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Using Curvilinear Features in Focus for Registering 

a Single Image to a 3D Object 
Hatem A. Rashwan, Sylvie Chambon, Pierre Gurdjos, Géraldine Morin, and Vincent CharviJJat

Abstract-ln the context of 2D/3D registration, this paper 
introduces an approach that allows for matching features 
detected in two different modalities, photographs, and 3D models, 
by using a common 2D representation. More precisely, 2D images 
are matched with a set of depth itnages representing the 3D 
mode!. After introducing the concept of Curvilinear Saliency, 
which is related to curvature estimation, we propose a new ridge 
and valley detector for depth images rendered from 3D models. 
A variant of this detector is adapted to photographs, first by 
considering multi-scale features and second by integrating the 
Cocus curve principle. Finally, a registration algorithm deter­
nùnes the correct view of the 3D mode! and, thus, the pose 
of the photograph. This approach relies on the Histogram of 
Curvilinear Saliency (HCS), an adaptation of the Histogram 
of Oriented Gradients (HOG) to the proposed features in 2D 
and 3D. The presented results highlight both the quality of the 
features detected in terins of repeatability and the interest of the 
approach for registration and pose estimation. 

Index Terms-2D-3D registration, pose estimation, object 
detection, feature extraction, curvilinear saliency. 

1. INTRODUCTION

M
ANY computer vision and robotic applications are used 

to take 2D contents as input; recently, however, 3D 

contents have become simultaneously available and popular. 

To benefit from both modalities, 2D/3D matching is necessary. 
For medical imaging, registration of pre-operative 3D volume 

data with intra-operative 2D images is increasingly necessary 

to assist physicians [27]. For robotics, the 2D/3D matching 

can be useful to determine the 3D pose of an object of interest 

for 3D navigation or object grasping [33]. The main goal is 

to find the transformation of the 3D model that defines the 

pose for a query 2D image. Thus, a typical 2D/3D registration 

problem consists of two mutually interlocked subproblems, 

that is, point correspondence and estimation. 

To match 2D photographs directly to 3D models or point 

clouds, most systems rely on detecting and describing features 
on both 2D/3D data and subsequently on matching these fea­

tures [1], [47]. Sorne recent approaches are based on learning 
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by a specific supervision classifier [41], [45]. In [45], a con­

volutional neural network (CNN) architecture is introduced 

to predict a viewpoint. They combine multi-scale appearance 

with a viewpoint-conditioned likelihood. The objective is to 
predict key points to capture the finer details to correctly 

detect the bounding box of the objects. In [41], the authors 

have rendered millions of synthetic images from 3D models 

under varying illuminations, lighting and backgrounds and 

then have proceeded to use them to train a CNN model 

for the viewpoint estimation of real images. These methods 

produce very interesting results, but they require a high volume 

of viewpoint-annotated images to learn the classifiers. What 

makes it difficult to match the 3D features of an object to 

the 2D features of one of its photographs is the appearance 

of the object. lndeed, this appearance dramatically depends 
on the intrinsic characteristics of the object, such as texture 

and color/albedo, as well as the extrinsic characteristics related 

to the acquisition, such as the camera pose and the lighting 

conditions. Consequently, some approaches manually define 

correspondences between the query image and the 3D mode!, 

such as [10]. These manual selections can easily become 

difficult to apply to large image sets. Moreover, in this paper, 

we focus on automated approaches. Note that some systems 

are able to generate a simultaneous acquisition of photographs, 

and scanning of a 3D mode!; using this kind of system 

nevertheless induces limited applications. Other methods solve 

the problem by distinguishing two subproblems: choosing 

the data's common representation followed by finding the 

correspondences. More precisely, these methods transform the 

initial 2D/3D registration problem into a 2D/2D matching 

problem by rendering multiple 2D images of 3D models 

from different viewpoints, such as in [5], [7], [32]. The work 

presented in this paper focuses on this type of approach. 

Consequently, the first task of 2D/3D registration is to find 

an appropriate representation of 3D models such that reliable 

features can be extracted in 2D and 3D. In [5], synthetic 
images of the 3D mode! are rendered, while depth images are 

rendered in [7]. More recently, [32] proposes Average Shading 

Gradients. This rendering technique for a 3D mode! averages 

the gradient normals over all lighting directions to cope with 

the unknown lighting of the query image. The advantage of 

representing the 3D mode! by a set of depth images lies in 

the fact that it can express the shape model independent of 

color and texture information. Therefore, we have decided to 

represent 3D models by sets of depth images; see Fig. 1. 

The second difficulty of 2D/3D registration consists of 

proposing how to match entities between the two modalities 



Fig. 1. To compare 2D images with 3D models, a collection of rendered images of the 3D models from different viewpoints is used, and then, points of
interest (Multi-Curvilinear Saliency, MCS) are detected with common basis definitions between depth and intensity images. Each depth image is compared
with the original 2D image, based on this detection of points of interest, and the proposed algorithm gives as output the depth image with the most similar
point.

in this common representation. It can be partial [17] or dense
matching based on local or global characteristics [38]. In [5],
silhouettes extracted from synthetic images are matched to
those extracted from the color images. However, this method
does not have the capacity to account for most of the occluding
contours useful for accurate pose estimation. In turn, in [32],
Image Gradients are matched with their 3D representation,
but Image Gradients are still affected by image textures and
background. A key requirement for these features, as in classic
2D matching, is that the computation should be performed
with a high degree of repeatability. Here, similar to the
definition in [42], the repeatability of a feature is defined as
the frequency at which an element detected in the depth image
is also detected within ε pixels around the same location in the
corresponding intensity image (if it is supposed that the fea-
tures are not moving or are following a slight displacement).
Subsequently, by supposing that an individual photograph
of an object of interest is acquired in a textured environ-
ment, we will focus on comparing pre-processed features of
color images with features extracted in a depth image set;
see Fig. 1.

More precisely, the 3D object will be given by a set of 3D
depth surfaces, which describe how the object surface is short-
ened by a perspective viewing, and the image is given by the
3D intensity surface. Since the depth and the intensity surfaces
have a different order of representation, the two surfaces can-
not be directly matched. Thus, bringing both rendered depth
images and photographs into a common representation, such as
gradient and edge representation, allows for the establishment
of robust sparse 2D-to-3D matching [32]. The extraction of
gradient-based features corresponding to the object’s shapes
in both depth and intensity images regardless of illumination
and texture changes is proposed. In other words, as 2D
intensity images are affected by background, textures and
lighting changes, these difficulties are taken into account
by reducing the influence of non-redundant information

(i.e., colour and texture) on the features extracted from pho-
tographs. This means that the features in depth images that
highlight the object’s geometric characteristics are extracted.
For photographs, a refinement step is needed, which consists
of selecting salient points acquired by a camera in focus.
These points depend on the degree of blurring in an image.
Thus, the detected points are analyzed based on measuring the
blurring volume of every feature point. Finally, what we call
focus points should be able to detect the approximate shape
and to discard the other components, such as textures.

To summarize, the contributions of this paper are as follows:
1) A ridge and valley detector for depth images rendered

from the 3D model. We have called this Curvilinear
Saliency (CS), as it is related to the curvature estimation.
This representation directly relates to the discontinuities
of the object’s geometry, and the extracted features
should be robust in the face of texture and light changes.

2) A variant of this detector adapted to photographs.
This Curvilinear Saliency detector is applied at multi-
ple scales by searching over all scales and all image
locations to identify scale-invariant interest points. To
reduce the influence of structures due to texture and
background regions, the extraction of focus Curvilinear
Saliency features is introduced. This corresponds to
ridges unaffected by blurring.

3) A registration algorithm for determining the correct view
of the 3D model and thus the pose. We have introduced
the Histogram of Curvilinear Saliency (HCS), which
is a descriptor computed similarly to the Histogram of
Gradients (HOG) proposed in [9]. The HCS descriptor
is computed on both depth images (i.e., curvilinear fea-
tures extracted with Curvilinear Saliency detection) and
photographs (i.e., curvilinear features in focus extracted
with Multi-Scale Curvilinear Saliency detection), and
it combines the Curvilinear Saliency value with the
curvature orientation. The repeatability score measures



the set of repeatable points detected both in a photograph
and in the rendered depth images.

After presenting the related work and notations, § II and III,
the 3D model representation is introduced, § IV, followed
by the image representation, § V. In addition, we describe
how robustness to background and texture can be achieved by
using the same principle as focus curve detection, § VI. The
results obtained illustrate how this new global approach for
2D/3D matching allows for obtaining more repeatable features,
compared to the state of the art, § VII. Finally, we explain
how 2D/3D registration is estimated, § VIII, and how pose
estimation is computed, § IX before the conclusions, § X.

II. RELATED WORK

As mentioned earlier, a typical 2D/3D registration problem
consists of two subproblems: feature correspondence and pose
estimation. Thus, the related work is divided into three parts
related to these subproblems: (1) Detection of features in 2D
photography, (2) detection of features in a 3D model and
(3) matching of 2D/3D features to estimate the 3D pose. We
briefly present classical detectors in 2D and 3D and highlight
that the associated points of interest, in 2D and 3D, are not
comparable, i.e., cannot be directly matched.

In 2D, edge detection [6] based on the first-order derivative
information is the initial technique. It can detect any kind of
edge, even low contrasted edges, not due to the structure but
more to texture. The second technique is to detect the points
of interest [40] by, for example, analyzing the eigenvalues of
the structure tensor [16]. Complementary to these methods,
blob detection [46] provides a description of image structures
in terms of regions. More recently, multi-scale approaches
have been introduced, such as a generalization of Harris
or Laplacian detectors [28] or the well-known approach of
SIFT, scale-invariant feature transform [26]. In [3], SURF,
speeded up robust features, a detector that is also based
on Hessian matrix analysis, is introduced to be faster than
these multi-scale techniques. All these techniques are robust
to light changes, rotations and translations and consequently
are invariant to viewpoint changes. However, they totally
rely on texture and/or intensity changes. Curvature detection
is one of the most important techniques of second-order
derivative-based approaches. Recently, [13] has proposed a
detector based on curvature κ , expressed as the change of
the Image Gradient along the tangent to obtain a scalar q
approximating κ . In addition, [11] presented PCBR, principal
curvature-based regions, the detector using the maximum or
minimum eigenvalue of the Hessian matrix in a multi-scale
space.

Feature extraction of 3D models/scenes can be classified
into point-based and image-based approaches. Most of the
point-based methods use SIFT in 3D by proposing an adap-
tation of the initial SIFT [37]. In image-based approaches,
the 3D model is first rendered to form images or geometric
buffers. Image processing methods are then applied such
as edge [23] or SIFT detection [24]. The apparent ridges,
AR [19], are a set of curves with points that are local maxima
on a surface; a view-dependent curvature corresponds to the

variation of the surface normal with respect to a viewing screen
plane. Average Shading Gradients, ASG, was proposed in [32].
This rendering technique is based on averaging gradients over
all lighting directions to cope with the unknown lighting
conditions.

In computer vision research, the problem of automatically
aligning 2D photographs with an existing 3D model of the
scene has been investigated over the past fifteen years. It can be
approached through indirect and direct methods [30]. For indi-
rect registration, these methods are implemented either by 3D-
to-3D registration or by finding some appropriate registration
parameters, such as the standard iterative closest point, ICP,
algorithm [4]. For direct registration, in [37], correspondences
are obtained by matching SIFT feature descriptors between
SIFT points extracted both in 2D and 3D. However, establish-
ing reliable correspondences may be difficult due to the fact
that the set of points in 2D and 3D are not always similar.
This is particularly due to the variability of the illumination
conditions during the acquisitions. Methods relying on higher-
level features, such as lines [48], planes [44] and building
bounding boxes [25], are generally suitable only for Manhattan
world scenes. Similarly, skyline-based methods [35] as well
as methods relying on a predefined 3D model [8] are of
limited applicability. Recently, the Histogram of Gradients,
HOG, detector [2] or a fast version of HOG [7] have been
used to extract the features from rendering views and real
images. Finally, in [32], 3D corner points are detected using
the 3D Harris detector and the rendering Average Shading
Gradient images on each point. For a query image, similarly,
corner points are detected on multiple scales. As the next
step, the gradient computed for patches around each point is
matched with the database containing Average Shading Gradi-
ent images using the HOG descriptor. This method still relies
on extracting gradients of photographs affected by textures and
background. Consequently, they propose a refining stage based
on RANdom SAmple Consensus, RANSAC [14], to improve
the pose estimation. All these approaches yield interesting
results, but they do not evaluate the repeatability between the
set of points detected in an intensity image and those detected
in an image rendered from the 3D model.

In this paper, structural cues (e.g., curvilinear shapes) based
on Curvilinear Saliency are extracted instead of only consid-
ering silhouettes since they are more robust to intensity, color,
and pose variations. In fact, they have the advantage of both
representing outer and inner (self-occluding) contours, which
also characterize the object and are useful for estimating the
pose. To merge in the same descriptor Curvilinear Saliency
values and curvature orientation, the HOG descriptor, which
is widely used in research and correctly describes the object
shape, is employed.

III. NOTATIONS

In the rest of the paper, we use the following notations:

• x, y, Z , f, I : scalars (and scalar-valued functions),
including Cartesian coordinates, are simply denoted with
letters without special formatting.

• x̃, ỹ: if needed, local Cartesian coordinates are distin-
guished by adding a tilde over the symbol.



• P, M, and x: vectors (and vector-valued functions) are
denoted by bold letters.

• J: matrices (and matrix-valued functions) are denoted by
typewriter-style letters.

• S: regular surfaces are denoted by calligraphic mode.

We also use these special notations:

• ∇ f : the gradient vector of a scalar-valued function f .
• Fx : the partial first-order derivative ∂F

∂x of a vector-valued
function F w.r.t. variable x .

• Similarly, Fxy : the partial second-order derivatives ∂2F
∂x∂y

of F w.r.t. variables x and y.

For the two last notations, if the vector function is 1D, then
the scalar rule is applied.

IV. 3D MODEL REPRESENTATION

The work most related to that proposed in this paper is the
Average Shading Gradient (ASG) approach, which was pro-
posed in [32]. After introducing how the object surface can be
represented, the differences between these two approaches are
highlighted. For interested readers, a reminder on differential
geometry is given in the appendix Reminder on Differential
Geometry as supplementary material.

Object Surface Representation: Let M be the object surface
parameterized by M(x) � [X (x), Y (x), Z(x)]�, where x =
[x, y]� varies within the restricted image domain of a given
camera delimited by the occluding contour of the object. We
assume that M is such that all of its points M(x), as seen
from the camera viewpoint, are in one-to-one perspective
correspondence with the image point x = [x, y]�, such that
x = X (x)/Z(x) and y = Y (x)/Z(x). As a result, we obtain

M(x) = Z(x)[x�, 1]� (1)

Let n be the unit normal of M at P = M(x). The Gaussian
map N : M → � of M at P is the map that assigns to P
the vector N(P) = ±n on the unit sphere � such that N is
differentiable. Using the notation N̄(P) = Mx (x) × My(x) for

x = M−1(P), it can be computed as N(P) = N̄(P)
∥
∥N̄(P)

∥
∥

, where

N̄ = Mx × My = Z
[−Zx,−Z y, x Zx + y Z y + Z

]� (2)

It can be shown that the Jacobian 3 ×2 matrix of N is written
as

JN = [

Nx Ny
] =

(

I− NN�)

JN̄ (3)

where the columns of JN̄ = [

N̄x N̄y
]

have the form

N̄� =
⎡

⎣

Zx Z� − Zx�Z
Z�Z y − Z�y Z

x Zx�Z + y Z�y Z + Z�(x Zx + y Z y + 3Z)

⎤

⎦ (4)

and � represents either x or y.

A. Average Shading Gradient (ASG) Feature [32]

Plötz et al. assumed that the image intensity function obeys
the Lambertian shading function for parallel light source s:

I (x, y) ∝ max(0,−N(x, y) · s) with s ∈ R
3 (5)

Eq. (5) means that the reflectance describing the object mate-
rial is assumed to be Lambertian with constant albedo.1 In
addition, the image background is assumed to be constant
(e.g., as on a plane). The authors propose the magnitude
of the gradient of the shading function as a feature in the
intensity image. To register the intensity image to the 3D
(untextured) model, the idea is to generate virtual images when
viewing the object from different camera pose candidates.
Nevertheless, it is clearly impossible to render any such
virtual image obeying the shading function (5) without prior
information about the lighting direction and therefore about s.
Thus, the authors propose to replace the gradient magnitude
feature in the virtual images by a feature corresponding to
the average value of the gradient magnitude computed over
all light directions, which is the so-called Average Shading
Gradient magnitude. Denoting ‖∇ I ‖ as the magnitude of the
gradient of the shading function (5), the magnitude of the
Average Shading Gradient is then

‖∇I ‖ =
∫

S
‖∇ I ‖ ds (6)

with ‖∇ I ‖2 = I 2
x + I 2

y and where the vector s, cf. (5), varies
over the unit sphere S in R

3, and ds is the volume element.
The nice contribution of Plötz et al. is, by applying Jensen’s
inequality, to derive the following closed-form bound on ‖∇ I ‖

‖∇I ‖ ≤
√

∫

S
‖∇I ‖2 ds

= γ

√
(

‖Nx‖2 + ∥
∥Ny

∥
∥2

)

with γ =
√

π

3
(7)

It is reported by the authors to behave like a very good
approximation of ‖∇ I ‖. This is the elegant way that the
authors do away with the unknown lighting direction s.

B. Proposed Curvilinear Saliency Features (CS)

As already mentioned, our goal is to find a common
representation between the 3D model and the 2D image to
match them. For that purpose, we first show how the 3D model
can be represented from different points of view and how
these different viewpoints can be compared to a 2D image.
The observed 3D object is represented by a set of synthetic
depth maps generated from camera locations distributed on
concentric spheres encapsulating it, by sampling elevation and
azimuth angles, as well as distances from the camera to the
object. A depth map Z(x, y) associates to every image point
(x, y) the Z -coordinate, w.r.t. the camera frame, of the object
3D point (1) that projects at image location (x, y). Let D
denote the depth surface that is the 3D surface with graph
parameterization is2 D(x, y) = [x, y, Z(x, y)]�. It is worth
noting that any two depth surfaces (from two different views)
are not equal to some Euclidean transformation.

Which features should be extracted in the depth map? We
aim at detecting depth discontinuities by searching points on

1A general shading function is I (x, y) = ρ(M(x, y)) max(0, −N(x, y) · s),
where ρ(M(x, y)) is the albedo at the object point M(x, y).

2Note the difference with (1).



Fig. 2. The real conics of the Dupin indicatrix.

D having high principal curvature in one direction and low
principal curvature in the orthogonal direction. We denote this
as the curviness saliency features of surface loci of such points
that correspond to the ridges and valleys of this surface. Here,
the difference of the principal curvatures κ1 − κ2 is used to
describe the ridges and valleys, and we explain why.

1) Principal Curvatures and Directions: Consider a point
P = D(x, y). Let N′(x, y) denote the Gaussian map of D,
assigning to P the unit normal of D:

N′ = N̄′
∥
∥N̄′∥∥ where N̄′ = Dx × Dy = α

[−∇Z

1

]

(8)

with ∇Z = [Zx , Z y]� and α = 1/
√

1 + ‖∇Z ‖2.
As the two columns of the Jacobian matrix JD of D are

Dx = [1, 0, Zx ]� and Dy = [0, 1, Z y]�, the first fundamental
form of D can be computed as

IP = I3 + ∇Z ∇�
Z

and the second fundamental form of D can be computed as

IIP = αHZ

where HZ is the Hessian matrix of Z , i.e., with the second-
order partial derivatives of Z w.r.t. x and y as elements.

The principal curvatures of D at P coincide with the
eigenvalues κα (α = 1, 2) of I−1

P IIP, which are always
real. In the tangent plane TP(D), the local coordinates of the
principal directions of D at P are given by the eigenvectors eα

of I−1
p IIp, so the 3D principal directions in 3D are written as

JDeα. As Koenderink wrote in [22], “it is perhaps not super-
fluous to remark here that the simple (eigen-)interpretation in
terms3 of IIP = αHZ is only valid in representations where
∇Z = 0”, which is the condition for the point to be a local
extremum.

Thanks to proposition 1, presented on page 3 of the sup-
plementary material, we know that that the principal curvature
κα at P associated to the principal 3D direction Tα = JDeα is
equal to the absolute magnitude of the change in the normal

|κα| = ∥
∥dN′

P(Tα)
∥
∥ (9)

where dN′
P(T) denotes the differential of N′ at P in direction

T. We will make use of this result for the image representation,
cf. §V. Now, let us explain the difference κ1 −κ2, where κ1 ≥
κ2 is proposed as a feature.

2) Curvilinear Feature: Without loss of generality, let κ1
and κ2 be the principal curvatures computed as ordered eigen-
values of I−1

p IIp so that κ1 ≥ κ2. We aim at detecting points

3i.e., by neglecting IP.

lying on “elongated” surface parts. In this work, we detect
points at which this difference is high:

C S(x, y) = κ1(x, y) − κ2(x, y) (10)

We call (10) the Curvilinear Saliency (CS) feature. Curvilinear
means a feature that belongs to a curved line. The rest of this
paragraph justifies such a choice.

Given a point P on D, let (x̃, ỹ) be the Cartesian coordinates
on the tangent plane TP(D)) w.r.t. the 2D frame whose origin
is P, and the orthonormal basis is formed by the principal
directions {e1, e2}. As a result, D can now locally be associated
to the new parameterization F(x̃, ỹ) = [

x̃, ỹ, F(x̃, ỹ)
]�, for

some height function F . In that case, it can be readily
seen that IP is the identity matrix, and so, I−1

P IIP =
IIP = diag(κ1, κ2) is exactly the Hessian matrix of F . For
some sufficiently small ε > 0, consider, on the two planes
parallel to TP(D) at distances ±ε from TP(D), the curves
C± = {(x̃, ỹ), F(x̃, ỹ) ∈ TP(D) | F(x̃, ỹ) = ±ε}. It can
be shown [15, p500] that the first-order approximation of
the intersections of D with the two parallel planes is the
union of two conics (one real and one virtual) with equations
IIP(x̃, ỹ) = ±2ε. This union is known as the Dupin indicatrix
when written in canonical form (i.e., by replacing 2ε by 1).

The real Dupin conic characterizes the local shape of D and
provides local information on the first-order geometry of the
surface, at least at points where the conic is non-degenerate.
It specializes as a parabola if the Gauss curvature vanishes,
i.e., κ1κ2 = 0, to an ellipse if κ1κ2 > 0 and to a hyperbola if
κ1κ2 < 0; see Fig. 2. Points are said to be elliptical, hyperbolic
or parabolic; more details are given in the appendix Analysis
of the Dupin central conics of the supplemental materials. The
Curvilinear Saliency C S is significant when κ1 
 κ2, which is
in the presence of distant foci and therefore a highly elongated
ellipse or a “squashed” hyperbola; see Fig. 2. This occurs, for
example, when the point is located on a depth “discontinuity”.
In turn, when κ1 � κ2, the conic approaches a circle, and the
distance between foci becomes very small.

3) A Simple Way to Compute the Curvilinear Feature: After
algebraic manipulations, it can be shown that I−1

P IIP = 1
αM

where

M �
[

(Z2
y + 1) Zx x − Zx Z y Zxy (Z2

y + 1)Zxy − Zx Z y Z yy

(Z2
x + 1) Zxy − Zx Z y Zx x (Z2

x + 1)Z yy − Zx Z y Zxy

]

Proposition 1: The squared curviness feature can be com-
puted as

CS2 � ‖∇Z ‖2
(

(traceM)2 − 4 det M
)

(11)

= 4 ‖∇Z‖2 (κ̄2 − K ) (12)

where κ̄ is the mean curvature of D, and K is its Gaussian
curvature (a proof is available in the appendix).



Fig. 3. Curvilinear saliency of two shapes (columns 1, 5) with minimum (2, 6), maximum (3, 7) and the difference between maximum and minimum
eigenvalues (4, 8).

The reliance on the highest or smallest principal curvature
alone is not adequate for defining accurate ridges [36]. In
Fig. 3, we show the different detections obtained using the
minimum or the maximum principal curvature. The maximum
provides a high response only for dark lines on a light
background, while the minimum gives the higher answers
for the light lines on a dark background. The difference in
the principal curvatures, κ1 − κ2, improves robustness as it
responds in both settings.

V. IMAGE REPRESENTATION

We recall these notations:

• I (x, y) denotes the value of the image intensity function
I : U ⊂ R

2 → R at image point (x, y).
• The intensity image can also be treated as an intensity

surface I defined by the vector function

I(x, y) = [x, y, I (x, y)]� (13)

Proposed Curvilinear Features for Images: Similar to the
work of [32], the Lambertian shading model (5) is assumed,
i.e., I (x, y) ∝ max(0,−N(x, y) · S). Recall that the unit
normal is N(x, y) = N̄(x, y)/

∥
∥N̄(x, y)

∥
∥ where N̄ is defined

in (2) and so only depends on the depth Z(x, y) and its
derivatives up to order-1.

We would like to detect features in the intensity surface I
and check whether they are good candidates to be matched
to detected curvilinear features in the depth surface D w.r.t.
a given camera pose. The key issue here is that detected
features in I can be matched to detected features in D on
the condition that both are based on measurements with the
same order of derivation in Z(x, y) to yield a “compatible”
matching that ensures repeatability. The fact that I depends
on Z(x, y) and its derivatives up to order-1 entails that the
detection of features in I must rely on order-1 variations of
the surface I(x, y), e.g., on its differential along some adequate
direction. Consider a point Q = I(x, y) on the image surface.
Let dIQ : U → R

3 be the differential of I at Q. Given a
unit direction v = [a, b]� in the image xy-plane, we have
that dIQ(v) = aIx + bIy = JIv is the Jacobian matrix of I,
Ix = [1, 0, Ix ]� and Iy = [0, 1, Iy]�, where

I� = 1

2
(sign (N · s) − 1) (N� · s) (14)

� represents either x or y. It is an order-1 measurement of
the image surface variation at Q and is compatible with our
curvilinear measurements of the depth surface (i.e., with same
order of the derivatives of Z ).

To a obtain a scalar measurement, define the unit vectors
T1 = JI

∇ I‖∇ I ‖ and T2 by rotating T1 by π
2 . For α = 1, 2,

define

|μα| = ∥
∥dIQ (Tα)

∥
∥ (15)

which is the differential of I along unit direction Tα in the
image plane. It can be readily seen that ∇ I /‖∇ I ‖ is the
eigenvector of

J�
I JI =

[

Ix · Ix Ix · Iy

Ix · Iy Iy · Iy

]

=
[

1 + (Ix )
2 Ix Iy

Ix Iy 1 + (Iy)
2

]

= I+ ∇ I ∇�
I (16)

associated with the largest eigenvalue μα . The similarity
between the expression of the principal curvature computed
for the depth surface is noteworthy, cf. (15). In addition, note
that the matrix (16) is that of the first fundamental form of I.
Clearly,4 the maximum and minimum values of the quadratic
form

∥
∥dIQ(v)

∥
∥

2 correspond the two eigenvalues of the first
fundamental form matrix given in (16). By a similar approach
to §IV-B, we can propose a feature μ1 − μ2, where μ1 ≥ μ2.

Proposition 2: Let μ1, μ2 be the two eigenvalues of the
first fundamental form matrix J�

I JI of I, in descending order.
Then, we have

μ1 − μ2 = ‖∇ I ‖2 (17)

Proof: The ordered eigenvalues of IIP = J�
I JI can be

deduced from those of ∇ I ∇�
I , i.e., ‖∇ I ‖2 and 0, so μ1 =

‖∇ I ‖2 + 1 and μ2 = 1. This concludes the proof stage.
The local shape of I at Q can be described by means of

the eccentricity of a conic, here given by the quadratic form
v�J�

I JIv = ±1. How can this conic be interpreted? The first-
order Taylor expansion for infinitesimal changes (dx, dy) in
the vicinity of Q = I(x, y) yields

I(x + dx, y + dy) − I(x, y) ≈ JI[dx, dy]� (18)

For any unit direction v = [a, b]� in the xy-plane,
the quadratic form v�J�

I JIv returns the linear part g of growth
in arc length from I(x, y) to I(x + a, y + b). In addition,

g2 = ∥
∥dIQ((dx, dy)

∥
∥2 = v�J�

I JIv (19)

The following is an important remark that we highlight here
and is not mentioned in [32]. The AVG feature defined in (7)
is actually the Frobenius norm of the Jacobian matrix JN
of the map N(x, y), see (3), up to constant γ . Clearly, this
describes the second-order behavior of the surface M relative
to the normal at one of its points in the immediate vicinity of

4If A�A is full rank, then the maximum (resp. minimum) of ‖Ax‖2 =
x�A�Ax under the constraints ‖x‖2 = 1 is given by the largest (resp.
smallest) eigenvalue of A�A. Here, A = J�

I JI is 2 × 2 and generally full
rank.



this point. Using the results in (2), (3) and (4), we can claim
that the extracted feature in the virtual image only depends on
X, Y, Z and their derivatives up to order-2. This is consistent
(regarding the considered orders of the derivatives of X, Y, Z )
with the feature ‖∇ I ‖ =

√

I 2
x + I 2

y detected in the intensity
image, where I�, with � ∈ {1, 2}, is given in (14).

We have presented how some information relative to Curvi-
linear Saliency can be extracted, both in 3D and 2D. In the next
section, this Curvilinear Saliency measurement is improved
in 2D to be robust to texture and to background.

VI. ROBUSTNESS TO TEXTURE AND BACKGROUND

A. Multi-Curvilinear Saliency (MCS)

Contrary to depth images that represent textureless 3D
shapes, intensity images are composed of shape and tex-
ture components. Consequently, the Curvilinear Saliency (CS)
estimated from intensity images is affected by the textured
regions. Our idea is to put forward the assumption that multi-
scale analysis can discriminate between key points (those with
high CS value in the image) due to shape and key points due
to texture.5 At a coarse level, edges detected are reliable but
with a poor localization, and they miss small details. At a fine
level, details are preserved, but detection suffers greatly from
clutter in textured regions. In addition, the CS values of small
details and textures are high at the coarse level, whereas these
values decrease in the finest levels. To combine the strengths
of each scale, the CS value of each pixel over n scales is
analyzed. If this value at all scales is higher than a threshold
T , the maximum Curvilinear Saliency (MCS) value of this
pixel over all scales is then kept. This threshold is a function
of the number of the smoothed images, n, (i.e., T = e−n:
when n is small, then T is high, and vice versa). However,
if the CS value is lower than T in one level, it is considered a
point that belongs to a texture (or a small detail) point; thus,
it is removed from the final Multi-Scale Curvilinear Saliency
image. Adding this multi-scale step should help reduce the
impact of the texture; however, in the next section, we propose
introducing the principle used for estimating focus maps to
increase the robustness to the background and to the presence
of the texture. Before introducing the proposed improvement,
we briefly present existing works concerning texture detection
and, in particular, those concerning focus curve estimation.

B. Extraction of Texture: State of the Art

Various methods, such as [20], [34], have been proposed
for extracting the texture from a natural image. In these
approaches, the image is separated into two components
while preserving edges by first smoothing the intensity image,
as a pre-processing stage, and then extracting the shape/the
structure from that image relying on prior knowledge. These
methods are analogous to the classical signal processing low
pass-high pass filter decomposition. However, even if it is

5To build the scale pyramid, an edge-preserving smoothing approach,
denoted as an anisotropic diffusion filter [29], is used. It tries to separate
the low-frequency components (i.e., sharp edges) from the high-frequency
components (i.e., textures) by preserving the largest edges in an image.

correct to consider that the structure part of an image contains
strong edges, the texture can also contain medium and high
frequencies. Another possibility is to consider focusness.

Usually, focusness, which is related to the degree of focus,
is defined as being inversely proportional to the degree of blur
(blurriness) [18]. It is a valuable tool for depth recovery [50]
and also for blur magnification or image quality assessment.
Blurring is usually measured in regions containing edges since
edges would appear in images as blurred luminance transitions
of unknown blurring scale [12]. Then, the estimation of the
blur can be propagated to the rest of the image. Since blur
occurs for many different reasons, this task is challenging, and
in research, many methods have been proposed [43]. Interested
readers can find details about techniques that take into account
penumbra blur or shading blur [50], in particular, with multiple
scales [18].

Finally, most of the existing algorithms [18], [50] depend
on measuring the blur amount using the ratio between the
edges at two different scale levels (i.e., the original image
and the re-blurred image). Consequently, we propose using the
ratio between the two Curvilinear Saliency images that contain
robust edges at different scales to determine the blur amount
based on the methods developed in [50]. Concerning the
multi-scale aspect, our approach is inspired by the principles
explained in [18].

C. Removing Background With Focus Curves: State
of the Art

Based on the mapping between the depth of a point light
source and the focus level of its image, shape from defo-
cus (SFD) approaches recover the 3D shape of a scene from
focused images that represent the focus level of each point in
the scene [31]. Consequently, it seems interesting to introduce
what is called the detection of “focus curves”. More precisely,
these curves mean that the scale of blurring is estimated at the
Curvilinear Saliency feature of the 2D image and that these
features are supposedly related to discontinuities.

Focal blurring occurs when a point is out of focus. When the
point is at the focus distance d f from the lens, all the rays from
it converge to a sharp single sensor point. Otherwise, when
d �= d f , these rays generate a blurred region in the sensor
area. The blurred pattern generated in this way is called the
circle of confusion (CoC), the diameter of which is denoted c.

In [18], [50], the defocus blur can be modelled as a convolu-
tion of a sharp image with the point spread function (PSF). The
PSF is usually approximated by a Gaussian function g(x, σ ),
where the standard deviation σ ∝ c measures the blurring
amount and is proportional to the diameter of the CoC:

c = |d − d f |
d

f

d − f
,

where d, d f , f are the focus distance, defocus distance and
focal length, respectively. A blurred edge i(x) is then given by

i(x) = f (x) ⊗ g(x, σ ) (20)

where f (x) = Au(x) + B is an ideal edge, and u(x) is the
step function. The terms A and B correspond to the amplitude



and the offset of the edge, respectively. Note that the edge
is located at x = 0. In [50], the blur estimation method was
described for a 1D case. The gradient of the re-blurred edge is

∇i1(x) = ∇(i(x) ⊗ g(x, σ0))

= ∇((Au(x) + B) ⊗ g(x, σ ) ⊗ g(x, σ0))

= A√
2π(σ + σ0)

exp

(

− x2

2(σ 2 + σ 2
0 )

)

(21)

where σ0 is the standard deviation of the re-blur Gaussian
kernel. Thus, the gradient magnitude ratio between the
original and the re-blurred edges is

R = | ∇i(x) |
| ∇i1(x) |

=
√

σ 2 + σ 2
0

σ 2 exp −
(

x2

2(σ 2)
− x2

2(σ 2 + σ 2
0 )

)

. (22)

It can be proven that the ratio is a maximum at the edge
location (x = 0), and the maximum value is given by

R =
√

σ 2 + σ 2
0

σ 2 (23)

Finally, given the maximum value R at the edge locations,
the unknown blurring amount σ can be estimated using

σ = σ0√
R2 − 1

(24)

D. Multi-Focus Curves (MFC) Based on Curvilinear Saliency

We propose using the Curvilinear Saliency computation
instead of the edge response to estimate the focus curves of an
input image. In addition, focus curves are estimated at multiple
scales rather than at one scale as proposed in [50]. All the
information obtained from different blurring scales is com-
bined. In consequence, the Curvilinear Saliency is given by

C S = α((I 2
x + I 2

y )) ⊗ g(x, y, σ ) (25)

Then, the re-blurred Curvilinear Saliency image, denoted
C Si , at multiple scales can be defined as

C Si = α((I 2
x + I 2

y )) ⊗ g(x, y, σ ) ⊗ g(x, y, σi ) (26)

with n being the number of scales, and i = 1, 2, . . . , n.
Hence, the ratio between the original and the re-blurred
Curvilinear Saliency is

Ri = C Si

C S
= σ 2 + σ 2

i

σ 2 exp −
(

x2 + y2

2(σ 2)
− x2 + y2

2(σ 2 + σ 2
i )

)

Within the neighborhood of a pixel, the response reaches its
maximum when x = 0 and y = 0; thus,

Ri |0= C Si

C S
= σ 2 + σ 2

i

σ 2 = 1 + σ 2
i

σ 2

Finally, given the maximum value Ri at each scale level,
the unknown blur amount σi can be estimated using

σi = σi√
Ri |0 −1

, (27)

For n scales, n − 1 focus curve scales are computed by
using the ratio between the Curvilinear Saliency of the coarse
level (i.e., the original image) and the next scale levels. By
following the same remarks as in section VI-A, we define
Multi-Focus Curves (MFC) that correspond to the fusion of
all the focus curves into one map by keeping only the pixels
that have a high focus value in all the n −1 scales (i.e., a high
value means a value larger than T = e−n , chosen in the same
way as in section VI-A). If the pixel has a high value at all
scales, the maximum value of the scale of blur is taken into
account to build the final multi-scale curve map:

M FC = 1

arg maxi (si )
. (28)

In conclusion, the highest values of the estimated M FC
indicate edges that have low blurring (i.e., sharp edges). On
the contrary, low values indicate ones that have a high level of
blurring. Consequently, we expect that focus curves highlight
salient Curvilinear Saliency in images that are approximately
similar to the detected Curvilinear Saliency features in depth
images.

VII. EXPERIMENTS FOR FEATURE DETECTION

A. Comparison With Existing Methods

One of our most important objectives in this work was
to introduce a detector that is more repeatable between
2D images and 3D models than classical detectors. Conse-
quently, we compare the features detected on 3D models
with the proposed Curvilinear Saliency detector with features
detected on real images with these three 2D detectors: Image
Gradient (IG), Multi-Scale Curvilinear Saliency (MCS) and
multi-scale focus curves (MFC). In addition, the repeata-
bility is measured between the two other 3D model detec-
tors, i.e., Average Shading Gradient (ASG) [32] and Hessian
Frobenius Norm (HFN), and the same three 2D detectors.
In addition, MFC and MCS are then compared with nine
classical 2D detectors:

(1) Edge detectors: (i) Sobel, (ii) Laplacian of
Gaussian (LoG), (iii) Canny [6] and (iv) Fuzzy logic
technique [21];

(2) Corner detectors: (v) Harris detector based on auto-
correlation analysis and (vi) Minimum Eigenvalues detector
based on analysis of the Hessian matrix [39];

(3)Multi-scale detectors: (vii) SIFT [26], (viii) SURF,
speeded up robust features, a multi-scale technique based
on the Hessian matrix [3] and (ix) A multi-scale principal
curvature image (PCI) detector [11].

B. Evaluation Criteria

The eleven 2D detectors are evaluated with two measures:
(1) Intersection percentage (IP): the probability that a

2D intensity-based key feature can be found close to those
extracted in a depth image [36].

(2) Hausdorff distance (HD): the classical measurement is
defined for two point sets A and B by

H D(A, B) = max (h(A, B), h(B, A)) ,



TABLE I 

MEAN INTERSECTION PERCENTACE (IP) (Higher [s Better) OF ALL DEPTH 
IMAGES RENDERED FROM DIFFERENT VIEWPOINTS AND ALL REAL 

IMAGES CAPTURED UN DER DIFFERENT TEXTURES AND LIGHTING 
FOR THE Web Co/lec/ÎOII 

Metbods MFCMCSPCJ [39]Harris SIFTSURf Sobe! Canny LoG [21] 
Car 59 50 46 08 04 03 03 10 18 11 05 

Shoe 38 31 31 02 03 10 01 04 04 05 02 
Plane 58 55 38 06 04 10 03 18 21 21 14 

T-Rex 66 64 59 09 06 02 05 16 18 20 12 
Elephant 37 32 32 03 03 05 03 06 08 06 04 
Fhydrant 56 51 42 06 04 02 09 09 14 13 06 

Jeep 69 62 58 05 05 05 06 09 15 11 06 
Mug 57 54 50 02 03 04 03 08 12 07 08 
Teddy 44 39 32 04 05 09 04 07 14 08 07 
Pistol 69 67 61 09 09 09 04 13 23 14 07 

where h(A, B) = max mm Il a - b 11- The lowest distance 
aEA bEB 

corresponds to the most similar two sets. 

C. Datasets

Two datasets are evaluated:

(1) Web collection: we have collected 10 abjects and 15

real images of each abject on the web by choosing views 

as close as possible to the views used for the generation of 

the depth images. Moreover, to highlight the robustness of the 

approach to different acquisition conditions, many real images 

of a similar mode! are taken. 

(2) PASCAL3D+ dataset [49]: it is used to assess scalabil­

ity. It contains real images corresponding to 12 rigid abjects 
categories. We have computed average results for ail non­

occluded abjects in each category, i.e., approximately 1000 

real images and 3 or more reference models per category. The 

real images are acquired under different acquisition conditions 

(e.g., lighting, complex background, and low contrast). We 

have rendered the depth images of the corresponding 30 CAO 

mode! using the viewpoint information from the dataset. Only 

non-occluded and non-truncated abjects in the real images 

were used. Furthermore, we choose 30 textureless abjects 

(available online: http://tf3dm.com/), 
For ail the tested 30 models, depth images have been 

rendered using MATLAB 30 Mode! Renderer: http://www. 

openu.ac.il/home/hassner/projects/poses/. 

D. Analysis of the Results

As shown in tables I and II, and as expected, the proposed

approach using focus curves based on Curvilinear Saliency, 

named MFC, is able to find the highest number of features 

in the intersection with the features detected on real images 

captured under different textures and lighting conditions. More 

precisely, MFC obtains an average mean intersection per­

centage greater than 56%, whereas for MCS and PCI, it is, 

respectively, greater than 50% and 44% for the web collection 

dataset. With the PASCAL+3D dataset, MFC also yields the 
highest mean average 1P among ail the tested detectors: 46%. 

In addition, as shown in tables III and IV, the average 

Hausdorff distance (HD) with MFC is less than 35 and, 

with MCS, is Jess than 52. For all the presented results, 

the two proposed approaches always give the lowest HD. 

TABLE II 

MEAN INTERSECTION PERCENTACE (IP) (Higher [s Better) OF ALL DEPTH 
IMAGES RENDERED FROM DIFFERENT VIEWPOINTS AND ALL REAL 

IMAGES CAPTURED UNDER DIFFERENT TEXTURES AND LIGHTING 
FOR THE PASCAL3D+

Methods MFCMCSPCJ [39] Harris SIFT SURF Sobe!Canny LoG [21] 
Plane 55 50 37 15 09 08 13 10 13 11 10 

Bicycle 69 61 57 25 08 16 24 13 15 18 14 
Boat 42 36 28 09 10 06 10 09 14 11 09 
Bus 31 24 17 05 06 02 04 04 06 04 04 
Car 44 41 24 08 08 03 06 16 18 14 13 

Diningtable 40 38 19 06 05 04 08 11 12 11 07 
Motorbike 59 53 48 07 09 06 14 18 11 14 08 

Sofa 67 66 60 10 11 18 20 19 16 15 11 
Train 31 28 14 06 07 03 05 08 07 04 06 

Tvmonitor 44 40 37 05 06 12 11 14 17 11 10 
Chair 58 54 42 18 10 09 18 20 19 21 14 
Bottle 56 54 51 18 14 18 21 17 19 13 12 

TABLE ID 

MEAN HAUSDORFF DISTANCE (HD) (Lower [s Better) OF ALL DEPTH 
IMAGES RENDERED FROM DIFFERENT VIEWPOINTS AND ALL REAL 

IMAGES CAPTURED UNDER DIFFERENT TEXTURES AND LIGHTING 
FOR THE Web Co/lec/ÎOII 

Methods MFC MCSPCJ [39] Harris SIFT SURF Sobe!Canny LoG [21] 
Car 21 29 40 57 77 85 71 48 46 47 49 

Shoe 34 52 67 102 106 111 108 71 71 71 71 
Plane 26 23 19 37 43 46 47 26 26 24 24 
T-Rex 20 17 25 41 100 143 46 28 28 32 22 

Elephant 21 41 55 80 91 114 74 57 58 57 57 
Fhydrant 15 23 35 62 86 74 67 38 37 36 42 

Jeep 29 31 42 70 67 74 89 47 47 46 47 
Mug 35 56 65 129 133 134 145 72 76 75 75 
Teddy 19 24 31 72 69 77 101 47 44 47 47 
Pistol 18 16 26 34 96 44 73 30 65 29 26 

TABLE IV 

MEAN HAUSDORFF DISTANCE (HD) (Lower [s Better) OF ALL DEPTH 
IMAGES RENDERED FROM DIFFERENT VIEWPOINTS AND ALL REAL 

IMAGES CAPTURED UNDER DIFFERENT TEXTURES AND LIGHTING 
FOR THE PASCAL3D+

Metbod MFCMCS PCI [39] Harris SIFT SURF Sobe! Canny LoG [21] 
Plane 47 48 59 61 63 68 73 68 65 69 71 
Bicycle 71 75 79 90 101 93 100 83 84 82 87 

Boat 62 68 75 79 77 87 76 75 71 78 76 
Bus 106 110 117 128 123 131 127 121 118 122 123 
Car 80 85 98 102 100 113 108 89 88 94 97 

Diningtable 84 85 96 117 118 118 111 117 114 116 120 
Motorbike 62 64 78 84 96 94 86 88 91 86 92 

Sofa 70 75 77 86 98 93 92 95 99 89 96 
Train 101 108 121 126 123 133 127 125 129 129 122 

Tvmonitor 96 102 104 109 104 111 105 116 l l2 114 106 
Chair 92 105 115 119 108 107 112 98 97 112 106 
Bottle 78 84 87 89 90 92 97 82 86 79 88 

Ali these quantitative results support that MFC is able to detect 

Curvilinear Saliency features that are more repeatable between 

an intensity image and its corresponding depth image than the 

state of the art. 

In the rest of this section, we illustrate the results for 

the most significant dataset, PASCAL3D+ [49]. In Fig. 4, 

the repeatability percentage between the three comparable 
30 detectors, i.e., MFC, MSC and Image Gradient (IG), 

and the three comparable 20 detectors, Hessian Frobenius 

Norm, Average Shading Gradient and CS, is presented. These 

results highlight that Image Gradients are affected by texture. 

Moreover, MCS improves the repeatability between depth and 



Fig. 4. Average repeatability percentages for two examples of 3D models
of PASCAL3D+ dataset: car (a) and sofa (b).

Fig. 5. Real images (row 1), depth images (row 2), and Curvilinear Saliency
resulting with 5 scales with MCS (row 3), MFC (row 4) and CS (row 5).

real images, compared to IG, and as expected, MFC still
yields the best repeatability scores. Among the detectors used
for depth images, the Curvilinear Saliency detector yields the
best repeatability scores between the three intensity-based 2D
detectors. In conclusion, using CS with MFC gives the best
repeatability among all the other possible combinations. In
Fig. 5, some visual results show that MFC can reduce a high
number of edges belonging to texture information.

E. Robustness to Illumination Changes

The MCS and MFC methods have been tested with
sequences of the web collection database by chang-
ing the global illumination of the image depending on
Io = 255(Ii/255)γ , where Ii and Io are the input and output

Fig. 6. Robustness against γ correction changes (illumination changes on
the x-axis) illustrated with (a) the intersection percentage (y-axis) and (b) the
Hausdorff distance (y-axis).

TABLE V

MEAN EXECUTION TIMES IN SECONDS OF MATLAB CODES EXECUTING
ON A 2.9 GHz INTEL CORE(i7)

images, respectively, and γ > 0 is the gamma correction.
Fig. 6 shows a qualitative comparison of the intersection
percentage (IP) and the Hausdorff distance (HD). Both MCS
and MFC are robust against small and significant changes in γ .

F. Execution Time for Detection

The proposed approaches obtain good results without a
substantial impact on the execution time. As shown in table V,
where the mean execution times are given, both MFC and
MCS execution time is compared with the 8 tested detectors.
The proposed approaches are finally less time-consuming than
SIFT or even SURF approaches. Moreover, MFC and MCS are
also twice as fast as PCI, which also works with curvatures.

VIII. REGISTRATION OF 2D IMAGES TO 3D MODELS

In this section, a 2D query image is registered to a 3D model
by finding the closest view d between all the rendered images
of the 3D model dk , k = 1 . . . N , with N being the number of
rendered views (i.e., depth images). The object to recognize
is supposed to be contained in a bounding box, and we would
like to estimate the 3D pose. Estimating the pose consists
in estimating the elevation and the azimuth angles, (h) and
(a), respectively, and the distance between the model and the
camera, (v). For each 3D model, depth images are generated
from almost uniformly distributed viewing angles around a
sphere by changing h, a and v to have N views per model.
The choices for these terms are explained in paragraph IX-A.

To describe an object in a photograph and in all the ren-
dered depth images, we naturally expand the famous classical
descriptor HOG, Histogram of gradient, which is presented
in [9] and widely used [2], [32], to work on Curvilinear
Saliency by generating Histogram of Curvilinear Saliency,
HCS. A sliding window is used to generate dense features
based on binning the gradient orientation over a region. Indeed,
both in rendered depth images and in photographs, the curva-
ture orientation and the magnitude of the Curvilinear Saliency
are used for building the descriptors. For depth images, C S is



multiplied by the eigenvector eH1 corresponding to the largest
eigenvalue of the matrix M in (11):

−→
C S = C S.−→eH1 .

For photographs, MC S values are multiplied by the eigenvec-
tor eS1 corresponding to the Curvilinear Saliency λ1 − λ2:

−−−→
MC S = MC S.−→eH1 .

Moreover, M FC values are also multiplied by the
eigenvector eS1:

−−−→
M FC = M FC.−→eS1 .

Using the HOG principle, we propose a descriptor that con-
tains the curvature orientation and the magnitude of C S, MC S
and M FC , binned into sparse Histograms.

Given the HCS descriptor from a 2D query image Dq ,
the HCS descriptors of the rendered images DdN , with N
rendering depth images, are computed. To compare Dq to
every DdN , the similarity scores are computed as in [2]:

Shcs(k, h, a, v) = (DdN − µs)
T �−1Dq, (29)

where k = 1 . . . N , and � and µs are, respectively, the covari-
ance matrix and the mean over all descriptors of the rendered
images. For the registration process, evaluating Shcs(k, h, a, v)
can be carried out by computing the probability of the inverse
of the inner product between Dq and a transformed set of
descriptors. The Shcs(k, h, a, v) probability is then maximized
to find the closest corresponding views of the query image.

Moreover, a global similarity is evaluated by measuring
how well each individual detected point in an image can be
matched with a corresponding detected point in the depth
map, i.e., how well each image’s detected points are repeat-
able. More precisely, this repeatability score, Rep, normal-
ized between 0 and 1, is the probability that key features
in the intensity image are found close to those extracted in
the depth image RepdN ���q . Since the closest view should
have high repeatability scores in comparison to other views,
the dissimilarity based on repeatability scores is defined by
Rdi = 1 − Repdi���q . If Rdi is the repeatability scores of N
rendered views of a model and an image, the similarity Srep

is defined by

Srep(k, h, a, v) = ex p

(−(Rdi − μr )
2

2 σ 2
r

)

. (30)

where μr is the mean value of RdN , and σr is the standard
deviation (i.e., in this work σr = 0.1). Finally, by combining
all HCS feature similarities and the similarity based on the
repeatability, the probability of the final similarity is given by

S(m, h, a, v) = Shcs(k, h, a, v) � Srep(k, h, a, v). (31)

where � is the Hadamard product. Based on calculating
S(k, h, a, v), we select at least the highest three correspon-
dences to estimate the full pose. From the selected three views,
the logically ordered or connected views (i.e., coherent views)
are first selected. As a following step, minimum and maximum
values of h, a and v of the corresponding views are estimated.
Subsequently, additional views are generated in the vicinity

of the selected views that is between the minimum and the
maximum values of the three parameters with small steps
(e.g., δh = 5◦, δa = 5◦ and δv = 5 cm). The process is
repeated for these ranges to find the closet view to the object
in a query image until the differences between the minimum
and maximum values of h, a, v of the selected coherent
views are as small as possible; more precisely, |dh| = 5,
|da| = 5, |dv| = 1 are used to stop the algorithm repetition.

IX. POSE ESTIMATION EXPERIMENTS

A. 3D Model Representation and Alignment

Matching photographs and rendered depth images requires
a 3D model representation. Each depth image represents a 3D
model from different viewpoints. Hence, we need to have a
significant number of depth images to completely represent a
3D model, which yields a high execution time. Consequently,
N depth images (approximately 700 in our experiments)
have been orthographically rendered from approximately uni-
formly distributed viewing angles h and a and the distance v
(i.e., in these experiments, h is empirically chosen and is
increased by a step of 50◦, the azimuth angle, 20◦, and the
distance, 0.3 m, for a range between 0 and 2 m).

Moreover, we need to parameterize the model’s view align-
ment between the depth image and the object detected in a
color image. For comparing two models, the optimal measure
of similarity, over all possible poses, has to be computed.
To do so, each model is placed into a canonical coordinate
frame normalized for translation and rotation. Since the model
centroids are known, the models are normalized for translation
by shifting them to align the center of mass with the origin.
Subsequently, the two models are normalized for rotation by
aligning the model’s principal axes with the x- and y-axes.
This defines the ellipsoid that best fits the model. By rotating
the two point sets so that the ellipsoid’s major axis is aligned
with the x-axis and the second major axis is aligned with
the y-axes, the model is obtained in a normalized coordinate
frame. Then, principal component analysis, PCA, is used to
find the orientation of the major axis of the ellipse. The
model’s point set is rotated by the difference in the direction
of the two major axes. After normalization, the two models
are (almost) optimally aligned and can be directly compared
in their normalized poses.

In addition, the HCS descriptor is quantized into 9 bins,
exactly as proposed in [9]. The photograph and each depth
image are divided into a grid of square cells (we have
empirically chosen that the image is divided into 8 × 8).6 For
each cell, Histograms are aggregated by weighting them with
their respective magnitudes.

B. Analysis of the Results

For pose estimation or even for object recognition, the prob-
ability that photograph key features are found close to depth
key features must be high when the photograph and the depth
image come from the same viewpoint. This aspect is illustrated

6Different grids were tested: 4 × 4, 8 × 8 and 16 × 16. The grid with 8 × 8
size yields the best precision rate.
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Fig. 7. Repeatability scores of an image with 40 rendered views around the 
correct view. The correct view is view#20 in the rniddle of the x-axis. 

TABLE VI 
PRECISION OF POSE ESTIMATION FOR CS, ASG AND AR

AGAINST MFC, MCS AND IG 

F3D 
CS ASG AR 

2D MFC MCS IG MFC MCS IG MFC MCS 
Plane 0.85 0.83 0.62 0.84 0.80 0.59 0.78 0.70 
Bicycle 0.81 0.76 0.60 0.80 0.78 0.61 0.74 0.73 
Boat 0.78 0.71 0.58 0.75 0.70 0.57 0.71 0.68 
Bus 0.87 0.82 0.56 0.82 0.80 0.52 0.75 0.74 
Car 0.86 0.85 0.58 0.86 0.83 0.51 0.76 0.72 
Diningtable 0.86 0.83 0.61 0.81 0.81 0.60 0.79 0.77 
Motorbike 0.79 0.78 0.60 0.78 0.75 0.58 0.69 0.62 
Sofa 0.85 0.81 0.64 0.80 0.72 0.61 0.68 0.61 
Train 0.87 0.86 0.70 0.81 0.82 0.71 0.74 0.67 
Tvmonitor 0.83 0.80 0.55 0.80 0.79 0.54 0.66 0.64 
Chair 0.80 0.76 0.62 0.78 0.73 0.56 0.68 0.66 
Bottle 0.77 0.74 0.61 0.79 0.71 0.59 0.62 0.64 

IG 
0.50 
0.49 
0.52 
0.51 
0.47
0.54 
0.52 
0.53
0.58 
0.52 
0.54 
0.50 

in Fig. 7. As expected, the three tested detectors yield the 

highest repeatability score with the correct viewpoint (even 

if the difference between views is slight, as with Sobel). 

In addition, as expected, the score is graduaily diminished 

whenever it is at a distance from the correct viewpoint. The 

most important remark is that MCS results in the highest 

differences between the correct view and ail the other views. 

Consequently, this illustrates that it is the most adapted detec­

tor for pose estimation based on 2D/3D registration. This result 

is quite coherent because SIFf was designed to be robust in 
the face of numerous change difficulties. Hence, it induces that 

the differences should be lower than MCS, which is designed 

to be efficient in the case of 2D/3D matching. 

In addition, the other experiment was performed with the 

Pascal+3D dataset. For each category of objects, we compute 

the precision rate for detecting the correct view. This is done 

subsequent to using the three aforementioned methods for 3D 

model representations, i.e., Curvilinear Saliency (CS), Average 

Shading Gradient (ASG) and apparent ridges (AR) [19], 

against the three techniques for intensity image representation, 

i.e., Image Gradient (IG), Multi-Curvilinear Saliency (MCS)
and Multi-Focus Curves (MFC). As shown in table VI, the reg­

istration between our Curvilinear Saliency (CS) representation

of the 3D model and the multi-scale focus curves (MFC)

extracted on corresponding images outperforms ail other vari­

ations of the tested methods. This confirms the fact that

TABLE VII 
AVERAGE ERROR OF THE ESTIMATED POSE (EST.) (a) ELEVATION, 

(b) AZIMUTH AND (c) YAW ANGLES AND (d) DISTANCE, IN 
CENTIMETRES, OF THE POSE OF THE CAMERA. THE TERM 

CLO . INDICATES THE CLOS EST VIEW TO THE CORRECT 
POSE. THESE QUANTITATIVE RESULTS 

DEMONSTRATE THAT THE BEST 
COMBINATION IS MFC/CS 

1 Metbods (a) (b) (c) (d) 
Est. Clo. Est. Clo. Est. Clo. Est. Clo. 

CS/MFC l 16.5° 4.8° 08.8° 1.2° 5.6° 0.8° 18 7 
CS/MCS 16.0° 5.2° 11.4° 1.50 6.1° 1.10 21 8 

ASG/MFC 19.2° 5.3° 10.1° 1.30 5.1° 0.8° 22 9 
ASG/MCS 19.6° 5.9° 13.6° 1.90 6.2° 1.20 23 11 
AR/MFC 28.7° 7.1° 16.5° 2.5° 8.5° 1.80 36 13 

AR/MCS 29.5° 8.0° 17.3° 3.1° 9.2° 2.0° 39 17 

TABLE vm 
Acc,c/6 MEASURES POSE ESTIMATION ACCURACY (THE HIGHER THE 

BETTER), AND MedErr MEASURES THE VIEWPOINT ERROR (THE 
SMALLER THE BETTER) FOR THE PROPOSED MODEL BASED ON 

MFC FEAT URES AND Two DEEP LEARNINC MODELS [41], [45] 

Models 1 rnean Ace" /6 1 rnean M edErr 1 
Render (41] 0.82 13.6
ONet (45] 0.81 11.7 

Our Mode! with MFC 0.80 09.5 

TABLE IX 
CONTRIBUTION OF EACH STEP OF THE PROPOSED ALCORITHM 

TO THE ENTIRE EXECUTION 

Rendering 

25.25% 

Depth Feature 
Extraction 

28.28% 

Image Feature
Extraction 

6.06% 

Registration 

40.40% 

Curvilinear Saliency representation computed from the depth 

images of a 3D model can capture the surface discontinuities. 

In addition, MFC can reduce the influence of texture and 

background components by extracting the edges related to 

the object shape in intensity images rather than MCS. Fur­

thermore, the precision rate is reduced by more than 25% 

compared to ASG and IG. Apparent ridge rendering yields 

the lowest registration accuracy with the three image repre­

sentations among ail the 3D model representation techniques. 

Moreover, using ASG with untextured 3D models against 

MFC and MCS increases the correct pose estimation rate. 
All these results indicate that Average Shading Gradients 

computed from the normal map of an untextured geometry 

are a good rendering technique for the untextured geometry. 

However, Image Gradients are not the appropriate representa­

tion of intensity images to match rendering images and real 

images since they are affected by image textures. All these 

results are confirmed in table VII, where the details regarding 

the pose estimation precision in terms of elevation, azimuth, 

yaw angles and distance are given. 

In the following experiment, in Fig. 8, the precision of 

image registration is shown among the top r similarities, 
i.e., we sort ail the similarity scores obtained for ail views,

and the r first highest similarities are analyzed (more precisely,

the 1, 3, 5, 10 and 20 first ranks). The correct pose is searched

for within this view set. As shown, the precision rate is

increased when the number of views is increased for any



Fig. 8. Precision values with different ranks with image representation using (a) Image Gradient (IG), (b) Multi-Scale Curvilinear Saliency (MCS) and
(c) multi-scale focus curves (MFC).

Fig. 9. Some correct registration examples with the Pascal+3D dataset. We show the query image (column 1), the corresponding 3D model (column 2) and
the first ranked pose estimation (column 3). This illustrates that even if the 3D model does not have the same detailed shape, the registration can be correctly
executed.

combination of 3D model representation and image representa-
tion. However, MFC yields the highest precision rate with the
three tested methods for representing 3D models. In addition,
MCS yields good precision values. In fact, IG yields the lowest
precision values due to the fact that the edges detected with
texture information have a negative influence on estimating
the successful registration.

Finally, Fig. 9 shows some examples of correct registrations
with the top-ranked pose estimation. It can be seen that
our system is able to register an image with a wide variety
of textures and viewing angles. In addition, the proposed
algorithm can register images regardless of light changes.

C. Comparison With a CNN Model

The proposed model based on MFC features is compared
with two deep pose estimation models [41], [45] using the

same dataset, PASCAL3D+. We used the same metrics Accπ/6
and Med Err as in [45]. The quantitative results are shown
in table VIII. As indicated, our model based on MFC yields
an average Accπ/6 of 80%, which is comparable with the
work put forward [41], [45] with accuracies of 82% and 81%,
respectively, although these methods have rendered millions
of synthetic images to train their deep models. For Med Err ,
the proposed method yields the smallest error among the
two tested methods [41], [45], achieving Med Err of 9.5◦,
while [41], [45] achieved 13.6◦ and 11.7◦.

D. Execution Time for Registration

In Table IX, we show how each step of the proposed
approach, i.e., rendering, depth feature extraction (CS),
image feature extraction (MFC/ MCS) and registration, con-
tributes to the total execution time. It is shown as a pie



chart: approximately 53% of the execution time of the entire
algorithm’s total time is spent on rendering and depth feature
extraction. In addition, the time requested to extract the input
color feature is only 6%. Finally, to determine the final
viewpoint, the time spent corresponds to approximately 40%
of the entire operation. Optimizing the code was not the
priority, and we can imagine that this execution time can be
improved.

X. CONCLUSIONS AND PERSPECTIVES

After an analysis of existing tools for 2D/3D registration,
the major goal of this paper was to propose a more adapted
approach for 2D/3D matching, and, in particular, more justified
than existing approaches. For that purpose, we also put forward
an evaluation protocol based on the repeatability study. More
precisely, to carry out this matching process, we have studied
these two important aspects: how to represent the data in 2D
and 3D and, subsequently, how to compare them. In this
context, we introduce a 3D detector based on Curvilinear
Saliency and a 2D detector based on the same principle but
adapted on multiple scales and combined with the principle
of focus curves. The interest in this method is illustrated
by quantitative evaluation on pose estimation and 2D/3D
registration. All the results are encouraging, and the next
step of this work is to use this registration to identify object
defaults. For this purpose, we need to study the robustness of
this work with regard to missing parts of objects and to adapt
the registration process.
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