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Abstract—We present PCach, a smartphone application de-
signed to relieve the congestion in cellular networks resulting
from the exponential growth of mobile data traffic. The basic
idea underlying PCach is simple: use Wi-Fi to proactively cache
content on the smartphone’s memory, which otherwise would
have been delivered through the cellular network during the
next Wi-Fi coverage time gap. However, it leads to several
challenging questions, including how much mobile data actually
flows through cellular networks, how much data can be pre-
cached, and when and what to pre-cache. By analysing the
extensive MACACO measurement dataset, our analysis shows
that the median smartphone user transfers 15% of her data via
the cellular network and that up to 80% of it could be pre-cached
via Wi-Fi. From our empirical observations, we introduce an
algorithm that can run stand-alone on off-the-shelf smartphones
and predict with good accuracy when and what to pre-cache.

I. INTRODUCTION

Recently, we marked the 10th anniversary of the launch of
the first iPhone, which sparked the smartphone revolution and
has had a big impact on how we generate and consume content.
It has been a boon for cellular providers but also an extreme
challenge. Cisco projects that by 2021 [2], 5G will represent
only 0.2 percent of connections and 1.5 percent of total traffic.
Solutions that can be deployed immediately and serve as bridge
to the 5G roll-out are sorely needed. To this end, we introduce
PCach, a user-centric approach that can be deployed on off-the-
shelf smartphones by simply downloading an application and
help relieve congestion in cellular networks. To accomplish
this, PCach uses Wi-Fi connectivity to proactively cache (pre-
cache) content users are likely to need in the immediate future
and otherwise would have downloaded through the cellular
connection. The concept of pre-caching (or prefetching) has
been introduced in the early ages of web browsing to gain
in user-perceived download time. The key idea is to identify
the webpage the user is highly likely to request in the near
future to start its download before the actual download request
takes place [7]. In our case, we have to predict both the dates
at which Wi-Fi stops and resumes, and the data the user is
expected to need during Wi-Fi outage.

The concept of offloading content from a metered network
(e.g. cellular) to an un-metered network (e.g. Wi-Fi) has been
thoroughly studied in the past. The potential of offloading
the content generated by the mobile (i.e. in upload) has
been investigated in [6]. Authors show that offloading delay-
tolerant data is particularly beneficial for the overall system
performance. Contrary to the work in [6], we don’t postpone
the transfer of 3G data to the Wi-Fi resume date but study

the solution where 3G data is prefetched before Wi-Fi outage
happens. In the context of vehicular networks where Wi-Fi
coverage is scarcer and often of lower quality, authors of [1]
propose to predict Wi-Fi availability and decide whether to
transmit data on cellular or Wi-Fi depending on flow timing
constraints. We address as well in this work the problem of
predicting Wi-Fi coverage, but with a finer granularity as we
have to predict the Wi-Fi cut and resume dates.

Our main contributions may be summarized as follows:
• Using a dataset crowdsourced from a multi-year, multi-

country deployment of MACACO-app (section II), we
establish a case for pre-caching (section III) by showing
that i) a significant amount of mobile traffic is delivered
through the cellular network, ii) there are non-trivial gaps
in the Wi-Fi connectivity.

• We introduce PCach (section IV), a user-centric approach
that can run as an ordinary app on off-the-shelf smartphones
and pre-cache via Wi-Fi content that otherwise would have
been delivered through the cellular network.

II. THE CROWDSOURCED MACACO DATA

To make the case for pre-caching data on smartphones, we
have designed and deployed MACACO-app, a mobile Android
application to crowdsource fine-grained statistics on networking
content and context. It has been deployed on a set of 45
smartphones for an extended period of time, offering a rich
dataset on which we base our analysis. The architecture of
MACACO-app is described in [5].

A. Collected data

MACACO-app collects the information listed in [5] every 5
minutes, grouped into context and content features:

a) Context: defines in our case the mobile user’s environ-
ment. For this study, we leverage the following context items:
the list of visible Wi-Fi networks; whether the smartphone’s
active network is Wi-Fi or cellular; and the name of the Wi-Fi
network the user is currently connected to if Wi-Fi.

b) Content: relates to the nature of the data that is either
pushed onto or pulled from the Internet by the smartphone
user. As we do not want to break Android’s privacy rules, we
capture for each measurement the following content features:
the list of applications currently running; the volume of data
uploaded per application to the Internet; and the volume of
data downloaded per application.
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MACACO-app has been installed on 162 devices between
July 2014 and July 2017, creating a dataset of 2.64 million mea­
surement samples, representing 220k hours of measurements. 
Volunteers originate from 5 different countries of different 
profiles, including students, full-time employees in academia 
and industry. References [4], [5] offer detailed statistics on the 
data collection periods of ail phones, of the top 20 applications 
in terms of download volume (top) and upload volume (bottom). 

1) Data used in this study: For this study, 45 smartphones
totaling at least 5000 measurements (i.e. ~ 17 days) since May 
2015 have been selected, representing a total of 1.635.641 
measurements ( ~ 136k) hours of measurements. Volunteers 
have joined and left, but over 40% of the phones reported data 
for over 100 days, with some doing so for over 500 days. 

2) Cellular and Wi-Fi Traffic: The total traffic generated
by 33 smartphones during the data collection period is plotted 
in Fig. 1 1

• Traffic volume is split between traffic delivered 
through cellular and Wi-Fi. Both upload and download traffic 
are merged in these statistics. Here, the download volume is 
4.26 times the upload volume. Interestingly, Wi-Fi traffic is an 
order of magnitude higher than the cellular traffic. 
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Fig. 1. Distribution of cellular and Wi-Fi traffic in Mbytes/day for 33 phones. 

III. MINING FOR PCACH

In this section, using the dataset collected by MACACO-app, 
we address what we consider to be the key questions regarding 
the feasibility of pre-caching as a strategy for reducing peak­
hour congestion in cellular networks. Namely, how much traffic 
is delivered through cellular networks, what are the gaps in 
Wi-Fi connectivity that would justify pre-caching, and finally, 
what is the ceiling of pre-caching. 

A. 3G Traffic and Wi-Fi gaps

A significant part of smartphone traffic already flows through
Wi-Fi. Our measurements show that, white the proportion of 
cellular traffic is reduced compared to Wi-Fi, it still represents 
15% of the total mobile data traffic. The challenge we address in 
this work is whether this 15% of cellular data can be pre-cached, 
and if yes, if is it worth the effort. Therefore, it is important 
to understand how Wi-Fi outage periods are experienced by 
MACACO participants. 

1 The traces of 12 phones have been discarded as the se volunteers have
generated too little Internet traffic 

We define a Wi-Fi gap as the time period between a Wi-Fi eut 
event and a Wi-Fi resume event A Wi-Fi eut event is identified 
on measurement sample x if: Wi-Fi is the active connection 
for sample x - 1, cellular is the active connection for sample 
x and the time elapsed between x and x - 1 is no longer than 
10 minutes. Conversely, a Wi-Fi resume event is identified on 
measurement sample x if the previous sample had a cellular 
active connection white the current sample shows a Wi-Fi 
connection. users disabling MACACO-app for an extended 
time. The cumulative distribution of the Wi-Fi gap duration is 
given in [4]. Up to 80% of the Wi-Fi gaps last no more than 
one hour and a half white 65% of them last at most 30 minutes. 
By taking a closer look at the Wi-Fi eut and resume dates 
in [4], we notice a surge in cuts from 6:00 to 7:00 and from 
15:00 to 16:30. These peaks in cuts are followed, around an 
hour later, by a surge in Wi-Fi resume events. These statistics 
underline that Wi-Fi disconnections are very likely to occur at 
commute times. 
B. Pre-caching potential.

In this section, we establish a bound on the volume of 3G
data that could be pre-cacbed knowing the geometry of Wi-Fi 
outage periods for the users in our dataset To compute this 
bound, we first assume that we perfectly predict Wi-Fi eut 
and resume dates, and the content the user will request during 
Wi-Fi outage (predictability is discussed in section IV). 

To capture the time-dependent relevance of data on the 
potential of pre-caching, we have defined a data validity 
period called the horizon. The horizon, expressed in minutes, 
represents the time for which the pre-cached data is meaningful 
to the user experiencing a Wi-Fi gap. For the 33 users in our 
dataset, we have calculated the amount of data that can be 
pre-cached for different horizon values. At each Wi-Fi eut 
event, we have accumulated the traffic sent over cellular for at 
most the duration of the horizon or until Wi-Fi resumes. Fig. 2 
shows the fraction of cellular data that can be prefetched for 
different horizon values. We have seen that around 80% of the 
Wi-Fi gaps last less than one hour and a half. With a 2-hour 
horizon we could thus pre-cacbe at most to 80% of the cellular 
data The data analysis in this section shows the potential of 
pre-caching since a significant percentage of mobile traffic is 
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delivered through cellular at commuting hours during Wi-Fi
gaps of at most 2 hours.

IV. PCACH: A USER-CENTERED PRE-CACHING STRATEGY

In this section, we introduce PCach, a pre-caching strategy
whose design is driven by the analysis of the measurements
dataset. It consists of predicting the future occurrence of Wi-Fi
cut and resume dates, together with the data she is likely to
need during the gap.

A. The PCach approach

PCach can be implemented as a standalone mobile applica-
tion. Thus, it only leverages information that can be accessed
through the native Application Programming Interface of the
operating system. Our design aims at protecting user privacy:
Exploitation and storage of sensed data, prediction processing
and results are all made exclusively on the smartphone.

Algorithm 1: PCACH
Input : current time slot, cSlt; list of pre-cachable apps,

sApps; number of apps to pre-cache, K
Output : List of apps to pre-cache, PCachApps

1 : begin
2 : PastDB ← Update history(cSlt) ;
3 : cut← predictNextWiFiCut(PastDB, cSlt);
4 : if cut == true then
5 : rSlt← predictWiFiResumeSlot(PastDB, cSlt);
6 : PCachApps← predictTopKApps(sApps, K,

cSlt+ 1, rSlt);

7 : Return PCachApps;

Once the PCach app is installed on a smartphone, it triggers
Algorithm 1 periodically. To predict Wi-Fi gaps, PCach divides
a 24-hour period into time slots. In any given time slot, cSlt,
it first predicts if a Wi-Fi cut event is going to occur in the
next time slot, cSlt + 1. If that is the case, it predicts the
identifier rSlt of the future slot where Wi-Fi is supposed to
resume, giving PCach the information necessary to know when
a Wi-Fi gap occurs and its duration. If the duration is non-
zero, it predicts the top K from a list of applications, sApps,
considered to be pre-cachable (more on this in section IV-B).
All predictions rely on the smartphone usage history, stored
in a local database, PastDB, which is updated continuously.
The efficiency of PCach obviously depends on the efficiency of
the algorithms used for predicting Wi-Fi gaps and the content
of applications to pre-cache.

In terms of implementation, MACACO-app derives from our
crowdsensing app as it measures periodically the same data
as the one in our MACACO data set. This measurement step
is easily done in a standalone app. To trigger prefetching for
a given app, P-Cach simply requests the operating system to
launch the app for example by pushing it to the foreground for a
short period of time. The app is thus likely to update its content
in a standalone manner. The consequence is that prefetching
only happens if the app is configured to update its content in
running status. In terms of memory, the context and content
data we store is really light: a day of measurement generates

158 bytes of raw data, in average. This can be further reduced
in volume as our prediction schemes build on very simple
quantitative information extracted from these measurements at
each measurement date [4]. The prefetched content will add to
it, but since we let the app prefetch its content we rely on its
own memory management policy. In terms of energy footprint,
it is the periodic data collection that is energy-hungry. P-Cach
uses the same data collection operations as our crowdsensing
app. This app has been designed with care to minimize energy
consumption. Main design choices are clearly explained in [5].

Next, we show how simple learning strategies for Wi-Fi gap
and top app prediction already perform well on our dataset.

B. Top app prediction

This prediction step selects the K mobile apps that are the
most likely to send or receive data during the next Wi-Fi gap.
This problem is closely related to the one addressed in [8].
Next, we identify from our dataset the actual number of apps
K to be prefetched and the set sApps of apps that are worth
pre-caching.

1) Choice of K: In [5], we show that only a few apps trigger
most of the downloaded data volume. The median phone only
runs about 5 apps (resp. 10 for a 1h slot), an order of magnitude
lower than the number of apps installed. As a result, it seems
reasonable to set K ≤ 10 for the 15-minute slot and K ≤ 17
for the 1h-long slot.

2) Pre-cachable application set: Among the set of applica-
tions that send or receive data, we have identified categories
of applications that have good properties in terms of data
validity. We say that these applications are PCachable. Regular
messaging applications, downloads, Internet browser, radio or
music streaming applications are typically not PCachable. On
the other hand, social media apps such as Facebook, Twitter
or Instagram are PCachable as it is possible to pre-cache the
latest posts. Of course, news, weather forecast and sports apps
are PCachable as well. We have also included video streaming
apps such as YouTube or Twitch as they have personalized
channels whose latest data could be pre-cached. We refer the
reader to [4] for details.

3) History-based prediction: We define here a simple
history-based predictor to select the K apps to prefetch for
the next slot. We show in [4] that there is a strong correlation
between the number of times the user checks an app and the
proportion of data being sent. This is not surprising but it gives
us a very simple feature to leverage. We implement thus a
prediction algorithm that creates, for each PCachable app, a
histogram H that counts the number of times an app has been
called in each time slot over time. The predicted K apps are
the ones with top histogram values.

4) Results: Our app-prediction algorithm has been tested
on our dataset. Initial histograms are built with the records of
the first week. Since for each subsequent time slot we know
exactly the set of apps that have sent data over cellular, we can
compare our predictions to the ground truth. The histogram
is constantly updated: prediction of slot x is made with the
timeline ending in slot x−1. The value K has been varied and
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TABLE I 
FEATURES IMPLEMENTEO FOR ADABOOST LEARNING. 

Data type 
boolean 
boolean 
boolean 
integer 
boolean 
boolean 
boolean 
integer 
float 

Description 
Covere by home Wi-Fi networ from 8pm to 8am 
Covered by work Wi-Fi network from 8am to 8pm 
lt is a weekday or a weekend day 
The number of seen Wi-Fi networks 
Top I Preferred Wi-Fi is in the list of seen Wi-Fi 
Top 2 Preferred Wi-Fi is in the list of seen Wi-Fi 
Top 3 Preferred Wi-Fi is in the list of seen Wi-Fi 
Index of current slot 
Probability of eut/ resume for this specific slot 

for each phone, the true positive rate T PR and false positive 
rate F PR are derived. Figure 3 shows the perfonnance of our 
algorithm for different K values. Each point represents average 
(T PR, F PR) calculated over ail phones. As K increases, the 
T PR increases but at the cost of more false positives. False 
positives trigger unnecessary pre-caching and have thus to be 
kept low. The data shows that a good compromise is to select 
K lower than lO. In this case, the overall prediction quality is 
very good with Jess than 20% false positive rate. 

We show as well in [4] that the prediction quality is best 
if setting K to 10 for 15-minutes slots and to 15 for 1-hour 
slots. There values are close to the average number of apps 
creating traffic for both slot sizes. 
C. Wi-Fi gap prediction

A central step of Algorithm l is the Wi-Fi gap length
prediction. lt is decomposed into two challenges: predicting a 
Wi-Fi eut event and predicting the slot in which Wi-Fi resumes. 
lt is very important for the Wi-Fi eut predictions to keep the 
false positive rate Jow to limit the number of unnecessary 
pre-cache operations. What makes this criterion particularly 
important is that our data shows that the proportion of cuts is 
Jow compared to the proportion of no-culs. For 15-minute slots, 
on average, only 2% of slots contain a Wi-Fi-cut event. As 
a result, a 40% false positive rate would predict a wrong eut 
almost 38 limes per day. Two prediction algorithms have been 
tested: The first is similar to the history-based app prediction. 
The second is based on AdaBoost [3], a state-of-the-art machine 
Jearning algorithm. 

1) History-based predictions: We have developed a history­
based algorithm that predicts whether Wi-Fi is likely to be eut 
or to resume in the next slot This algorithm creates a histogram 
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Fig. 4. Wi-Fi eut (Ieft) and resume (right) prediction resuits: true positive 
rate as a function of false positive rate. 

by counting cuts for ail slots of the day. At prediction time, a 
random value between O and l is thrown N times. We count the 
number of limes X this value is lower than the eut probability 
Peut of the current slot stored in the histogram. If X belongs 
to the interval [(1 - 8) * Peut, (1 + o) * Peut], a Wi-Fi eut 
is predicted. Resumes are predicted the same way. Different 
values of N and o have been tested to maximize the prediction 
quality metric (section N-B4). The results in Fig. 4 are plotted 
for N = 10000 and 8 = 0.1. 

2) AdaBoost prediction: AdaBoost (Adaptive Boosting) [3],
an ensemble-learning method, is considered here. To apply it 
on Wi-Fi gap prediction, the set of features of Table I has 
been defined. These features are a result of our effort to define 
the user's context based on the Wi-Fi networks seen. Training 
has been perfonned on a per phone basis, each one using half 
of its available data. The obtained mode) has been used for 
predicting the other half. The results given in Fig. 4 show that 
Adaboost is the best solution for PCach: it delivers a good 
recall rate with a low false positive rate. 
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