal: A benchmark for 3D object detection in the wild[END_REF]. In Fig. 4, the repeatability percentage between the three comparable 30 detectors, i.e., MFC, MSC and Image Gradient (IG), and the three comparable 20 detectors, Hessian Frobenius Norm, Average Shading Gradient and CS, is presented. These results highlight that Image Gradients are affected by texture. Moreover, MCS improves the repeatability between depth and real images, compared to IG, and as expected, MFC still yields the best repeatability scores. Among the detectors used for depth images, the Curvilinear Saliency detector yields the best repeatability scores between the three intensity-based 2D detectors. In conclusion, using CS with MFC gives the best repeatability among all the other possible combinations. In Fig. 5, some visual results show that MFC can reduce a high number of edges belonging to texture information.

E. Robustness to Illumination Changes

The MCS and MFC methods have been tested with sequences of the web collection database by changing the global illumination of the image depending on I o = 255(I i /255) γ , where I i and I o are the input and output images, respectively, and γ > 0 is the gamma correction. Fig. 6 shows a qualitative comparison of the intersection percentage (IP) and the Hausdorff distance (HD). Both MCS and MFC are robust against small and significant changes in γ .

F. Execution Time for Detection

The proposed approaches obtain good results without a substantial impact on the execution time. As shown in table V, where the mean execution times are given, both MFC and MCS execution time is compared with the 8 tested detectors. The proposed approaches are finally less time-consuming than SIFT or even SURF approaches. Moreover, MFC and MCS are also twice as fast as PCI, which also works with curvatures.

VIII. REGISTRATION OF 2D IMAGES TO 3D MODELS

In this section, a 2D query image is registered to a 3D model by finding the closest view d between all the rendered images of the 3D model d k , k = 1 . . . N, with N being the number of rendered views (i.e., depth images). The object to recognize is supposed to be contained in a bounding box, and we would like to estimate the 3D pose. Estimating the pose consists in estimating the elevation and the azimuth angles, (h) and (a), respectively, and the distance between the model and the camera, (v). For each 3D model, depth images are generated from almost uniformly distributed viewing angles around a sphere by changing h, a and v to have N views per model. The choices for these terms are explained in paragraph IX-A.

To describe an object in a photograph and in all the rendered depth images, we naturally expand the famous classical descriptor HOG, Histogram of gradient, which is presented in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF] and widely used [START_REF] Aubry | Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models[END_REF], [START_REF] Plötz | Automatic registration of images to untextured geometry using average shading gradients[END_REF], to work on Curvilinear Saliency by generating Histogram of Curvilinear Saliency, HCS. A sliding window is used to generate dense features based on binning the gradient orientation over a region. Indeed, both in rendered depth images and in photographs, the curvature orientation and the magnitude of the Curvilinear Saliency are used for building the descriptors. For depth images, C S is multiplied by the eigenvector e H 1 corresponding to the largest eigenvalue of the matrix M in (11):

-

→ C S = C S. -→ e H 1 .
For photographs, MC S values are multiplied by the eigenvector e S 1 corresponding to the Curvilinear Saliency λ

1 -λ 2 : ---→ MC S = MC S. -→ e H 1 .
Moreover, M FC values are also multiplied by the eigenvector e S 1 :

-

--→ M FC = M FC. -→ e S 1 .
Using the HOG principle, we propose a descriptor that contains the curvature orientation and the magnitude of C S, MC S and M FC, binned into sparse Histograms.

Given the HCS descriptor from a 2D query image D q , the HCS descriptors of the rendered images D d N , with N rendering depth images, are computed. To compare D q to every D d N , the similarity scores are computed as in [START_REF] Aubry | Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models[END_REF]:

S hcs (k, h, a, v) = (D d N -µ s ) T -1 D q , ( 29 
)
where k = 1 . . . N, and and µ s are, respectively, the covariance matrix and the mean over all descriptors of the rendered images. For the registration process, evaluating S hcs (k, h, a, v) can be carried out by computing the probability of the inverse of the inner product between D q and a transformed set of descriptors. The S hcs (k, h, a, v) probability is then maximized to find the closest corresponding views of the query image. Moreover, a global similarity is evaluated by measuring how well each individual detected point in an image can be matched with a corresponding detected point in the depth map, i.e., how well each image's detected points are repeatable. More precisely, this repeatability score, Rep, normalized between 0 and 1, is the probability that key features in the intensity image are found close to those extracted in the depth image Rep d N q . Since the closest view should have high repeatability scores in comparison to other views, the dissimilarity based on repeatability scores is defined by R d i = 1 -Rep d i q . If R d i is the repeatability scores of N rendered views of a model and an image, the similarity S rep is defined by

S rep (k, h, a, v) = ex p -(R d i -μ r ) 2 2 σ 2 r . ( 30 
)
where μ r is the mean value of R d N , and σ r is the standard deviation (i.e., in this work σ r = 0.1). Finally, by combining all HCS feature similarities and the similarity based on the repeatability, the probability of the final similarity is given by S(m, h, a, v) = S hcs (k, h, a, v) S rep (k, h, a, v). [START_REF] Pentland | A new sense for depth of field[END_REF] where is the Hadamard product. Based on calculating S(k, h, a, v), we select at least the highest three correspondences to estimate the full pose. From the selected three views, the logically ordered or connected views (i.e., coherent views) are first selected. As a following step, minimum and maximum values of h, a and v of the corresponding views are estimated. Subsequently, additional views are generated in the vicinity of the selected views that is between the minimum and the maximum values of the three parameters with small steps (e.g., δh = 5 • , δa = 5 • and δv = 5 cm). The process is repeated for these ranges to find the closet view to the object in a query image until the differences between the minimum and maximum values of h, a, v of the selected coherent views are as small as possible; more precisely, |dh| = 5, |da| = 5, |dv| = 1 are used to stop the algorithm repetition.

IX. POSE ESTIMATION EXPERIMENTS

A. 3D Model Representation and Alignment

Matching photographs and rendered depth images requires a 3D model representation. Each depth image represents a 3D model from different viewpoints. Hence, we need to have a significant number of depth images to completely represent a 3D model, which yields a high execution time. Consequently, N depth images (approximately 700 in our experiments) have been orthographically rendered from approximately uniformly distributed viewing angles h and a and the distance v (i.e., in these experiments, h is empirically chosen and is increased by a step of 50 • , the azimuth angle, 20 • , and the distance, 0.3 m, for a range between 0 and 2 m).

Moreover, we need to parameterize the model's view alignment between the depth image and the object detected in a color image. For comparing two models, the optimal measure of similarity, over all possible poses, has to be computed. To do so, each model is placed into a canonical coordinate frame normalized for translation and rotation. Since the model centroids are known, the models are normalized for translation by shifting them to align the center of mass with the origin. Subsequently, the two models are normalized for rotation by aligning the model's principal axes with the x-and y-axes. This defines the ellipsoid that best fits the model. By rotating the two point sets so that the ellipsoid's major axis is aligned with the x-axis and the second major axis is aligned with the y-axes, the model is obtained in a normalized coordinate frame. Then, principal component analysis, PCA, is used to find the orientation of the major axis of the ellipse. The model's point set is rotated by the difference in the direction of the two major axes. After normalization, the two models are (almost) optimally aligned and can be directly compared in their normalized poses.

In addition, the HCS descriptor is quantized into 9 bins, exactly as proposed in [START_REF] Dalal | Histograms of oriented gradients for human detection[END_REF]. The photograph and each depth image are divided into a grid of square cells (we have empirically chosen that the image is divided into 8 × 8). 6 For each cell, Histograms are aggregated by weighting them with their respective magnitudes.

B. Analysis of the Results

For pose estimation or even for object recognition, the probability that photograph key features are found close to depth key features must be high when the photograph and the depth image come from the same viewpoint. This aspect is illustrated
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 6 Fig. 6. Robustness against γ correction changes (illumination changes on the x-axis) illustrated with (a) the intersection percentage (y-axis) and (b) the Hausdorff distance (y-axis).
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TABLE IV MEAN HAUSDORFF DISTANCE (HD) (Lower [s Better) OF ALL DEPTH IMAGES RENDERED FROM DIFFERENT VIEWPOINTS AND ALL REAL IMAGES CAPTURED UNDER DIFFERENT TEXTURES AND LIGHTING FOR THE PASCAL3D+ Metbod MFCMCS PCI [39] Harris SIFT SURF Sobe! Canny LoG [21] Plane 47 48 59 61 63 68 73 68 65 69 71 Bicycle 71 75 79 90 101 93 100 83 84 82 87 Boat 62 68 75 79 77 87 76 75 71 78 76 Bus 106 110 117 128 123 131 127 121 118 122 123 Car 80 85 98 102 100 113 108 89 88 94 97 Diningtable 84 85 96 117 118 118 111 117 114 116 120 Motorbike 62 64 78 84 96 94 86 88 91 86 92 Sofa 70 75 77 86 98 93 92 95 99 89 96 Train 101 108 121 126 123 133 127 125 129 129 122 Tvmonitor 96 102 104 109 104 111 105 116 ll2 114 106 Chair 92 105 115 119 108 107 112 98 97 112 106 Bottle 78 84 87 89 90 92 97 82 86 79 88

 IV 

TABLE V MEAN

 V EXECUTION TIMES IN SECONDS OF MATLAB CODES EXECUTING ON A 2.9 GHz INTEL CORE(i7)

A general shading function is I (x, y) = ρ(M(x, y)) max(0, -N(x, y) • s), where ρ(M(x, y)) is the albedo at the object point M(x, y).

Note the difference with (1).

If A A is full rank, then the maximum (resp. minimum) of Ax 2 = x A Ax under the constraints x 2 = 1 is given by the largest (resp. smallest) eigenvalue of A A. Here, A = J I J I is 2 × 2 and generally full rank.

To build the scale pyramid, an edge-preserving smoothing approach, denoted as an anisotropic diffusion filter[START_REF] Paris | A fast approximation of the bilateral filter using a signal processing approach[END_REF], is used. It tries to separate the low-frequency components (i.e., sharp edges) from the high-frequency components (i.e., textures) by preserving the largest edges in an image.

Different grids were tested: 4 × 4, 8 × 8 and 16 × 16. The grid with 8 × 8 size yields the best precision rate.
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in Fig. 7. As expected, the three tested detectors yield the highest repeatability score with the correct viewpoint (even if the difference between views is slight, as with Sobel). In addition, as expected, the score is graduaily diminished whenever it is at a distance from the correct viewpoint. The most important remark is that MCS results in the highest differences between the correct view and ail the other views. Consequently, this illustrates that it is the most adapted detec tor for pose estimation based on 2D/3D registration. This result is quite coherent because SIFf was designed to be robust in the face of numerous change difficulties. Hence, it induces that the differences should be lower than MCS, which is designed to be effi cient in the case of 2D/3D matching. In addition, the other experiment was performed with the Pascal+3D dataset. For each category of objects, we compute the precision rate for detecting the correct view. This is done subsequent to using the three aforementioned methods for 3D model representations, i.e., Curvilinear Saliency (CS), Average Shading Gradient (ASG) and apparent ridges (AR) [START_REF] Judd | Apparent ridges for line drawing[END_REF], against the three techniques for intensity image representation, i.e., Image Gradient (IG), Multi-Curvilinear Saliency (MCS) and Multi-Focus Curves (MFC). As shown in table VI, the reg istration between our Curvilinear Saliency (CS) representation of the 3D model and the multi-scale focus curves (MFC) extracted on corresponding images outperforms ail other vari ations of the tested methods. This confi rms the fact that In the following experiment, in Fig. 8, the precision of image registration is shown among the top r similarities, i.e., we sort ail the similarity scores obtained for ail views, and the r fi rst highest similarities are analyzed (more precisely, the 1, 3, 5, 10 and 20 first ranks). The correct pose is searched for within this view set. As shown, the precision rate is increased when the number of views is increased for any We show the query image (column 1), the corresponding 3D model (column 2) and the first ranked pose estimation (column 3). This illustrates that even if the 3D model does not have the same detailed shape, the registration can be correctly executed.

AVERAGE ERROR OF THE ESTIMATED POSE (EST.) (a) ELEVATION, (b) AZIMUTH AND (c) YAW ANGLES AND (d) DISTANCE, IN CENTIMETRES, OF THE POSE OF THE CAMERA. THE TERM CLO . INDICATES THE CLOS EST VIEW TO THE CORRECT POSE. THESE QUANTITATIVE RESULTS DEMONSTRATE THAT THE BEST COMBINATION IS MFC

combination of 3D model representation and image representation. However, MFC yields the highest precision rate with the three tested methods for representing 3D models. In addition, MCS yields good precision values. In fact, IG yields the lowest precision values due to the fact that the edges detected with texture information have a negative influence on estimating the successful registration.

Finally, Fig. 9 shows some examples of correct registrations with the top-ranked pose estimation. It can be seen that our system is able to register an image with a wide variety of textures and viewing angles. In addition, the proposed algorithm can register images regardless of light changes.

C. Comparison With a CNN Model

The proposed model based on MFC features is compared with two deep pose estimation models [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF], [START_REF] Tulsiani | Viewpoints and keypoints[END_REF] using the same dataset, PASCAL3D+. We used the same metrics Acc π/6 and Med Err as in [START_REF] Tulsiani | Viewpoints and keypoints[END_REF]. The quantitative results are shown in table VIII. As indicated, our model based on MFC yields an average Acc π/6 of 80%, which is comparable with the work put forward [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF], [START_REF] Tulsiani | Viewpoints and keypoints[END_REF] with accuracies of 82% and 81%, respectively, although these methods have rendered millions of synthetic images to train their deep models. For Med Err, the proposed method yields the smallest error among the two tested methods [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF], [START_REF] Tulsiani | Viewpoints and keypoints[END_REF], achieving Med Err of 9.5 • , while [START_REF] Su | Render for CNN: Viewpoint estimation in images using CNNs trained with rendered 3D model views[END_REF], [START_REF] Tulsiani | Viewpoints and keypoints[END_REF] 

D. Execution Time for Registration

In Table IX, we show how each step of the proposed approach, i.e., rendering, depth feature extraction (CS), image feature extraction (MFC/ MCS) and registration, contributes to the total execution time. It is shown as a pie chart: approximately 53% of the execution time of the entire algorithm's total time is spent on rendering and depth feature extraction. In addition, the time requested to extract the input color feature is only 6%. Finally, to determine the final viewpoint, the time spent corresponds to approximately 40% of the entire operation. Optimizing the code was not the priority, and we can imagine that this execution time can be improved.

X. CONCLUSIONS AND PERSPECTIVES

After an analysis of existing tools for 2D/3D registration, the major goal of this paper was to propose a more adapted approach for 2D/3D matching, and, in particular, more justified than existing approaches. For that purpose, we also put forward an evaluation protocol based on the repeatability study. More precisely, to carry out this matching process, we have studied these two important aspects: how to represent the data in 2D and 3D and, subsequently, how to compare them. In this context, we introduce a 3D detector based on Curvilinear Saliency and a 2D detector based on the same principle but adapted on multiple scales and combined with the principle of focus curves. The interest in this method is illustrated by quantitative evaluation on pose estimation and 2D/3D registration. All the results are encouraging, and the next step of this work is to use this registration to identify object defaults. For this purpose, we need to study the robustness of this work with regard to missing parts of objects and to adapt the registration process.