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Abstract. Active integrity constraints have been introduced in the database community as a way
to restore integrity based on a set of preferred update actions. We view active integrity constraints
as dynamic logic programs and show how several semantics of database repair that were proposed
in the literature can be characterised in Dynamic Logic of Propositional Assignments DL-PA. We
moreover propose a new definition of repair which makes use of the programs of Dynamic Logic
to provide repair solutions based on an iterating procedure. After an analysis of their properties
and a comparison to the previous approaches, we provide complexity results for the problem of
existence of these new repairs. Furthermore, an extension on databases with history is explored
and the behavior of the various repairs is adjusted to work in this setting. For all these definitions
we provide DL-PA counterparts of reasoning and decision problems, such as the existence of a
repair or the existence of a unique repair.

Keywords: active integrity constraints, dynamic logic, propositional assignments
∗Address for correspondence: IRIT, Univ. Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France.



1. Introduction

One of the most important (but notoriously difficult) issues in the database and AI literature is the
problem of updating a database under a set of integrity constraints. The latter are usually expressed
by logical formulas and their role is to impose conditions that every state of the database must satisfy.
In the course of database maintenance several changes are applied to the databases and checking
whether these constraints are no longer satisfied is of the highest priority. When a database fails to
satisfy the integrity constraints, it has to be repaired in order to restore integrity. Given a database,
the procedure of repairing and restoring its consistency with respect to a set of integrity constraints
has been extensively studied in the last decades [1, 2, 3]. Apart from the problem of finding a repair
though, a significant part of the research has focused on the distinction between which types of repairs
are more suitable for integrity maintenance, given the fact that the number of all possible repairs can
be remarkably large. A number of different types of repairs came into fruition, with one of the most
prevalent being the ones based on the minimality of change principle [4, 5, 6]. Despite this, however,
the need to have ‘more informed’ ways of maintaining database integrity arose.

In light of this, active integrity constraints were proposed as an extension of integrity constraints
(or static constraints) with update actions, each one suggesting the preferred update method when
an inconsistency arises between the database and a constraint [7, 8, 9, 10]. For example, the integrity
constraint (∀X)[A(X)→ B(X)] can be extended to the active constraint (∀X)[A(X)∧¬B(X)→ −A(X)],
indicating that any violation of the formula A(X) → B(X) should be reacted to by making A(X)
false (instead of making B(X) true). In the propositional case, an active integrity constraint can be
represented as a couple r = 〈C(r),R(r)〉 where C(r) is a Boolean formula (called the static part of
r and denoting a static constraint) and R(r) is a set of update actions, each of which is of the form
+p or −p for some atomic formula p. The idea is that (1) when C(r) is false then the constraint r
is violated and (2) a violated constraint can be repaired by performing one or more of the update
actions in R(r). The two most prevalent types of repairs w.r.t. a set of active integrity constraints are
the founded and the justified repairs. Note that while these approaches can greatly reduce the number
of possible repairs, the choice between different repair procedures can still lead to different sets of
possible repairs or even no repairs at all (for example when R(r) is the empty set).

Now, although the setting of active integrity constraints is well established and thoroughly ex-
plored, there exist cases where even founded and justified repairs cannot provide a satisfactory so-
lution. Recent approaches have also exhibited that the debate about the ‘right’ semantics is not yet
entirely settled [11]. In our opinion, a more dynamic procedure could provide solutions to inconsis-
tencies that arise between a database and a set of active constraints that build upon and extend one
another. We showcase such an example in the following scenario. Consider a company with two de-
partments, D1 and D2, where temporary employees (e.g. interns) are assigned to D1 and permanent
employees work at D2 (so D1 has no permanent members and D2 has no temporary members). Ev-
ery employee must be in a department, i.e., we have the integrity constraint D1 ∨ D2. Furthermore,
consider that every person working on D2 has previously worked on D1, i.e., D1 is like a ‘training
ground’ for becoming a permanent member. Consider now a database for permanent members which
keeps track of their status. Every employee should be declared in the database as starting to work on
D1 and we can express this by the active constraint 〈D1 ∨ D2,+D1〉 which declares that if D1 ∨ D2



is violated and an employee is not assigned to any department then s/he should be assigned to D1.
Furthermore, since the database is for permanent employees, if an employee is assigned only to D1
then this should be rectified by assigning them to D2 as well. This is expressed by the active constraint
〈¬D1 ∨ D2,+D2〉. Finally, consider that the database loses track of an employee, i.e., a permanent
employee is declared as working at neither D1 nor D2. How would the status of this employee, which
is inconsistent w.r.t. the active constraints, be repaired according to the available repair procedures?
Whereas founded and justified repairs cannot provide a solution to this problem (see Section 2.3.2
for more details), a dynamic procedure which would check each active constraint at a time and apply
an update action before repeating seems able to do so. Indeed, as we will witness in Section 5.2,
the set {+D1,+D2} will be the only solution using such a dynamic procedure. Note also that a repair
which conforms to the minimal change principle would suggest that {+D2} should be the only repair.
While this is indeed the only minimal solution, it can be argued that it should not be the case that this
employee was assigned to D2 directly, without having worked on D1 first.

In this paper we examine active integrity constraints in the framework of dynamic logic and argue
that they can be viewed as particular programs: the sequential composition of the test of C(r) and
the nondeterministic choice of an action in R(r). Repairing a database can then be done by means of
a complex program that combines active integrity constraints. We use a simple yet powerful dialect
of dynamic logic: Dynamic Logic of Propositional Assignments, abbreviated DL-PA [12, 13, 14].
The latter is a simple instantiation of Propositional Dynamic Logic PDL [15, 16]. Instead of PDL’s
abstract atomic programs, the atomic programs of DL-PA are update actions: assignments of proposi-
tional variables to either true or false, written p←> and p←⊥. Just as in PDL, these atomic programs
can be combined by means of program operators: sequential and nondeterministic composition, finite
iteration and test. The language of DL-PA has not only programs, but also formulas. While DL-PA
programs describe the evolution of the world, DL-PA formulas describe the state of the world. In
particular, formulas of the form

〈
π
〉
ϕ express that ϕ is true after some possible execution of π, and

[π]ϕ expresses that ϕ is true after every possible execution of π. The models of DL-PA are consider-
ably simpler than PDL’s Kripke models: valuations of classical propositional logic are enough. The
assignment p←> inserts p, while the assignment p←⊥ deletes p. Apart from being simple yet quite
expressive, its biggest computational advantage over PDL comes in the form of the elimination of
the Kleene star: it is shown in [12, 13] that every DL-PA formula can be reduced to an equivalent
Boolean formula (something that is not possible in PDL). This is an important attribute and a very
useful tool, as it will allow us to construct repaired databases syntactically. The most significant ad-
vantage of using a dynamic logic framework though is the fact that we can easily study extensions
(like the history-based repairs of Section 7) that are expressible in the language by simply extending
the formulas in the appropriate ways. Last but not least, just as in [9, 10, 11] we only consider ground
constraints in the current paper, i.e., we work with a propositional language.

The paper is organized as follows. In Section 2 we provide a thorough background on all the
aforementioned points: the logic DL-PA, static and active constraints, as well as the associated repairs
for both (weak repairs, PMA repairs, founded and justified repairs). In Section 3 we provide an
embedding of the associated repairs of static constraints (weak repairs and PMA repairs) into DL-PA.
In Section 4 we do the same for the associated repairs of active constraints (founded and justified
repairs). Section 5 comprises the main contribution of the paper: we propose some new definitions of



repairs in terms of while programs and compare them with the aforementioned founded and justified
repairs in various ways. Their computational complexity is investigated in Section 6. In Section 7
we push the envelope of the active constraint paradigm and examine databases with history as well
as how the various repairs are integrated in their framework. Finally, Section 8 concludes with some
examples of related reasoning problems and a brief discussion on future work.

This paper extends [17] by the analysis of justified repairs, a thorough discussion on the dynamic
repairs introduced as well as how they compare with the available repair procedures from the literature,
a complexity analysis and a look into databases with history.

2. Background

We consider languages of classical propositional logic, built from a countable set of propositional
variables (alias atomic formulas) P = {p, q, . . .}. Boolean formulas are built from P by means of the
Boolean operators >, ⊥, ¬, and ∨ and are denoted by A, B, etc. The other Boolean connectives ∧,→,
and↔ are abbreviated in the usual way. A literal is an element of P or the negation of an element of
P and a clause is a disjunction of literals.

Valuations are subsets of P and are denoted by V , V1, V2, etc. The set of all valuations is therefore
V = 2P. It will sometimes be convenient to write V(p) = > instead of p ∈ V and V(p) = ⊥ instead of
p < V . A valuation determines the truth value of every Boolean formula. The set of valuations where
A is true is denoted by ||A||. We sometimes write V |= A when V ∈ ||A||. In the context of the present
article a valuation is called a database.

An update action is of the form p←> and p←⊥, for p ∈ P. The former is the insertion of p and
the latter is the deletion of p. We denote the set of all update actions by U. We sometimes use X as
a metavariable for > and ⊥ and write p←X. For subsets P of P it will be convenient to write P←>
to denote the set of update actions {p←> : p ∈ P}, and likewise for P←⊥. A set of update actions
U ⊆ U is consistent if it does not contain both p←> and p←⊥, for some p. The update of a valuation
V by a set of update actions U is defined as:

V � U =
(
V \ {p : p←⊥ ∈ U}

)
∪ {p : p←> ∈ U}

So all the deletions are applied first, followed by the application of all insertions. We could as well
have chosen another order of application. When U is consistent then all of them lead to the same
result. In particular:

Proposition 2.1. Let {α1, . . . , αn} be a consistent set of update actions. Let 〈k1 . . . kn〉 be some permu-
tation of 〈1 . . . n〉. Then V � {α1, . . . , αn} =

(
. . . (V � {αk1}) . . .

)
� {αkn}.

In the following subsections, we recall Dynamic Logic of Propositional Assignments and the
definitions of the various repair procedures w.r.t. static and active integrity constraints.

2.1. Dynamic Logic of Propositional Assignments

The first studies of assignments in the context of dynamic logic are due, among others, to Tiomkin
and Makowski and van Eijck [18, 19]. Dynamic Logic of Propositional Assignments DL-PA was



introduced in [12] and was further studied in [13, 14]1. Evidence for its widespread applicability
was provided in several recent publications, including belief update and belief revision, argumenta-
tion, planning and reasoning about knowledge [20, 21, 22, 23, 24, 25]. We briefly recall syntax and
semantics of DL-PA.

2.1.1. Language

The language of DL-PA is defined by the following grammar:

ϕF p | > | ⊥ | ¬ϕ | ϕ ∨ ϕ | 〈π〉ϕ

πF α | π; π | π ∪ π | π∗ | π− | ϕ?

where ϕ are the formulas of DL-PA, π are the programs of DL-PA, p ranges over the set of atomic
formulas P and α ranges over the set of update actions U. In DL-PA, update actions are singletons and
are called atomic assignments. The operators of sequential composition “;”, nondeterministic compo-
sition “∪”, finite iteration (the so-called Kleene star) “(.)∗” and test “(.)?” are the familiar operators of
PDL. The operator “(.)−” is the converse operator. The formula 〈π〉ϕ is read “there is an execution of
π after which ϕ is true”. So e.g. 〈p←⊥−〉(p ∧ q) expresses that p ∧ q is true after some execution of
p←⊥−, i.e., p ∧ q was true before p was set to false. The star-free fragment of DL-PA is the subset of
the language made up of formulas without the Kleene star.

We define Pϕ to be the set of variables from P occurring in formula ϕ, and we define Pπ to be the
set of variables from P occurring in program π. For example, Pp←q∪p←¬q = {p, q} = P〈p←⊥〉q.

Several program abbreviations are familiar from PDL. First, skip abbreviates >? and fail abbrevi-
ates ⊥?. Second, if ϕ then π1 else π2 is expressed by (ϕ?; π1)∪ (¬ϕ?; π2). Third, the loop while ϕ do π
is expressed by (ϕ?; π)∗;¬ϕ?. The nondeterministic composition

⋃
α∈U α equals fail when U is empty.

We also define π+ to be π; π∗. Let us moreover introduce assignments of literals to variables by means
of the following two abbreviations:

p←q = if q then p←> else p←⊥ p←¬q = if q then p←⊥ else p←>

The former assigns to p the truth value of q, while the latter assigns to p the truth value of ¬q. In
particular, the program p←¬p flips the truth value of p. Note that both abbreviations have constant
length, namely 14. Finally and as usual in modal logic,

[
π
]
ϕ abbreviates ¬

〈
π
〉
¬ϕ.

2.1.2. Semantics

DL-PA programs are interpreted as relations between valuations. The atomic programs α update val-
uations in the usual way (see the beginning of the section) and complex programs are interpreted just
as in PDL by mutual recursion. Table 1 gives the interpretation of formulas and programs, where ◦ is
relation composition and (.)−1 is relation inverse.

A formula ϕ is DL-PA valid iff ||ϕ|| = 2P = V. It is DL-PA satisfiable iff ||ϕ|| , ∅. For example,
the formulas

〈
p←⊥

〉
>,

〈
p←>

〉
ϕ↔ ¬

〈
p←>

〉
¬ϕ,

〈
p←>

〉
p and

〈
p←⊥

〉
¬p are all valid. Observe that

1Note that [14] fixes some complexity results that were erroneously established in [13].



Table 1. Interpretation of formulas and programs.

||p|| = {V : p ∈ V} ||α|| =
{
〈V1,V2〉 : V2 = V1 � {α}

}
||>|| = V = 2P ||π; π′|| = ||π|| ◦ ||π′||

||⊥|| = ∅ ||π ∪ π′|| = ||π|| ∪ ||π′||

||¬ϕ|| = 2P \ ||ϕ|| ||π∗|| =
(
||π||

)∗
||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ|| ||π−|| =

(
||π||

)−1

||
〈
π
〉
ϕ|| =

{
V : ∃V1 s.t. 〈V ,V1〉 ∈ ||π|| and V1 ∈ ||ϕ||

}
||ϕ?|| =

{
〈V ,V〉 : V ∈ ||ϕ||

}

if p does not occur in ϕ then ϕ →
〈
p←>

〉
ϕ and ϕ → 〈p←⊥〉ϕ are valid. This is due to the following

semantical property that is instrumental in the proof of several results in the rest of the paper.

Proposition 2.2. Let P be a subset of P. Suppose that Pϕ ∩ P = ∅, i.e., none of the variables of P
occurs in ϕ. Then V ∪ P ∈ ||ϕ|| iff V \ P ∈ ||ϕ||.

As already mentioned in the introductory section, a distinguishing feature of DL-PA is that its
dynamic operators can be eliminated (which is not possible in PDL). Just as for QBF, the resulting
formula may be exponentially longer than the original formula.

Theorem 2.3. ([13], Theorem 1)
For every DL-PA formula there is an equivalent Boolean formula.

For example, the DL-PA formula
〈
p←⊥

〉
(¬p ∧ ¬q) is equivalent to the formula

〈
p←⊥

〉
¬p ∧〈

p←⊥
〉
¬q, which is in turn equivalent to > ∧ ¬q. Therefore, the DL-PA formula

〈
p←⊥

〉
(¬p ∧ ¬q)

reduces to the Boolean formula ¬q.
Every assignment sequence α1; . . . ;αn is a deterministic program that is always executable: for

a given V , there is exactly one V ′ such that 〈V ,V ′〉 ∈ ||α1; . . . ;αn||. Moreover, the order of the αi in
a sequential composition is irrelevant when the set of update actions {α1, . . . , αn} is consistent. The
following can be viewed as a reformulation of Proposition 2.1 in terms of the DL-PA operator of
sequential composition.

Proposition 2.4. Let {α1, . . . , αn} be a consistent set of update actions. Let 〈k1 . . . kn〉 be some permu-
tation of 〈1 . . . n〉. Then V � {α1, . . . , αn} equals the unique V ′ such that 〈V ,V ′〉 ∈ ||αk1 ; . . . ;αkn ||.

This entitles us to use sets of consistent update actions as programs: one may suppose that this
stands for a sequential composition in some predefined order (based e.g. on the enumeration of the set
of propositional variables).

2.2. Static constraints and the associated repairs

In this subsection we consider the classical notion of database integrity that is defined in terms of static
integrity constraints, or static constraints for short. In our propositional language they are nothing but



Boolean formulas. Two ways of repairing databases based on such constraints can be found in the
literature [9]. Both consist in first finding an appropriate set of update actions U and then building
the update V � U of V by U as defined in the beginning of the section. We relate them to well-
known operations in belief revision and update [26], which allows us to reuse their embeddings into
DL-PA [20].

2.2.1. Weak repairs and drastic updates

Let V be a database, U a set of update actions and C a set of static constraints, i.e., a set of Boolean
formulas. In the rest of the paper we will only consider finite sets of static constraints. We say that U
is relevant w.r.t. V iff p←> ∈ U implies p < V and p←⊥ ∈ U implies p ∈ V . The definition of a weak
repair immediately follows.

Definition 2.5. Let V be a database and let C be a set of static constraints. A weak repair of V
achieving C is a consistent set of update actions U⊆U such that V�U |=

∧
C and U is relevant w.r.t. V .

The next example illustrates that weak repairs are indeed very weak.

Example 2.6. Let V = ∅ and C = {p∨q}. The weak repairs of V achieving C are all those subsets of
the set of positive update actions {r←> : r ∈ P} that contain either p←>, or q←>, or both.

As the following result shows, if we consider what is true in all possible weak repairs then we
obtain what is called a drastic update in the literature on belief revision and update.2

Proposition 2.7. Let V be a database and let C be a set of static constraints. Then:{
V � U : U is a weak repair of V achieving C

}
=

∣∣∣∣∣∣∧C
∣∣∣∣∣∣

Note that a weak repair may contain assignments of variables that do not occur in C. To witness, in
the above example {p←>, q←>, r←>} is a weak repair of V achieving C. To remedy this we consider
every weak repair U from now on to be such that if p←> or p←⊥ occurs in U then p ∈ PC , where PC

is the set of variables from P occurring in C. This corresponds to a very basic update semantics that is
sometimes called Winslett’s standard semantics [4, 5].

2.2.2. Repairs tout court and their relation to Winslett’s PMA

We now present the definition of a repair which, as we already mentioned, uses the principle of
minimal change to produce repair solutions that are considered more practical in contrast to the more
general weak repairs.

Definition 2.8. Let V be a database and let C be a set of static constraints. A repair of V achieving
C is a weak repair of V achieving C that is minimal w.r.t. set inclusion: there is no weak repair of V
achieving C that is strictly contained in it.

2It is actually also a drastic revision because V is a complete database and update and revision coincide in that case [27].



The next example is a follow-up to Example 2.6.

Example 2.9. Let V = ∅ and C = {p∨q}. There are exactly two repairs of V achieving C, viz. {p←>}
and {q←>}.

We are now going to relate repairs to Winslett’s possible models approach PMA [28, 4]. Re-
member that the update of a database V by a Boolean formula A according to the PMA is the set of
valuations V ′ such that V ′ |= A and such that the symmetric difference between V and V ′ is minimal
w.r.t. set inclusion. Formally, the symmetric difference is defined as D(V ,V ′) = {p : V(p) ,V ′(p)}
and the PMA update of V by A is the set:{

V ′ : V ′ |= A and there is no V ′′ ∈ ||A|| such that D(V ,V ′′) ⊂ D(V ,V ′)
}

For example, the PMA update of ∅ by p∨q is
{
{p}, {q}

}
and the PMA update of ∅ by (p∧q)∨r is{

{p, q}, {r}
}
.

Proposition 2.10. Let V be a database and let C be a set of static constraints. Then:{
V � U : U is a repair of V by C

}
is the PMA update of V by

(∧
C
)

The above result justifies the term PMA repair that we are going to employ henceforth (because
the mere term ‘repair’ might lead to confusions).

2.3. Active constraints and the associated repairs

Active integrity constraints were proposed more than ten years ago [7] and various ways of repairing
a database V by such constraints were studied in the literature. We refer to [9] for an overview. Just as
for static constraints, all definitions are based on the notion of a repair set: an appropriate set of update
actions U such that V �U no longer violates the integrity constraints. V �U is once again the result of
updating V by U as defined in the beginning of the section and is called the repaired database.

In the present subsection we recall syntax and semantics of the two main routes that have been
explored in the literature.

2.3.1. Active integrity constraints

An active integrity constraint (or active constraint for short) combines a static integrity constraint with
a set of preferred repair actions.

Definition 2.11. An active constraint is a couple r =
〈
C(r),R(r)

〉
, where C(r) is a Boolean formula

and R(r) is a finite set of update actions that is consistent.

As before, C(r) is a static integrity constraint that is violated when C(r) is false. If this is the
case and R(r) , ∅ then r is applicable and R(r) indicates how to get rid of the violation and restore
integrity. The elements of R(r) are viewed as permitted update actions: when C(r) is violated then
each of the actions in R(r) gets a ‘license to update’. This is a rather imprecise description of the job



the update actions in R(r) are expected to do and in the literature various semantics were proposed.
One of the most prominent of them are founded repairs which make use of the foundedness condition
in order to apply the correct update actions, while justified repairs build upon and refine this condition
in order to tackle the so-called circularity of support issue that can be witnessed by founded repairs.

We say that an active constraint r = 〈C(r),R(r)〉 is standard if C(r) is a clause and each update
action in R(r) makes one of the literals of C(r) true: if p←> ∈ R(r) then p has to be one of the literals
of C(r) and if p←⊥ ∈ R(r) then ¬p has to be one of the literals of C(r).

Remark 2.12. The definition in the literature differs in several respects from ours here. First, C(r) is
usually not viewed as a static integrity constraint but as the negation of a static integrity constraint: r is
violated when the first component of r is true. Second, active constraints are denoted by C(r)→ R(r),
which makes them look like formulas. However, “→” is different from material implication as the
right hand side of the implication is not a formula but a set of programs. So their semantics remains
to be given: in the literature this is typically done by means of disjunctive logic programs under a
non-monotonic semantics. Third, all active constraints have to be standard.

We denote finite sets of active constraints by η, η1, etc. The set of static integrity constraints
associated with η is defined as C(η) = {C(r) : r ∈ η}. Furthermore, the size of C(η), denoted by |C(η) |,
is the sum of the lengths of each C(r) for all r ∈ η, i.e., |C(η) | =

∑
r∈η

|C(r) |, where |C(r) | is the length
of the Boolean formula C(r) as defined in propositional logic.

It remains to give a semantics to active constraints. In the rest of this subsection we discuss the
two main existing directions, viz. founded and justified repairs. We later propose a new one in Section
5 using the programs of DL-PA.

2.3.2. Founded weak repairs and founded repairs

In the literature, founded repairs are considered to be a basic semantics of active constraints. They
provide a basis for further refinements. The key notion they rely on is the foundedness condition.3

Definition 2.13. Let V be a database and let η be a set of active constraints. A consistent set of update
actions U is founded w.r.t. V and η if for every α ∈ U there is an r ∈ η such that:

(a) α ∈ R(r)

(b) V � U |= C(r)

(c) V � (U \ {α}) 6|= C(r)

Given this condition, the definitions of a founded weak repair and a founded repair immediately
follow.

Definition 2.14. Let V be a database and let η be a set of active constraints. A set of update actions U
is a founded weak repair of V by η if U is a weak repair of V achieving C(η) and U is founded w.r.t. V
and η. Moreover, if U is also a PMA repair of V achieving C(η), then U is a founded repair of V by η.
3We have reformulated the original definition so that it applies to our more general definition of active constraints. Both are
equivalent as far as standard active constraints are concerned.



The following simple example showcases this definition.

Example 2.15. Let V = ∅ and η =
{
〈p, {p←>}〉, 〈p∨q, {q←>}〉

}
. The set {p←>} is the only founded

weak repair of V by η. Indeed, the second update action in {p←>, q←>} cannot be founded on the
second active constraint of η. It is also the only founded repair.

There are sets of active constraints for which there is no founded repair, although there is a founded
weak repair [9, Example 2]. The next example, which is adapted from the example of the introductory
section, shows that there are sets of active constraints for which there is not even a founded weak
repair.

Example 2.16. Let V = ∅ and η =
{
〈p∨q, {p←>}〉, 〈¬p∨q, {q←>}〉

}
. The set {q←>} is a PMA repair

of V achieving C(η). However, there is no founded weak repair (and thus no founded repair either).

Last but not least, the next example illustrates circularity of support: each update action that is
individually founded owes this to the presence of the other update actions in the repair.

Example 2.17. ([9], Example 3)
Let V = ∅ and η =

{
〈p∨q, {p←>}〉, 〈¬p∨q, {q←>}〉, 〈p∨¬q, {p←>}〉

}
. The set {p←>, q←>} is the

only founded weak repair of V by η: p←> is founded on 〈p∨¬q, {p←>}〉 and q←> is founded on
〈¬p∨q, {q←>}〉. It is also a founded repair.

Such repairs were considered to be unintended in [9] and the notion of justified repair was pro-
posed to overcome the problem. We discuss this issue further in Section 5.3.

2.3.3. Justified weak repairs and justified repairs

Justified repairs use a stronger condition than foundedness in order to avoid the aforementioned circu-
lar dependencies. We start with the definition of a closed set of update actions.

Definition 2.18. Let η be a set of standard active constraints. For r ∈ η, all the literals in C(r) which
cannot be affected by an update action in R(r) are called non-updatable. A set of update actions U is
closed under an r ∈ η when the following holds: if the update actions in U falsify all the non-updatable
literals in C(r), then U must contain an update action from R(r). Furthermore, U is closed under η if
it is closed under every r ∈ η.

For example, {p←>, q←>} is closed under 〈p∨¬q, {p←>}〉, 〈¬p∨q, {q←>}〉 and 〈p∨q, {p←>}〉,
while it is neither closed under 〈¬p∨¬q, {p←⊥}〉 nor under 〈¬p∨r, {r←>}〉. The second step is to
define the no-effect actions associated with an initial database V and an updated database V ′.

Definition 2.19. Let V and V ′ be two databases. The update action p←> is a no-effect action of
(V ,V ′) if p ∈ V ∩ V ′ and the update action p←⊥ is a no-effect action of (V ,V ′) if p < V ∪ V ′. The set
ne(V ,V ′) denotes the set of all no-effect actions of (V ,V ′).



Clearly, for given V and U, we have that V � U = V � (U \ U′) for every U′ ⊆ ne(V ,V � U).
Returning to our initial aim now, the definitions of a justified weak repair and a justified repair are the
following.

Definition 2.20. Let V be a database and let η be a set of standard active constraints. A consistent set
of update actions U is a justified weak repair of V by η iff:4

(a) U ∩ ne(V ,V � U) = ∅ (no ‘no-effect’ actions)

(b) U ∪ ne(V ,V � U) is closed under η

(c) there is no U′ ⊂ U ∪ ne(V ,V � U) such that:

(1) U′ contains ne(V ,V � U)

(2) U′ is closed under η

Finally, if U is also a PMA repair of V achieving C(η), then U is a justified repair of V by η.

The next theorem shows the relationship between founded and justified repairs.

Theorem 2.21. ([9], Corollaries 1 and 2)
Let V be a database, U a consistent set of update actions and η a set of standard active constraints. If
U is a justified weak repair of V by η, then U is also a founded weak repair of V by η (and likewise, if
it is a justified repair of V by η, then it is also a founded repair of V by η).

The next example shows that the converse does not hold. Furthermore, it illustrates that for justi-
fied repairs circularity of support is no longer an issue.

Example 2.22. ([9], Example 5)
Consider again V = ∅ and η =

{
〈p∨q, {p←>}〉, 〈¬p∨q, {q←>}〉, 〈p∨¬q, {p←>}〉

}
. In contrast with

Example 2.17 and its founded repair, there is no justified weak repair of V by η. As justified weak
repairs are also founded weak repairs, we only have to check whether U = {p←>, q←>} is a justified
weak repair of V by η. Supposing that P = {p, q}, we have ne(V ,V � U) = ne(∅, {p, q}) = ∅ and
U ∪ne(V ,V �U) = U is not a minimal set of update actions containing ne(V ,V �U) and closed under
η, as ∅ also has these properties.

However if we replace η with η′ =
{
〈p∨q, {p←>, q←>}〉, 〈¬p∨q, {q←>}〉, 〈p∨¬q, {p←>}〉

}
then

the set {p←>, q←>} is both a justified and a founded repair of V by η′ (and both are the only ones).
The reason that the set {p←>, q←>} is a justified repair now is because ∅ is not closed under η
anymore (it trivially falsifies all the non-updatable literals in the first constraint, since now there aren’t
any, but it contains no update actions).

In the next two sections, we show that weak, PMA, founded and justified repairs can be captured
in DL-PA.
4The original definition of justified weak repairs is slightly different than the one given here. However it is shown that the
two are equivalent in [9, Theorem 1].



3. Repairs and weak repairs in DL-PA

We now embed Winslett’s standard semantics (and thereby weak repairs) and the PMA (and thereby
repairs tout court) into DL-PA. This was already done in [20], but our embeddings are slightly more
elegant and are presented in a more uniform and streamlined way. We start with some auxiliary
definitions.

To each propositional variable p we associate a fresh propositional variable p±. Each p± will
register whether or not the proposition p has been modified along the update.5 This is necessary to
ensure that every variable is modified at most once during a repair. We extend the definition to sets of
variables P ⊆ P: P± = {p± | p ∈ P}. With the information stored in the fresh variables P±, we can
retrieve the initial valuation from a valuation V ⊆ P ∪ P± through the set:

{p ∈ V : p± < V} ∪ {p < V : p± ∈ V}

First, we need a program that sets all the propositions in a given set P to ⊥: P←⊥ is the sequence
of assignments p←⊥ for all p ∈ P (whose order does not matter, see Proposition 2.4). Second,
the following two DL-PA programs (1) modify a single proposition and store this and (2) undo that
modification:

toggle(p) = if ¬p± then p←¬p; p±←> else fail = ¬p±?; p←¬p; p±←>
undo(p) = if p± then p←¬p; p±←⊥ else fail = p±?; p←¬p; p±←⊥

As announced above, p± keeps track of the modifications of p: we are going to ensure that it is true
only once p has been modified during the current update. The program toggle(p) flips the truth value
of p if this value has not been modified yet and records the modification by setting p± to >; if p has
already been made true then toggle(p) fails. The program undo(p) undoes this.

It is easy to see then that starting from a database V that contains none of the variables p±, a weak
repair of V achieving C can be obtained through the following DL-PA program:

weakRepair(C) =

 ⋃
p∈PC

toggle(p)


∗

;
(∧

C
)
?

Since each variable can be updated at most once and since the order of the updates does not matter,
this can be rewritten without the Kleene star as a sequence:(

toggle(p1) ∪ skip
)

; . . . ;
(
toggle(pk) ∪ skip

)
;
(∧

C
)
?

where p1, . . . , pk are the variables in PC . Furthermore, given that none of the variables p± occur in the
database, the program toggle(p) simplifies to just: p←¬p; p±←>.

Finally, we define the following DL-PA formula:

Minimal(C) = ¬

〈  ⋃
p∈PC

undo(p)


+〉∧

C

5The difference with [20] is that our programs memorise that a variable has been flipped instead of storing its previous value.



The program in this formula undoes a nonempty set of toggle(p) actions (and nondeterministically
so, failing when there was no change at all). Therefore the formula Minimal(C) says that there is
no execution of that program leading to a database closer to the actual database that satisfies the
constraints. Hence the actual database corresponds to a minimal change of the initial database. We
sum up all the above in the following theorem.

Theorem 3.1. Let C be a set of static integrity constraints in the language of P and let V ⊆ P be
a database (i.e., no p± occurs in either of them). Let U be a consistent set of update actions that is
relevant w.r.t. V .

• U is a weak repair of V achieving C iff:

〈V ,V � U〉 ∈ ||weakRepair(C) ; PC
±←⊥ ||

• U is a PMA repair of V achieving C iff:

〈V ,V � U〉 ∈ ||weakRepair(C) ; Minimal(C)? ;PC
±←⊥ ||

4. Founded and justified repairs in DL-PA

We will now move on to the embedding of the notions of founded and justified repairs into DL-PA.
For this, we will re-use the programs defined in the previous section for finding a weak repair and
checking minimality, as well as the set of fresh variables P± we had at our disposal in order to keep
track of modifications. Moreover, we will need to define a program for checking the foundedness
condition in order to generate the founded repairs as well as programs for adding the no-effect actions
to a database and checking if a set of update actions is closed under a set of active constraints.

We start with the embedding of founded repairs into DL-PA, for which we will need the following
formula:

Founded(η) =
∧

p∈PC(η)

p± →
∨
r∈η

p←X∈R(r)

〈
p←¬p

〉
¬C(r)


where X ranges over {>,⊥}. We can see then that this formula is true if and only if all current update
actions (encoded in the current valuation by means of the fresh variables p±) are founded w.r.t. the
initial valuation and η.

The embedding of justified repairs into DL-PA is a bit more complex. Firstly, we use the set
nup(r) of all the non-updatable literals in r that we saw in Definition 2.18, i.e., all the literals in C(r)
for which there is no preferred update action in R(r). By nup(r)+ we denote the set of propositional
variables of the form p in nup(r), i.e., nup(r)+ = nup(r) ∩ P. Similarly, nup(r)− comprises the
propositional variables of the form ¬p in nup(r), i.e., nup(r)− = {¬p | p ∈ nup(r) \ P}. Furthermore,
we introduce two new sets of fresh propositional variables, P+ and P−, defined similarly to P± as
follows: P+ = {p+ | p ∈ P} and P− = {p− | p ∈ P}. Intuitively, the proposition p+ will keep track of



the no-effect action of the form p←>, while the proposition p− will keep track of the no-effect action
of the form p←⊥. This is realized by the following two programs:

ne+(p) =
(
p ∧ ¬p±

)
? ; p+←>

ne−(p) =
(
¬p ∧ ¬p±

)
? ; p−←>

Moreover, we will need a program that skips when neither p←> nor p←⊥ is a no-effect action and
fails otherwise (where ‘ea’ stands for ‘effect action’):

ea(p) = p± ?

Then we associate with the current database all the no-effect actions between the initial database and
the current state through the following program:

ne(η) =
(
ne+(p1) ∪ ne−(p1) ∪ ea(p1)

)
; . . . ;

(
ne+(pk) ∪ ne−(pk) ∪ ea(pk)

)
where p1, . . . , pk are the variables in PC(η) (so the no-effect actions that are added are only those that
are relevant w.r.t. η). Next, we define A(r) and B(r) to be the following formulas:

A(r) =
(∧

p∈nup(r)+

(¬p ∧ p±) ∨ (¬p ∧ p−)
)
∧

(∧
p∈nup(r)−

(p ∧ p±) ∨ (p ∧ p+)
)

B(r) =
( ∨

p←>∈R(r)

p
)
∨

( ∨
p←⊥∈R(r)

¬p
)

Using these then we define:

Closed(η) =
∧
r∈η

(
A(r)→ B(r)

)
MinimallyClosed(η) =¬

〈  ⋃
p∈PC(η)

undo(p)


+〉

Closed(η)

Given a set of standard active constraints η, the first formula is true exactly when all current update
actions (again, encoded in the current valuation through the set P±) plus all the no-effect actions
(encoded in the current valuation through the sets P+ and P−) are closed under η, while the second
formula is true if and only if the set comprising of all current update actions is the minimal set of update
actions that (together with the no-effect actions) has this property. Finally, we define the following
abbreviations:

Justified(η)? = ne(η) ; Closed(η)? ; MinimallyClosed(η)?

ClearAll = PC
±←⊥ ; PC

+←⊥ ; PC
−←⊥

The following two theorems now give a complete characterisation of founded and justified repairs
in terms of DL-PA programs.



Theorem 4.1. Let η be a set of active integrity constraints in the language of P and let V ⊆ P be
a database (i.e., no p± occurs in either of them). Let U be a consistent set of update actions that is
relevant w.r.t. V .

• U is a founded weak repair of V by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣ weakRepair(C(η)) ; Founded(η)? ; PC

±←⊥
∣∣∣∣∣∣

• U is a founded repair of V by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣ weakRepair(C(η)) ; Founded(η)? ; Minimal(C(η))? ; PC

±←⊥
∣∣∣∣∣∣

Theorem 4.2. Let η be a set of standard active constraints in the language of P and let V ⊆ P be a
database (so no p±, p+ and p− occurs in either of them). Let U be a consistent set of update actions
that is relevant w.r.t. V .

• U is a justified weak repair of V by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣ weakRepair(C(η)) ; Justified(η)? ; ClearAll

∣∣∣∣∣∣
• U is a justified repair of V by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣ weakRepair(C(η)) ; Justified(η)? ; Minimal(C(η))? ; ClearAll

∣∣∣∣∣∣
5. A new definition of repair in DL-PA

We now propose some new definitions that take advantage of the resources of DL-PA. More precisely,
we make use of while loops in order to iterate the application of active constraints. We start by
discussing how databases can be repaired by applying active constraints in sequence. This will lead us
to the definition of dynamic repair. We show that it is incomparable with both founded and justified
repairs and discuss its properties and some variants.

5.1. Repairing a database: a dynamic view

Suppose there is only one active constraint r that is standard. Then it is clear how to proceed: either
V |= C(r) and there is nothing to do, or V 6|= C(r) and we have to apply r. In the second case, each
αi ∈ R(r) provides a PMA repair of V achieving C(r).6 What about the case where R(r) is empty?
Well, then V cannot be repaired and we are stuck.

So far so good. The situation may get way more intricate when the set of active constraints η
contains two or more elements that can interact. Firstly, the example of the introductory section and
Example 2.16 illustrated an instance of active constraints which intuitively should have a repair (and

6For our more general active constraints where there is no syntactical link between C(r) and R(r) we have to compute all
possible minimal subsets U ⊆ R(r) such that V � U |= C(r). All of them will be PMA repairs.



it does, in the case of PMA repairs) but for which there is no founded or justified weak repair. We
would like to find a definition of a repair which depends only on the preferred update actions and
always provides a repaired database, as long as there are update actions from each C(r) to choose
from. Moreover, even for standard active constraints it might not be enough to apply an update action
αi ∈

⋃
r∈η R(r) only once: some of the active constraints might have to be applied several times in

order to obtain integrity. The following active constraints that are inspired by an (n+1)-bit counter
highlight this.

Suppose for n ≥ 0 we represent binary numbers up to 2n+1−1 by means of n+1 propositional
variables p0, . . . , pn: ¬pn∧ · · · ∧¬p0 represents the integer zero and pn∧ · · · ∧p0 represents 2n+1−1.
For each bit we also need an auxiliary variable xi. Let:

r1 = 〈p0∨x1∨ · · · ∨xn, {p0←>}〉

r2k = 〈pk∨¬pk−1∨ · · · ∨¬p0∨xk, {xk←>}〉, for 1 ≤ k ≤ n

r3ki
= 〈¬pi∨¬xk, {pi←⊥}〉, for 1 ≤ k ≤ n and 0 ≤ i ≤ k − 1

r3kk
= 〈pk∨¬xk, {pk←>}〉, for 1 ≤ k ≤ n

r4k = 〈¬pk∨pk−1∨ · · · ∨p0∨¬xk, {xk←⊥}〉, for 1 ≤ k ≤ n

The idea is that when ¬pk∧pk−1∧ · · · ∧p0 is true, i.e., when the number 011. . .1 has to be incremented
to 100. . .0, then xk is made true by r2k and remains so until 100. . .0 has been attained. This involves
flipping the k digits in the conjunction ¬pk∧pk−1∧ · · · ∧p0: with active constraints this is done one-
by-one by r3ki

and r3kk
. Then xk is set to false again by r4k . Let ηn be the set of all the above rules, for

a given n:

ηn =
{
r1} ∪ {r21 , . . . , r2n} ∪ {r310

, r311
} ∪ {r320

, r321
, r322
} ∪ . . . ∪ {r3n0

, . . . , r3nn
} ∪ {r41 , . . . , r4n}

Successive repairing steps implement an (n+1)-bit counter counting from the initial database ∅ to the
database {pn, . . . , p0}.

The computation takes a number of steps that is exponential in n, while the number of update ac-
tions is 1

2 (n2+7n)+1, demonstrating that sometimes atomic repairs must be performed an exponential
number of times: for example r1 needs to be applied 2n times in order to repair V0 = ∅ by ηn. Let us
illustrate by the 3-bit counter how the repairs are done.

Example 5.1. Let’s take n = 2 and try to obtain the integer 111 starting from 000. In Figure 1 we can
see the steps needed through which we will reach the set of update actions U = {p0←>, p1←>, p2←>}

that will update the database ∅ in order for it to satisfy the active integrity constraints in η2. The first
column represents the current database (starting from ∅), the second column shows the constraint that
was applied in order to reach it and in the third we see the current integer in the counter. Last but not
least, the last column shows when an xk is kept true in order for the procedure to reach the integer 10
from 01 and the integer 100 from 011 when needed.



¬p2 ∧ ¬p1 ∧ ¬p0 ∧ ¬x1 ∧ ¬x2 000 –
¬p2 ∧ ¬p1 ∧ p0 ∧ ¬x1 ∧ ¬x2 r1 001 –
¬p2 ∧ ¬p1 ∧ p0 ∧ x1 ∧ ¬x2 r21 001 X

¬p2 ∧ ¬p1 ∧ ¬p0 ∧ x1 ∧ ¬x2 r310
000 X

¬p2 ∧ p1 ∧ ¬p0 ∧ x1 ∧ ¬x2 r311
010 X

¬p2 ∧ p1 ∧ ¬p0 ∧ ¬x1 ∧ ¬x2 r41 010 –
¬p2 ∧ p1 ∧ p0 ∧ ¬x1 ∧ ¬x2 r1 011 –
¬p2 ∧ p1 ∧ p0 ∧ ¬x1 ∧ x2 r22 011 X

¬p2 ∧ p1 ∧ ¬p0 ∧ ¬x1 ∧ x2 r320
010 X

¬p2 ∧ ¬p1 ∧ ¬p0 ∧ ¬x1 ∧ x2 r321
000 X

p2 ∧ ¬p1 ∧ ¬p0 ∧ ¬x1 ∧ x2 r322
100 X

p2 ∧ ¬p1 ∧ ¬p0 ∧ ¬x1 ∧ ¬x2 r42 100 –
p2 ∧ ¬p1 ∧ p0 ∧ ¬x1 ∧ ¬x2 r1 101 –
p2 ∧ ¬p1 ∧ p0 ∧ x1 ∧ ¬x2 r21 101 X

p2 ∧ ¬p1 ∧ ¬p0 ∧ x1 ∧ ¬x2 r310
100 X

p2 ∧ p1 ∧ ¬p0 ∧ x1 ∧ ¬x2 r311
110 X

p2 ∧ p1 ∧ ¬p0 ∧ ¬x1 ∧ ¬x2 r41 110 –
p2 ∧ p1 ∧ p0 ∧ ¬x1 ∧ ¬x2 r1 111 –

Figure 1: Incrementing 000 to 111 through η2

We can see how some constraints need to be applied many times in order to succeed in repairing
the original database. This calls for a dynamic way through which a database is updated in order for
it to be repaired: a procedure that modifies the database according to the integrity constraints step by
step, until it reaches a satisfactory form (i.e., satisfies the integrity constraints). Founded and justified
repairs cannot do the job in this and other scenarios of that kind, as an active constraint can only be
used once: indeed, in the example of the (n+1)-bit counter, no repair can be obtained by means of
founded and justified repairs. That’s why we introduce dynamic repairs.

5.2. Dynamic weak repairs and dynamic repairs

We associate with every active constraint r the DL-PA programs:

πr = ¬C(r) ? ;
⋃
α∈R(r)

α

π±r = ¬C(r) ? ;
⋃

p←X∈R(r)

(
p←X; p±←>

)
Remember that

⋃
α∈R(r) α equals fail when R(r) is empty. This matches the intuitive reading that

we have given to active constraints in Section 2.3.1: the repair program πr checks whether the static



integrity constraint associated with r is violated, and if so nondeterministically applies one of the
update actions from R(r). The program π±r moreover stores that p has been changed. These intuitions
are also supported by the following proposition, which tells us that applicability of an active constraint
r (the fact that C(r) is violated) is matched by the DL-PA notion of executability of the program πr.

Proposition 5.2. Let r be an active constraint and let V be a database. Then applicability of r at V is
equivalent to both V |= 〈πr〉> and V |= 〈π±r 〉>.

Proof:
It suffices to observe that when π is a nondeterministic composition of update actions then the equiva-
lence ¬C(r)↔ 〈¬C(r)?; π〉> is DL-PA valid for every C(r). ut

Based on these, the definitions of a dynamic weak repair and a dynamic repair are the following.

Definition 5.3. Let V be a database and let η be a set of active constraints. A dynamic weak repair of
V by η is a consistent set of update actions U such that U is relevant w.r.t. V and:

〈V ,V � U〉 ∈
∣∣∣∣∣∣∣∣ while ¬

(∧
C(η)

)
do

(⋃
r∈η

πr
) ∣∣∣∣∣∣∣∣

Moreover, if U is also a PMA repair of V achieving C(η), then U is a dynamic repair of V by η.

In the following example we see that dynamic repairs sometimes coincide with founded repairs.

Example 5.4. (Example 2.17, ctd.)
Consider again V = ∅ and η =

{
〈p∨q, {p←>}〉, 〈¬p∨q, {q←>}〉, 〈p∨¬q, {p←>}〉

}
. There is a single

dynamic weak repair (and also dynamic repair) of V by η, viz. {p←>, q←>}. Remember by Example
2.22 that there is no justified repair.

As we have already witnessed with the (n+1)-bit counter though, dynamic weak repairs are not
necessarily founded. The next example is simpler.

Example 5.5. (Example 2.15, ctd.)
Consider again V = ∅ and η =

{
〈p, {p←>}〉, 〈p∨q, {q←>}〉

}
, whose only founded weak repair was

{p←>}. There are two dynamic weak repairs of V by η, namely {p←>} and {p←>, q←>}. Only the
former is a dynamic repair.

Remember also that at the beginning of Section 5.1 we argued against founded and justified repairs
using Example 2.16 (itself an adaptation of the example discussed in the introductory section), for
which we would like to have a way to repair V by η. The next example shows that dynamic weak
repairs solve this problem. Let us also note that just like founded and justified repairs, dynamic weak
repairs do not necessarily coincide with dynamic repairs.

Example 5.6. (Example 2.16, ctd.)
Consider again V = ∅ and η =

{
〈p∨q, {p←>}〉, 〈¬p∨q, {q←>}〉

}
. The only dynamic weak repair of V

by η is the set of update actions {p←>, q←>}. But {q←>} is the PMA repair of V achieving C(η), so
there is no dynamic repair.



Finally, in a similar manner as in the previous sections, the next theorem characterises dynamic
repairs in terms of DL-PA programs.

Theorem 5.7. Let η be a set of active integrity constraints in the language of P and let V ⊆ P be
a database (i.e., no p± occurs in either of them). Let U be a consistent set of update actions that is
relevant w.r.t. V . U is a dynamic repair of V by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣∣∣ while ¬

(∧
C(η)

)
do

(⋃
r∈η

π±r
)

; Minimal
(
C(η)

)
? ;PC

±←⊥

∣∣∣∣∣∣∣∣
Proof:
The proof is quite trivial and based on the definitions. Given a database V ⊆ P and a set of active
integrity constraints η, a dynamic repair of V by η is both a dynamic weak repair of V by η and a
PMA repair of V achieving C(η). In DL-PA terms then, this is given by the sequential composition of
the programs while¬ (

∧
C(η)) do

(⋃
r∈η π

±
r

)
and Minimal

(
C(η)

)
?, with the DL-PA program π±r keeping

track of which propositions have been modified along the update so that they can be checked again in
the latter. Finally, as before the program PC

±←⊥ ensures that no p± exists in U. ut

5.3. Some interesting properties

In this subsection we present some interesting properties of this dynamic procedure that distinguishes
it from the other main repairs which have been studied and prevailed in the literature, viz. weak
repairs, PMA repairs, founded and justified repairs. Our goal is to provide a concrete argument that
repairs produced in this way are an interesting kind of repairs, possessing the advantages of the others
while not comprising some of their disadvantages.

The main problem with founded repairs is the so called circularity of support which has been
already mentioned at the end of Section 2.3.2. This undesirable property is what ultimately led to the
definition of justified repairs, which are way more complex and difficult to understand, at least at first
sight. Dynamic repairs on the other hand provide a solution to this problem without straying too far
from the initial definition, making it far less intricate. In contrast with founded repairs which need
the foundedness property to give priority to the “preferred” repairs, dynamic repairs simply select an
update action from the set that they have access to (the set of preferred ones) without checking for any
other condition. This leads to no circular support between any set of preferred actions and can also
be seen in Example 5.4 where {p←>, q←>} remains a dynamic repair of V by η even if the constraint
‘〈p∨¬q, {p←>}〉’ is absent (something that cannot be said for founded repairs, as this constraint is
required for the foundedness of ‘p’). Furthermore, although justified repairs solve this problem, they
often do not exist, as can be seen by Example 2.22. Through dynamic repairs we can provide a solution
to cases like this, avoiding the circularity of support found in founded repairs, while still being able
to provide a repaired database. So not only are dynamic repairs more intuitive, but they also comprise
the best of both situations.

Despite this however, one could still argue that they are too “strict”, sometimes requiring that
every integrity constraint in C(η) has a way to be repaired (i.e., an update action in R(r) should exist
for all r ∈ η in order to make C(r) true). If R(r) = ∅ for some r ∈ η, then the whole dynamic repairing



procedure could collapse and a dynamic weak repair never occur. The next example illustrates exactly
this.

Example 5.8. Let V = {q} and η =
{
〈p∨q, {p←>}〉, 〈p, ∅〉

}
. The set {p←>} is a PMA repair of V

achieving C(η). However, there are no dynamic weak repairs (and thus no dynamic repairs either).

As we can see, the problem arises when an integrity constraint has no preferred update actions
and cannot be satisfied by the application of some other constraint when repairing the database. One
could differentiate this behavior into three classes of repairs, based on the level of “strictness” of the
preference that is involved in the active constraints. The more strict repairs are those conforming to the
idea that every integrity constraint C(r) should be repaired only through an update action in R(r), the
less strict allow any update actions in

⋃
r∈η R(r) to be used for any integrity constraint C(r), while the

middle ground is to keep a balance between the two. As we can see, the passing from the more strict
class to the others changes the meaning of the update actions in R(r) from permitted repair actions to
preferred ones, a distinction that is not always made clear in the literature. As Example 5.8 shows,
dynamic repairs and dynamic weak repairs possess some of this “strict” nature: an update action will
only arise while updating a database if it helps to repair some constraint. This forbids repairs in cases
where all clauses apart from those having no preferred actions are already satisfied. In contrast, in
such cases solutions with founded weak repairs can occur, as shown in the next example.

Example 5.9. ([9], Example 2)
Let V = ∅ and η =

{
〈p∨¬q∨¬r, {p←>}〉, 〈¬p∨q∨¬r, {q←>}〉, 〈¬p∨¬q∨r, {r←>}〉, 〈p, ∅〉

}
. The set

{p←>, q←>, r←>} is the only founded weak repair of V by η. Furthermore, the set {p←>} is a PMA
repair of V achieving C(η). There are no dynamic weak repairs (and thus no dynamic repairs either).

So this leads to the following question: should we require a repair to exist in such cases or not?
Are we willing to agree with the fact that such databases do not and should not have a repair, or is
repairing the database in order to satisfy the integrity constraints in C(η) of the highest priority?

If the answer to the last question is positive then dynamic repairs could be less interesting. We
can however tweak the definition slightly and define global-dynamic weak repairs to be a kind of
dynamic repairs with the same intuitive behavior as before but belonging to the least strict of the
aforementioned classes of repairs. More precisely, the reason that dynamic repairs cannot repair a
constraint using update actions found in the other clauses is the local nature of the do part in the while
loop. Before trying to repair the whole set of active integrity constraints in η, a dynamic repair locally
checks if every clause (integrity constraint) is satisfied. If we drop this requirement and allow the
dynamic procedure to globally choose update actions found in the other clauses, then we will have a
solution in Examples 5.8, 5.9 and more generally the cases we have discussed.

Definition 5.10. Let V be a database and let η be a set of active constraints. A global-dynamic weak
repair of V by η is a consistent set of update actions U such that U is relevant w.r.t. V and:

〈V ,V � U〉 ∈
∣∣∣∣∣∣∣∣ while ¬

(∧
C(η)

)
do

(⋃
r∈η

α∈R(r)

α
) ∣∣∣∣∣∣∣∣



In the same vein as before, if U is also a PMA repair of V achieving C(η), then U is a global-dynamic
repair of V by η.

It is easy to see now that this tweaked definition provides us with the desired repaired database
in Examples 5.8 and 5.9. Specifically, the set {p←>} is a global-dynamic repair of V by η in both
examples. Furthermore, a dynamic weak repair is always a global-dynamic weak repair, as it can be
created by the same procedure using one step less, namely by not checking the condition “¬C(r)?” in
the do part of the program. This makes dynamic weak repairs a subset of global-dynamic weak repairs
(and also dynamic repairs a subset of global-dynamic repairs).

It is our intention to use the global-dynamic repairs mainly as a tool of comparison between the
different classes of repairs and less as a practical repairing technique that would replace the others. As
we will see, the most important attribute of global-dynamic repairs is that they are exactly the global-
dynamic weak repairs that are minimal w.r.t. set inclusion (i.e., if U is a global-dynamic repair of V
then there is no global-dynamic weak repair U′ of V such that U′ ⊂ U). The recipe when defining
repairs till now is to first give the definition of their weak versions and then state that they also have
to be PMA repairs. This is of course different from saying that these repairs are the weak repairs that
are minimal w.r.t. set inclusion, as in this case they would always exist if at least one of their weak
counterparts existed. But it is not always the case that they may coincide with PMA repairs and usually
may not exist altogether. This can be witnessed in Example 5.9 for founded repairs and in Example
5.6 for dynamic repairs.

However, when minimality w.r.t. set inclusion and coincidence with PMA repairs is the same, we
have a much more powerful and reliable tool in our hands that avoids the main disadvantage of other
repairs, namely that they may not exist (even if their weak versions do). This is shown in Theorem
5.12. Before this, a small lemma characterises this global-dynamic nature.

Lemma 5.11. Let η be a set of active integrity constraints in the language of P and let V ⊆ P be a
database. Let U1 be a global-dynamic weak repair of V by η and U2 be a weak repair of V achieving
C(η) such that U2 ⊂ U1. Then U2 is also a global-dynamic weak repair of V by η.

Proof:
By hypothesis, U1 and U2 are both consistent sets of update actions that are relevant w.r.t. V such that
V � U1 |=

∧
C(η) and V � U2 |=

∧
C(η) with U2 ⊂ U1. This means that V can be updated with less

update actions than U1 in order to satisfy the integrity constraints in η. But U1 was constructed by
iteration on checking the satisfaction of

∧
C(η) and applying update actions from

⋃
r∈η R(r). Then U2

can be constructed in exactly the same way, since it doesn’t comprise any update actions outside of
U1, with the difference of taking less update actions into account: namely, by restricting the nondeter-
ministic choice to updates from U2 and leaving the update actions in U1\U2 out of consideration. This
will also lead to a repaired database. So U2 is a global-dynamic weak repair of V by η as well. ut

Theorem 5.12. Let η be a set of active integrity constraints in the language of P and let V ⊆ P be a
database. Let U be a consistent set of update actions that is relevant w.r.t. V . U is a global-dynamic
repair of V by η iff U is a global-dynamic weak repair of V by η that is minimal w.r.t. set inclusion.



Proof:
Let the set GDR consist of all the global-dynamic repairs of V by η and let MGDWR consist of all
the global-dynamic weak repairs of V by η that are minimal w.r.t. set inclusion. For convenience we
also define in the same way R as the set of all PMA repairs and WR as the set of all weak repairs of V
achieving C(η). Finally, let GDWR be the set of all global-dynamic weak repairs of V by η. First of
all, observe that GDR = GDWR ∩ R (1) and GDWR ⊆ WR (2). Let us show that GDR = MGDWR.

• GDR ⊆ MGDWR: let U1 ∈ GDR. By (1) then, U1 ∈ GDWR and U1 ∈ R. Let U2 ∈ GDWR
such that U2 ⊂ U1. By (2) we also have that U2 ∈ WR. This means that U1 ∈ R and U2 ∈ WR
with U2 ⊂ U1. But this cannot be the case, as a PMA repair is a minimal weak repair w.r.t.
set inclusion. So there is no U2 ∈ GDWR such that U2 ⊂ U1, where U1 ∈ GDWR. Thus
U1 ∈ MGDWR.
Note that this also applies to founded, justified and dynamic repairs. The difference is in the
other direction.

• MGDWR ⊆ GDR: let U1 ∈ MGDWR. By definition then, U1 ∈ GDWR and there is no
U′ ∈ GDWR such that U′ ⊂ U1 (3). Let U2 ∈ WR such that U2 ⊂ U1. By Lemma 5.11
it is also the case then that U2 ∈ GDWR. But this cannot be the case by (3). So there is no
U2 ∈ WR such that U2 ⊂ U1. Since by (2) we also have U1 ∈ WR, this means that U1 ∈ R. Thus
U1 ∈ GDWR ∩ R and using (1) we get U1 ∈ GDR.

ut

So there is enough evidence to support the idea of using global-dynamic repairs as our repairs
of choice when we want to update a database taking into account active integrity constraints in the
cases where other repairs don’t work. They are the closest thing to a PMA repair as shown by the
next proposition, with the only limitation of being non-existent if the set of update actions

⋃
r∈η R(r)

is empty or if an integrity constraint can’t be repaired even through update actions existing in other
clauses (in both cases a solution to this problem shouldn’t exist intuitively).

Proposition 5.13. Let η be a set of active integrity constraints in the language of P and let V ⊆ P be
a database. Let U be a consistent set of update actions that is relevant w.r.t. V . U is a global-dynamic
repair of V by η iff U is a PMA repair of V achieving C(η) and U ⊆

⋃
r∈η

R(r).

Proof:
The left-to-right direction is trivial by the definition of global-dynamic repairs, whereas the right-to-
left direction follows immediately by Theorem 5.12. ut

But ultimately the choice between dynamic and global-dynamic repairs is traced back to what the
answer should be regarding the repairing or not of a database in all of these cases. The former use a
more restrictive procedure that makes it more local, while the latter do not.

Remark 5.14. In dynamic weak repairs and dynamic repairs we can use the
⋃

p∈PR(r) toggle(p) pro-
gram in the place of

⋃
α∈R(r) α in πr without any change in the dynamic behavior of the repairs. In the



case of global-dynamic weak repairs, at first sight the programs:

while ¬
(∧

C(η)
)

do
(⋃

r∈η
α∈R(r)

α
)

and while ¬
(∧

C(η)
)

do
(⋃

r∈η
p∈PR(r)

toggle(p)
)

seem to once again bring the same results. This bears the question of whether we could instead use
the second definition which abbreviates:¬

(∧
C(η)

)
? ;

⋃
r∈η

p∈PR(r)

toggle(p)


∗

;
(∧

C(η)
)
?

and which is highly reminiscent of the program weakRepair(C(η)), showing its close relationship with
weak and PMA repairs. It should be clarified why toggle(p) doesn’t work anymore. The reason is that
toggling a propositional variable in this case is not the same as choosing the respective update action,
as toggle(p) can bring the opposite results. We can see this when V = ∅ and η =

{
〈¬p∨q, {p←⊥}〉,

〈¬q∨p, {q←⊥}〉, 〈r, {r←>}〉
}
. A global-dynamic weak repair of V by η using the alternative definition

with toggle(p) is the set of update actions {p←>, q←>, r←>}, which is obviously absurd.

As already mentioned, this does not happen with dynamic weak repairs and dynamic repairs. It
is another aspect of their “strict” and local nature, as they check if a clause needs repairing before
toggling any propositional variable, thus making any update action chosen to be exactly the intended
one from the set of preferred ones.

6. Complexity of dynamic repairs

In this section we provide tight complexity bounds for the problems of existence of a dynamic weak
repair and a dynamic repair. It is known that deciding the existence of a repair is NP-complete for
weak repairs, PMA repairs and founded weak repairs, while it is Σ2

P-complete for founded repairs,
justified weak repairs and justified repairs [9]. As we will see, the same problem proves to be more
difficult for dynamic weak repairs and dynamic repairs: deciding their existence is PSPACE-complete.
For the lower bound (hardness) we provide a reduction from the problem of checking whether a fully
quantified Boolean formula is true, whereas for the upper bound (membership) a reduction to the
model checking problem of DL-PA will suffice. The result follows from the fact that checking whether
a fully quantified Boolean formula is true and DL-PA model checking are both PSPACE-complete
problems [29, 14].

6.1. Lower complexity bound

The hardness result is articulated in the following theorem, for which we only provide a proof sketch.

Theorem 6.1. The problems of existence of a dynamic weak repair and a dynamic repair are both
PSPACE-hard.



Proof Sketch:
In order to show that the existence of dynamic weak repairs and dynamic repairs is PSPACE-hard
we will provide a reduction from the following problem: given a fully quantified Boolean formula G,
decide whether G is true. We suppose w.l.o.g. that G is in prenex normal form, with the variables in
the prefix being all different and the matrix containing only the Boolean connectives ¬ and ∧. Let
subf(G) be the set comprising all the subformulas of G and let subfv(G) be the set comprising all the
variables in G. We define the set PG of propositional variables to be composed of:

• all x, x? and x! such that x ∈ subfv(G)

• A+?, A−?, A+! and A−! for each A ∈ subf(G)

Intuitively, the elements of PG play the following roles: x stores the truth value of x in G, x? indicates
that a value for x must be chosen and x! indicates that the value for x has been chosen. Similarly, A+?

indicates that we check if A is true and A+! indicates that A has been proved to be true. The same goes
for A−? and A−!, for checking and proving that A is false.

The idea now is to start from the initial formula G and to compute whether it is true by asking
whether there is a dynamic procedure that repairs the database {G+?} under a set of active constraints.
This set can be defined by first assigning a set of active constraints to each A ∈ subf(G), indicating
the required steps for checking whether or not A can be proved true or false, and taking their union.
For each A, the goal is to reach a state satisfying ¬A+? ∧ A+! if we want to prove that A is true and
¬A−? ∧ A−! if we want to prove that A is false. Indeed, each A ∈ subf(G) can be associated with a set
of active constraints which repair any database satisfying A+? ∧¬A+! (respectively A−? ∧¬A−!) to one
satisfying ¬A+? ∧ A+! (respectively ¬A−? ∧ A−!). So, starting from the database {G+?} which satisfies
G+? ∧ ¬G+!, if there is a successful dynamic repair procedure using these sets of active constraints
then ¬G+?∧G+! will be reached and the initial formula G will be proved to be true. On the other hand,
if there is no dynamic weak repair of {G+?} by these active constraints then G will be false.

In the following we define the set of active integrity constraints for the case when A = ∃x.B that
encode the truth conditions that are used in the evaluation of A. The underlined literals highlight the
differences between the static constraints while the rightmost column explains the taken action.

a1: 〈¬A+? ∨ A+! ∨ B+? ∨ B+! ∨ x? ∨ x! ∨ x , {x?←>}〉 , ask for a truth value for x;
a2: 〈¬A+? ∨ A+! ∨ B+? ∨ B+! ∨ ¬x? ∨ x! ∨ x , {x←>, x!←>}〉 , toggle x or set it to false;
a3: 〈¬A+? ∨ A+! ∨ B+? ∨ B+! ∨ ¬x? ∨ x! ∨ ¬x , {x!←>}〉 , set x to true;
a4: 〈¬A+? ∨ A+! ∨ B+? ∨ B+! ∨ ¬x? ∨ ¬x! , {x?←⊥}〉 , end the choice of x;
a5: 〈¬A+? ∨ A+! ∨ B+? ∨ B+! ∨ x? ∨ ¬x! , {B+?←>}〉 , ask for B to be true;
a6: 〈¬A+? ∨ A+! ∨ B+? ∨ ¬B+! ∨ x? ∨ ¬x! , {A+!←>}〉 , A is now proved true;
a7: 〈¬A+? ∨ ¬A+! ∨ B+? ∨ ¬B+! ∨ x? ∨ ¬x! , {x!←⊥}〉 , free x;
a8: 〈¬A+? ∨ ¬A+! ∨ B+? ∨ ¬B+! ∨ x? ∨ x! , {B+!←⊥}〉 , remove the result for B;
a9: 〈¬A+? ∨ ¬A+! ∨ B+? ∨ B+! ∨ x? ∨ x! ∨ ¬x , {x←⊥}〉 , remove x if it is set to true;
a10: 〈¬A+? ∨ ¬A+! ∨ B+? ∨ B+! ∨ x? ∨ x! ∨ x , {A+?←⊥}〉 , end the request for A;



For A = ∃x.B and V ⊆ subfv(G) then the following holds: V |= A iff there is a dynamic weak
repair of V ∪ {A+?} by {a1, . . . , a10}. Similar sets of active constraints then can be assigned to the rest
of the formulas A ∈ subf(G). Finally, we define the active constraint g = 〈G+? ∨ ¬G+!, {G+!←⊥}〉

which is used in the final step to ensure minimality of the repair procedure, i.e., in order to ensure that
only the update action G+?←⊥ survives at the end. We then define the set of active constraints ηG to
be the union of the aforementioned active constraints for each A ∈ subf(G) together with g. Due to
the active constraint g, the set {G+?←⊥} will always be the only dynamic weak repair of {G+?} by ηG

and, since ∅ is not a weak repair of {G+?} by ηG, it is also a PMA repair. So if a dynamic weak repair
of {G+?} by ηG exists, it will be the set {G+?←⊥} which is also a dynamic repair of {G+?} by ηG. This
gives the following: (1) if there is a dynamic weak repair of {G+?} by ηG then there is also a dynamic
repair of {G+?} by ηG. It follows that:

(2) G is true iff there is a dynamic weak repair of {G+?} by ηG

(3) G is true iff there is a dynamic repair of {G+?} by ηG

Note that (3) is an immediate outcome of (1) and (2). Now, since it is known that checking whether a
fully quantified Boolean formula is true is a PSPACE-complete problem, the hardness result for both
dynamic weak repairs and dynamic repairs follows from (2) and (3) and the fact that, given a formula
G, the cardinality of the set ηG is linear in the length of G. ut

6.2. Upper complexity bound

Next, in order to show that deciding the existence of dynamic weak repairs and dynamic repairs is in
PSPACE we just need to reduce the problem into the model checking problem of DL-PA, since the
latter is known to be PSPACE-complete [14]. The reduction is easy and is based on the following
proposition.

Proposition 6.2. Let η be a set of active integrity constraints in the language of P and let V ⊆ P be a
database.

• A dynamic weak repair of V by η exists iff V |= 〈πη〉>, where πη is the program while ¬ (
∧

C(η))
do

(⋃
r∈η πr

)
• A dynamic repair of V by η exists iff V |= 〈πη〉>, where πη is the program while ¬ (

∧
C(η))

do
(⋃

r∈η π
±
r
)

; Minimal(C(η))? ;PC
±←⊥

Proof:
In both cases, for the left to right direction consider that a dynamic weak repair (respectively, dynamic
repair) of V by η exists. By Definition 5.3 and Theorem 5.7 then, this means that there exists a set of
update actions U such that U is relevant w.r.t. V and 〈V ,V � U〉 ∈ ||πη||. Since V � U |= >, the result
follows.

Again in both cases, for the right to left direction let V |= 〈πη〉>. This means that there exists a V ′

such that 〈V ,V ′〉 ∈ ||πη||. It is easy to see that, if we set U = {p←> : p ∈ V ′ and p < V} ∪ {p←⊥ :
p ∈ V and p < V ′} then V ′ = V � U and U is relevant w.r.t. V . So, in other words, there exists a U



such that U is relevant w.r.t. V and 〈V ,V � U〉 ∈ ||πη||. By Definition 5.3 and Theorem 5.7 then, this
means that there exists a dynamic weak repair (respectively, dynamic repair) of V by η. ut

The theorem for membership then follows immediately.

Theorem 6.3. The problems of existence of a dynamic weak repair and a dynamic repair are both in
PSPACE.

Proof:
It is known that model checking in DL-PA is a PSPACE-complete problem. The result follows from
Proposition 6.2 and the fact that, given a set of active integrity constraints η, the length of the program
πη is linear in the size of the set C(η). ut

Using Theorems 6.1 and 6.3 then, we have the following corollary.

Corollary 6.4. The problems of existence of a dynamic weak repair and a dynamic repair are both
PSPACE-complete.

7. History-based repairs

In this section we would like to discuss history-based repairs, an extension of the repairs seen so
far taking into account databases with history. What we mean by history is the consistent set of
transactions that took place from the last time the database satisfied the integrity constraints up until
its current form. So let’s say that apart from the initial database, we are also provided with a consistent
set of update actions: these are what we refer to as history, the extra information of the route taken
from an earlier point in time (more specifically, the last time the integrity constraints were satisfied)
until the current state of affairs.

So given this extra information, how should we make use of it? A starting point would be to
make sure that the update actions which took place in order to reach the current database will not
appear again in the future. Imagine, for instance, that we are provided with the database V , a set
of active integrity constraints η and an update action that took place in order to reach it, p←⊥. If
there exist two repairs of V by η, namely U1 = {p←>} and U2 = {q←>}, then we would like to
disregard U1 as it would repair V by adding p and V would return to an “earlier state” (from which
it was updated by removing p) thus violating the ‘priority of the new information’ principle that was
widely considered in the update literature [26]. Furthermore, we should consider what happens in the
case where, although repairs exist, there is no repair that updates the database without returning it to
an “earlier state”. Should we make use of them and disregard the given history or not? Intuitively,
the repair actions of active integrity constraints are of the highest priority when repairing a database,
whereas the aforementioned history is based on a set of update actions which was used to repair a
previous database into the current one, but can be undone if needed. We can see this in the previous
example as well, where if U1 was the only repair of V by η then it should be applied regardless of
p←⊥ being used to reach V .



But perhaps a more concrete example is the following, based on the “an employee cannot be in 2
departments” constraint: let P = {d1, d2}, where d1 and d2 denote departments 1 and 2 respectively,
and the integrity constraint r = 〈¬d1∨¬d2, {d1←⊥, d2←⊥}〉 which says that no employee should work
in both departments at the same time; if this is the case, then they should be removed from either
one, without any specific preference. Assume now that H = 〈{d1, d2}, {d1←>}〉 is our history-based
database, where {d1, d2} is our actual database V (saying that there is someone working on both de-
partments) and the set {d1←>} represents the history, i.e., that the last department which they joined
was d1. In this case, we would prefer the repairing of V by {d2←⊥}, instead of {d1←⊥}, considering
the latest action of putting the specific employee recently in department 1 to be of higher priority.
This is done by repairing V by rH = 〈¬d1∨¬d2, {d2←⊥}〉 instead of r and actually disregarding the
“preferred” update action d1←⊥ in R(r) which conflicts with the provided history.

With that in mind, we call H = 〈V ,U〉 a history-based database when V ⊆ P is a database and
U ⊆ U a consistent set of update actions such that there is V ′ ⊆ P with V ′ � U = V . We also define
U−1 as the set comprising the opposite update actions in U: U−1 = {p←⊥ : p←> ∈ U} ∪ {p←> :
p←⊥ ∈ U}.

According to what has been said so far, we would like U′ to be a repair of a history-based database
H = 〈V ,U〉 by a set of active integrity constraints η, only if U′ ∩ U−1 = ∅. In order for this to happen
we have to repair V by ηH instead of η, where ηH has:

rH =
〈
C(r),R(r) \ U−1〉 , for r ∈ η

In this way we disregard update actions which have the risk of returning our current database to a
previous state and give priority to the new ones. As already mentioned, by choosing to ignore update
actions based on the history U that we have, we may risk reducing a set R(r) to be empty for some
r ∈ η, thus leading to no repairs occurring. In this case, choosing to not take U into consideration is
the only option and we return to the repairing of V by η, instead of H by η. The following example
highlights everything that’s been said so far.

Example 7.1. Let H = 〈{d1, d2}, {d1←>}〉 and η1 = 〈¬d1∨¬d2, {d1←⊥, d2←⊥}〉. Both U1 = {d1←⊥}

and U2 = {d2←⊥} are founded, justified, dynamic and global-dynamic repairs of V = {d1, d2} by η1.
Only the second is a founded, justified, dynamic and global-dynamic repair of H by η1. Similarly,
consider η2 = 〈¬d1∨¬d2, {d1←⊥}〉. Then U1 = {d1←⊥} is a founded, justified, dynamic and global-
dynamic repair of V = {d1, d2} by η2. There are no repairs of H by η2, however, making us reduce H
to just V and use U1 once again.

Finally, let us define:

weakRepairH(C(η),U) =

⋃
p∈A

toggle(p)


∗

;
(∧

C(η)
)

?

(
π±r,U

)′
= ¬C(r) ? ;

⋃
p←X∈B

(
p←X; p±←>

)
and

(
π±r,U

)′′
=

⋃
p←X∈B

(
p←X; p±←>

)
where A = PC(η)\U−1 and B = R(r) \ U−1.



The next theorem characterises founded, justified, dynamic and global-dynamic history-based re-
pairs in terms of DL-PA programs.

Theorem 7.2. Let η be a set of active integrity constraints in the language of P and let V ⊆ P be a
database (so no p±, p+ and p− occurs in either of them). Let U and U′ be consistent sets of update
actions such that U is relevant w.r.t. V .

• U is a founded repair of H = 〈V ,U′〉 by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣ weakRepairH(C(η),U′); Founded(η)? ; Minimal(C(η))? ;PC

±←⊥
∣∣∣∣∣∣

• U is a justified repair of H = 〈V ,U′〉 by η iff η is a set of standard active constraints and:

〈V ,V � U〉 ∈
∣∣∣∣∣∣ weakRepairH(C(η),U′); Justified(η)?; Minimal(C(η))?; ClearAll

∣∣∣∣∣∣
• U is a dynamic repair of H = 〈V ,U′〉 by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣∣∣ while ¬

(∧
C(η)

)
do

(⋃
r∈η

(
π±r,U′

)′) ; Minimal
(
C(η)

)
? ;PC

±←⊥

∣∣∣∣∣∣∣∣
• U is a global-dynamic repair of H = 〈V ,U′〉 by η iff:

〈V ,V � U〉 ∈
∣∣∣∣∣∣∣∣ while ¬

(∧
C(η)

)
do

(⋃
r∈η

(
π±r,U′

)′′) ; Minimal
(
C(η)

)
? ;PC

±←⊥

∣∣∣∣∣∣∣∣
Proof:
Note that the construction of all history-based repairs in DL-PA terms are identical to their counterparts
in the previous sections, with the difference being in the choice of p’s and update actions p←X in the
nondeterministic composition place of the programs. By removing the set U−1 from each nondeter-
ministic choice imposed by the programs weakRepairH(C(η),U),

(
π±r,U

)′ and
(
π±r,U

)′′ we get exactly
the active integrity constraints rH (instead of r) needed in order to repair a history-based database by
the corresponding set of active integrity constraints ηH . ut

8. Conclusion

We have shown how several definitions of database repair via active integrity constraints can be ex-
pressed in DL-PA, including new proposals in terms of their iterated application. More specifically,
we have introduced a new, dynamic way of handling database repair under a set of active integrity
constraints and have shown some interesting properties and alternatives by means of history-based
repairs, all through the use of the quite simple but expressive Dynamic Logic of Propositional Assign-
ments DL-PA. This allows us to claim that DL-PA is a nice integrated framework for database updates:
it not only provides operators p←> of insertion and p←⊥ of deletion and more generally sets U of
such assignments that can be applied to a database V; it also provides a means to reason about the
repair of the resulting V � U when some element of the set of integrity constraints is violated.



In the following, the program repair denotes one of the repair programs of Theorems 3.1, 4.1, 4.2,
5.7, 7.2, as well as Definitions 5.3 and 5.10. We can witness the aforementioned treatment of DL-PA
as a means of reasoning between repairs in the following two instances:

• V ′ is a possible repair of the update of the database V by the insertion or deletion of p if and
only if the couple 〈V ,V ′〉 belongs to the interpretation of the DL-PA programs p←>; repair or
p←⊥; repair respectively.

• The set of candidate repaired databases is the interpretation of the DL-PA formula
〈
repair−

〉
ϕV ,

where ϕV is a conjunction of literals describing V syntactically.

But beyond identifying possible repaired databases, what is even more interesting is that our pro-
grams repair also allow to solve decision problems. Some notable examples follow:

• We may check whether it is possible at all to repair V by model checking in DL-PA whether
V |=

〈
repair

〉
>.

• We can check whether there is a unique repair of V by model checking whether the set of
databases V ′ such that 〈V ,V ′〉 ∈ ||repair|| is a singleton. This amounts to model check for each
of the variables p occurring in the constraints whether V |=

[
repair

]
p ∨

[
repair

]
¬p.

• We might as well wish to check possibility or unicity of the repairs independently of a specific
database V . For instance, we can check whether η can repair any database by checking whether
the formula

〈
repair

〉
> is DL-PA valid.

• A further interesting reasoning task is to check whether two sets of active constraints η1 and η2
are equivalent under a given semantics by checking whether ||repairη1

|| = ||repairη2
||.

All of the above demonstrate the usefulness of DL-PA as a logic dealing with database repair. The
related decision problems also provide a hint of the variety of applications it provides. Furthermore,
our way of handling active integrity constraints of the form r = 〈C(r),R(r)〉 allows us to generalise the
condition C(r) from clauses to arbitrary formulas (that could actually even be DL-PA formulas). This
opens up two perspectives. First, our definition also covers revision programs [9]; we leave it to future
work to establish the exact relationship. Second, we could further generalise the action R(r) from a set
of update actions to arbitrary DL-PA programs. Dynamic repairs would then still make sense, while it
is not clear how founded and justified repairs would have to be defined.

Last but not least, although we have argued that there are real world problems, such as the one in
the introductory section, where dynamic repairs are preferable over founded or justified repairs, we
did see that this comes at a cost: the computational complexity of dynamic repairs is higher. We leave
it to future work to explore possible avenues of improving this dynamic behavior, especially in terms
of computational resources. A possible extension to a first order setting is also a good avenue for
future research, seeing that the nature of the procedure is independent of the propositional setting that
we worked on and that it could easily be adapted on higher level formalisms.
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[24] Cooper MC, Herzig A, Maffre F, Maris F, Régnier P. A Simple Account of Multi-Agent Epistemic Plan-
ning. In: Kaminka GA, Fox M, Bouquet P, Hüllermeier E, Dignum V, Dignum F, van Harmelen F (eds.),
ECAI 2016 - 22nd European Conference on Artificial Intelligence, 29 August-2 September 2016, The
Hague, The Netherlands - Including Prestigious Applications of Artificial Intelligence (PAIS 2016), vol-
ume 285 of Frontiers in Artificial Intelligence and Applications. IOS Press. ISBN 978-1-61499-671-2,
2016 pp. 193–201. doi:10.3233/978-1-61499-672-9-193.



[25] Charrier T, Schwarzentruber F. A Succinct Language for Dynamic Epistemic Logic. In: Larson K,
Winikoff M, Das S, Durfee EH (eds.), Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017. ACM, 2017 pp. 123–131.

[26] Katsuno H, Mendelzon AO. On the difference between updating a knowledge base and revising it. In:
Gärdenfors P (ed.), Belief revision, pp. 183–203. Cambridge University Press, 1992. (preliminary version
in Allen, J.A., Fikes, R., and Sandewall, E., eds., Principles of Knowledge Representation and Reasoning:
Proc. 2nd Int. Conf., pages 387–394. Morgan Kaufmann Publishers, 1991).

[27] Peppas P, Nayak AC, Pagnucco M, Foo NY, Kwok RBH, Prokopenko M. Revision vs. Update: Taking
a Closer Look. In: Wahlster W (ed.), 12th European Conference on Artificial Intelligence, Budapest,
Hungary, August 11-16, 1996, Proceedings. John Wiley and Sons, Chichester, 1996 pp. 95–99.

[28] Winslett M. Reasoning about Action Using a Possible Models Approach. In: Shrobe HE, Mitchell TM,
Smith RG (eds.), Proceedings of the 7th National Conference on Artificial Intelligence, St. Paul, MN,
USA, August 21-26, 1988. AAAI Press / The MIT Press. ISBN 0-262-51055-3, 1988 pp. 89–93.

[29] Stockmeyer LJ, Meyer AR. Word Problems Requiring Exponential Time: Preliminary Report. In: Aho
AV, Borodin A, Constable RL, Floyd RW, Harrison MA, Karp RM, Strong HR (eds.), Proceedings of the
5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas, USA.
ACM, 1973 pp. 1–9. doi:10.1145/800125.804029.




