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Abstract

Understanding the dynamics underlying fluid transport in tumour tissues is of
fundamental importance to assess processes of drug delivery. Here, we analyse the
impact of the tumour microscopic properties on the macroscopic dynamics of vas-
cular and interstitial fluid flow. More precisely, we investigate the impact of the
capillary wall permeability and the hydraulic conductivity of the interstitium on the
macroscopic model arising from formal asymptotic 2-scale techniques.

The homogenization technique allows us to derive two macroscale tissue models
of fluid flow that take into account the microscopic structure of the vessels and the
interstitial tissue. Different regimes were derived according to the magnitude of the
vessel wall permeability and the interstitial hydraulic conductivity. Importantly,
we provide an analysis of the properties of the models and show the link between
them. Numerical simulations were eventually performed to test the models and to
investigate the impact of the microstructure on the fluid transport.

Future applications of our models include their calibration with real imaging
data to investigate the impact of the tumour microenvironment on drug delivery.
Keywords: two-scale homogenisation, fluid flow in tumours, interstitial fluid pres-
sure, tumour microscopic structure.

1 Introduction

Interstitial and capillary fluids are strongly connected in malignant tissues and are
mainly involved in the transport of molecules in tumours. When drugs are intravenously
injected, they have to overcome several barriers, including vascular transport, transvas-
cular transfer, interstitial transport and finally cellular uptake [24]. The biological and
physicochemical properties of the tumour microenvironment play a significant role in
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the drug delivery process [9]. The geometrical microstructure of the tumour also has an
important impact on the fluid flow [5].

Neoplastic tissues are highly heterogeneous. They are generally characterized by [14]
accumulated solid stress [21], abnormal blood vessels network [46], elevated interstitial
fluid pressure (IFP) [13], that almost equals the microvessel pressure (MVP) and dense
interstitial structure [34]. These traits, that distinguish tumour tissues from normal ones,
cause barriers to drug delivery [24]. The heterogeneous spatial distribution of tumour
vessels and poor lymphatic drainage impair a uniform delivery of therapeutic agents in
tumours. Blood vessels are unevenly distributed, leaving avascular spaces. Moreover,
their walls are leaky and hyperpermeable in some places while not in other [17]. Blood
flow velocity is also compromised by the elevated viscous and geometrical resistance
offered by the tumour vasculature [5]. Finally, the lack of an efficient lymphatic network
inside the tumour coupled with leaky tumour vessels leads to a high IFP [61] almost
equal to the microvascular pressure [13]. Due to elevated IFP, the tumour interstitium
is characterized by no pressure gradient [12, 25].

Several mathematical models have been developed during the last decades to investi-
gate the features of fluid transport in the tumour microenvironment. The porous medium
theory has been employed to model interstitial fluid flow (IFF) relying on Darcy’s law
and using average field variables defined over the whole tissue [23, 33]. Fluid transport
through the blood vessels has been exploited in both discrete and continuous manners,
including spatial and temporal variations. In either discrete and continuous models, the
IFF and microvascular fluid (MVF) are usually coupled by Starling’s law [52], that de-
scribes the fluid filtration through the highly permeable vessels walls. Microscopic models
of the flow patterns around an individual capillary and a network of blood vessels have
been introduced relying on the Krogh cylinder model [30, 3, 11]. Poiseuille’s law can be
considered to describe the blood flow in a cylindrical domain [6, 40, 50]. Furthermore,
Navier-Stokes equations have been adopted to model the spatio-temporal variations in
blood flow [11, 33]. More detailed biophysical models have been developed to take into
account the more realistic heterogeneity of the tumour vasculature [8]. Welter et al
[59] introduced an exhaustive biophysical model the incorporates tumour growth, vas-
cular network (including arteries and veins), angiogenesis, vascular remodeling, porous
medium description for the extracellular matrix (ECM) and interstitial fluid, interstitial
fluid pressure and velocity and chemical entities (such as oxygen, nutrients, drugs). On
the other hand, continuous models based on mixture theory have been exploited to de-
scribe interstitial and vascular fluid flow, assuming that the two phases are present at
each point of the tumour [45]. Multiscale models have further been employed to inves-
tigate the coupling between tumor growth, angiogenesis, vascular remodelling and fluid
transport [35] and the impact of collagen microstructure on interstitial fluid flow [60].
Imaging data have been integrated to both continuum and discrete models to quantify
the effect of the heterogeneity on the fluid transport [62, 54].

The increasing amount of imaging data makes it possible to recover vascular networks
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in details. However, solving discrete models on the entire vessel tree might be compu-
tationally expensive. The formal 2-scale homogenization technique allows to take into
account microscopic features on the macroscopic dynamic of fluid flow. 2-scale asymptotic
expansion has been previously applied to fluid and drug transport in tumours. A system
of Darcy’s equations has been derived in [48] to couple interstitial and vascular fluid
flows in malignant tissues assuming a periodic medium. A higher complexity has been
taken into account in [36], with the introduction of rheological effects in the blood flow
and of local heterogeneity. A generalization of homogenized modelling for vascularized
poroelastic materials has also been presented [37, 38]. More recently, higher complexity
has been added to the homogenized models [49] considering three length scales for the
vessel network (i.e., arteriole, venule and capillary scales).

Roughly speaking, 2 type of models have been proposed be used to describe fluid
flow in tumors. Baxter and Jain suggested that simple Darcy’s law can describe the
experimental observations [9]. The tumor is considered as a one-phase medium at a
pressure which satisfies a static diffusive equation, whose tensor reflected the global
effect of the microstructure. More recently, Shipley and Chapman derived a biphasic
model by 2-scale expansion techniques [48]. In their work, which was also obtained later
on by Penta et al., the tumour is composed of a capillary phase and an interstitium
phase. Each phase is at a specific pressure and the pressures are coupled through an
elliptic system which makes appear the difference between the 2 pressures. Thanks to
the 2-scale expansion under periodic assumptions, the authors provide a link between
the homogenised tensors and the microstructure.

The present work aims to clarify the links between the monophasic and the biphasic
models. Interestingly, we enlighten about the assumptions on the microstructure that
lead to the monophasic instead of the biphasic homogenised model. In particular we show
that the model derived by Shipley and Chapman is the distinguished model from which
the other uncouled and monphasic models might be derived under specific assumptions.
In addition, our results show also that the biphasic model exhibits an exponential decay
from the tumour boundary that might be difficult to capture numerically, justifying the
use of monophasic model. However the appropriate boundary condition has then to be
chosen, as performed in Section 3.5 .

More precisely, we compare different asymptotic regimes of the global fluid dynamics,
depending on the microscopic rheological properties of the tumours. We first derive a
microscopic model composed of Darcy’s law for the interstitium phase and Stokes equa-
tion for the capillary phase, with a Starling’s law at the interface vessel wall/interstitium.
This derivation is performed thanks to an asymptotic analysis as the thickness of the cap-
illary walls tends to zero similarly to previous works in electromagnetic studies [2, 39].
This microscopic model provides us the starting point of a formal 2-scale analysis under
periodic assumption [1] to derive effective macroscale tissue models.

We provide then the asymptotic model for any order of magnitude of two parameters
the permeability of the vessel wall and of the interstitial hydraulic conductivity. In

3



particular we show that if the interstitial hydraulic conductivity is at least as small as the
wall permeability, then the model is monophasic. If the wall permeability is smaller that
the interstitial hydraulic conductivity by one order of magnitude, then the two phases
are coupled. In this case, the coupling is tight if the magnitude of the wall permeability
is of the same order as the microstructure periodicity, and weak if it is smaller.

The characterization of the different limit models of great interest from the modelling
point of view, because a cancer tissue might be composed of regions exhibiting different
rheological behaviours. It is therefore important to determine how to pass from a model
to another one in accordance with the microstructure properties. Eventually, numerical
simulations on the macroscopic models are performed and the results are compared to
the literature.

Based on the results presented in this paper, the knowledge of the tissue microstruc-
ture determines the choice of the macroscopic model, which is crucial to study the impact
of the tumour microscopic characteristics on drug delivery. It is worth noting that imag-
ing data can provide the tissue microstructure that can be integrated in the homogenised
model. This modelling technique prevents the resolution of the original micro-scale model
that might be unfeasible as it requires the discretisation of the entire vessel network and
porous medium. Moreover, the heterogeneities of malignant tissues can be taken into ac-
count by considering the spatial variability of the micro-vessel features at the macroscopic
scale.

The papers is outlined as follows. In Section 2, we present the general microscopic
model that accounts for most of the phenomena encountered in living tissue. In particular
thanks to an asymptotic analysis with respect to the thickness of the capillary wall, we
derive a Starling’s law as a transmission condition linking the interstitium and the inner
capillary. This microscale model is the starting point of our formal 2-scale expansion. In
Section 3, we present the formal 2-scale expansion and give the asymptotic models that
are derived under different smallness assumptions on the parameters of the microscale
model. We also present geometrical assumptions on the two phases –in particular in
terms of connectivity– to ensure the positiveness of the resulting homogenised tensors.
Numerical simulations are given in Section 4. The influence of the geometry of the
microstructure on the hydraulic tensor properties is first studied. In particular, tensor
anisotropy is shown when the microstructure is oriented. Then the exponential decay1

from the tumour boundary of the difference of the interstitium and the capillary phases
is evaluated in terms of the parameters and shown numerically. The conclusion section 5
puts the results in perspectives with biological applications of the results.

2 Microscopic model of fluid transport in tumours

At the microscale, the domain Ω ∈ RN (with N = 2, 3) is the medium that consists
of the interstitium Ωt, the vessel wall Ωm and the capillary region Ωc. The interfaces

1The details of the proof of this behaviour is out of the scope and given in [55].
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between the inner capillary and the vessel wall on one side and between the interstitium
and the vessel wall on the other side are denoted respectively by Γ = ∂Ωc∩∂Ωm and Γδ =

∂Ωt ∩ ∂Ωm. Figure 1A shows the section of a capillary in the surrounding interstitium.
In the three regions, the fluid flow is assumed to be incompressible.

Ωc

Ωt
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Γδ

Γ

δ

y

x
z

η
θ

Ωc

Ωt

Γ

1Figure 1. Left: schematic of the domain considered to compute the interface conditions between
the capillaries and the interstitium. Ωm denotes the vessel wall region, Γδ is the interface between
the vessel wall and the interstitium. The transmission conditions are derived as δ → 0 using
asymptotic expansion. Right: schematic representation of the domain of the microscopic model:
section of the capillary in the sourranding tissue.

The interstitium - composed by the cells and the extracellular matrix and collagen -
is modeled as an isotropic porous medium, where the velocity ut and pressure pt follow
the Darcy’s law:

∇ · ut = 0, ut = −kt∇pt in Ωt, (1a)

where kt is the hydraulic conductivity in the interstitium. In the capillaries, we assume
that the fluid is Newtonian with a constant viscosity µ. Neglecting the inertial effects
and under the assumption of a laminar flow, the Stokes equation enables to describe the
vessel velocity uc and pressure pc:

∇ · uc = 0, µ∇2uc = ∇pc in Ωc. (1b)

Similarly to the interstitium, the capillary wall Ωm - of thickness δ - is considered as a
porous medium with hydraulic conductivity km, leading to

∇ · um = 0, um = −km∇pm in Ωm. (1c)
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2.1 Interface conditions

At the two boundaries Γ and Γδ, we have to consider interface conditions in order to
couple the different equations. We make the following choices, similarly to [16]:

1. Continuity of the normal velocity on both Γ and Γδ:

uc · n = um · n on Γ,

ut · n = um · n on Γδ.

This condition guarantees the continuity of mass through the two interfaces and it is
a natural choice since the fluid is assumed to be incompressible in the three regions.

2. Balance of the normal forces at the interfaces Γ,Γδ:

pc − µ[(n · ∇)uc] · n = pm on Γ, (2)

pt = pm on Γδ. (3)

Condition (2) is due to the fact that the blood force in Ωc acting on Γ is equal to the
normal component of the Cauchy stress vector [31], while the only force in Ωm acting
on the interface is the Darcy pressure pm. Analogously, equation (3) is motivated by
the fact that the only forces acting on the interface Γδ are the Darcy’s pressures pm
and pt in the respective regions Ωm and Ωt.

3. Beavers-Joseph-Saffmann condition on the tangential component of the capillary ve-
locity at the boundary with a porous medium Γ:

uc · τ = −
√
kmµ

αBJ
[(n · ∇)uc] · τ on Γ, (4)

where αBJ is a constant depending on the properties of the interface. This condition
comes from the experimental evidence shown by Beavers and Joseph [10] who observed
that the slip velocity along Γ was proportional to the shear stress along Γ. Equation of
the form (4) was derived by Saffmann using a statistical approach and the Brinkman
approximation for non-homogeneous porous medium [44] .

Non-dimensionalization

In order to identify the small parameters in the above partial differential equations,
it is crucial to perform a dimensional analysis. This analysis enables us to quantify the
relative amplitude of the different parameters involved. We rescale our fields as follows:

x = Lx′, u = Uu′, p =
µLU

d2
p′ + p0, (5)
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where L is the characteristic domain length, d is the mean intercapillary distance and U is
a characteristic velocity. The non-dimensional fluid transport problem reads (neglecting
the primes for the sake of simplicity) then as

ν∇2uc = ∇pc, ∇ · uc = 0, in Ωc, (6a)

ut = −κ∇pc, ∇ · ut = 0, in Ωt, (6b)

um = −κm∇pm,∇ · um = 0, in Ωm, (6c)

with the interface conditions on Γ

uc · n = um · n on Γ, (6d)

pc − ν[(n · ∇)uc] · n = pm on Γ, (6e)

uc · τ = −Rτ [(n · ∇)uc] · τ ,on Γ. (6f)

and on on Γδ

ut · n = um · non Γδ, (6g)

pt = pm on Γδ, (6h)

where

ν =
d2

L2
, κ =

ktµ

d2
, κm =

kmµ

d2
, Rτ =

√
kmµ

αBJL
,

are dimensionless quantities.

2.2 Effective Starling law to replace the thin wall of the capillary

Let us now perform the asymptotic analysis as the thickness of the capillary wall δ
tends to 0, assuming that κm is proportional to δ with a proportionality coefficient Rn
that will be defined later on:

κm = δRn.

We assume that the capillary is tubular along the direction z ∈ (0, Z0), where Z0 is the
characteristic length of the capillary along z. We neglect the bending along this axis.
Let us denote by η the normal variable to the vessel membrane and by θ the tangential
variable to the vessel wall. With these coordinates, the Laplacian is defined by

∇2 :
1

δ2
∂2
η +

1

δ(1 + δζη)
∂η +

1

(1 + δζη)2
∂2
θ + ∂2

z ,

where ζ is the curvature of the section. Identifying Ωm and the set {(η, θ, z) ∈ (0, 1) ×
Γ × (0, Z0)}, therefore, the fluid transport equations (6) in the capillary wall and the
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interface conditions are rewritten asÅ
∂2
η +

δ

(1 + δζη)
∂η +

δ2

(1 + δζη)2
∂2
θ + δ2∂2

z

ã
pm = 0 in Ωm, (7a)

uc · n = −Rn∂ηpm on Γ (7b)

∂ηpm =
κ

Rn
∇pt · n on Γδ (7c)

pc − ν[(n · ∇)uc] · n = pm on Γ, (7d)

pt = pm on Γδ, (7e)

uc · τ = −Rτ [(n · ∇)uc] · τ on Γ (7f)

The limit fluid flow problem at the microscale is obtained thanks to an asymptotic
analysis. The formal expansion of the variables pm, pt, pc and uc in powers of δ

pm = p(0)
m + δp(1)

m + δ2p(2)
m + ...

pt = p
(0)
t + δp

(1)
t + δ2p

(2)
t + ...

pc = p(0)
c + δp(1)

c + δ2p(2)
c + ...

uc = u(0)
c + δu(1)

c + δ2u(2)
c + ...

is injected in the equations. Equating coefficients of order 1(= δ0) in (7a)-(7f), we obtain
the following system of equations

∂2
ηp

(0)
m = 0 in Ωm (8a)

u(0)
c · n = −Rn∂ηp

(0)
m on Γ (8b)

∂ηp
(0)
m =

κ

Rn
∇p(0)

t · n on Γδ (8c)

p(0)
c − ν[(n · ∇)u(0)

c ] · n = p(0)
m on Γ (8d)

p(0)
m = p

(0)
t on Γδ (8e)

u(0)
c · τ = −Rτ [(n · ∇)u(0)

c ] · τ on Γ (8f)

From (8a) and (8c) we infer

∂ηp
(0)
m =

κ

Rn
∇p(0)

t · n in Ωm. (9)

Equations (9) and (8d) then lead to

p(0)
m =

Å
κ

Rn
∇p(0)

t · n
ã
η + p(0)

c − ν[(n · ∇)u(0)
c ] · n in Ωm. (10)
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from which we infer thanks to (8e) the expression of p(0)
t :

p
(0)
t = p(0)

m (η = 1) =
κ

Rn
∇p(0)

t · n + p(0)
c − ν[(n · ∇)u(0)

c ] · n on Γδ. (11)

From equations (11), (8b) and (8c) we derive formally the boundary conditions for small
δ:

κ∇p(0)
t · n = Rn

Ä
p

(0)
t − p(0)

c + ν[(n · ∇)u(0)
c ] · n

ä
on Γ, (12a)

u(0)
c · n = −κ∇p(0)

t · n on Γ, (12b)

u(0)
c · τ = −Rτ [(n · ∇)u(0)

c ] · τ on Γ. (12c)

Transmission conditions (12a)-(12b) can be rewritten as

ut · n = uc · n = Rn(pc − pt − ν[(n · ∇)uc] · n) on Γ, (13)

which is similar to Starling’s law, that is the most widely used equation in literature to
model flux transport across the vessel wall [25, 6] and reads

uc · n = Lp(pc − pt − σ (πc − πt)),

where Lp is the vascular permeability, σ is the osmotic reflection coefficient (σ ∈ (0, 1))
that expresses the glycocalyx filter function through the endothelial wall and (πc − πt) is
the oncotic pressure difference between the capillaries and the interstitium. However, the
latter can be considered negligible compared to the interstitial fluid pressure difference
in tumors [23, 57]. Moreover, the viscous term in equation (13) is usually neglected but
it is necessary to guarantee the well-posedness of the problem and does not change the
physical meaning since it is based on the balance of the normal forces [36].

The parameters Rn and Lp are linked by Rn =
LpLµ

d2
. Therefore, the limit microscopic

model reads as

ν∇2uc = ∇pc, ∇ · uc = 0, in Ωc, (14a)

ut = −κ∇pc, ∇ · ut = 0, in Ωt, (14b)

uc · n = ut · n on Γ, (14c)

uc · n = Rn (pc − pt − ν[(n · ∇)uc] · n) on Γ, (14d)

uc · τ = −Rτ [(n · ∇)uc] · τ , on Γ, (14e)

where

ν =
d2

L2
, κ =

ktµ

d2
, Rn =

LpLµ

d2
, Rτ =

√
kmµ

αBJL
,

are dimensionless quantities depending on the microscopic properties of the tissue.
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3 Formal derivation of continuummacroscale models for dif-
ferent regimes

This section is devoted to the derivation of a continuum macro-scale models from
the microscopic model (14) using the 2-scale asymptotic expansion method [4, 15, 1] and
under different asymptotic regimes depending on the capillary wall permeability and the
hydraulic conductivity of the interstitium.

3.1 Geometrical setting

Let us first present the geometrical setting. We assume that d is the mean inter-
capillary distance and L is the tissue characteristic length such that ε = d/L � 1.
We denote by Y the reference periodic unit cell that [0, 1]N . It is composed by the
interstitium Yt and the capillaries Yc. The interface between Yt and Yc is denoted ΓY .
The normal vector n to the interface ΓY is directed outwardlry from the vascular domain
Yc towards Yt. The total domain Ω is divided periodically in each direction in squares
Y ε
n such that

Y ε
n = εn+ εY, Y ε

t,n = εn+ εYt, Y ε
c,n = εn+ εYc, Γεn = εn+ εΓY , ∀n ∈ ZN .

The difficult problem of the boundary conditions and their influence on the expansion
is out of the scope of the paper. The reader may consider Ω as a manifold without
boundary, for instance the unit cube with periodic condition.

The domain Ω is thus composed of two subdomains Ωε
t = ∪nY ε

t,n and Ωε
c = ∪nY ε

c,n that
depend on ε and are connected when N = 3. The interface between the two subdomains
is Γε = ∪nΓεn. Figure 2 shows a schematic illustration of the periodic domain and of the
unitary cell Y .

3.2 The fluid flow model and the 3 asymptotic regimes

The fluid flow model reads in the oscillating domain Ω = Ωε
c ∪ Ωε

t ∪ Γε as:

ν∇2uεc = ∇pεc + fc, ∇ · uεc = 0, in Ωε
c, (15a)

uεt = −κ∇pεt , ∇ · uεt = 0, in Ωε
t , (15b)

uεc · n = uεt · n on Γε, (15c)

uεc · n = Rn (pεc − pεt − ν[(n · ∇)uεc] · n) on Γε, (15d)

uεc · τ = −Rτ [(n · ∇)uεc] · τ , on Γε. (15e)

As mention previously, no boundary conditions are considered in this section to avoid
the emergence of boundary layers that prevent the following derivation. Since these
boundary layers are exponentially decaying, their influence is restricted to the vicinityof
the boundary. The source term fc is supposed infinitely smooth ni Ωε

c. While it is natural
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Yt

ΓY

Yc

1

A

Ωε
c

Ωε
t

Γε

n

1

B

1Figure 2. Unitary cell Y = [0, 1]3 (left) composed by the capillary region Yc and the interstitial
compartment Yt; the interface between the two regions is denoted by ΓY . Periodic domain
Ω (right): the tumour capillaries Ωεc are assumed to be in the tubes, while the outer region
corresponds to the interstitial compartment Ωεt ; the interface between the two regions is denoted
by Γε and the normal n is directed outward the vascular domain.

to consider the scaling ν = O(ε2) on the viscosity to avoid trivial limit, the parameters
Rn, and κ are then taken as

ν = ε2ν̄, Rn = εγR̄n, κ = εηκ̄ (16)

so that ν̄, R̄n and κ̄ are of order 1. Shipley et al. and Penta et al. have considered
previsouls the cas γ = 1, η = 0 [48], while we consider here the cases (γ, η) ∈ N2 .

3.3 Heuristics of the formal 2-scale expansion

According to the multiple scales theory, it is natural to introduce the fast variable
y = x/ε. The idea of the 2-scale expansion consists in assuming that any field gε

appearing in the problem (15) – gε stands for uεc, uεt , pεc and pεt – has an expansion under
the form

gε(x) =

∞∑
`=0

ε`g(`)(x,x/ε), ∀x ∈ Ω,

where the fields (x,y) 7→ g(`)(x,y) are Y -periodic at any order ` ≥ 0. In order to identify
the problem satisfied by each field g(`), it is crucial to rewrite the differential operators
as

∇ = ∇x +
1

ε
∇y, ∇· = ∇x ·+

1

ε
∇y·, ∇2 = ∇2

x +
2

ε
∇x · ∇y +

1

ε2
∇2

y.

Problem (15) is then rewritten in the variables (x,y), making appear the asymptotic
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parameter ε and the parameters (γ, η):

ν̄
(
∇2

yu
ε
c + 2ε∇y · ∇xuεc + ε2∇2

xu
ε
c

)
=

1

ε
∇yp

ε
c +∇xp

ε
c + fc in Ωε

c × Yc, (17a)

1

ε
∇y · uεc +∇x · uεc = 0 in Ωε

c × Yc, (17b)

1

ε2
∇2

yp
ε
t +

2

ε
∇x · ∇yp

ε
t +∇2

xp
ε
t = 0 in Ωε

t × Yt. (17c)

The interface conditions on Γε × ΓY ,vary according to the value of γ and η :

1

εγR̄n
uεc · n + (pεt − pεc) + εν̄[(n · ∇y)uεc] · n + ε2ν̄[(n · ∇x)uεc] · n = 0, (17d)

1

ε
[(n · ∇y)uεc] · τ + [(n · ∇x)uεc] · τ +

1

Rτ
uεc · τ = 0, (17e)

εηκ̄∇yp
ε
t · n + εuεc · n + ε1+ηκ̄∇xp

ε
t · n = 0. (17f)

3.3.1 Formal cascade of equalities

Injecting the expansions in power of ε, we infer the following cascade of equa-
tions linking formally the coefficients (ukc ,ukt , pkc , pkt ), with the usual convention that
(u`c,u`t, p`c, p`t) = (0, 0, 0, 0) for any index ` strictly negative:

−∇yp
k
c + ν̄∇2

yu
k−1
c −∇xp

k−1
c + 2∇y · ∇xuk−2

c +∇2
xu

k−3
c = δk1 fc, in Ωε

c × Yc, (18a)

∇y · uk−1
c +∇x · uk−2

c = 0 in Ωε
c × Yc, (18b)

∇2
yp

k
t + 2∇x · ∇yp

k−1
t +∇2

xp
k−2
t = 0 in Ωε

t × Yt. (18c)

The interface conditions on Γε × ΓY ,vary according to the value of γ and η :

1

R̄n
uk−1
c · n + (pk−1−γ

t − pk−1−γ
c ) + ν̄[(n · ∇y)uk−2−γ

c ] · n

+ν̄[(n · ∇x)uk−3−γ
c ] · n = 0,

(18d)

[(n · ∇y)uk−1
c ] · τ + [(n · ∇x)uk−2

c ] · τ +
1

Rτ
uk−2
c · τ = 0, (18e)

uk+η−1
c · n + κ̄∇yp

k
t · n + κ̄∇xp

k−1
t · n = 0. (18f)

3.3.2 Derivation of the leading term

The above equalities (26) enables us to derive successively –and formally– the coeffi-
cients (ukc ,ukt , pkc , pkt ). Our main interest here is to derive the leading term for different
value of (γ, η) ∈ N2.
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• First, taking k = 0 in (18a), we infer that ∇yp
0
c = 0, hence p0

c depends only on x:

p0
c = p0

c(x).

Then consider the problem satisfied by p0
t . If γ − η ≥ 0, it reads:

∇2
yp

0
t = 0, in Yt

κ̄∇yp
0
t · n = −uη−1

c · n = R̄n(pη−1−γ
t − pη−1−γ

c ), on ΓY

hence ∇yp
0
t ·n = 0 since η−1−γ ≤ −1, and thus similarly to p0

c , the pressure p0
t depends

only on x. If γ − η ≤ −1, the problem satisfied by p0
t reads:

∇2
yp

0
t = 0, in Yt

R̄n(p0
t − p0

c) = −uγc · n = −κ̄∇yp
1+γ−η
t · n, on ΓY .

We then infer that if γ − η ≤ −1, the only solution of the above equation is

p0
t = p0

t (x) = p0
c(x).

We thus have shown that whatever the couple (γ, η) ∈ N2, p0
c and p0

t depends only
on x, and even p0

t (x) = p0
c(x) if γ − η − 1 ≤ 0.

• Then, taking k = 1, we infer that (u0
c , p

1
c) satisfies the following problem set in Yc:

−∇yp
1
c + ν̄∇2

yu
0
c = ∇xp

0
c + fc, (19a)

∇y · u0
c = 0 (19b)

1

R̄n
u0
c · n = −(p−γt − p−γc ), (19c)

[(n · ∇y)u0
c ] · τ = 0. (19d)

Using the compatibility condition on the divergence, we infer that whatever γ ∈ N:

R̄n

∫
ΓY

(p−γt − p−γc )dy =

∫
Yc

∇y · u0
c dy = 0.

Note that this result is compatible with the convention if γ ≥ 1, and it says that if γ = 0,
then

p0
t (x) = p0

c(x).

Thanks to the following corrector (Wj ,Pj)j=1,··· ,N where N is the dimension (equal to

13



2 or 3 here):

ν̄∇2
yW

j + ej = ∇yPj in Yc, (20a)

∇y ·Wj = 0 in Yc, (20b)

Wj · n = 0 on ΓY , (20c)

[(n · ∇y)Wj ] · τ = 0 on ΓY , (20d)

the coefficients (u0
c , p

1
c) reads as

u(0)
c (x,y) = −

N∑
j=1j

Wj
ÄÄ
∇xp

(0)
c + fc

ä
· ej
ä

:= −W(y)
(
∇xp

0
c(x) + fc

)
, (21)

p(1)
c (x,y) = −

N∑
j=1

P j
ÄÄ
∇xp

(0)
c + fc

ä
· ej
ä

+ p̄(1)
c (x)

: = −P(y) ·
(
∇xp

0
c(x) + fc

)
+ p̄(1)

c (x), (22)

Consider now p1
t . It satisfies

∇2
yp

1
t = 0, in Yt (23a)

κ̄∇yp
1
t · n = −κ̄∇xp

0
t · n− uηc · n, on ΓY (23b)

If γ − η ≥ 0, we have

κ̄∇yp
1
t · n = −κ̄∇xp

0
t · n + R̄n(pη−γt − pη−γc ) = −κ̄∇xp

0
t · n + δη−γ0 R̄n(p0

t − p0
c), on ΓY .

Using the compatibility condition we infer that if η = γ then necessarily p0
t = p0

c . More-
over defining Gj , such that :

∇2
yG

j = 0 in Yt (24a)

∇yGj · n = n · ej on ΓY , (24b)

then if γ − η ≥ 0 we infer that p1
t reads as

p1
t (x,y) = −

N∑
j=1

Gj
Ä
∇xp

(0)
t · ej

ä
+ p̄1

t (x) := −G(y) · ∇xp
0
t (x) + p̄1

t (x). (25)

14



• Now, taking k = 2, we infer that (u1
c , p

2
c) satisfies the following problem set in Yc:

−∇yp
2
c + ν̄∇2

yu
1
c = ∇xp

1
c − 2ν̄∇y · ∇xu0

c , (26a)

∇y · u1
c = −∇x · u0

c (26b)
1

R̄n
u1
c · n = −(p1−γ

t − p1−γ
c )− [(n · ∇y)u−γc ] · n, (26c)

[(n · ∇y)u2
c ] · τ = −[(n · ∇y)u0

c ] · τ −
1

Rτ
u0
c · τ . (26d)

Using the compatibility condition on the divergence, we infer that for any γ ≥ 1:

∇ ·
Å

1

Yc

∫
Yc

W(y)
(
∇xp

0
c + fc

)ã
+ δγ1 R̄n

|Γ|
|Yc|

(p0
t − p0

c) = 0,

where δγ1 is the Kronecker symbol equal to 1 if γ = 1 and 0 elsewhere.
If γ − η ≥ 1, the coefficient pt2 satisfies:

∇2
yp

2
t = −2∇y · ∇yp

1
t −∇2

xp
0
t , in Yt

κ̄∇yp
2
t · n = −κ̄∇xp

1
t · n− u1+η

c · n = −κ̄∇xp
1
t · n + R̄n(p1+η−γ

t − p1+η−γ
c ).

Integrating over Yt, one infers the problem satisfied by p0
t if γ − η ≥ 1:

∇ ·
Å
κ

Å
I− 1

Yt

∫
Yt

G(y)

ã
∇xp

0
t

ã
− δγ−η1 R̄n

|Γ|
|Yt|

(p0
t − p0

c) = 0,

It remains to consider the case γ = 0. Suppose first γ = 0, η = 0. The pressure p2
t

satisfies

∇2
yp

2
t = −2∇y · ∇yp

1
t −∇2

xp
0
t , in Yt

κ̄∇yp
2
t · n = −κ̄∇xp

1
t · n− u1

c · n.

We already know that

p1
t = −G · ∇xp

0
t (x), u0

c =W
(
∇xp

0
c + fc

)
and ∫

ΓY

u1
c · ndy =

∫
Yc

∇y · u1
cdy = −∇x ·

∫
Yc

u0
cdy,

Then integrating over Yt implies that

∇x ·
Å
κ

Å
I− 1

Yt

∫
Yt

Gdy
ã
∇xp

0
t

ã
= −∇x ·

Å
1

|Yt|

∫
Yc

Wdy
(
∇xp

0
c + fc

)ã
.
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Consider now γ = 0, η = 1. Using (23), we infer the compatibility condition:

0 =

∫
ΓY

u1
c · ndy = −∇x ·

∫
Yc

u0
cdy.

If η ≥ 2, we have successively

−∇x ·
∫
Yc

u0
cdy =

∫
Yc

∇y · u1
cdy =

∫
ΓY

u1
c · ndy = −

∫
ΓY

κ̄∇yp
2−η
t −

∫
ΓY

κ̄∇xp
1−η
t = 0.

Hence for any η ≥ 1 and γ = 0, p0
c = p0

t satisfies

∇ ·
Å

1

|Yc|

∫
Yc

W(y)
(
∇xp

0
c + fc

)ã
= 0.

To summarize, the following proposition has been shown.

Proposition 3.1. Denoting by z 7→ χH(z) the Heaviside function equal to 1 if z ≥ 0 and
0 elsewhere, we have shown formally that the leading order terms p0

c , p
0
t of the expansion

satisfies, for any (γ, η) ∈ N2:

∇ ·
(
E∇xp

0
c

)
+ δγ+η

0 ∇x ·
Å |Yt|
|Yc|

κK∇xp
0
t

ã
+ δγ1 R̄n

|Γ|
|Yc|

(p0
t − p0

c) = Fc, (27a)

χH(γ − η − 1)∇ ·
(
κK∇xp

0
t

)
− χH(1− γ + η)R̄n

|Γ|
|Yt|

(p0
t − p0

c) = 0, (27b)

where the tensors K and E are defined by:

[K]ij = δij −
1

|Yt|

∫
Yt

∇yGj · ei dy, [E]ij =
1

|Yc|

∫
Yc

Wj · ei dy, (28)

and
Fc = −∇ · (Efc) .

The velocity uεc and uεt are then approached by

uεc(x) ∼ χΩεc(x) (E +∇yW(x/ε))∇xp
0
c(x), (29a)

uεt (x) ∼ χΩεt
(x)εηκ̄ (K +∇yG(x/ε))∇xp

0
t (x). (29b)

3.4 Tensors properties

In order to ensure the well-posedness of the models that we have derived, the per-
meability tensors K and E need to be positive definite. This section is devoted to the
analysis of the tensor properties with respect to the periodic cell Y .

Lemma 3.2. The tensor K is symmetric and positive definite.
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Proof. Thanks to the Lax-Milgram theorem, problem (24) has a unique solution in
H1(Yt)/R. The variational formulation associated to (24) reads∫

Yt

∇yGj · ∇yϕdy−
∫

ΓY

ej · noutϕds = 0,

for any periodic ϕ ∈ H1(Yt) such that 〈ϕ〉Yt = 0. Considering ϕ = Gi on Yt, the following
equations hold thanks to the divergence theorem

0 =

∫
Yt

∇yGj · ∇yGi dy−
∫

ΓY

ej · noutGi ds

=

∫
Yt

∇yGj · ∇yGi dy−
∫
Yt

∇y ·
(
Giej

)
dy

=

∫
Yt

∇yGj · ∇yGi dy−
∫
Yt

∇yGi · ej dy.

Therefore, the tensor K can be rewritten as

[K]ij = δij −
1

|Yt|

∫
Yt

∇yGj · ei dy,

= δij −
1

|Yt|

∫
Yt

∇yGj · ∇yGi dy,

=
1

Yt

∫
Yt

∇y(Gi − yi)∇y(Gj − yj) dy.

It follows that the tensor K is symmetric. To prove that the tensor is positive definite,
we consider any λ ∈ RN and define

φ =
N∑
i=1

λiGi.

The function φ is periodic and belongs to the space H1(Yt). We prove that K is semi-
positive definite:

|Yt|λTKλ =

∫
Yt

|∇y (φ− y · λ) |2 dy ≥ 0,

that is true for any ∇y (φ− y · λ). The equality holds if and only if

∇yφ = λ.

However, under the assumption of periodicity in a connected domain, ∇yφ = λ if and
only if ∇yφ = λ = 0. Therefore, K is positive definite.

Remark 3.3. The interstitial domain Yt has to be connected to guarantee the positive
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definiteness of the tensor K (otherwise, it is semi-positive definite).

Lemma 3.4. If the capillary domain Yc is connected, then the tensor E is symmetric
and positive definite.

Proof. We proceed analogously as [4]. Thanks to the Lax-Milgram lemma, there exist a
unique weak solution to problem (20), which variational formulation reads as∫

Yc

ν∇yWj : ∇yv dy−
∫
Yc

ej · v dy = 0,

for any periodic v ∈ H1(Yc) such that ∇y · v = 0 and v · n = 0 on ΓY . Taking v = Wi

the following identity holds:

|Yc|[E]ij =

∫
Yc

Wj · ei dy,

=

∫
Yc

ν∇yWj : ∇yWi dy.

Therefore the tensor is symmetric. To prove that it is positive definite, we take any
λ ∈ RN and define

ψ =

N∑
i=1

λiWi.

We first prove that λTEλ is non-negative. Indeed,

|Yc|λTEλ =

∫
Yc

ν∇yψ : ∇yψ dy ≥ 0.

The equality holds if and only if ∇yψ = 0. Then, the following equation must be satisfied

∀v ∈ H1(Yc) : ∇y · v = 0,

0 =

∫
Yc

ν∇yψ : ∇yv dy−
∫

ΓY

([(n · ∇y)ψ] · n) (v · n) d s =

∫
Yc

λ · v dy, . (30)

Since (30) holds for any v in the appropriate space defined above, it is valid also for
v = λ. Therefore, we conclude that (30) is true if and only if λ = 0 and state that E is
positive definite.

Remark 3.5. When the domain Yc is not connected, then the unique solution to problem
(20) is Wj = 0 and Pj = yj. In this case the tensor E is zero. If Yt is not connected,
then the unique solution to problem (24) is Gj = yj. In this case the tensor K is zero.

The fact that the effective tensor E or K are zero if the corresponding phase Yc or Yt
is not connected means that there is no long-range coupling of the pressure in the phase
Yc or Yt. Since it is disconnected, the homogenised pressure does not satisfy an elliptic
equation.
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Remark 3.6. The tensor κ̄K + |Yc|
|Yt|E is symmetric and positive definite since it is the

sum of two symmetric and positive definite tensors.

Remark 3.7. If one of the two domains (Ωε
c or Ωε

t ) is not connected, and if γ − η ≥ 1

then pc = pt, which means that the pressure of the disconnected phase is determined
locally by the pressure of the connected phase (which satisfies an elliptic equation).

3.5 Links between the different limit problems

We have shown that for any (γ, η) ∈ N2, the limit problems of (15) as ε goes to zero
is given by (27). As shown in this section, the case (γ = 1, η = 0) is the distinguished
model from which the other models are derived. For large capillary permeability R̄n,
the tissue behaves as a monophasic material, and the question of appropriate boundary
condition is adressed at the end of the section.

In this section, we show the link between the different models. We assume that
both instertitium and capillary phases are connected so that both E and K are postive
definite and the problem (27) complemented with Dirichlet, Neumann or Robin-Fourier
conditions is well-posed.

Passing from the case (γ = 1, η = 0) to (γ ≥ 2, γ − η ≥ 1)

Consider the limit model in the case (γ = 1, η = 0). According to (27), it reads

∇ · (κ̄K∇pt) =
R̄n|ΓY |
|Yt|

(pt − pc) in Ω, (31a)

∇ · (E∇pc) =
R̄n|ΓY |
|Yc|

(pc − pt) in Ω, (31b)

pt|∂Ω =pt,∞, pc|∂Ω = pc,∞, on ∂Ω. (31c)

Consider now that κ̄ = εaκ̃ and R̄n = εbR̃n, with b − a ≥ 0 and b > 0. It is clear that
(31b) is not a singluar perturbation of the operator ∇ · (E∇·) in the sense of Kato [29]
and thus the solution to problem (31) tends to the solution to the following problem,
which is nothing that model γ − η = 1 + a− b ≥ 1 with γ > 1:

∇ · (κ̃K∇pt) = δb−a0

R̃n|ΓY |
|Yt|

(pt − pc) in Ω,

∇ · (E∇pc) = 0 in Ω,

pt|∂Ω =pt,∞, pc|∂Ω = pc,∞, on ∂Ω.
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Passing from the case (γ = 1, η = 0) to (γ = 0, η = 0)

Considering R̄n of the order of ε−1 and κ̄ of the order of 1, model (γ = 1, η = 0)

reads then

ε∇ · (κ̃K∇pt) =
R̃n|ΓY |
|Yt|

(pt − pc) in Ω, (32a)

ε∇ · (E∇pc) =
R̃n|ΓY |
|Yc|

(pc − pt) in Ω (32b)

pt|∂Ω =pt,∞, pc|∂Ω = pc,∞, on ∂Ω. (32c)

Here the asymptotic analysis is much trickier since both equations (32a)–(32b) are sin-
gular perturbation of the div-grad operator. In particular, a delicate asymptotic analysis
makes appear a exponential decay of the pt− pc from the boundary, showing that out of
the vicinity of the tumor boundary, both pressures are equal. The details of this results
are given in [55], however we expose here the main arguments in the simple case where
κ̄K and E are colinear to the identity, that is for a λ 6= 0:

κ̄K = λE

Then simple calculation shows that

∇ · (E∇(pt − pc)) =
R̄n

ε

Å |ΓY |
λ|Yt|

+
|ΓY |
|Yc|

ã
(pt − pc) in Ω, (33)

It is well-known, especially in conduction theory [7, 20] that problem (33) makes appear
a so-called skin depth effect: the pressure difference pt − pc decays exponentially fast
from the boundary. More precisely, denoting by α the factor given by

α =

 
R̄n

Å |ΓY |
λ|Yt|

+
|ΓY |
|Yc|

ã
,

hence in the local coordinates near the boundary

pt − pc = (pt,∞ − pc,∞)e
− α√

ε
xn + o(ε),

where xn is the normal variable with respect to the tumor boundary.
Interestingly, we thus obtain that in this asymptotic regime, the solution to model

(γ = 1, η = 0) with Dirichlet boundary conditions can be approached by the solution to
model (γ = 0, η = 0) with the following appropriate boundary condition

∇ · ((λ+ 1)E∇p) = 0, in Ω

p|∂Ω =
1

2
(pt,∞ + pc,∞)− |Yc| − λ|Yt|

|Yc|+ λ|Yt|
1

2
(pt,∞ − pc,∞) , on ∂Ω.
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The rigorous proof is provided in [55]. The result involves Riemannian geometry results
which are far from the scope of this paper, however the general idea of the exponential
decay of the pressure difference remains.

4 Numerical simulations

The Galerkin Finite Elements Method was used to discretize the equations in order
to test the homogenized models. The 3 following cases are considered : (γ = 0, η = 0),
(γ = 1, η = 0), (γ = 2, η = 1). 3D simulations were run in order to analyse the impact
of the micro-scale geometry on the homogenized solutions and the influence of the vessel
permeability Rn on the fluid transport. The following strategy has been adopted:

• The periodic cell was considered as the unit cube (0, 1)3 in R3. The domain was
divided in two regions (Yt and Yc) and the software Gmsh was used to perform the
triangulation Th. Problem (20) was discretized with the Galerkin Finite Elements
Method. Piecewise linear polynomials (P1) were used for the variable Pj . For
the variable Wj , we used piecewise linear polynomials with bubbles (P1b = {v ∈
H1(Ω) : ∀K ∈ Th v|K ∈ P1⊕Span{λK0 λK1 λK2 λK3 }}, where λKj , j = 0, ..., N are the
4 barycentric coordinate functions of the element K). Problem (24) was solved on
the domain Yt using piecewise linear polynomials (P1) for the variable Gj .

• The tensors K and E were computed according to (28).

• The homogenized model (27) for the three cases (γ = 0, η = 0), (γ = 1, η = 0),
(γ = 2, η = 1) was simulated on the normalized sphere of radius 0.5 using the
Galerkin Finite Elements Method. Quadratic piecewise elements (P2) were used
for both pt and pc.

4.1 Cell problems: tensor properties varying the microstructure

The tensors K and E defined in (28) have different properties according to the mi-
crostructure. To analyse them, we solved equations (24) and (20) in the unitary cell, i.e.
the cube (0, 1)3 ⊂ R3. Different geometric configurations for the domains Yt and Yc were
tested (Figure 3).

Table 1 provides the values of the elements in the two tensors K and E. These results
confirm the analysis done in Section 3.4. Indeed, the tensors K and E are symmetric
and positive definite when the two domains are connected (Fig. 3a, 3b and 3c). When
the capillaries are not connected in all the directions (Fig. 3d, 3e), the tensor E is semi-
positive definite as the solution to the cell problems (24) is trivial: Wj = 0 and Pj = ej ,
j = 1, 2, 3. Figure 3 provides the values of the interstitial and capillary volume fractions
(|Yt| and |Yc|, respectively) and of the vascular surface ΓY .
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Figure 3. Different structures of the unit periodic cell with the respective volume and surface
fractions. The mesh represents the capillary domain Yc, while the difference between the box
and the mesh is the interstitial compartment Yt.

K11 K12 K13 K21 K22 K23 K31 K32 K33

Fig
3a

0.808 7.5e-5 7.89e-6 7.5e-5 0.808 5.49e-5 7.89e-6 5.49e-5 0.808

Fig
3b

0.877 -1.76e-
3

3.91e-3 -1.76e-
3

0.814 2.29e-3 3.91e-3 2.29e-3 0.933

Fig
3c

0.72 -1.09e-
4

1.03e-4 -1.09e-
4

0.72 3.98e-5 1.03e-4 3.98e-5 0.72

Fig
3d

1 -3.19e-
8

-9.81e-
8

-3.19e-
8

0.895 1.01e-4 -9.81e-
8

1.01e-4 0.895

Fig
3e

0.954 -4.69e-
5

5.2e-5 -4.69e-
5

0.954 8.14e-5 5.2e-5 8.14e-5 0.954

E11 E12 E13 E21 E22 E23 E31 E32 E33

Fig 3a 2.2e-3 8e-6 -1.1e-
6

8e-6 2.2e-3 -1.3e-
5

-1.1e-
6

-1.3e-
5

2.2e-3

Fig
3b

9.5e-4 8.1e-7 2.3e-5 8.1e-7 1.8e-4 7.7e-6 2.3e-5 7.7e-6 2.9e-3

Fig 3c 4.0e-4 -8.7e-
7

-7.4e-
7

-8.7e-
7

4.0e-4 -2.7e-
6

-7.4e-
7

-2.7e-
6

4.0e-4

Fig
3d

4.7e-3 0 0 0 0 0 0 0 0

Fig 3e 0 0 0 0 0 0 0 0 0

Table 1. Values of the tensors K and E for the different microstructures depicted in Fig. 3.
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4.2 Macroscopic dynamic of fluid transport in tumours

We eventually considered realistic parameters to test model (2). The homogenized
model was tested with a tumor considered as a sphere of normalized radius 0.5. Table 2
provides the values of the parameters of the model. Regarding the interstitial hydraulic
conductivity kt, the vascular permeability Lp and the tumour characteristic length L,
we considered values relative to different tissues, as summarized in Tables 3, 4 and 5,
respectively. Simulations were run considering different microstructures, namely the ones
shown in Figs 3a-c. Dirichlet boundary conditions were considered for the interstitial and
capillary pressure, specifically pt,∞ = 0 and pc,∞ = 1 (normalized values).

Parameter influence

First, we looked at the behaviour of the solution varying the parameters kt, Lp and
L. Examples of solutions as a function of the radius are shown in Fig. 4. In this case,
we considered the microstructure of Fig. 3c. Results relative to the interstitial pressure
and velocity were in agreement with the ones found in [9], where the authors considered
the following model:

∇ · (K∇pt) =
R̄nS

κ̄V
(pt − pc) , (34)

where the vascular pressure pc is assumed to be constant and S/V is the vascular area per
unit volume of the tumour. Therefore, we considered this value to be equal to |ΓY |. The
slight differences between the results obtained from the homogenized model and Baxter
and Jain model (34) (Figure 4A) are due to the different rescaling of the equation, since
we considered S/V to be the vascular area per unit volume of the interstitial compartment
(|ΓY |/|Yt|).

The interstitial fluid pressure is large and almost constant in the centre of the tumour
and has a sharp drop at the periphery for increasing values of R̄n and decrasing values
of κ̄. As a consequence, the interstitial fluid velocity is almost zero in the centre of the
tumour (since the pressure gradient is close to zero) and large at the periphery. The
microvessel fluid pressure is almost constant and close to the value at the boundary. For
large values of the parameter R̄n, the capillary pressure decreases and gets closer to the
interstitial fluid pressure. As a consequence, also the microvessel fluid velocity is close
to zero in the centre of the tumour.

Eventually, we observed the skin depth effect of pc − pt when the permeability of
the vessel walls increases (Fig 4B). Indeed, the pressure difference is almost zero at the
centre of the tumour and increases exponentially in correspondence of the boundary.
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Microstructure

We fixed the parameter values kt = 1.8 · 10−12 m3· s · kg−1, Lp = 1.86 · 10−10 m2· s ·
kg−1 and L = 5 mm and looked at the behaviour of the solutions relative to the different
microstructures. Fig. 5 shows the results relative to the unitary cells of Fig 3A-C. In all
cases, the IFP shows a sharp drop at the periphery and it equates the capillary pressure
in the centre of the tumour, while the capillary pressure is approximately constant in the
whole tumour. The interstitial fluid velocity ut is directed outward from the domain,
while the blood velocity is directed inward. The two velocities are radially homogeneous
in cases 5A and 5C, while they show asymmetries in case 5B due to the asymmetric
microscopic structure of Fig 3B.

We noticed that only when the capillary subdomain is smaller than the interstitial
region, the blood velocity is larger than the interstitial fluid flow (data not shown). This
is biologically relevant as the capillary volume fraction is usually within the range [16%,
50%] [18] and the average blood velocity is larger than the interstitial fluid velocity
[58, 27].

Boundary conditions

Eventually, we tested model (2) with different boundary conditions. In particular,
Neumann boundary conditions were considered for the capillary pressure, in order to
ensure the continuity of the normal velocity in the vessels at the tumour periphery:

−E∇pc · n = uc,∞ · n,

where uc,∞ is the blood velocity in the sourranding tissue. Dirichlet boundary conditions
were imposed to the interstitial pressure. Well-posedness of model (2) is guaranteed with
this set of boundary conditions for (pt, pc) ∈ H1

0 (Ω)×H1(Ω).
We ran experiments with different boundary conditions for the capillary pressure pc

as summarized in Table 6. Homogeneous Dirichlet boundary conditions were considered
for the interstitial fluid pressure pt. Figure S1 shows the results at the centre of the sphere
as function of the normalized radius. The interstitial pressure increases at the centre of
the tumour and equates the blood pressure in the three cases. When considering the case
"Neumann 2", the blood velocity is constantly high inside the domain and the capillary
pressure profile is therefore due to the gradient along the x-axis.

5 Discussion

We have provided an analysis of the impact of microstructure properties of the tu-
mour employing the homogenisation theory.
First, we have described a model at the microscopic scale that couples vascular, transvas-
cular and interstitial fluids, adopting an asymptotic expansion technique. Then, we have
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Parameter Description Value Unit Reference

µ blood viscosity 4 · 10−3 kg · m−1 ·
s−1

[42]

d mean intercapillary
distance

50 · 10−6 m [32]

αBJ BJS constant 1 - -

pt,∞ surrounding interstitial
pressure

0 mmHg -

pc,∞ surrounding capillary
pressure

[15,80] mmHg [13]

Table 2. Fixed parameters used to simulate IFP and IFV.

Tissue kt [m3· s · kg−1] Reference

Dog squamous cell tissue 1.8 · 10−12 [19]
Mouse mammary carcinoma 1.88 · 10−13 [26]
Hepatoma 5123 in vivo 2.9 · 10−15 [53]

Table 3. Values of the interstitial hydraulic conductivity kt of different tissues.

Tissue Lp [m2 · s · kg−1] Reference

Mouse mammary carcinoma 1.86 · 10−10 [26]
R3230 mammary adenocarcinoma 4.5 · 10−11 [47]
Healty rat hindquarter tissue 2.3 · 10−12 [43]

Table 4. Values of the vessel permeability Lp of different tissues.

Characteristic length L [mm] Tumor volume [mm3] ε = d/L

5 4.2 0.05
10 523.6 0.01
15 4200 0.005

Table 5. Characteristic length (diameter) of the tumour and corresponding tumour volume and
value of ε.

Experiment Boundary condition
(on ∂Ω)

Parameter value (normal-
ized)

Dirichlet pc = pc,∞ pc,∞ = 1
Neumann 1 −E∇pc · n = uc,∞ · n uc,∞ = −1 · 10−3n
Neumann 2 −E∇pc · n = uc,∞ · n uc,∞ = [−1 · 10−5, 0, 0]T

Table 6. Different boundary conditions considered for the microvessel pressure pc.
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1Figure 4. (A) Normalized values (n.v.) of interstitial fluid pressure and flow (IFP and IFF),
of microvascular pressure (MVP) and of blood velocity as functions of the normalized radius r̂
varying the parameter R̄n/κ. The microstructure considered in this case corresponds to Fig 3c.
The blue lines are the simulations of the homogenized model (2) and the red lines are the results
of Baxter and Jain model [9]. (B) Difference between p̂c and p̂t in normalized values (n.v.) as
functions of the normalized radius r̂ varying the parameter R̄n and with κ̄ fixed.

derived three macro-scale models according to the vessel wall permeability and the in-
terstitial hydraulic conductivity. After having analysed the well-posedness of the prob-
lems, we performed numerical simulations to assess some properties according to the
microstructure.

Well-posedness is guaranteed when the two subdomains Yt and Yc are connected.
When one region is not connected with respect to one axis, the fluid is not transported
along this direction. For example, in Fig. 3e the capillary microstructure is a closed
sphere, therefore there is no fluid transport in the blood vessels; in Fig. 3d, the vessel
geometry is connected only along the x-axis that is the only direction for the capillary
fluid flow. This represents a limit for the 2D simulations, as the subdomains Yt and Yc
cannot be both connected. In this case, one among the interstitial or the vessel flow is
always zero. However, tensors K and E can be determined by calibrating directly the
homogenized models to medical imaging data.

Furthermore, we motivated the links between the various regimes and shown that
model (2) covers a wide range of cases, confirming previous results [48]. In particular,
we have shown that model (1) is equivalent to model (2) under certain conditions and
that model (2) can be approximated to model (3) under certain assumptions on the
parameters.

Eventually, we calibrated model (2) with parameters taken from the literature and
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1Figure 5. 3D slices at the centre of the sphere with the interstitial pressure (first column), the
capillary pressure (second comumn), interstitial velocity (third column) and capillary velocity
(fourth column). Results were computed using the microstructure of Fig 3a (A), of Fig 3b (B)
and of Fig 3c (C) and setting kt = 1.8 · 10−12 m3 · s · kg−1, Lp = 1.86 · 10−10 m2 · s · kg−1 and
L = 5 mm. IFP = interstitial fluid pressure, MVP = microvascular pressure, IFF = interstitial
fluid flow.
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analysed their influence on the solutions. We observed that different microstructures and
different sets of boundary conditions strongly impact the macroscopic dynamics of the
fluids. The geometric shape of the unitary cell influences the isotropy of the capillary
fluid velocity, while the vascular volume fraction affects the blood velocity. Indeed, when
the capillary volume fraction |Yc| is large, the blood velocity uc is equal or lower than the
interstitial fluid velocity ut. This might not be biologically relevant. On the other hand,
when the capillary volume fraction is smaller the blood velocity is of higher magnitude
and gets closer to the average values (around 1.62 mm · s−1 [51]). This confirms that
the homogenized models are consistent with biological observations. Indeed, the vascular
volume fraction lies within the values of 16% and 50%. [18, 22, 56]. Moreover, the average
values of the pressures and of the velocities obtained from simulations with different sets
of boundary conditions were compared against literature values. When Dirichlet-Dirichlet
boundary conditions are considered, both the interstitial and the capillary pressures fit
better the well-known profile of the IFP that is high at the centre of the tumour and
shows a sharp drop at the periphery [9]. However, when Dirichlet-Neumann boundary
conditions are considered for the interstitial and the capillary pressure, respectively, the
blood velocity reaches average values closer to the literature ones. Possible improvements
of our computations might be achieved by considering the correctors and by adding
boundary layers, to take into account the Dirichlet boundary conditions that are imposed
to the true solution (pεt , p

ε
c) of the micro-scale model, but are not satisfied by the periodic

solutions to the homogenized ones.
The current work focuses on the analysis of asymptotic models that describe fluid

transport in tumour tissues. Fluid velocities are necessary to develop convection-diffusion
models for the description of drug transport in tumour tissues. This motivated our choice
of a steady-state model, as in reality, the time variation of the fluid transport is negligible
with respect to the evolution of drug distribution inside the tumour. However, spatial
tumour growth might be included in the model.
Further extensions might include a relaxation of the periodicity hypothesis, that might
not be realistic in a biological context, as tumours are highly heterogeneous. This ques-
tion is complex and few results have been obtained in these directions. Actually, the
current results on stochastic homogenisation are proven under an ergodic assumption
which states that the domain is somehow almost invariant under a specific translation.
This assumption enables to define properly a representative volume element, which the
stochastic equivalent to the periodic unit cell. The homogenisation correctors W,P,G
can then be computed in this representative volume, enabling the computation of the
effective tensors E and K[28].

Moreover, rheological effects of blood should be included to model blood transport
in capillaries [41].

Applications of the models include the incorporation of 3D imaging data. Images
provide the microstructure of the vessel network, that is necesssary to compute the
correctors.
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