Abdelhaq Benbrik 
  
Mohammed Shadi 
  
Abdellatif Chaira 
  
Zakaria El 
  
Anass El 
  
Haddadi Ensah 
  
Imad El Mahi 
  
Zakia Hammouche 
  
Mohammed Heyouni 
email: mohammed.heyouni@gmail.com
  
Ahmed Naji 
  
Khalid Najib 
  
Youssef Ouknine 
  
Lothar Reichel 
  
Mohamed Rhoudaf 
  
Carole Rosier 
  
Naji Yebari 
  
Ahmed Youssfi 
email: ahmed.youssfi@gmail.com
  
Sidi Mohamed Ben 
  
Redouan Abakouy 
  
Anass El Haddadi 
email: anass.elhaddadi@gmail.com
  
El Mokhtar En-Naimi 
email: ennaimi@gmail.com
  
Ilias Abdaoui 
email: ilias.abdaoui@yahoo.com
  
Lakhdar El Bouyahyaoui 
email: lakhdarr2000@yahoo.com
  
Youness Abouelhanoune 
email: yabouelhanoune@gmail.com
  
Souad Benlghrib 
  
Mustapha Addam 
email: addam@visus.com
  
David Matusiewicz 
  
Youssef Ahmida 
email: youssef.ahmida@usmba.ac.ma
  
Mohamed Ait Ichou 
email: moha.aitichou@gmail.com
  
Hassan El Amri 
  
A Ezziani 
  
Ait Kamal 
  
Touchent 
  
Zakia Hammouch 
email: hammouch.zakia@gmail.com
  
Taoufik Mekkaoui 
email: t.mekkaoui@fste.umi.ac.ma
  
Chafiq Allouch 
email: c.allouch@ump.ma
  
Driss Sbibih 
email: sbibih@yahoo.fr
  
Mohamed Tahrichi 
email: mtahrichi@hotmail.com
  
Mohamed Ridouan 
  
Hassan Belhadj 
email: hassan.belhadj@gmail.com
  
Abderrahim Azouani 
  
Bajil Ouartassi 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
A comparison of machine learning methods for customer churn prediction in email marketing
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et Optimisation. This scientific event, which takes place in Al-Hoceima (Morocco) from 18 to 20 October 2018, is organized by the Mathematics, Approximation and Optimization (MAO) research team of the Laboratory of Applied Sciences (LSA) : a research entity of the National School of Applied Sciences of Al-Hoceima (ENSAH :

Introduction

Consider the continuous time Sylvester equation with a factorized right side as given :

A X + X B = E F T , (1) 
where A ∈ R n×n , B ∈ R s×s are supposed to be large sparse non-singular matrices. The coefficient matrices of the right-hand side E ∈ R n×r and F ∈ R s×r are full rank with r min{n, s}. We recall that the sought solution X ∈ R n×s exists and is unique if and only if the spectra of A and -B are disjoint. Sylvester matrix equation play an important role in many fields: control theory, model reduction, matrix eigen-decomposition problems, solving partial differential equations and in other numerous applications.

We recall that when n and s are small then direct methods are used for solving (1). These direct methods use basically the Schur decomposition to transform the original equation into an other one solved simply by a forward or backward substitutions [4]. Several iterative approaches have been proposed to overcome the limitations of direct solvers when applied to equations with large matrix coefficients A and B. For medium to large size Sylvester equations, iterative schemes based on the Newton or on the matrix-sign function method were proposed. Note that if some spectral information about the coefficient matrices A and B is given, then the Smith or ADI methods could also be used for solving (1). projection techniques on block or matrix Krylov subspaces are more appropriate when solving matrix equations with very large matrices A or B. For more details on Linear matrix equations and the different methods used to solve Sylvester matrix equations we refer to the books [2,3,4], papers [7,8], the surveys [9,11] and the references therein.

Solving the continuous-time Sylvester equation

Here, we first describe the extended block Arnoldi process [6,10,8], and then we briefly recall how to use it in order to solve (1).

The extended block Arnoldi process

Algorithm 1: The extended block Arnoldi process (EBA).

• Inputs: F an n × n matrix, V an n × r matrix and m an integer.

• Step 0. Compute the QR decomposition of [V, F -1 V ], i.e., [V, F -1 V ] = V 1 Λ; Set V 0 = [ ];
• Step 1. For j = 1, . . . , m

• Step 1.1 Set V (1) j : first r columns of V j ; V (2) 
j : second r columns of V j ;

• Step 1.2 V j = [V j-1 , V j ]; U = F V (1) j , F -1 V (2) j ;
• Step 1.3 Orthogonalize Vj+1 w.r. to V j to get V j+1 , i.e., for i = 1, 2, . . . , j H i,j = V T i Vj+1 ; Vj+1 = Vj+1 -V i H i,j ; end for 4 Compute the QR decomposition of Vj+1 , i.e., Vj+1 = V j+1 H j+1,j ; end For.

• Step 1.
Algorithm 1 which summarize the extended block Arnoldi process applied to the pair (F, V ) where F ∈ R n×n and G ∈ R n×r allows to construct an orthonormal matrix V m = [V 1 , . . . , V m ] ∈ R n×2mr and an upper block Hessenberg matrix H m . Note the column blocks V 1 , . . . , V m of the matrix V m form a basis of the extended block Krylov subspace [6] K m (F, V ) = colspan{F -m V, . . . , F -1 V, V, F V, . . . , F m-1 V }.

We notice that letting T m = V T m F V m be the restriction of the matrix F to the extended Krylov subspace K e m (F, V ), we can check that T m is also an upper block Hessenberg matrix. Moreover, this matrix can be computed recursively from H m without using matrix products with F and we have [10,8] 

F V m = V m+1 T m , = V m T m + V m+1 T m+1,m (E (2r) m ) T ,
where T m = V T m+1 F V m , T i,j is the 2r × 2r (i, j) block of T m and E (2r) m

= [O 2r×2(m-1)r , I 2r ] T is the matrix of the last 2r columns of the 2mr × 2mr identity matrix I 2mr . Similarly, the matrix L m = V T m F -1 V m which is the restriction of the matrix F -1 to the extended Krylov subspace K m (F, V ) is also an upper block Hessenberg matrix. It can be recursively updated from H m without using matrix products with F -1 . Moreover it is shown in [1] that

F -1 V m = V m+1 Lm , = V m L m + V m+1 L m+1,m (E (2r) m ) T ,
where L m = V T m+1 F -1 V m and L i,j is the 2r × 2r (i, j) block of L m .

Classical scheme for solving the Sylvester equation

Classically, we seek for X m an approximate solution to (1) under the form

X m = V A m Y m V B m
, where V A m , V B m , are the orthonormal bases constructed by Algorithm 1 applied to the pairs (A, E) and (B T , F ) respectively. Using a Galerkin orthogonality condition [7,8], we obtain Y m as the solution of the reduced Sylvester equation

T A m Y + Y T B m = E m F T m , (2) 
where

T A m = (V A m ) T A V A m , T B m = (V B m ) T B T V B m , E m = (V A m ) T E = E (r) 1 Λ A 1,1 , F m = (V B m ) T F = E (r) 1 Λ B 1,1 , E (r) 
1 = [I r , O r×(2m-1)r ] T is the matrix of the first r columns of the 2mr × 2mr identity matrix I 2mr and Λ A 1,1 , Λ B 1,1 are the r × r matrices obtained from the QR decompositions

[E, A -1 E] = V A 1 Λ A and [F, B T -1 F ] = V B 1 Λ B , with Λ A = Λ A 1,1 Λ A 1,2 0 Λ A 2,2
and

Λ B = Λ B 1,1 Λ B 1,2 0 Λ B 2,2
.

We consider that X m is sufficiently an accurate approximate solution by checking that its associated residual norm r m := R m = A X m + X m B -E F T F satisfy r m ≤ where is a prescribed tolerance. We also point out that we can update r m without computing X m since r m = α m 2 + β m 2 , where

α m = T A m+1,m (E (2r) m ) T Y m F and β m = Y m E (2r) 
m (T B m+1,m ) T F .

Alternative scheme for solving the Sylvester equation

Before starting to describe the modifications we will make to the classical method for solving the Sylvester equation (1), we note that the projected equations (2) use only the matrices T A and T B which are respectively the restrictions of matrices A and B T to the extended block Krylov subspaces K(A, E) and K(B T , F ). Thus, the main idea developed in this part is based on a pre-multiplying equation (1) by the inverse of matrix A (or post-multiplying by the inverse of B) in order to transform it into a mathematically equivalent equation. As we will see, such a transformation enables us to obtain a projected reduced equation that involve the restrictions of A -1 and B T to the extended block Krylov subspaces K(A, E) and K(B T , F ). Thus, right multiplying with A -1 , it's clear that (1) is mathematically equivalent to the following discrete-time Sylvester equation

X + A -1 X B = A -1 E F T . (3) 
By using projection techniques on the extended Krylov subspaces K m (A, E) and K m (B T , F ) and seeking an approximate solution X m = V A m Y m V B m , we can verify that Y m is the solution of the 2mr × 2mr discrete Sylvester equation

Y + L A m Y T B m = E m F T m , (4) 
where

L A m = (V A m ) T A -1 V A m and T B m = (V B m ) T B T V B m .
The factors of the right-hand side of ( 4) are

E m = (V A m ) T (A -1 E) = E (2r) 1 Λ A :,2 = E (r) 1 Λ A 1,2 + E (r) 2 Λ A 2,2 , and F m = F m = E (2r) 1 Λ A :,1 = E (r) 1 Λ A 1,1 ,
We end this part by noticing that we can also check the accuracy of the approximate solution X m by computing the residual norm of its corresponding residual

R m = X m + A -1 X m B -(A -1 E) F T . More pre- cisely if r m := R m F then we have r m = α 2 m + β 2 m + γ 2 m where α m = L A m Y m E (2r) m (T B m+1,m ) T F , β m = L A m+1,m (E (2r) m ) T Y m (T B m ) T F and γ m = L A m+1,m (E (2r) m ) T Y m E (2r) 
m (L B m+1,m ) T F .

Numerical experiments

Finally, we evaluate our new alternative method (referenced AEBA) by comparing it with the classical method (referenced CEBA). We point out that our algorithms were coded in Matlab and that we used functions lyap2 and dlyap in order to solve the reduced Sylvester equations ( 2) and (4). In all the experiments, the matrices E and F are generated randomly, the precision is = 10 -8 . The results listed in the following table were obtained with matrices coming from the SuiteSparse Matrix Collection [5]. In the table of results, we listed the number of iterations (# iter.) and the CPU-time made by each method in order to obtain a sufficiently accurate solution. We also give the norm of the residuals r m , r m and diff which is the norm of the difference between the obtained approximate solutions, i.e., diff= X m -X m F . The variations of the residual norm as function of the the iteration number for each experiment are provided as well.

(A, B) and (n, s, r) method # iter. r m and r m CPU-time diff ( 

Background

With the advent of the digital revolution and the introduction of the information age, disruptive business models determine and dominate events in society and the economy worldwide. These innovations determine the lifestyles and habits of individuals in virtually all societies worldwide. The most important currency of such business models is the data. In an interview, the BMBF assigns the following comparative and high importance to the data: Data are the oil of the knowledge society. Other authors refer this statement to the information age or to the fact that data are the oil of the 21st century. In the economy, established companies with their established, conservative business models and hierarchies (e.g. automotive industry, etc.) are exposed to the risk of displacement by such disruptions. Compared to the established companies, the so-called GAFA companies have enough capital and time to push innovations. Another industry that has to go through this digital change is the healthcare sector.

The automotive industry is currently undergoing a major transformation in terms of mobility. The healthcare system in Germany is facing major financial, personnel, infrastructures and performancerelated problems and challenges. In addition, many players see great economic potential in these two sectors and markets. GAFA companies in particular are pushing their disruptive business models in these markets. The decisive factor for such innovations is digitization -data is more in demand than ever before. Data as a comparative resource to the oil of the current information age reveals obviously undreamt-of new business fields. These business models are necessarily based on the consistent use of digital topics, such as Big Data, Predictive Analytics, Machine Learning, Expert Systems, etc. One aspect of this work is the change of business models and philosophies in relation to the digital healthcare industry and future developments. A new potential disruptive field emerges from the aforementioned industries -Automotive Health, which is analyzed in the course of innovative business models and philosophies.

eHealth describes an abstract understanding of the cross-sector use of information and communication technologies in healthcare. In the field of public health, this includes new technologies and innovations that are used in health promotion and prevention. Examples are mHealth applications from the fields of telemedicine, home care, AAL, wearables, etc. On the part of the global players, the so-called GAFA (in the sense of data as a source of payment), free health applications are offered which monitor and record the health activities, eating habits, sleeping habits etc. of an individual. The counter currency to the free use of these applications is the personal data. The aforementioned global players also have sufficient capital and time to push disruptive innovations and new developments. Entire established and established industries, such as the automotive sector, must accept and master such challenges and developments. With the Google Driverless Car, Apple iCar, completely new concepts of mobility are about to be realized. The established automotive industry must react to these developments in order not to end up on a traditional sidetrack. A possible development, for example, would be to consider the automotive sector not only under the aspect of autonomous driving, but also to include other services such as eHealth applications and mechanisms. This triangularity of automotive, digital health and healthcare opens up a new and forward-looking concept of mobility. These developments are summarized in the student council under the generic term Automotive Health. How can these completely different subject areas be brought together and what might the future concept and business model of mobility look like? Do usable application scenarios also exist?

Methods

The basics are developed on the basis of a comprehensive literature search within the framework of a met analysis. These consist primarily of current contributions from the Internet, professional articles and lectures. Due to the limited availability of literature sources, a meta-analysis of strategies, business models and philosophies of disruptive companies with regard to the automotive and healthcare sectors will be conducted. In this context, an overview will be compiled within the framework of the topic Automotive Health. For this purpose, publications from the last decade are analyzed and evaluated. In order to generate useful data, expert interviews are also conducted with representatives of the automotive industry on the status quo of the triangularity of automotive, healthcare and digitization listed in the introduction. The objective of the meta-analysis is to analyze and compile the statements of previous studies on automotive health and its core elements. The statements of the determined sources are evaluated and presented according to the methodical procedure of a Systematic Review in the context of a meta-analysis.

Results

The subject area of Automotive Health is covered little to hardly in the technical literature. A concrete or unambiguous definition of this trend term cannot therefore be found. Weinert describes his own definition of Automotive Health as follows: "Automotive Health is a synonym for all kind of efforts -via services or products -that support a healthier way of living, provide support for wellbeing or even help in diagnostic or therapeutic processes, where automobiles are included." [1] In order to gain an understanding of the composition of terms, it is advisable to first interpret the three areas independently of each other. The automotive sector in general comprises the sum of all means of transportation of individuals, such as the automotive industry, for example, means of transportation by land. In the broadest sense, this also includes means of transport by air. With regard to the transformation of the automobile into an aircraft, there are currently a number of forward-looking research projects. The term health encompasses the sum of all measures taken to maintain, restore and strengthen the health of every individual. Health is not only to be understood as a biomedical model, in the sense of the absence of illness, but rather as a biopsychosocial model. Disease is therefore understood as an interplay between biological, psychological and social factors. The term Health Technologies basically covers all information and communication technologies of the health care system. In this context, the definition approach of the equivalent term Digital Health according to Sonnier can be used to build up an understanding of Health Technologies: "Digital health is the convergence of the digital and genomic revolutions with health, healthcare, living, and society. As we are seeing and experiencing, digital health is empowering us to better track, manage, and improve our own and our family's health, live better, more productive lives, and improve society." [2] This Digital Health understanding can be projected and applied equivalently to the field of Automotive Health. An understanding of this can now be formulated as follows. Automotive Health is the convergence of the digital and genomic revolutions with health, healthcare, automotive transportation, life and society. In the context of mobility, Automotive Health enables us to better track, manage, improve, live better, lead a more productive life and improve our society for our own health and that of our families. Glanz uses the term IncarWellbeing to describe a related topic to automotive health, whereby this is a subset. Automotive Health includes many more health mechanisms than simply ensuring that the occupants of an automobile feel comfortable.

Concepts of Automotive Health

Based on the meta-analysis of the topic Automotive Health, numerous health applications could be identified. The purpose of each application was extracted and generalized as part of the logging process. The described health applications move in a continuum between protection of human life, diagnostics and health monitoring, health promotion and prevention up to mental promotion and improvement. The generalization of the extracted texts thus results in the following levels of Automotive Health.

Concepts for the protection of individuals

The first health level of Automotive Health comprises all measures and technologies for the protection of individuals in the entire area of Automotive Mobility. This primarily involves averting hazardous situations and ensuring the integrity of life in general, but also particularly in critical situations (e.g. averting accident situations, etc.). Autonomous driving can be seen as a disruptive business model that fundamentally changes mobility. The technology is already being implemented in the form of concept vehicles. Lummer, for example, describes a concept vehicle that is able to visually signal to the pedestrian that he has been seen. In contrast to autonomous driving, the authors describe other concepts of safety and protection of individuals based on the current model of mobility. The generalization of corresponding text passages of the meta-analysis resulted in various criteria and technologies for the protection of individuals contrary to autonomous driving (see Table 1).

Concepts of health diagnostics

The second level covers all diagnostic applications and scenarios of health monitoring.

• Measurement and display of blood pressure values and/or blood glucose levels,

• ECG measurements,

• Asthma/allergy monitoring,

• Acquisition, presentation and analysis of vital data,

• etc. Within the framework of the Connected Cars, the second level applications can be expanded to include Telehealth Services. The car takes over the storage, monitoring and communication of health data. The data can be communicated to a health center (e.g. cardiology center, etc.) via standardized interfaces. In these centers, a real-time analysis of the health data can be carried out and a report can be generated and communicated back via standardized interfaces. The communication can, for example, take place on already existing standards from the medical environment, e.g. HL7, DICOM, IHE etc. Alternatively, there are scenarios of coupling with a blockchain (e.g. IBM Watson) which automatically analyzes the data and gives feedback to the occupants of an automobile. An essential feature of Automotive Health is the identification or early detection of diseases of the occupants of an automobile. Weinert refers to a uniform measurement environment in a vehicle that enables the early detection of diseases. In this context, technical devices already exist that identify various cancer markers or disease indicators, for example via the respiratory gas system. Within the framework of the systematic review, this chapter gives an overview of the possibilities of measuring and diagnosing diseases as well as monitoring them. 

Concepts of health promotion and prevention

The third level covers all automotive health applications in the field of health promotion and prevention. Such application scenarios are, for example, based on the measurements on the second level.

• Training programmes and recommendations for the promotion and prevention of recognized signs of illness, e.g. coffee breaks after long journeys (driving ability behavior)

• Initiation of therapeutic measures, e.g. ordering active ingredients from online pharmacies (e.g. DocMorris), massage functions in the car seat, etc.

• Coordination of measures, e.g. scheduling with the nearest specialist, recommendations and navigation in the fitness studio, physiotherapy, etc.

Within the framework of the systematic review, some scenarios of health promotion and prevention were identified. Further concepts of health promotion include various prevention measures. These include, for example, that the car recognizes the signs of illnesses on the basis of various sensors and initiates health-promoting measures. This could be, for example, the recommendation to visit a fitness studio at your destination. Other measures can be derived on the basis of the described concepts of health diagnostics. Such measures can be pure recommendations but also rehabilitative.

Concepts of Mental Health

The aim of mental promotion and improvement measures is to improve the mental health (psychology, mental condition) of the occupants of an automobile. Audi formulates the goal of the Automotive Health Strategy as follows: With "Audi Fit Driver", the driver should arrive at his destination more relaxed and fitter than when he entered the vehicle. This level includes applications of wellness, well-being and stress reduction. The Automotive Health concepts of mental and emotional improvement include various programs of mental and emotional improvement. These are primarily training programs that, for example, increase attention or influence psychology. The former is aimed at preventing traffic accidents and should be seen in the context of protecting individuals. With regard to psychology, Cavin, for example, describes various mental health parameters that flow into this area: soul, spiritual attributes, self-fulfillment, social responsibility, etc. In order to strengthen or improve these parameters, various coaching programs support the mentality through certain exercises. Other coaching programs support certain health relevant topics, e.g. diabetes, etc. In the case of stressed drivers, stress management measures can be initiated through video training. Measures of biofeedback therapy, e.g. breathing exercises, can be carried out. In this context, the Audi FitDriver functions include, for example, measures to reduce stress and increase concentration through the use of different methods.

Other concepts of Automotive Health

Within the review of the literature, several other future-oriented application scenarios of Automotive Health were identified. Weinert describes di-verse future treatment and analysis procedures. The following scenarios are conceivable in this respect.

• Automated pharmacy that drives home autonomously.

• Autonomously driving treatment rooms with doctors coming home. Drones that automatically deliver the right medication.

• MRT or X-ray equipment drives completely autonomously home or to the place where it is required.

• Autonomous ambulances that no longer have to drive to the hospital.

• Patient interventions by robots integrated into the vehicle via remote control.

Automotive Health Concepts of the Future

Contrary to the problems of the healthcare system, the digital health markets are showing enormous growth rates. Global players are concentrating on the development of the autonomous vehicle. The autonomous vehicle coupled with health services based on already available technologies inevitably leads to novel, innovative and possibly disruptive business models (e.g. Automotive Health). The future design of a sustainable, innovative and disruptive business model based on automobility and health services is of great interest. A uniform measurement environment in the car, which makes it possible to link the topic of health with mobility, is innovative and disruptive. Such a business model is based on the conditions in Table 2.

The focus here is on big data, cognitive and real-time analytics, machine learning, artificial intelligence, etc. Another example is the Softbank Group, which is strategically positioning itself for the Internet of Things and Digital Health market. Automotive Health allows the autonomous and fully networked vehicle to be used in a wide range of applications, including health care. Measures of health diagnostics, health promotion and prevention as well as mental health combined with mobility are available. The data collected via a uniform measurement environment can thus be evaluated locally or compared with the cloud. The data can be monitored in real time, for example by a specialist centre (e.g. cardiology centre, diabetes centre, tele-service provider). By connecting to a blockchain (e.g. IBM Watson), for example, a report can be created in real time and recommendations can then be made. The model shown in Figure 26 enables an efficient design of the health care system. The status symbol of a person is currently still the car: the more expensive, the faster and the more beautiful, the more emotionally connected it is. Autonomous Driving fundamentally changes mobility -the review of the literature presented shows a deemotionalisation in the field of mobility in the future. The autonomous driving vehicle creates a lot of time and space to devote to other, more urgent tasks, e.g. health concerns, etc. The waste of time at the wheel becomes obsolete. In principle, in a modern society everything stands and falls with mobility, which also includes leisure activities. Zetsches buzzword for the car should actually be exchanged for 'the second place'. The first port of call after home is the mobility to get to work, the middle one to go to a leisure activity and the last one to get back home. The vehicle is therefore the ideal place to measure your health. Such mechanisms would also be conceivable at home. However, there must be a willingness to visit and use such health monitoring mechanisms at home. In comparison, the vehicle is a regular point of contact, which makes it possible to provide a compact and fully automated health measurement environment. The meta-analysis shows that Automotive Health is much more than just the coupling of wearables with the car. In the course of this elaboration 72 publications were analyzed. The objective was to compile an overview of the subject area of automotive health. The aim was to take a closer look at the changes in business models and philosophies that affect future developments through the digital healthcare industry. Various application scenarios were presented within the framework of the meta-analysis. Such application scenarios were generalized and structured according to the concepts of individual protection, health diagnostics, health promotion and prevention, and mental health. Various technologies were presented for these four health levels of Automotive Health. Many of these technologies have already been implemented, others are in research and development. However, these are technologies that build on people's emotional attachment to the car -they are innovative, but show little disruptive change. Technologies that track the driver's tiredness or sleepiness through various mechanisms (e.g. vital data via steering wheel sensors, face and eye recognition via cameras, etc.) are not a disruptive business model and only become obsolete through the topic of autonomous driving.

Opportunities of Automotive Health

The deemotionalisation by the autonomous vehicle and the introduction of Automotive Health described above harbor various opportunities and advantages that result from such a business model. An essential advantage of the autonomously driving vehicle is the time aspect. This criterion is confirmed by various authors in the literature review: prioritize the advantages of better traffic flow, lower consumption, and more safety before the time aspect. As further advantages after the time aspect, the interviewees stated lower environmental pollution, more driving comfort and quick arrival at the destination. These advantages result solely from the criterion of the self-propelled vehicle. Table 3 shows the advantages of combining the autonomous vehicle with health services. The aspect of increasing efficiency in health care enables new and possibly disruptive application scenarios. Various problems of the German health system can be solved with the inclusion of automotive health technologies. In the following some examples are shown:

• Recognition of clinical pictures on the basis of respiratory gas analysis, biofeedback diagnostics and direct initiation of therapeutic measures.

• Based on the uniform measurement environment in the vehicle, a visit by a family doctor is not necessary. This eliminates waiting times, journeys and other expenses. The car functions as a digital family doctor who regularly monitors and communicates health.

• Cancer prevention, section Identification and Prevention of Cancer Diseases.

• Introduction of therapeutic recommendations and measures, e.g. massage function in the seat, stress management measures, biofeedback therapy, etc.

• Automated prescription of medication on the basis of recognized clinical pictures (e.g. by IBM Watson) with automatic delivery, e.g. via DocMorris, etc.

• Automated issue of disability certificates and digital communication to health insurance companies and employers on the basis of valid data through the uniform measurement environment in the vehicle or coupled wearables. Online analysis of downtime and recovery times.

• Direct appointment coordination as well as digital referral to a specialist if symptoms are detected. Preparation and standardized transmission of the relevant data to the specialist.

• For simple disease pictures, coordination and automated referral to rehabilitative measures, e.g. scheduling with physiotherapy, etc.

Boundaries of Automotive Health in Germany

In addition to the various opportunities offered by Automotive Health, there are, in contrast, some limits. Deemotionalisation creates time and space for other activities during a journey. Such a concept of mobility must first be accepted and used by people. This form of mobility requires a conversion of existing habits in society. This includes the acceptance of deemotionalisation. Many people obviously do not see any problems in this. Other people see an emotional connection to the car, that part wants to sit at the wheel and experience the horsepower. Such an argumentation can arise quickly in the context of the implementation of disruptive concepts. A similar example can be seen in the adoption of Facebook in society. Despite the concerns of the state and data protection at the time, the medium has established itself as an alternative to communication. Obviously, there was a need here to communicate with the public and to be open. This need prevailed. With regard to automotive health, a similar course can be assumed, especially since safety, environmental, health and time aspects play an overriding role for the majority of people here. The disruptive criterion does not have to be limited to better, cheaper and faster characteristics. Disruptive does not necessarily mean that it is accepted by the majority of society. It can be an idea, imagination or conception that completely changes the previous habits and structures of a certain action. In the case of Automotive Health, the possibility of protecting people from accidental death or traffic accidents ratifies the idea of the emotional relationship with a vehicle. Automotive Health without the criterion of the autonomously driving vehicle would only innovatively change the current situation of mobility. Automotive Health would thus continue to build on the emotional relationship of the individual to mobility (driver at the wheel). This includes, among other things, the monitoring of vital data via integrated cameras and sensors in order to avoid accident situations in the context of the protection of individuals. Such mechanisms would also contribute to health monitoring, e.g. of drivers. Table 15 provides an overview of the limits of automotive health in Germany.

Based on conventional mobility without autonomous driving, the following limits can still be set.

• Overstraining the driver: Automated reaction of the vehicle against the behavior of the driver leads to human-machine conflicts in decision-making situations as well as excessive demands on the driver.

• Attention: Display of health information or Display of health information or flood of information on screens reduces the driver's attention in road traffic.

• Incorrect interpretation of displayed health information: The display of health data (e.g. vital signs/EKG values) can be misinterpreted and misunderstood.

Discussion and Conclusion

This work gives an overview in the future oriented disruptive field of Automotive Health. Automotive Health harbors great potential for disruption in two industries through digitization, healthcare and automobility. Linking the automobile with health technologies is not only new and innovative. The consistent application and use of a uniform measurement environment in the car can also be disruptive. In use with current technologies (e.g. Big Data, Predictive Analytics, Machine Learning, Expert Systems etc.) the visit of a physician can be minimized. The doctor does not have to be consulted to monitor one's own health (e.g. vital parameters, etc.). In addition, current technologies can be used to determine and analyze not only the symptoms of a disease but also its causes. In this process, therapeutic and health-promoting measures can be recommended or initiated in real time. All the technologies required to achieve a change in health care are already available. Such a business model is based on the conditions of autonomous driving, digitization or Connected Car and the implementation of eHealth technologies or Connected-Health. Based on the imaging and signal processing devices, e.g. ultrasound, computer tomography, ECG, etc., the car can function in the future as a further modality in the field of health monitoring. Automotive Health is more than just the coupling or integration of wearables in vehicles. Such a disruptive model enables complete safety and protection of individuals in road traffic and in the immediate environment of the automobile through the criterion of autonomous driving. In addition, there are no traffic jams and hardly any traffic accidents.

We consider a class of one-dimensional fractional Zener model for waves propagation in dissipative media. Our goal is to determine the displacement u and the stress σ which verify:

             ρ(x) ∂ 2 u ∂t 2 (x, t) - ∂σ ∂x (x, t) = f (x, t), in R × ]0, T ] , σ(x, t) + τ 0 (x) ∂ α σ ∂t α (x, t) = µ(x) ∂u ∂x (x, t) + τ 1 (x) ∂ α ∂t α ∂u ∂x (x, t) , in R × ]0, T ] , u(x, 0) = u 0 , ∂u ∂t (x, 0) = u 1 , σ(x, 0) = σ 0 , in R, (1) 
where f is the source density, µ and ρ are a physical parameters and τ 0 and τ 1 are the relaxation times.

For all 0 < α < 1, D α t = ∂ α ∂t α is the Caputo derivative of order α: D α t g(t) = 1 Γ(1 -α) t 0 1 (t -τ ) α ∂g ∂τ (τ )dτ,
where Γ is the classical gamma function, defined by:

Γ(x) = +∞ 0 t x-1 e -t dt.
In this work, we study the fractional viscoelastic waves propagation model (1). For which we show an existence and uniqueness result based on the use of the Hille-Yosida theory and an energy decay result. Finally , we present an a priori estimates for solutions of this model.

∂g ∂t = ∇(D G (x)∇g) -∇.(χ(x) m∇w + αg 1 - g + m T max -Φ + Ψ ∂m ∂t = ∇(D M (x)∇m) -∇.(χ(x) m∇w + Φ -Ψ -σ(g.m) ∂c ∂t = D c ∇ 2 c + γ g -β c c, ∂w ∂t = -ρ w g + m θ w + T + α w (1 -w)

Here

• g(x, t)is the proliferating cell density t at position x,

• m(x, t) is the migrating cell density,

• c(x, t) is the chemorepellent density,

• w(x, t) is the extracellular matrix (ECM)density.

Our approach employed is different from other approaches used in biology. On the one hand, no need to the Ensemble Transform Kalman Filter or Monte Carlo simulation but on the other hand, it might be adapted to help anticipate the progression of clinical patient cases of GBM.

Keywords: Brain tumors, Transform Kalman Filter, Realistic mathematical model.

Introduction

In this paper we focus our interest for estimating parameters of ARCH(p) models, which are mainly used in finance, speech signals, daily and monthly temperature measurements, wind speeds and atmospheric CO2 concentrations...etc. Autoregressive conditionally heteroscedastic (ARCH) models were introduced by Engle (1982) and their GARCH (generalized ARCH) extension is due to [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF]. In these models, the key concept is the conditional variance, that is, the variance conditional on the past. In the classical ARCH models, the conditional variance is expressed as a linear function of the squared past values of the series. For more details, see [START_REF] Francq | GARCH models: Structure, Statistical Inference and Financial Applications[END_REF].

The ordinary least squares (OLS) method was proposed by Engle (1982) for ARCH models. The asymptotic properties of the OLS estimator were established by [START_REF] Weiss | ARMA models with ARCH errors[END_REF][START_REF] Weiss | Asymptotic theory for ARCH models: estimation and testing[END_REF], in the ARMA-GARCH framework, under eighth-order moments assumptions. For the same models, asymptotic results of the quasi-maximum likelihood estimator (QMLE) have been established by Ling andLi (1997, 1998), Ling andMcAleer (2003a, 2003b) and [START_REF] Francq | Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes[END_REF]. Pantula (1989) also studied the asymptotic properties of the OLS method in the AR(1)-ARCH(q) case, and he gave an explicit form for the asymptotic variance. The feasible generalized least squares (FGLS ) method was developed, in the ARCH case, by Bose and Mukherjee (2003) (see also Gourieroux, 1997). The convexity results used for the study of the constrained estimator can be found, for instance, in Moulin and Fogelman-Soulie (1979). In the GARCH(1, 1) case, the asymptotic properties have been established by [START_REF] Lumsdaine | Consistency and asymptotic normality of the quasi-maximum likelihood estimator in IGARCH(1, 1) and covariance stationary GARCH(1, 1) models[END_REF] (see also [START_REF] Lee | Asymptotic theory for the GARCH(1, 1) quasi-maximum likelihood estimator[END_REF]) for the local QMLE under the strict stationarity assumption. Berkes et al. (2003b) was the frst paper to give a rigorous proof of the asymptotic properties of the QMLE in the GARCH(p, q ) case under very weak assumptions; see also Berkes andHorváth (2003b, 2004), together with [START_REF] Boussama | Ergodicité, mélange et estimation dans les modèles GARCH[END_REF][START_REF] Boussama | Normalité asymptotique de l'estimateur du pseudo-maximum de vraisemblance d'un modele GARCH[END_REF]. The assumptions given in Berkes et al. (2003b) were weakened slightly in [START_REF] Francq | Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes[END_REF]. Recently Francq and Zakoïan (2011) considered the test of the strict stationarity of GARCH(1, 1) models and studied the asymptotic properties of the quasi-maximum likelihood estimator without strict stationarity constraints.

The purpose of this work, is to investigate a new approach for estimating the parameters of ARCH(p) model. It deals with maximum likelihood method, and Kalman filter algorithm. Indeed, the main idea is to express the concerned model by state-space form, and then deduce the log-likelihood function, which can be computed with Kalman filter algorithm (see [START_REF] Kalman | A New Approach to Linear Filtering and Prediction Problems, Transaction of the ASME[END_REF][START_REF] Kalman | New methods in Wiener filtering theory[END_REF]). To obtain the maximum of the log-likelihood function, we used the SA method (see [START_REF] Corana | Minimizing Multimodal functions of continuous variables with simulated annealing Algorithm[END_REF]) which is a global optimization algorithm for functions of continuous variables. We have used some examples of ARCH(p) models to examine the performance of the proposed method.

Note that we have used the same idea in the estimation algorithm for some nonlinear time series ( see Benmoumen et al (2011, 2013 and 2014)).

The remainder of the paper proceeds as follows. Section 2 lays out the ARCH(p) models and its main properties. Section 3 deals with the estimation algorithm of the parameters of the model of interest. In this section, we state the definition of the state-space form of the ARCH(p) models, and the expression of the log-likelihood function obtained by applying the Kalman filter to the state-space, and then maximize the likelihood using SA method. In Section 4 we use two numerical examples to illustrate the estimation technique discussed in Section 3. The conclusion is provided in Section 5.

Preliminary Notes Definition 2.1 (Strong ARCH(p) process). Let (η t ) be sequence of independent and identically distributed (i.i.d.) random variables (E(η

t ) = 0, E(η 2 t ) = 1). The process ( t ) is called a strong ARCH(p) (with respect to the sequence (η t )) if      t = σ t η t σ 2 t = ω + p i=1 α i 2 t-i (1) 
where the α i is nonnegative constants and ω is a (strictly) positive constant.

The strict stationarity of the GARCH(1, 1) model was first studied by Nelson (1990a) under the assumption E log + η 2 t < ∞. His results were extended by [START_REF] Klüppelberg | A continuous time GARCH process driven by a Levy process: stationarity and second order behaviour[END_REF] to the case of E log + η 2 t = +∞. For GARCH(p, q ) models, the strict stationarity conditions were established by [START_REF] Bougerol | Stationarity of GARCH processes and of some nonnegative time series[END_REF]. The second-order stationarity condition for the GARCH(p, q ) model was obtained by [START_REF] Bollerslev | Generalized autoregressive conditional heteroskedasticity[END_REF]. ARCH(∞) models were introduced by Robinson (1991); see Giraitis, Leipus and Surgailis (2009) for the study of these models. The condition for the existence of a strictly stationary ARCH(∞) process was established by [START_REF] Robinson | Pseudo-maximum likelihood estimation of ARCH(∞) models[END_REF] and [START_REF] Douc | On the existence of some ARCH(∞) processes[END_REF]. The condition for the existence of a second-order stationary solution, as well as the positivity of the autocovariances of the squares, were obtained by [START_REF] Giraitis | Stationary ARCH models: dependence structure and central limit theorem[END_REF].

The fourth-order moment structure and the autocovariances of the squares of GARCH processes were analyzed by [START_REF] Milhoj | The moment structure of ARCH processes[END_REF], [START_REF] Karanasos | The second moment and the autocovariance function of the squared errors of the GARCH model[END_REF] and [START_REF] He | Fourth-moment structure of the GARCH(p, q ) process[END_REF]. The necessary and sufficient condition for the existence of even-order moments was established by Ling and McAleer (2002a), the sufficient part having been obtained by Chen and An (1998). [START_REF] Ling | Stationarity and the existence of moments of a family of GARCH processes[END_REF] derived an existence condition for the moment of order s , with s > 0. Moreover, there exists no other second-order stationary and nonanticipative solution.

Theorem 2.1 (Second-order stationarity of the ARCH(p) process, Bollerslev (1986)). Let

ω > 0. If p i=1 α i ≥ 1,

Estimating Algorithm of parameters of the ARCH(p) model

Let ( t ) be a ARCH(p) model defined by (1). We suppose that p i=1 α i < 1 and (η t ) is an iid N(0, 1).

Remark 3.1

Denote by θ = (ω, α 1 , . . . , α p ) the ARCH(p) parameter and define the QMLE by minimizing:

˜ n (θ) = n -1 n t=1 2 t σ2 t (θ) + logσ 2 t (θ) . ( 2 
)
Where

σt 2 (θ) = ω + p i=1 α i 2 t-i for t = 1, . . . , n. (3) 
With initial values for 2 0 , 2 1 , . . . , 2 1-p and σ2 0 (θ) (in practice the choice of the initial values is important in QMLE method).

Our aim is to generate ( σt 2 (θ)) without any assumptions about initial values ( 2 0 , 2 1 , . . . , 2 1-p and σ2 0 (θ)) wich are not known in practice. Let θ = (θ 1 , θ 2 , . . . , θ p+1 ), where θ 1 = ω, θ 2 = α 1 , . . . , θ p+1 = α p denote the vector of unknown parameters, ( 1 , 2 , . . . , n ) the observed data, and F t = ( 1 , . . . , t ) is the set of observations available at time t = 1, . . . , n. In this study, we propose estimating θ by using quasi-maximum likelihood, given by minimizing :

n ( 1 , . . . , n ; θ) = n -1 n t=1 2 t σ2 t|t-1 (θ) + logσ 2 t|t-1 (θ) , (4) 
where the σ2 t|t-1 (θ) are defined recursively, for t ≥ 1, by the Kalman Filter, without any assumptions about presample values which is essential in other methods of estimating the likelihood function. The key step of our algorithm is to construct a convenient state-space representation of our model. This representation is given by:

ξ t = Aξ t-1 + G + H e t
: state equation X t = Hξ t : observation equation.

Here the state vector is

ξ t = ( 2 t , 2 t-1 , . . . , 2 t-1 ) , X t = 2 t , e t = 2 t -σ 2 t , H = (1, 0, . . . , 0) A =         α 1 α 2 . . . α p 0 1 0 . . . 0 0 . . . . . . . . . . . . . . . 0 0 . . . 1 0         the (p + 1) × (p + 1
) matrix and G = (ω, 0, . . . , 0) .

The Kalman filter recursively generates an optimal forecast ξt+1|t = E[ξ t+1 |F t ] of the state vector ξ t+1 , and σ2 t+1|t = H ξt+1|t , with associated mean square error

P t+1|t = V[ξ t+1 -ξt+1|t ], t = 1, . . . , n.
Using the Kalman filter we have constructed the log-likelihood function. For optimization, we prefer a method that doesn't make use of derivatives. Therefore, we used the SA method which adopts an iterative random search procedure with adaptive moves along the coordinate directions. It permits uphill moves under the control of a probabilistic criterion, thus tending to avoid the first local minima encountered.

Before describing our algorithm QMLKF (quasi-maximum likelihood and Kalman filter estimation), it is worthwhile to provide a sub algorithm which tests if parameters fulfill the conditions of stationarity, we will denote it by Test. The second sub algorithm, which we must provide, concerns the computation of n ( 1 , . . . , n ; θ) by Kalman filter, we will denote it by KF. These two sub algorithm will be implemented in our global estimating algorithm.

Sub algorithm Test(θ)

Step 1 : If

p+1 i=2 θ i < 1 Then go to next.
Step 2 : Else return to the previous step and take the previous point as starting point End Sub

Sub algorithm KF(θ)

Step 1 : Initialization of the state vector ξ1|0 wich denotes a forcast of ξ 1 . The forcast of σ 2 1 is given by σ2 1|0 = H ξ1|0 .

Step 2 : Iterate on ξt+1|t for t = 2, . . . , n

Step 3 : The forcast of σ 2 t+1 is given by σ2 t+1|t = H ξt+1|t . Step 4 : Compute n ( 1 , . . . , n ; θ). End Sub. Now, we propose the global algorithm for parameter estimation, where we integrate all the sub algorithms described above.

QMLKF Algorithm

Step 0 : Initialize : the vector parameters θ the step vector ν and the temperature T .

Step 1 : Starting from the point θ i , generate a random point θ along the direction h: θ = θ i + rν m h e h where r is a random number generated in the range [-1, 1] by a pseudorandom generator; e h is the vector of the hth coordinate direction; and ν m h is the component of the step vector ν along the same direction.

Step 2 : Call sub algorithm T est(θ).

Step 3 : Call sub algorithm KF (θ)

Compute KF (θ i ) and KF (θ) If KF (θ) ≤ KF (θ i ) accept the new point Else accept or reject the new point with acceptance probability p:

p = exp KF (θ i )-KF (θ)
T generate a uniformly distributed random number p in the range [0, 1] If p < p, the point is accepted otherwise it is rejected.

Step 4 : Steps 1 to 3 are repeated for each coordinate direction i, i = 1, . . . , m (m is the dimension of the vector parameter).

Step 5 : Steps 1 to 4 are repeated N s times (N s is the number of step variation) and the step vector ν is adjusted.

Step 6 : Steps 1 to 5 are repeated N T times (N T is the number of temperature reduction) the temperature is reduced following the rule:

T = r T T with r T ∈ [0, 1].
Step 7 : Steps 1 to 6 are repeated until a termination criterion is satisfied.

End Algorithm 4 Simulation study

To assess the performance of our estimate algorithm, we have conducted series of simulation experiments. In this study we are interested to verify that our method improves the estimations obtained by ordinary least squares method (OLS) and quasi-maximum likelihood method (QMLE) considered in the literature.

consider two examples of model ARCH(2) and ARCH(3):

1. t = σ t η t , (η t ) iid N(0, 1), σ 2 t = 1 + 0.5 2 t-1 + 0.25 2 t-2 2. t = σ t η t , (η t ) iid N(0, 1), σ 2 t = 1 + 0.35 2 t-1 + 0.4 2 t-2 + 0.15 2 t-3
For the models above, we generated 1000 replications of sample sizes n = 100 and 200. The results of this experiment are displayed in Tables 12where for each estimator we give the mean and MSE, where we used notation QMLE for the quasi-maximum likelihood estimators, QMLKF for the estimation by our algorithm and OLS for the ordinary least squares estimators. Note that the method we use to obtain the quasi-maximum likelihood estimator (QMLE) is the SA method. The numerical results presented in the table above, showed that our algorithm succeeds, as is seen from the fact that the sample mean square errors are generally smaller than for the quasi-maximum likelihood estimators (QMLE) and the the ordinary least squares estimators (OLS) without any assumptions about initial values which are important in QMLE and OLS methods. Hence, we can conclude that the performance of our estimation procedure is promising.

Conclusion

In this paper, we consider the quasi-maximum likelihood estimation of the parameters of ARCH(p) model. The log-likelihood function constructed using the Kalman filter and is numerically maximized applying the SA method. The results of our simulation study show that our estimation approach succeeds and it performs better than the competitor. 
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Abstract. We consider the following system of impulsive differential equations

               x (t) = f (t, x, y), t ∈ J := [0, ∞), t = t k , k = 1, . . . , y (t) = g(t, x, y), t ∈ J, t = t k , k = 1, . . . , x(t + k ) -x(t - k ) = I k (x(t k ), y(t k )), k = 1, . . . , y(t + k ) -y(t - k ) = I k (x(t k ), y(t k )), k = 1, . . . , x(0) = x 0 , y(0) = y 0 , (1) 
where x 0 , y 0 ∈ R, f, g :

J × R × R → R are a given functions, I k , I k ∈ C(R × R, R).
We present the stability result of problem (1) via the following theorem Theorem 0.1 (Krasnoselskii) [11] Let (X, . ) be a Banach space. Suppose that A and B map X into X such that

(i) A is completely continuous operator, (ii) B is a contraction with constant 0 < α < 1. (iii) the set M = x ∈ X : x = λB x λ + λA(x), λ ∈ (0, 1)
is bounded. Then there exists x ∈ X with Ax + Bx = x.

Keywords: Impulsive differential equations, Stability result, Krasnoselskii theorem.

Introduction

Consider the generalized fractional programming problem

(P ) λ = inf x∈X λ(x) := max i∈I f i (x) g i (x) ,
where the nonempty feasible set X is given by X := {x ∈ S | h j (x) ≤ 0, j ∈ J}, and S a nonempty subset of Ê n . For all i ∈ I := {1, • • •, m}, and all j ∈ J := {1, • • •, p}, f i , g i and h j , are real-valued functions defined on S, with g i positive on S, for all i ∈ I.

For λ ∈ Ê, we put F (x, λ) := max i∈I {f i (x)λg i (x)} and we consider the the following parametric program

(P λ ) inf x∈X F (x, λ)
We pose

f (x) := (f 1 (x), • • •, f m (x)) , g(x) := (g 1 (x), • • •, g m (x)) and h(x) := (h 1 (x), • • •, h p (x)) .
We will consider a nonempty subset Y of Ê n such that

X ⊂ Y ⊂ S. (1) 
With this set Y , we define the function d

: Σ × Ê p + → Ê by d(y, z) = inf x∈Y y f (x) + z h(x) y g(x) , (2) 
and we consider the dual problem

(D) sup y∈Σ, z≥0 d(y, z),
where

Σ := {y ∈ Ê m y ≥ 0, m i=1 y i = 1}.
For λ ∈ Ê, we associate to (D) the following parametric problem

(D λ ) sup y∈Σ, z≥0 π(y, z, λ)
where π(y, z, λ)

:= inf x∈Y y [f (x) -λg(x)] + z h(x) .
In [3], the authors define (D) as a dual for (P ), in the case Y = S, and with certain convexity/concavity assumptions. Throughout all of this work we assume that

δ := inf x∈Y min i∈I g i (x) > 0 and ∆ := sup x∈Y max i∈I g i (x) < ∞.
To establish duality results, we assume the following assumptions which permit to abandon compactness of the constraints set, and the convexity/concavity of the functions f i and g i .

Assumption 1.1 We assume that λ > -∞ and π(y, z, λ) > -∞ for all (y, z) ∈ Σ × Ê p + . Assumption 1.2 sup y∈Σ, z≥0 inf x∈Y y [f (x) -λg(x)] + z h(x) = inf x∈Y sup y∈Σ, z≥0 y [f (x) -λg(x)] + z h(x) .
In [6], the authors propose to add a prox-regularization term to the objective function π(• , • , λ) to deal with problems with nonunique optimal solutions or with eventually unbounded constraints set. The resulting auxiliary problems take the form

(DR β (s, t, λ)) sup (y,)∈Σ×Ê p + π(y, z, λ) -β (y, z) -(s, t) 2 ,
where β > 0 and (s, t)

∈ Σ × Ê p + .
The exact evaluation of π(y, z, λ) can be source of difficulties. For this reason, we will content ourselves by an approximate evaluation of the function π(• , • , λ) at the desired points, to get approximate subgradients (ε-subgradient).

Dual Proximal Bundle Methods

Our purpose, is precisely to solve (D) by means of its associated parametric programs, using bundle proximal ideas. This approach has already been applied in [4], to the partial dual problem [2] and gave rise to dual bundle proximal methods.

We approximate the concave nonsmooth objective function π(•,

•, λ k ) by a concave function ϕ(•, •, λ k ), called in [5] a c-approximation, so that the function π(•, •, λ k ) is replaced by ϕ(•, •, λ k ) in the problem (DR β (s, t, λ)).
To approximately solve the problem (DR β k (y k , z k , λ k )), we will solve a set of approximating and easier problems

(D k ) sup y∈Σ, z≥0 ϕ (y, z, λ k ) -β k (y, z) -(y k , z k ) 2 , for = 1, • • • , (k), until an approximate solution (y (k) k , z (k) k ) of the subproblem (DR β k (y k , z k , λ k )) is reached. To construct a c-approximation of π(• , • , λ k ) at (y k , z k ), we construct a set of piecewise affine concave functions ϕ (• , • , λ k ) for = 1, 2, • • • , (k) by solving at each iteration the problem (D k ). For = 1, 2 • • • , we denote by (y k , z k ) the unique solution of problem (D k ) and define the affine functions L (• , • , λ k ) by L (y, z, λ k ) = ϕ (y k , z k , λ k ) -γ k , (y, z) -(y k , z k ) for all (y, z) ∈ Ê m × Ê p , where γ k := 2β k (y k , z k ) -(y k , z k ) ∈ ∂[-ϕ (• , • , λ k ) + Ind Σ×Ê p + (•)] y k , z k .
For the purpose of constructing a c-approximation ϕ(• , • λ k ) of π(• , • , λ k ), we impose the following conditions during the stages of the construction of the approximate functions ϕ (

• , • , λ k ), = 1, • • • , (k), where (k) is the first element ∈ AE ∪ {∞} for which ϕ (• , • , λ k ) is a c-approximation of π(• , • , λ k ) at (y k , z k ). (C1) ϕ (y, z, λ k ) ≥ π(y, z, λ k ) for all = 1, 2, • • • , (k) and all (y, z) ∈ Σ × Ê p + , (C2) ϕ +1 (y, z, λ k ) ≤ π(y k , z k , λ k ) -s k , (y, z) -(y k , z k ) + ε k for all = 1, 2, • • • , (k) and all (y, z) ∈ Σ × Ê p + , where s k denotes an ε k -subgradient of -π(• , • , λ k ) at (y k , z k ), (C3) ϕ +1 (y, z, λ k ) ≤ L (y, z, λ k ) for all = 1, 2, • • • , (k) and all (y, z) ∈ Σ × Ê p + .
Algorithm 1 Bundle standard dual algorithm 1. Let (y 0 , z 0 ) ∈ Σ × Ê p + , and compute

λ 0 = d(y 0 , z 0 ) := inf x∈Y y 0 f (x) + z 0 h(x) y 0 g(x) .
Let x 0 ∈ Y and ε 0 ≥ 0 be such that

y 0 [f (x 0 ) -λ 0 g(x 0 )] + z 0 h(x) ≤ π(y 0 , z 0 , λ 0 ) + ε 0 .
Set 

s 0 0 := -   f (x 0 ) -λ 0 g(x 0 ) h(x 0 )   , k = 0 and = 1. 2. At step k, we have β k > 0, (y k , z k ) and λ k . Choose ϕ (• , • , λ k ) a concave
ϕ (y, z, λ k ) -β k (y, z) -(y k , z k ) 2 to get (y k , z k ). Let x k and ε k ≥ 0 be such that y k f (x k ) -λ k g(x k ) + z k h(x k ) ≤ π(y k , y k , λ k ) + ε k ,
and compute

s k := -   f (x k ) -λ k g(x k ) h(x k )   . 3. If ϕ (y k , z k , λ k ) ≤ 1 c π(y k , z k , λ k ), then set (y k+1 , z k+1 ) = (y k , z k ), (k) = and (y 0 k+1 , z 0 k+1 ) = (y k+1 , z k+1 ). Compute λ k+1 = d(y k+1 , z k+1 ) := inf x∈Y y k+1 f (x) + z k+1 h(x) y k+1 g(x) ,
increase k by 1 and set = 0.

4.

Increase by 1 and go to step 2.

Introduction

This work is concerned with the development of algorithms, based on the parametric procedure used in [1], the proximal point algorithm [3] and the notion of bundle methods [2], for finding a solution of generalized fractional programming problems of the form

(P) λ = inf x∈X max i∈I f i (x) g i (x) ,
where I = {1, . . . , m} is a finite index set, X is the set of constraints given by

X = {x ∈ Y | h j (x) ≤ 0, j ∈ J = {1, . . . , p}} ,
with Y a nonempty and closed subset of Ê n and f i , g i and h j are continuous functions on Y , for all i ∈ I and j ∈ J. Such problems arise in many fields of applications, like economy, stochastic programming, data bases, physics, telecommunications and numerical analysis [4,6].

In this section, we summarize the notational conventions used in the rest of the paper. We designate by (H1), (H2) and (H3) the following assumptions: (H1) there exists x ∈ Y such that h j (x) < 0 for all j ∈ J, (H2) for all j ∈ J, the function h j is convex on Y and Y is a convex set, (H3) for all i ∈ I, the function f i is convex on Y and nonnegative on X and g i is positive and concave on Y , and f i is nonnegative on Y if g i is not affine.

Throughout this paper, we assume that assumptions (H2) and (H3) are satisfied. We will assume also that δ := inf

x∈Y min i∈I g i (x) > 0,
and

∆ := sup x∈Y max i∈I g i (x) < ∞.
For (λ, x) ∈ Ê × Y , ω i > 0 and ω i > 0 with ω i /ω i = ω, for all i ∈ I, we will set

F ω (x, λ) = max i∈I {ω i f i (x) -λω i g i (x)}, h(x) = max j∈J h j (x)
and

F ω (x, λ) = max{F ω (x, λ), h(x)}.
Let η > 0 any positive scalar. For (λ, x) ∈ Ê × X, we define the auxiliary problem

(P ω η (λ, x)) ϕ η (x, λ) = inf y∈Y {F ω (y, λ) + η y -x 2 }.

General Approximating Proximal Methods of Centers

In the objective to obtain implementable algorithms, we propose in this section to approximately solve the auxiliary problem (P ω η k (λ k , x k )) by solving more simpler one. This will be achieved by replacing the function F k ω (. , λ k ) by a simpler function ψ k ω (., λ k ), called in [9] a c-approximation. This scheme allows to construct families of algorithms following the choice of the c-approximation. A work in this direction was given in [10].

In a first step, we will describe our algorithm and analyze its convergence and rate of convergence, based only on this notion of c-approximation of functions. Based on the fact that F k ω (. , λ k ) is a convex possibly nondifferentiable function, we will give, in a second step, procedures for constructing such c-approximations. This will lead us to develop in the next section, bundle methods for generalized fractional programs. For bundle methods for convex problems, see e.g. [2,5,8].

The algorithm

Firstly, we define the c-approximation function, as given in [9].

Definition 2.1 Let c ∈]0, 1[ be a given parameter. A convex function ψ k ω (. , λ k ) is a c-approximation of F k ω (. , λ k ) at x k ∈ Y , if ψ k ω (x, λ k ) ≤ F k ω (x, λ k ) for all x ∈ Y,
and if

ψ k ω (x k+1 , λ k ) ≥ 1 c F k ω (x k+1 , λ k ), where x k+1 := arg min y∈Y ψ k ω (y, λ k ) + η k y -x k 2 .
We are now ready to state our approximate prox-algorithm to solve the generalized fractional problem (P). Step 0. Let c ∈]0, 1[ be a given parameter. Choose a starting point x 0 ∈ X, compute

λ 0 = ω max i∈I f i (x 0 ) g i (x 0 ) ,
and set k = 0.

Step

1. Let η k > 0. Choose a c-approximation ψ k ω (. , λ k ) of F k ω (. , λ k ) at
x k and find the minimum

x k+1 of the problem min y∈Y ψ k ω (y, λ k ) + η k y -x k 2 .
If F k ω (x k+1 , λ k ) = 0 then STOP, x k+1 is an optimal solution of (P).

Step 2. Set

λ k+1 = ω max i∈I f i (x k+1 ) g i (x k+1
) , increase k by 1 and go to Step 1.

Convergence analysis

The remainder of this section is devoted to the convergence analysis of Algorithm 2.1. For this end we will assume from now on that Algorithm 2.1 does not terminate at any iteration k, since otherwise the last point x k is an optimal solution of (P).

The main results of this section are the following Lemma 2. 1 1. The sequence {λ k } is decreasing, bounded from below by ω λ.

2. If λ > -∞, then we have F k ω (x k+1 , λ k ) → 0 and η k x k+1 -x k 2 → 0 as k → ∞.
Theorem 2.1 Suppose that Algorithm 2.1 does not stop at any iteration k and that k≥0 1/η k = ∞. If the assumption (H1) is satisfied, then the sequence {λ k /ω} converges to λ, the optimal value of (P).

Theorem 2.2 Suppose that Algorithm 2.1 does not stop at any iteration k, that k≥0 1/η k = ∞ and that the assumption (H1) is satisfied. Then 1. any cluster point of {x k } is an optimal solution of (P),

2. if η k ≥ η > 0 for all k ∈ AE and the set of optimal solutions of (P) is nonempty, then the sequence {x k } converges to some solution of (P).

For analyzing the convergence rate of Algorithm 2.1 we will use the following assumption:

(A) There exist ε > 0, κ > 0 such that

F (x, λ) ≥ κ dist(x, X * ) 2 for all x ∈ B(X * , ε) ∩ X, with dist(x, X * ) = inf x∈X * x -x , F (x, λ) = max i∈I {f i (x) -λg i (x)}, B(X * , ε) = x∈X * B(x, ε) and B(x, ε) = {x ∈ Ê n | x -x < ε},
where X * is the optimal solutions set of (P).

Theorem 2.3 Suppose that the optimization problem (P) has an optimal solution and that the assumption (A) is fulfilled. Assume also that the assumption (H1) is satisfied and that the sequence {x k } converges to an optimal solution of (P). If the sequence {η k } is bounded from above, then for η k sufficiently small, the sequence {λ k } converges linearly to ω λ.

Proximal Bundle Algorithms

Based on the fact that F k ω (x, λ k ) is a convex possibly nondifferentiable function, we propose in this section a proximal bundle method to solve the auxiliary problem (P ω η k (λ k , x k )). On one hand, the proposed procedure is a proximal point algorithm (see e.g. [3,7,11]) since it generates, for any starting point y 0 k = x k ∈ Y , a sequence of points {y k } in Y by taking y +1 k to be an approximate minimizer of the problem

min y∈Y F k ω (y, λ k ) + η k y -x k 2 ,
where η k > 0 is a given parameter and x k the point computed at the precedent iteration. On the other hand it is a bundle method (see e.g. [2,5]) since for the calculation of y +1 k , the function F k ω (., λ k ) is replaced by a piecewise linear approximation, say ψ ω (. , λ k ). Instead of directly solving the problem (P ω η k (λ k , x k )), a set of approximating and easier problems, indexed by = 1, . . . , (k),

inf y∈Y {ψ ω (y, λ k ) + η k y -x k 2 } (1) 
will be solved until an approximate solution y (k) of (P ω η k (λ k , x k )), in a sense that will be specified later, is reached. Then the iteration k + 1 will be performed by solving approximately the problem (P ω η k+1 (λ k+1 , x k+1 )) with x k+1 = y (k) and

λ k+1 = ω max i∈I f i (x k+1 ) g i (x k+1 ) ,
by the same procedure.

Now to obtain the approximate solution y (k) of (P ω η k (λ k , x k )), one may construct, at each iteration , an approximation ψ ω (. , λ k ) of F k ω (., λ k ) and may solve the approximating problem (1) to obtain the solution y k . The procedure then stops with such that ψ ω (. , λ k ) is a c-approximation of F k ω (., λ k ) at x k , and we set (k) = .

Construction of c-Approximations

The construction of c-approximation functions is based on the following classical assumption in nonsmooth convex programming: Given y ∈ X, the value F k ω (y, λ k ) and some s(y) ∈ ∂F k ω (y, λ k ), a subgradient of F k ω (., λ k ) at y, are available.

However, to guarantee existence of a c-approximation of F k ω (., λ k ) at x k , the approximation functions ψ ω (. , λ k ), = 1, . . . , (k), where (k) is the first element in AE ∪ {∞} for which ψ (k) ω (. , λ k ) is a capproximation of F k ω (., λ k ) at x k , must satisfy the following properties.

1. 

ψ ω (y, λ k ) ≤ F k ω (y, λ k ) for all = 1, . . . , (k) and all y ∈ Y , 2. ψ +1 ω (y, λ k ) ≥ L k, (y) := ψ ω (y k , λ k ) + 2η k x k -y k , y -y k for all = 1, . . . , (k) and all y ∈ Y , 3. ψ +1 ω (y, λ k ) ≥ F k ω (y k , λ k ) + s(y k ), y -y k for all = 1, . . . , ( 
ψ +1 ω (y, λ k ) := max 0≤q≤ F k ω (y q k , λ k ) + s(y q k ), y -y q k for all y ∈ Y , where y 0 k = x k and s(y q k ) is a subgradient of F k ω (., λ k ) at y q k .
Example 3.2 An other choice of the piecewise affine functions ψ ω (. , λ k ) for all ∈ AE * , would be for example ψ +1 ω (y, λ k ) := max{L k, (y), max 0≤q≤ {F k ω (y q k , λ k ) + s(y q k ), yy q k }}, for all y ∈ Y , where y 0 k = x k and

L k, (y) = ψ ω (y k , λ k ) + 2η k x k -y k , y -y k , with ψ 1 ω (y, λ k ) := F k ω (x k , λ k ) + s(x k ), y -x k for ally ∈ Ê n .
With a similar reasoning to that followed by the authors in [9], we describe below a procedure to construct at an iteration k, a c-approximation of F k ω (., λ k ) at x k .

Algorithm 3.1 Let c ∈]0, 1[ be a given parameter, x k ∈ X and let = 1.

Step 1. Choose a piecewise linear convex function

ψ ω (. , λ k ) satisfying (C1)-(C3). Determine y k ∈ Y , the minimizer of min y∈Y ψ ω (y, λ k ) + η k y -x k 2 .
Step 2. If

ψ ω (y k , λ k ) ≥ 1 c F k ω (y k , λ k ), then STOP, set (k) = and ψ (k) ω (. , λ k ) is a c-approximation of F k ω (., λ k ) at x k .
Else increase by 1 and go to Step 1.

Introduction

As of 2016, people around the world produced 2.5 Exabytes (2.5*1018 bytes) of data on a daily basis. Most of this data is related to social media, including, for example, 500 Million Tweets, 4.3 Billion Facebook messages and 4 Million Hours of YouTube video content. This large amount of data is linked to each other, and in case we would like to represent it for analysis purposes, the best way to do it is through graphs. The development of dynamic information analysis, like incremental clustering, is becoming a important concern ina brunch of big data applications whose main goal is to deal with information wich is varying over time. One of the biggest problems related to incremental clustering is the estimation of the correct number of clusters. Most of the algorithms known in the literature require the user to define a specific number of clusters. For example, the good old K-Means by Hartigan and Wong [1]. It also goes for its more recent updates, like the ones proposed by Jain [2] or Fahad et al. [3]. However, in several real world use cases, it is impossible to determine the correct number of clusters a priori. For this reason, many attempts to develop algorithms able to determine the correct number of clusters were described in the literature. This research area, usually called Automated Clustering started in the late 1990's but couldn't blossom until the late 2000's early 2010's with the introduction of the artificial intelligence concepts such as nature-inspired algorithms, [4] and [5]. Swarm Intelligence, as one of the most recent trends in nature-inspired algorithms, was also applied in automatic clustering. It has shown its performance and ability to define correct clustering in several works in the most recent literature [6,7,8]. It was defined by Nanda and Panda [9] as a class of metaheuristics inspired by the collective intelligence of a population of agents interacting with their environment as well as with each other. We can find such intelligence in animals or biological organisms that tend to live in groups, such as ant colonies, bird flocks, or fish schools [9]. Among the algorithms of this class, Ant Colony Optimization (or ACO) is the most famous. Mandala et al. [10] proposed an ACO based technique for graph clustering and applied it in detecting customer communities in the e-marketing field. Ji et al. [11] suggested a solution for the problem of complex community detection in large graphs based on the strategy of ant pheromone diffusion and update to search for an optimal graph partitioning. Zhou et al. [12] followed a similar process, but they took the overlapping issue of the large communities into consideration. Moradi and Rostami [13] used ACO along with feature selection to define clusters of features. Gao et al. [14] proposed a combination between ACO and K-Means as a solution to the dynamic location routing problem. K-Means is used to define the location of depots (cluster centers) while ACO is utilized to handle the VRP in dynamic environments.

Introduction

The data fitting problem where the underlying domain is a sphere-like surface S arises in several fields, as the medical modeling, geophysics and meteorology. Assuming that we have a set of site {P 1 , ..., P d } and function values at these sites {r 1 , ..., r d }, where r i ∈ Ê, i ∈ {1, ..., d}. We are looking for an approximant f defined on S that interpolate the data values r i defined at random set of positions {(x i , y i )} i=1,...,d , where (x i , y i ) are the polar coordinates of P i (i.e, χ(x i , y i ) = P i ). The function f must be of class C 1 and also must satisfy a specific conditions. This paper is based on the tensor spline product technique presented in [2,3]. Where the interpolant arising from this technique to approximate the function f is

f (x, y) = m i=1 n j=1 c(i, j)v i (x) ṽj (y) (1) 
where {v 1 (x), . . . , v m (x)} (resp.{ṽ 1 (y), . . . , ṽn (y)}) is a linearly independent set of functions on [-π 2 , π 2 ] (resp. on [0, 2π]). In this work we consider a new Hermite interpolant based on the tensor product of quadratic composite polynomial B-splines and the periodic uniform algebraic trigonometric B-splines of order 3 from [4]. The new interpolant gives a closed surface of class C 1 , and the results obtained from this method can be generalized to C 2 or C 3 . This interpolant goes through all of data point and it's locally computed in each one of them.

Introduction

Univariate spline quasi interpolants have been studied for several decades in approximation theory (see e.g. [6][7][8] [9]). The main advantage of these operators is that they are local approximants avoiding the solution of linear systems required when the spline intepolants are used. In general, a spline quasi interpolant of degree m is given by

Qf := n+m j=1 µ j (f )B j ,
where B j , j = 1, 2, . . . , n + m, is a sequence of B-spline functions generating the space of splines of degree m, and µ j are local linear functionals which are in general given by one of the following forms (see [9]): i) a linear combination of discrete values of f at some points in the neighbourhood of supp(B j ). The associated quasi-interpolant is called a discrete quasi-interpolant, see e.g. [5];

ii) a linear combination of values of derivatives of f at some points in the neighborhood of supp(B j ). The associated quasi-interpolant is called a differential quasi-interpolant, see e.g. [3];

iii) a linear combination of weighted mean values of f , i.e. of quantities b a f w j , where w j can be a linear combination of B-splines. The associated quasi-interpolant is called an integral quasi-interpolant, see e.g. [6].

Let f be an univariate real-valued function over I = [a, b], and X n := {a = x 0 < x 1 < . . . < x n-1 < x n = b} be a uniform partition of I into n subintervals with meshlength h = b-a n . In traditional interpolation/approximation problems by spline functions, we assume that the function or derivative values at knots are given, and we use them to construct the spline function. In this paper, these values are not given, and we suppose that the integral values of successive subintervals of f from x j to x j+1 (j = 0, 1, . . . , n -1) are known and they are equal to

I j (f ) = x j+1 x j f (x)dx, j = 0, 1, . . . , n -1. (1) 
This kind of problem arises frequently in mechanics, mathematical statistics, numerical analysis, electricity, environmental science, climatology, oceanography and so on, see [1][2] [10]. Currently, there have been several methods for the solution of this problem. A regularization method was proposed in [4]. The method provides an approximate function for f by solving a minimization problem. Its order of convergence is only 2 and depends not only on f but also on the regularization parameter. To overcome this problem, some other authors used spline interpolation (see [1][2]). The main drawback of this latter method is that it needs some additional data besides the given integral values in (1) to define the spline interpolant. Recently, a local integro cubic spline method was given in [10]. It was able to reconstruct f (k) , (k = 0, 1, 2) with approximation orders of O(h 4-k ) respectively. The method does not need any additional data and has lower computational complexity. In order to improve this earlier work, we propose in this paper to use an integral cubic spline quasi-interpolant Q that approximates f and its two first derivatives. Our approach does not need any more additional data, but its main advantage lies in the fact that the spline quasi-interpolant is constructed without solving any system of linear equations, unlike what happens with interpolants. Moreover, the approximation using our operator is better than that given by the one introduced in [10].

In addition, we present a new method to get a superconvergence phenomenon at the knots of the partition. Thanks to this phenomenon, the modified integral cubic spline quasi-interpolant Q provides an interesting approximant very accurate at the superconvergence points. Moreover, it also gives rise to good global approximation on the whole domain of definition.

Numerical results

In this section we illustrate the performances of the quasi-interpolating schemes presented above with the following test function defined on I = [0, 1] by

f (x) = - 1 2 (exp 1 2
x -1).

The numerical algorithms were run on a PC with intel pentium 2 × 2GHz CPU, 2GB RAM and the programs were compiled by using Mathematica.

Comparison

Firstly, we compare the operator Q and its derivatives (Q and Q ) with the local integro cubic splines denoted P and constructed in [10]. The obtained results are illustrated in tables 1-3 where, for different values of n, we give the maximum error ( . From the above tables, we see that the numerical approximation orders agree with the theoretical ones. Furthermore, we see that the use of the quasi-interpolant provides smaller errors than the one introduced in [10].

Superconvergence phenomenon

To illustrate numerically the superconvergence phenomenon, we give in Table 4, for different values of n, the maximum absolute errors at the knots (max 0≤j≤n | Ẽf (x j )|) and the maximum error associated with Qf for the function test f . Moreover, we give in this table the corresponding numerical convergence order denoted N CO. We put:

Ef = Qf -f and Ẽf = Qf -f.
In order, to illustrate that Q gives rise to good approximation on the whole domain of definition, we give in figure 1 It can be seen from the above tables, that the computed convergence orders match well with the expected values. On the other hand, from the above comparison we show that the quasi-interpolant operator Q provides a smaller constant than the one given in [10]. Finally, we notice from the above figure that in addition of the superconvergence at the knots, the quasi interpolant Q give rise to good global approximation on the whole domain of definition.

North Africa has a very important strategic location because of its proximity to Europe and its openness to sub-Saharan Africa. This part of the world has undergone a political and economic evolution. The purpose of this work is the modeling of the Gross Domestic Product in current international dollar. An international dollar has the same purchasing power over GDP as a United States which is the main economic factor for measuring economic output produced within a country. This modeling covers all countries of North Africa except Libya due to lack of data. The mathematical models allow the analysis and interpretation of the observed data because they describe the evolution law as a function of only a few parameters that can be statistically compared. For repeated measurements data, mixed-effects models offer a flexible and powerful tool in which population characteristics are modeled as fixed effects and unit-specific variation is modeled as random effects. Linear mixed-effects (LME) models [7,5,8,2] and non-linear mixed-effects (NLME) models [6,4,3] are widely used in longitudinal data analysis. The overall objectives of this paper is to make a linear mixed-effects model for describing GDP growth as a function of time (years), taking individualization (Inter-individual variation, Intra-individual variation) into account. To this end, the linear mixed-effects model introduced in this paper provide a good fit for data. Finally, the analysis was performed with the lme4 package [1] for R statistical software.

Introduction

Before their use as combustible in industrial furnaces for energy production, materials have to be tested at a laboratory scale. Very small amounts of such materials (few milligrams) are put in the pan of a thermobalance where the surrounding gas is injected and for which the evolution of the temperature, from ambient temperature to approximately 900 • C generally under a low temperature ramp (no more than 20 • C/min), is controlled with high accuracy. The thermobalance also measures the sample remaining mass with a high precision along the experiment.

The different available models which intend to simulate the thermal degradation of the material involve kinetic parameters to be determined. The resolution of the equations of a model has thus to be coupled with an procedure which determines the optimal set of kinetic parameters. The whole problem may be thought as an inverse problem based on differential equations which involve rapidly evolving parameters.

The purpose of this conference is to present a review of such models, focusing on the EIPR one and then presenting a more complete one.

Kinetic modeling through the EIPR model

All biomass are composed of three constituents: hemicellulose (H), cellulose (C) and lignin (L), plus the carbon structure (and ash, moisture...) which are known to degrade in partly superimposing temperature ranges. The EIPR (Extended Independent Parallel Reaction) model superimposes the thermal degradations of three or four constituents of the material (in the case of a biomass: the H,C,L constituents of the sample in the pyrolysis or combustion cases, plus its char in the combustion case), whose masses are supposed to evolve in an almost independent way. Under an oxidative atmosphere, the material looses its volatiles and its char is also consumed. The mass of volatiles emitted from the constituent i (i = H, C, L) evolves with respect to the time parameter according to

       dm e vol,i dt (t) = k i (T (t)) m i (0) - m e vol,i (t) τ vol,i m e vol,i (0) = 0, (1) 
where k i (T ) obeys an Arrhenius law k i (T ) = A i exp -Ea i RT . Under an oxidative atmosphere, the mass of char is supposed to evolve with respect to the time parameter t according to

       dm c char,i dt (t) = k comb (T (t)) τ char,i τ vol,i m e vol,i (t) -m c char,i (t) P O 2 , m c char,i (0) = 0.
(

) 2 
for i = H, C, L, where the kinetic constant k comb (T ) also obeys an Arrhenius law

k comb (T ) = A comb exp - Ea comb RT
and where P O 2 is the oxygen pressure which is constant during the experiment (P O 2 = 2.026 × 10 4 Pa).

The parameters m i (0), τ char,i and τ vol,i (with τ vol,i + τ char,i = 1) have to be determined through further experiments or estimated. The kinetic parameters A i , Ea i , A comb and Ea comb are unknowns and they are characteristics of the material. The coupled problems (1)-( 2) can be solved using a numerical software (for example Scilab), first with given initial guesses of the kinetic parameters. An error is then built which has to be minimized to determine the optimal set of kinetic parameters (A i ,Ea i ), i = H, C, L, plus (A comb ,Ea comb ) under an oxidative atmosphere. This error involves the differences between the experimental and the simulated mass rates taken at experimental measure times (t j ) j=1,...,J regularly distributed along the time interval (0, t max ) of the experiment. For example, the error may be the quadratic one given as

ERROR = j=1 dm dt exp (t j ) - dm dt sim (t j ) 2 . ( 3 
)
In the above-indicated presentation of the EIPR model, a first-order reaction function has been used in the right-hand side of (1) and ( 2). Other reaction functions may also be introduced, see [3] for more details. The influence of the temperature ramp can be studied.

The EIPR model has been tested at GRE lab for different materials, see [1] and [2] for example and the simulation of the thermal degradation is quite well reproduced. Figure 1 presents an example of the simulation of the thermal degradation of Cameroonian oil palm kernels under air. Of course such models intend to simulate only the mass losses.

More complex models accounting for the thermal degradation of materials

During the pyrolysis or combustion processes of biomass, coal or waste, the particulate or gaseous emissions should also be analyzed as they probably lead to pollution. More complex models have been proposed which are based on balances: masses of the different chemical species which are emitted during the experiments, momentum, energy. For the construction of such models, the chemical species which are emitted during the thermal degradation process have to be determined first. In [4], the authors give a long list of possible chemical reactions which may occur during biomass pyrolysis, together with the corresponding kinetic parameters which obey Arrhenius expressions. Then the balance equations are written, see [5], in the case of 3 (main) chemical reactions and 5 gas species, which lead to a coupled system of 8+7 equations (inside the particle and in a boundary layer around the particle). For example, inside the particle, the following balance equations are written:

• Conservation of each of the gaseous species (k = 1, . . . , 5)

∂ (ερ g,s m k,s ) ∂t + 1 r 2 ∂ ∂r (r 2 N tg,s M av m k,s ) = D ke,s ρ g,s r 2 ∂ ∂r r 2 ∂m k,s ∂r + l εR l γ kl M k , with l = 3.
• Total molar balance of gas mixture

∂ (εc t,s ) ∂t + 1 r 2 ∂ ∂r r 2 N tg,s = l k εR l γ kl .
• Energy balance equation

∂ (C ps ρ s T s ) ∂t + 1 r 2 ∂ ∂r r 2 N tg,s M av,s C pg,s T s = λ e r 2 ∂ ∂r r 2 ∂T s ∂r +
l εR l (-∆H l ) .

• Carbon mass balance

∂W C ∂t = -2 η + 1 η + 2 R 1 + R 2 M C .
In the gas boundary layer, conservation of each of the gaseous species (k = 1, . . . , 5), total molar balance of gas mixture and energy balance equation are written on a quite similar basis as inside the particle.

Initial and boundary conditions are added to this problem. Other models are available, see [6] 

= Ω × (0, T ),
where Ω is a bounded domain in Ê n with smooth boundary ∂Ω.

           u tt -α 2 ∆u -β 2 ∆u tt = |u| p-2 u, u(x, 0) = ϕ(x), u t (x, 0) = ψ(x), ∂u ∂η = t 0 Ω u(ξ, τ )dξdτ, x ∈ ∂Ω,
where p > 2, ϕ(x) and ψ(x) are given functions and ∂u ∂η designates the normal derivative.

Keywords: Boussinesq equation, non local condition, Galerkin's Method.

1 The restarted shifted simpler block GMRES.

We are interested by obtaining approximate solutions for multi-shifted block linear systems, in which the coefficient matrices differ from each other by a scalar multiple of the identity,

(A -σ (i) j I)x (i) j = b (i) for i = 1, . . . , s, and j = 1, . . . , k, (1) 
and where the coefficient matrices A+σ (i) j I are assumed to be nonsymmetric and nonsingular for all σ (i) j .

Shifted linear systems of the form (1) arise in a variety of practical applications such as control theory, structural dynamics, time-dependent partial differential equations and quantum chromodynamics. By introducing the s × s diagonal matrix Σ j whose entries are σ (1) j , . . . , σ (s) j , the family of systems in (1) can be rewritten as

L j (X) = A X j -X j Σ j = B, for j = 1, . . . , k, (2) 
where

X j = [x (1) j , . . . , x (s) 
j ] and B = [b (1) , . . . , b (s) ]. We recall that when A is large and sparse, projection methods on Krylov subspace are particularly attractive because, under certain assumptions the Krylov subspace à m (A, B) = blockspan {B, AB, . . . , A m-1 B}, is invariant under the linear operator L j associated to the coefficient matrix A, i.e.,

à m (A, B) = à m (L j , B) := blockspan B, L (1) j (B), . . . , L (m-1) j (B) .
Letting X (j) 0 = 0 n×s (j = 1, . . . , k) be initial guesses for (2), then thanks to the shift-invariance property, we only need to construct a Krylov basis for just one selected seed system and the established basis can be reused for handling the rest of the systems which are called the add systems. However, we note that the restarted Simpler Block GMRES encounters similar situation to that of the restarted block GMRES when solving the seed and the add systems; that is, the SBGMRES residual block R (j 0 ) m for the seed system and R (j) m for each add system may not be collinear at restart which means that

à m (L j 0 , R (j 0 ) m ) = à m (L j , R (j) m ), for j = j 0 .
Note that, at the end of each restart cycle of the SBGMRES method, were built:

-a block orthonormal basis É m , -an upper triangular matrix Ì m , and

-a basis m = [R (j 0 ) 0 , É m-1 ] of à m (L j 0 , R (j 0 ) 0 ).
Moreover, since A m = É m Ì m , the following equalities are verified

L j ( m Y ) = A m Y -m Y Σ j = É m Ì m Y -m Y Σ j ,
for all j and for all Y ∈ Ê ms×s . Thus, it is not possible to impose a collinearity condition on the residuals as it is the case for the Shifted BGMRES (Sh-BGMRES) algorithm. In order to circumvent this problem, we provide an alternative way by forcing all block residuals to be orthogonal on AÃ m (A, R (j 0 ) ). Then for the seed system the approximate solution is given by

X (j 0 ) m = X (j 0 ) 0 + m Y (j 0 ) m ,
where

Y (j 0 ) m
is the solution of the following reduced equation

Ì m Y (j 0 ) m -[É T m R (j 0 ) 0 , Á (m-1)s ]Y (j 0 ) m Σ j 0 = É T m R (j 0 ) 0 (3) 
Meanwhile, for the add systems, the approximate solutions X (j) m (for j = j 0 ) are such that

X (j) m = X (j) m + m Y (j) m
where the Y (j) m are obtained as the solutions of the following reduced equations

Ì m Y (j) m -[É T m R (j 0 ) 0 , Á (m-1)s ]Y (j) m Σ j = É T m R (j) 0 . (4) 
Before ending this description, we note that the selection of the new base block system is obtained by adopting an approach similar to that used in seed methods for solving multiple linear systems. Thus, we select j 0 as the index of the block system having the largest residual norm.

Algorithm

Restarted shifted simpler block GMRES (sh-SBGMRES(m)).

Given A ∈ Ê n×n , B = [b (1) , . . . , b (s) ] ∈ Ê n×s , {σ (i) j } i=1,...,s j=1,...,k ⊂ Ê; m ∈ AE;

1. For each j ∈ J do 2. set:

Σ j = diag([σ (1) 
j , . . . , σ

(s) j ]), X (j) 0 = X 0 ; 3. choose: X (j)
0 ∈ Ê n×s an initial guess; 4. compute: R

(j) 0 = B -(A X (j) 0 -X (j) 0 Σ j );
5. End For 6. Determine j 0 the index of the seed equation such that R (j 0 ) 0

F = max j∈J R (j) 0 F .
7. Apply the Simpler Block GMRES to the seed system j 0 and collect the matrices m , Ì m and É m ;

8. For each j ∈ J 9. if j = j 0 then:

10. solve Ì m Y (j 0 ) m -[É T m R (j 0 ) 0 , I (m-1) s ] Y (j 0 ) m Σ j 0 = É T m R (j 0 ) 0 . 11. else 12. solve Ì m Y (j) m -[É T m R (j 0 ) 0 , I (m-1) s ] Y (j) m Σ j 0 = É T m R (j) 0 ; 13. end if 14. set X (j) m = X (j) 0 + m Y (j) m ; 15. compute R (j) m = B -(A X (j) m -X (j) m Σ j );
16. End For. 17. Eliminate converged systems; Update J , if J = ∅ exist.

For each

j ∈ J 19. update X (j) 0 ← X (j) m ; 20. update R (j) 0 ← R (j) m ; 21. End For 22. Determine j 0 the index of the seed equation such that R (j 0 ) 0 F = max j∈J R (j) 0 F .

goto 7

In order to implement this algorithm, we can take into account the following remarks 1. In the previous algorithm -and in contrast with the restarted shifted block GMRES method-, the norm of the residual R

m cannot be computed cheaply and we have to compute explicitly and at each restart the updated approximate solutions X (j) m .

Analogously with the restarted shifted BFOM and restarted Shifted BGMRES algorithms:

• The solutions Y (j) m of the k Sylvester equations described by ( 3) and ( 4) can all be computed by solving the single discrete Sylvester equation

m -Ì -1 m [É T m R (j 0 ) 0 , I (m-1) s ] m Λ = Ì -1 m (É T m R 0 ), (5) 
where

m = Y (1) m , . . . , Y (k) m ∈ Ê ms×ks , Λ = diag(Σ 1 , . . . , Σ k ) ∈ Ê ks×ks .
• The s columns y

(j) i of each block Y (j) 
m (j = 1, . . . , k) can be obtained successively by solving the single linear systems

(Ì m -σ (j) i [É T m R (j 0 ) 0 , I (m-1) s ]) y (j) i = É T m R (j) 0 . (6) 
We solve the displacements of beam governing by the Timoshinko wave studied in [18,19]. This problem has also been solved in [9] using the method of separation of the variables, which consist to obtain the time and the spatial partial differential equations. In Timoshenko beam wave theory without axial effects, the field of displacements of the beam Φ(x, y, z, t) are assumed to be given by Φ x (x, y, z, t) = -zφ(x, t), Φ y (x, y, z, t) = -yφ(x, t) and Φ z (x, y, z, t) = ψ(x, t) where (x, y, z) are the coordinates of a point in the beam and Φ x , Φ y and Φ z are the components of the displacement vector in three coordinate directions. The governing equations consist on coupling the angle of rotation of the normal to the mid-surface of the beam φ and the displacement of the mid-surface in the z-direction ψ to an distributed load f (x, t) (force per length). Starting from above assumption, the Timoshenko beam theory for vibrations, may be described with the following coupled linear partial differential equations (for example see [18,19,13,9,15,14,11]):

A ∂ 2 φ ∂t 2 (x, t) - ∂ ∂x κAG ∂φ ∂x -ψ (x, t) = f (x, t) (1) 
I ∂ 2 ψ ∂t 2 (x, t) - ∂ ∂x E.I. ∂ψ ∂x (x, t) -κAG ∂φ ∂x -ψ (x, t) = f (x, t) for all (x, t) ∈ [a, b] × [0, T ],
where is the density of the beam material, A is the cross-section area, E is the elastic modulus, I is the second moment of area, G is the shear modulus and κ called the Timoshenko shear coefficient which depends on the cross-section and on the type of problem.

On the boundary, nonhomogeneous Robin boundary conditions are used

κGA ∂φ ∂x (a, t) -ψ(a, t) = h a (t), κGA ∂φ ∂x (b, t) -ψ(b, t) = h b (t), (2) 
-E.I. ∂ψ ∂x (a, t) + w a ψ(a, t) = g a (t),

E.I. ∂ψ ∂x (b, t) + w b ψ(b, t) = g b (t),
where ζ a , ζ b , h a and h b are the properties of beam at the boundary. The the transverse vibration of beam depends on its geometrical properties and material properties as well as the external applied torque. The geometrical properties mainly refereed to the length L = ba of the domain [a, b], size and shape of its cross-section such as its area A, moment of inertia I with respect to the cental axis of bending, and Timoshenko's shear corrector coefficient κ which is a modifying factor (κ < 1) to account for the distribution of shearing stress such that effective shear area is equal to κA, normally κ = 5 6 for a rectangular section [8]. The material properties are the density in mass per unit volume , Young's modulus or modulus of elasticity E and shear modulus or modulus of rigidity G.

Introduction

After the great number of strategic analysis that we have already realized with the software Tetralogies and Xplor V1 [1,2], we realized that the final users of analysis products need, along with the macroscopic view, some microscopic analysis on the already identified elements (competitiveness, markets, new products or processes, potential partners, etc) or to discover others. In hindsight, many experts or decision makers need more details on the traditional elements of their environment, especially concerning their specific vocabulary, the actors and markets around them, as well as the alliances they plan. So what we propose is to keep adopting the proposed Xplor model and to complete its macroscopic analysis by an advanced online model XEW that enhances the obtained information using statistical overlaps, incremental classifications or multidimensional analysis. Our goal is to favor the information's extraction according to the general context and non-exclusively by decrypting the contents of separate documents. This makes it possible to retrieve, from a known element (actor, keyword), all or some of its related information (teams, collaboration, concepts, rises, associate keyword, etc) using advanced filtering concepts. The XEW prototype helps running strategic analysis on information corpuses coming from all various sources such as online bases (scientific publications, patents, portals, directories), CDs, visible and invisible web, newspapers, internal bases, RSS feed, social networks, etc and gives the decision makers the possibility to run their own investigations without the assistance of a senior analyst or expert. Its applications are very diverse:

• Identification of themes and actors of the field.

• Demonstrating the development and cooperation strategies.

• Proposing scenarios for the technologic evolution (innovation).

• Extracting weak signals.

• Consulting updated information in real time thanks to the web services.

• Make up field information during salons, customer visits, or meetings.

• Asking for urgent specific information to be online.

In this work we presented the CIS XEW 2.0, which can be presented as a compromise between a Strategic Information -System and a Strategic -Information System. It is based on modular web services architecture allowing us to automate up to 80% of the competitive intelligence process. It takes into consideration the interaction with mobile users in order to ease the navigation through the harvested knowledge and to offer the best strategic monitoring conditions in order to better the public or private organism's competitiveness. We have run a survey on the analysis run within competitive intelligence consultancies. The results have shown the benefits of using XEW in a competitive intelligence context and more precisely in scientific and technological monitoring since most of the experimentations were run on bibliographic bases, scientific articles and patents. Moreover, the Model Driven Engineering aspect has allowed us to elaborate a Computation Independent Model (CIM), a distant data collection and processing web service which can adapt to all types of data sources. We wanted to transform the proposed web services into a Platform Independent Model (PIM) and then into a Platform Specific Model (PSM), making the CIS XEW generic and adaptive to every informational need.

The CIS XEW comes to complete a set of competitive intelligence tools by offering the possibility to manage and to exploit the informational environment everywhere in an interactive and secure manner. Laboratory of Biomathematics, Sidi-Bel-Abbes University, P.B. 89, Sidi-Bel-Abbes, 22000, Algeria, (mhelal abbes@yahoo.fr) 1 , (isma.younes@yahoo.fr) 2 , (lakmeche@yahoo.f) 3 .

Abstract. A mathematical model with delay for stem cells in a leukemia diseases is analyzed. We prove the existence of nontrivial steady states of the system describing the diseases. We determine ALSO the values of the delay parameter to have stability or instability of the steady states.

Keywords: Delay differential equations, Positivity and boundedness of solutions, Existence and stability of steady states, Leukemia model.

We have the following model

       Q = -γ Q Q -η 1 k 0 Q -η 2 k 0 Q -(1 -η 1 -η 2 )β(Q)Q +2(1 -η 1 -η 2 )e -γ Q τ β(Q τ )Q τ + η 1 k 0 e -γ Q τ Q τ -rq (P )Q q+1 , Ḋ = -κD + K, Ṗ = -vP + κD, (1) 
where Q stand for the density of stem-cells population, η 1 is the percentage value of asymmetric division with daughter cell undistinguishable to the mother cell. η 2 is symmetric differentiate and go to the line of mature cells. The rate of self-renewal:

β(Q) = β 0 θ n θ n +Q n , n > 1,
The instant mortality rate: γ Q , The rate of differentiation and of asymmetric division: k 0 , The constant dose of administrated drug (imatinib): K. The function modeling treatment effect is

rq (P ) = r(P ) x 0 -R 0 x q+1 0 > 0 (2) 
with r(P ) = P m P m +P m 0 , where P 0 the half-maximum activity concentration, m is a Hill coefficient, x 0 is the number of infected cells, R 0 is the number of cells resistent to treatment, p is the probability of mutation, q = -p ∈ (-1, 0], κ is the first order absorption rate and v is the total plasma clearance of drug divided by the volume of distribution of the drug.

Existence and uniqueness

We consider the system (1) with initial conditions,

Q(t) = ϕ(t), t ∈ [-τ, 0], D(0) = D 0 , and P (0) = P 0 . Proposition 1.1 1. If q ∈ (-1, 0), then for any initial condition (ϕ, D 0 , P 0 ) ∈ C([-τ, 0], R * + ) × R 2 +
the system (1) admits a unique positive solution on [0, +∞).

2. If q = 0, then for any initial condition (ϕ, D 0 , P 0 ) ∈ C([-τ, 0], R + ) × R 2 + the system (1) admits a unique positive solution on [0, +∞).

Existence of steady states 2.1 The Case q = 0

The system has two steady states X 0 and

X 1 = x * 1 , K κ , K v where (x * 1 ) n = [2β * 0 + k 0 η 1 ] e -γ Q τ -β * 0 -γ -r 0 (P * ) γ + r 0 (P * ) -k 0 η 1 e -γ Q τ (3) 
which exists for all τ such that τ < τ := -1 γ Q ln β * 0 +γ+r 0 (P ) 2β * 0 +k 0 η 1 .

Theorem 2.1 1. If β * 0 ≤ γ + r 0 (P * )k 0 η 1 , then the system admits a unique steady state, namely X 0 for all τ ≥ 0.

If β *

0 > γ + r 0 (P )k 0 η 1 , then the system admits two steady states X 0 and X 1 = (x * 1 , K κ , K v ) which exists for all τ on [0, τ ). Furthermore X 1 → X 0 for τ → τ .

The Case

q ∈ (-1, 0) Let a := β * 0 (2e -γ Q τ -1) > 0, b q := r q (P * ) > 0 and c := γ -k 0 η 1 e -γ Q τ > 0. Proposition 2.1 Assume that a ≥ 2b q + 2c. ( 4 
)
Then the system admits two solutions x * 2 < 1 and x * 3 ≥ 1.

Theorem 2.2 Let q ∈ (-1, 0) and β * 0 > 2(γ + b qk 0 η 1 ). Then the system admits the following steady states.

1. Trivial steady state X 0 , which exists for all τ ≥ 0.

Non-trivial steady states

X 2 = x * 2 , K κ , K v , and X 3 = x * 3 , K κ , K v which exist for τ on [0, τ ].
3 Stability of steady states 3.1 Case q = 0 3.1.1 Stability of X 0 Theorem 3.1 The trivial steady state X 0 is locally asymptotically stable for τ > τ and unstable for τ < τ .

Stability of X 1

The stability of X 1 depends on the following equation

λ + A 1 (τ ) -B 1 (τ )e -λτ = 0 (5) 
where

A 1 (τ ) := γ + β * 0 β 1 + r 0 (P * ) and B 1 (τ ) := e -γ Q τ [2β * 0 β 1 + k 0 η 1 ]. Proposition 3.1 For all τ on [0, τ ), we have A 1 (τ ) -B 1 (τ ) > 0. (H 0 ) γ + r 0 (P * ) -k 0 η 1 < β * 0 ≤ 2n (n-1) 2 k 0 η 1 , (H 1 ) (γ + r 0 (P * )) > nk 0 η 1 n-1 and 2nk 0 η 1 (n-1) 2 < β * 0 < 2n(γ+r 0 (P * )-k 0 η 1 ) 2 
2(γ+r 0 (P * ))(n-1)-(2n-1)k 0 η 1 .

Lemma 3.1 If either (H 0 ) or (H 1 ) holds then B 1 (τ ) ≥ 0 for all τ ∈ [0, τ ).

Theorem 3.2 If either (H 0 ) or (H 1 ) holds, then X 1 is locally asymptotically stable for τ ∈ [0, τ ).

3.2 Case q ∈ (-1, 0)

Stability of nontrivial steady states X 2 and X 3

In the rest we consider τ in the interval [0, τ ] and let 

(H 2 ) 2(γ + b q -k 0 η 1 ) < β * 0 < 2nk 0 η 1 (n -1)

Conclusion

In this paper, we study a mathematical model of Leukemia inspired from the works in [5]. The existence and uniqueness of steady states were established according to the parameter q ∈ (-1, 0]. For q = 0, we have proved the existence of the trivial steady state X 0 , for a delay parameter τ > 0 and the existence of a nontrivial steady state X 1 which exists for τ ∈ [0, τ ]. Furthermore, we have determined that the trivial steady state is stable for τ > τ and unstable for 0 < τ < τ . On the other hand, X 1 is stable for all 0 < τ < τ . For q = 0 we establish the existence of three steady states X 0 , X 2 and X 3 for τ ∈ [0, τ ]. We have proved the stability of X 3 and the instability of X 2 for all τ ∈ (0, τ ].

To study the stability of X 0 (for q = 0), we must first prove the unicity at X 0 which is not assumed due to the non Lipschitz propriety caused by the term Q q+1 . For the future work, we plan to study the uniqueness condition at X 0 and the possible bifurcation of periodic solutions at some specific values of the delay parameter τ, and also numerical simulations.

Introduction

In this paper, a new Finite Difference technique is presented for the meshing of spatial domain that is based on using an underlying triangular finite difference grid. The main goal of the development described in this work is to provide a numerical tool that could be used to obtain approximate solutions for many problems using triangular finite difference grid that is more adapted for many mathematical problems with different boundary conditions. Extensive application examples are analyzed to exhibit the effectiveness of the presented method. We will describe in this paper our recent development related to Finite Difference Method developed in triangular Finite Difference Grid. This approach is more efficient in solving partial differential equations for problems with different domain as rectangular, rhombic or triangular domains. The proposed numerical method uses an efficient finite difference scheme that exhibits controllable accuracy for approximations and shows excellent flexibility in handling complex geometry and boundary conditions

Method description and numerical implementation

The method described below has been developed to solve partial derivative problems in a rhombic spatial domain. A description of the finite difference method with triangular grid is briefly reviewed herein after. Figure 1 shows a triangular mesh that is aligned with the skewed boundary of rhombic domain. As it is frequently done, an appropriate coordinate system more adapted with this problem should be used. Therefore, triangular coordinate system (x 1 , x 2 , x 3 ) is used instead of ordinary cartesian rectangular coordinates. The x 1 and x 2 directions are parallel to the boundary sides as described in Figure 1.

Then, Partial differential equations are expressed in triangular coordinate system as done for Laplace's harmonic operator given in the following equation:

∇ 2 = ∂ 2 ∂x 2 + ∂ 2 ∂y 2 = (1 + cot α cot β) ∂ 2 ∂x 2 1 - cos β sin α sin(β -α) ∂ 2 ∂x 2 2 + cos α sin β sin(β -α) ∂ 2 ∂x 2 3 (1)
We express this equation in an alternate form using central finite difference for partial derivatives, and we obtain a triangular finite difference schemes for harmonic operator. Using the same operation for biharmonic and many other partial derivatives, we obtain particular finite difference schemes as illustrated in Figure 2 and Figure 3.

Conclusion

The numerical model proposed in this paper, is used for simulating the mechanical behavior of some application and illustrative examples of skew orthotropic plates. The proposed numerical model uses an efficient finite difference scheme that exhibits controllable accuracy for approximations and shows excellent flexibility in handling complex geometry and boundary conditions Therefore, accurate numerical solutions are obtained for studied examples by using Fortran computer program developed by Compaq/Digital Visual Fortran compilers. 

2 ∂x 2 , ∂ 4 ∂x 4 ∂ 2 ∂y 2 , ∂ 4 ∂y 4 ∇ 2 , ∇ 4 ∂ 2 ∂x∂y , ∂ 4 ∂x 2 ∂y 2 C 1 1 X 2 1 cot α cot β X 2 1 1+cot α cot β X 2 1 -sin(α+β) 2 X 2 1 sin α sin β C 2 0 - cos β X 2 2 sin α sin(β-α) - cos β X 2 2 sin α sin(β-α) sin β 2 X 2 2 sin α sin(β-α) C 3 0 - cos α X 2 3 sin α sin(β-α) - cos α X 2 3 sin α sin(β-α) - sin α 2 X 2 3 sin α sin(β-α)

Introduction

The objective of this work is to present the solvability of numerical solution of an elliptic equation generally give by:

∆u + q(x)u = f in Ω u = g in ∂Ω (1) q, f, g ∈ C(Ω), Ω ⊂ R N , N ≥ 1.
We assume N=2 and Ω=[0,

L 1 ] × [0, L 2 ].
It is known that the problem (1) has a unique solution.

We consider a discretization of the intervals [0, L 1 ] and [0, L 2 ] given by:

0 = x 0 < x 1 < x 2 < .... < x i = i∆x < ..... < x N < x N +1 = L 1 0 = y 0 < y 1 < y 2 < .... < y j = j∆y < ..... < y M < y M +1 = L 2
where ∆x = L 1 N +1 , and ∆y = L 2 M +1 . u i,j is approximation to u at the mesh points (x i , y j ). Ω d is given by is discretization of Ω ,where:

Ω d = {(x i , y j ) = (i∆x, j∆y), 0 ≤ i ≤ N + 1, 0 ≤ j ≤ M + 1}
We consider the following numerical scheme

(2)    L d u i,j = f i,j 1 ≤ i ≤ N, 1 ≤ j ≤ M u i,0 = a 0 ≤ i ≤ N + 1 u 0,j = b 0 ≤ j ≤ M + 1 (2) 
where:

L d u i,j = -∆ d u i,j + q i,j u i,j and ∆ d u i,j = u i+1,j -2u i,j + u i-1,j ∆x 2 + u i,j+1 -2u i,j + u i,j-1 ∆y 2
and f i,j =f (x i , y j ), q i,j =q(x i , y j ).

We defined the space:

L 2 (Ω d ) = {u i,j : Ω d -→ R, ( N i=0 M j=0 |u i,j | 2 ) 1 2 < ∞} satisfying u i,0 = a, u 0,j = b, for all 0 ≤ i ≤ N + 1, 0 ≤ j ≤ M + 1. (u i,j , v i,j ) L 2 (Ω d ) = ∆x∆y N i=0 M j=0 u i,j v i,j |u i,j | L 2 (Ω d ) = (u i,j , u i,j ) 1 2 L 2 (Ω d )
and space L ∞ (Ω d ) = {u i,j : Ω d -→ R, sup 0≤i,j≤N,M |u i,j | < ∞}, satisfying u i,0 = a, u 0,j = b, for all 0 ≤ i ≤ N + 1, 0 ≤ j ≤ M + 1, with inner product :

u i,j ∞ = sup 0≤i,j≤N,M |u i,j |

The main results

Theorem 2.1 Soit u ∈ C 4 (Ω) be a classical solution of the problem (1) and u i,j be solution of the discretized problem (2) Then, there exists a positive constant C independant of u satisfying the following estimate :

u(x i , y j ) -u i,j ∞ ≤ C D 4 u L ∞ (Ω) (∆x 2 + ∆y 2 ) with D 4 u L ∞ (Ω) = sup (x,y)∈Ω,p+q=4 | ∂ 4 u ∂x p ∂y q (x, y) | Theorem 2.2 Assuming q i,j ∈ L ∞ (Ω d ) and f i,j ∈ L 2 (Ω d ),
then there exists only one solution of the discrete problem (2)

Theorem 2.3 (Disrete Maximum Principale ). Let

L d u i,j = -∆ d u i,j + q i,j u i,j ≤ (≥ 0) in Ω d
Then the value u i,j verify , min(a, b) ≤ u i,j ≤ max(a, b).

Numerical simulations

Our computational experiments were performed using MATLAB considering L 1 =L 2 =1, ∆x=∆y q i,j =3x i cos(y j ), f i,j =-1, a=1/2, b=-2 q i,j =x i exp(y j ), f i,j =1, a=1/2, b=-2 q i,j =3x i cos(y j ), f i,j =-1, a=b=1/2 comments: As in Figures we observe that the maximum (minimum) value is reached at the border.

Introduction

The notion of statistical metric spaces, as a generalization of metric spaces, with non-deterministic distance, was defined by Menger [6] in 1942. An extension of Banach's contraction [1] in probabilistic metric spaces was showed by Sehgal and Bharucha-Reid [8] in 1972 and their fixed point theorem is further generalized by many authors, for example see [2,5].

Recently, Mbarki et al. [4] introduced a probabilistic b-metris spaces (b-Menger spaces) as a generalization of probabilistic metric spaces (Menger spaces) and they studied topological structures and properties and showed the fixed point property for nonlinear contractions in these spaces.

In 2003, Kirk et al. [3] gave the cyclic contraction mappings as follows : Let A and B be nonempty subsets of a metric space (X, d). A mapping T : A ∪ B → A ∪ B is said a cyclic contraction mapping if we have 1. T (A) ⊆ B and T (B) ⊆ A. And they proved that T has a unique fixed point in A ∩ B.

In this paper, we prove the existence and uniqueness of the fixed point for mapping with cyclical conditions using comparison function in a b-Menger spaces.

Main result

Definition 2.1 [9] A function ψ : [0, 1] → [0, 1] is called a comparison function if it satisfies 1. ψ is nondecreasing and left continuous.

2. ψ(t) > t for all t ∈ (0, 1). Theorem 2.1 Let (M, F, T, s) be a G-complete b-Menger space under a t-norm T such that F pq (0+) > 0 for each p, q ∈ M. Let A and B be nonempty closed subsets of M and let f : A ∪ B → A ∪ B be a mapping and satisfies 1. f (A) ⊂ B and f (B) ⊂ A.

There exists a comparison function

ψ : [0, 1] → [0, 1] such that F f pf q (t) ≥ ψ(F pq (t)), ∀p ∈ A, ∀q ∈ B and t > 0.
Then f has a unique fixed point in A ∩ B.

R ÉF ÉRENCES 1 Introduction

In engineering practice, slider bearings are designed for supporting transverse load. Over the past several years, many studies have been carried out on lubrication performances of slider bearings. Analysis of these bearings is most importantly occurring in MHD lubrication theory and it is also most difficult and complex to solve due to integration of the Reynolds equation. Different numerical techniques for solving Reynolds equation have been used by many researchers. Chandrawat and Sinhasan [2] presented a comparison between the Gauss-Seidel iterative method and the linear complementarity approach for determining the pressure field in the analysis of plain and two-axial groove journal bearings in laminar flow operation. Gero and Ettles [3] carried out a comparison of finite difference methods (FDM) and FEM in solving 1D and 2D Reynolds equation. Their results for two-dimensional bearings demonstrated that the relative errors of the FDM solutions were smaller than those associated with the FEM approach. In this paper, using iterative successive over-relaxation technique, the film pressure is numerically solved from the MHD Reynolds-type equation.

Numerical Results

The modified Reynolds equation is of elliptic type in nature, which is too complicated to be solved analytically, hence, it is numerically solved using a standard second order finite difference scheme. The resulting algebraic equations are solved using the iterative successive over-relaxation technique in order to accelerate the convergence rate. Numerical results are presented for different values of the couple stress and Hartman number. It's observed that the MHD effects increases the load capacity and the effect of couple stresses increases the slider bearings load capacity when compared to the case of Newtonian lubricant.

Conclusion

It is shown that the couple stresses effect increases load capacity but decreases the friction coefficient (see Fig. 1) because the additives will resist and thus oppose the lubricant fluid motion and as consequence enhance the film pressure. In addition, the using magnetic field increases both friction coefficient and load capacity (see Fig. 2). 

Introduction

The study of variational problems involving variable exponent was the aim of many publications during eighty years.

The interest of this study is due to its applications to elastic mechanics, non-Newtonian fluids, in particular, the fluids electrorheologicals (smart fluids). This important class of fluids is characterized by the change in viscosity that is not simple and depends on the applied electric field. These Fluids are known as ER fluids.

The appearance of such physical models has been facilitated by the development of the spaces of Lebesgues and Sobolev exhibiting variable L p(x) et W m,p(x) with p is a function continue on Ω and inf x∈Ω p(x) > 1.

These spaces were first studied in 1931, by W.Orlicz, as a special case of spaces L Φ (Ω) which is the set of measurable functions u : Ω → [0, +∞[ such as Ω Φ (λ |u(x)|) dx < ∞ for some λ > 0.

Introduction

In this paper, we suggest a new robust approach to minimize the total distance of the travel time in the presence of the maximum deviations of possible uncertain data. In this contrast, we generate all possible scenarios by using Monte Carlo simulation and we opt for the adaptive large neighborhood search ALNS algorithm to solve each sub-problem related to each scenario. In this context, several destroy/repair method is combined to explore multiple neighborhoods within the same search and defined implicitly the large neighborhood. In order to study the feasibility of the resulting solution, efficient mechanisms have been conceived, the first concerns the verification of the robustness, while the second takes into consideration the introduction of several criteria in order to evaluate the robust solution.

Problem statement

We consider the vehicle routing problem with time windows under travel time and service time uncertainty. The purpose here consists on minimizing the traveled time of a set of routes performed by a fleet of vehicles k to serve a dispersed set of customers inside a given interval time [a i , b i ] linked to a client i under six constraints, where the first four limitations concern the vehicle routing problem and the two others deal with time windows. min ∑ k∈V ∑ (i, j)∈A x k i j t i j With x k i j is a binary decision variable that take the value 1 if vehicle k which belongs to the set of vehicles V uses the edge (i, j) and t i j the travel time between two clients i and j.

Under the constraints:

∑ k∈V ∑ j∈N x k i j = 1 ∀(i ∈ N) (1) ∑ j∈N x k 0 j = 1 ∀(k ∈ V ) (2) ∑ i∈N x k ih -∑ j∈N x k h j = 0 ∀(h ∈ N) ∀(k ∈ V ) (3) ∑ i∈N x k i0 = 1 ∀(k ∈ V ) (4) 
Each customer must be visited once, which is ensured by the first constraint. The second constraint guarantees that each tour passes through the depot. The constraint (3) is a flow conservation constraint. Finally, the last constraint ensures that each tour returns to the depot.

• P i the service time at node i by vehicle k.

• M a great value.

We will present the constraints treating time windows:

a i ≤ P k i ≤ b i ∀(i ∈ N) ∀(k ∈ V ) (5) P k i + t i j -P k j ≤ (1 -x k i j )M ∀(i ∈ N) ∀( j = 1 ∈ N) ∀(k ∈ V ) (6) 
The constraint ( 5) is required since the service time P k i at any client i by vehicle k begins inside a given time interval [a i , b i ]. Moreover, the constraint (6) assures that if a vehicle k arrives earlier than required at a client i it must wait until the point that the time window [a i , b i ] opens and it is not permitted to arrive late.

We introduce the source of uncertainties namely travel times and service times which makes the problem harder to solve than its deterministic counterpart. We suggest a new formulation of the uncertainty that was inspired by the work of [2] including only the travel time which belongs to a demand uncertainty polytope.

To model the uncertainty in travel times and service times in the presence of time windows, a stepwise (layered) formulation is used. Based on the approach of [2], we assume that the travel times and service times are uncertain, and that they take their values respectively in the intervals t i j ,t i j + ∆ i j and [P i , P i + δ i ]. where t i j and P i are the nominal values, ∆ i j and δ i represent the maximum deviations. We also define the sets of uncertainties associated with these times by: We introduce uncertainties by replacing the function objective by:

U t = { ∼ t ∈ Ê |A| / ∼ t i j = t i j + ∆ i j ε i j , ∑ (i, j)∈A ε i j ≤ Γ, 0 ≤ ε i j ≤ 1, ∀(i, j) ∈ A} and U P = { ∼ P ∈ Ê |N| / ∼ P i = P i + δ i ω i , ∑ i∈N ω i ≤ Λ, 0 ≤ ω i ≤ 1,
min ∑ k∈V ∑ (i, j)∈A x k i j t i j + max {Ψ/Ψ⊂A,|Ψ|=Γ} ∑ k∈V ∑ (i, j)∈Ψ x k i j ∆ i j
And the constraint (6) treating the time windows by this:

P k i + t i j + δ i ν θ i + ∆ i j µ Ψ i j -P k j ≤ (1-x k i j )M ∀(i ∈ N), ∀( j = 1 ∈ N) ∀(k ∈ V ) θ ⊂ N, | θ |= Λ, ∀Ψ ⊂ A, | Ψ |= Γ
With ν θ i and µ Ψ i j are two indicator functions. ν θ i takes the value 1 when i ∈ θ and µ Ψ i j takes 1 when (i, j) ∈ Ψ

Approach to the resolution of RVRPTW

During the last decade, the work in field of discrete scenario-based approaches to provide

The proposed approach

In our approach, we first generate a set of possible realizations by using Monte-Carlo simulation. Then we seek a robustly feasible solution or a solution with a minimum total delay. The reached solutions for the realizations considered are evaluated on all possible realizations and at the end of each iteration, we keep the solution based on different evaluation criteria. We note that the diversification of solutions is ensured by having solutions calculated independently from different realizations. [3] 3.2 The robust criteria for evaluating the solution

The best case criterion: Best

The best case criterion can be formally defined as follows:

min i ∈ 1...q min D i (LR), s.c constraints (1) -(6)
Such a case consists in finding the best solution overall considered scenarios. Generally, the solution provided by this criterion can always be considered as the most risk decision. Such a decision maker is said to be risk-loving. The decision maker tries to find the best possibility of maximizing his gain.

The worst case criterion: Worst

In contrast to the best case criterion, the following worst case criterion tries to provide a solution minimizing the worst evaluation over all scenarios, by choosing this kind of solution, the decision maker seeks to avoid all risks and it is said to be risk-averse: min i ∈ 1...q max D i (LR), s.c constraints (1) -(6)

Maximizing the Number of Scenarios Qualified by the Worst criterion: MNSQW

Let Worst * be the optimal solution of the RVRPTW, and D i (Worst * ) be the objective value related to Worst * on scenario i; ∀i ∈ 1...q. The proposed model aims at finding a solution LR i maximizing the number of scenarios such that D i (LR i ) performs better than D i (Worst * ), ∀i ∈ 1...q. For the RVRPTW, the model can be formulated as follows: [5] max

∑ i ∈ 1...q s i s.c D i (LR) ≤ W × (1 -s i ) + D i (Worst * ) × s i , s.c constraints (1) -(6)
where, the decision variable s i = 1 if the current solution provides a travel time strictly less than D i (Worst * ); si = 0 otherwise; W is a constant relatively large.

Computational experiments

The robust approach examined was tested on a set of small instances based on the reference of Solomon benchmark (1987) [4], and large instances of Gehring & Homberger's benchmark. Since the uncertainty of RVRPTW is simulated by discrete scenarios using Monte-Carlo Simulation, the uncertain travel time of each arc and the uncertain service time at each node are generated randomly between 0 and 10, with (Λ, Γ) is the degree of robustness which represents the number of service times and the number of travel times assumed to be uncertain. The used instances are noted as follow: Gr Γ Λ i, where Gr = {C1,C2, R1, R2, RC1, RC2} corresponds to the class name of the benchmark of Solomon and Gehring & Homberger. Γ and Λ represent the number of travel times and service times supposed uncertain. i = {100, 200, 400, 600, 800, 1000} is an index that represents the size of the instance. Abstract. In this talk, we are concerned with the Cauchy problem for cross-diffusion systems issuing for a seawater intrusion problem. A global existence result for nonnegative solutions is obtained by applying Schauder fixed point the orem to a linearized system using some energy estimates. An extension of a regularity result due to Meyer allows to prove that the gradient of the solution belongs to the space L r ((0, T )×Ω) for some r > 2. This additional regularity for r = 4 implies the uniqueness of the solution.

Finally, a complete maximum principle is stated. Then we study the hydraulic conductivity identification, from observations or field measurements, for this problem. The inverse problem is formulated as an optimization problem where the cost function is a least square functional measuring the discrepancy between experimental interfaces depths and those provided by the model. Considering the exact problem as a constraint for the optimization problem and introducing the Lagrangian associated with the cost function, we prove that the optimality system has at least one solution and we establish the first order necessary optimality conditions.

Keywords: Field measurements, cross-diffusion systems, Hydraulic conductivity identification, optimization problem.

Introduction

Coastal aquifers serve as major sources for freshwater supply in many countries around the world. However they are increasingly affected by salt contamination made by the transport of the interface between the freshwater and salt water. Salt water intrusion occurs, under natural conditions such as failure of a water table after a less rainy period and artificial conditions by intensive pumping. It is therefore of particular interest to study the problem inverse of source [1,3]. 

Modeling

The models differs depending on the conditions and approaches considered. Their construction requires a good understanding of the characteristics and physical laws of the problem. They are based on : Continuity equation : ∂(ρφ) ∂t + ∇.(ρq) = ρQ and Darcy law : q = -k µ ( P + ρg z). where ρ is the fluid density, φ the porosity, q the fluid velocity and Q source term. In the literature, two approaches for flow modeling are combined [2,3,4] :

• Sharp interface : saltwater and freshwater are no miscible and there exist an interface separating the two fluids.

• Diffuse interface :saltwater and freshwater are miscible, and there is a transition zone between them that is less salty.

We consider an unconfined aquifer with a sharp interface between salt and fresh water. We make some specific assumptions : because of the small variations of the substratum, the interface b (see figure )  with the impermeable bedrock supposed constant. Also we make the Dupuit assumption on vertical integration that reduce the model from 3D to 2D model. we obtain, a non-linear parabolic equations of the hydraulic head :

     (h -g) t = div x (γ s (h -g) kxx f (x)∇ x ((1 -ε 0 )h) + Q f in {g > b} ∩ {h < a} g t = div x (γ s (g -b) kxx s (x)∇ x ((1 -ε 0 )h + ε 0 g) in {g > b} ∩ {h < a}. ( 1 
)
where kα is a given symmetric matrix in R 2 which is positive definite ( for α = f, s) and ε 0 ∈ [0, 1] is the contrast density. Moreover if g satisfies the following Ghyben-Herzberg relation :

(1ε 0 ) h + ε 0 g =h 1 for {g > b} , we obtain:

               h t = div x (γ s (h -g) kxx f (x)∇ x ((1 -ε 0 )h) + Q f in {g > b} ∩ {h < a} g t = 0 in {g > b} ∩ {h < a} g = h 1 -(1-ε 0 )h ε 0 f or {g > b} (2) 
We consider {g > b} ∩ {h < a} =]0, l[∈ R, h(0, x) = h 0 (x) and h(t, 0) = 0, h(t, l) = g(t).

Our aims is to apply the variable separation technique used in [5], then we transform the non-linear equation ( 2) to a set of linear equations by a fixed point method : Given a h 0 and g 0 , we solve for n = 0, ..N the following linear problem :

     h n+1 t = div x (γ s (h n -g n ) kxx f (x)∇ x ((1 -ε 0 )h n+1 ) + Q f in {g n > b} ∩ {h n < a} ∩ {h n+1 < a} g n+1 = h 1 -(1-ε 0 )h n+1 ε 0 f or {g n+1 > b} (3 
) then in each iteration we have a linear parabolic equation Which admits a solution of the form:

h n+1 (x, t) = K k=1 h n+1 k X n+1 k (x)
The source term can be written by a separable form : Q f (x, t) = F n+1 (x)H n+1 (t). The functions X n+1 k (x), k = 1, ...K are solutions of a boundary eigenvalue problem that formed a complete orthogonal family that can be normalized to yield a family of orthonormal functions χ k , k = 1, ..., K and then the source term F(x) in terms of the normalized eigenfunctions is represented as :

F n+1 (x) = K k=1 < F n+1 , χ k > L 2 (0,l) χ n+1 k (x)
Then we apply the technique used in [5], we reconstruct the unknown space-dependent source F (x) by finding the coefficients of the following series expansion :

h n+1 (0, t) = K k=1 F n+1 k Ψ n+1 k (t)
where Ψ = ξ(k) T 0 exp(-λ k (ts))ds, k = 1, ...., K. a solution F n+1 =(F n+1 1 , ...., F n+1 K ) might not exist, and even if there exists (uniquely) it may not depend continuously on the data which inherently contains errors. We use Tikhonov regularization and we seek for the unrestricted minimum of the functional :

J β (F ) = 1 2 h n+1 (l, t) -g ε (t) 2 L 2 (0,T ) + β 2 F 2 2 = 1 2 T 0 ( K k=1 F n+1 k Ψ n+1 k (t) -g(t)) 2 dt + β 2 K k=1 F 2 k .
where β is the regularization parameter.

Introduction

Porous journal bearings (PJBs) find a wide range of applications in present-day machinery due to their favorable self-lubricating properties and high load capacity in combination with low production costs. The bush of a porous journal bearing is typically made of porous metals such as sintered bronze or sintered iron giving it the ability to transmit fluid. This property enables the bush to stimulate lubrication and act as a lubricant reservoir. Only few investigations have been found related to couple stresses [1] lubricants on such bearings [2]. Recently, SAKIM et al. [3] examined the combined effects of couple stresses and deformation of the porous bearing. The analysis was based on the Slip-flow model (SFM), where the porous bearing flow was described by Darcys law considering Beavers-Joseph slip conditions at the film-porous elastic bearing interface. However, the SFM is valid only in a dense porous bearing of large thickness so that the variation of velocity in the porous bearing can be neglected. Moreover, many porous bearings involve porous layers with shallow dept and with porosity close to unity. In these porous bearings the velocity is no longer uniform and thus the distortion of velocity yields the viscous shearing stresses. Therefore, the Darcy equation has to be modified to better describe the flow phenomena and to account for the higher permeability associated with the flow. The Brinkman model (BM) accounting for the viscous shear effects and the viscous damping effects (Darcy resistance) can surmount the above obstacles. However, we have no idea how the viscous shear forces of the BM affect such bearings lubricated by non-Newtonian couple stresses fluid. Therefore, the study is needed. 

Numerical Results

The EHD modified Reynolds equation [3] in the film, those of Brinkman and Laplace equations in the porous bearing are interlinked at the film-porous elastic bearing interface by the continuity of pressure, velocities and viscous shear stresses. Since this fluid-porous bearing interaction problem requires numerical solution, finite difference method is employed to discretize the set of equations. In order to easily perform finite differences discretization, dimensionless variables are introduced and the physical domain is transformed to a rectangular domain. The successive over-relaxation method is used to resolve iteratively the obtained algebraic equations. This coupled problem is sequentially solved based on fixed point technique. The numerical results of the present simulations show that all these effects have a significant influence on journal bearings performances. Comparing with those of SFM, the effects of viscous shear forces of the BM provide an increase in the load capacity (Figure 1) and in the friction factor (Figure 2). In addition, couple stresses because of the lubricant mixed with additives oppose fluid motion and after that improve the load capacity while decrease the friction factor.

Conclusion

A numerical investigation of the combined non-Newtonian and viscous shear effects on finite flexible porous journal bearings characteristics has been presented. It is found that, couple stresses increase the load capacity while decrease the friction factor. On the whole the SFM underestimates the bearing characteristics as compared to that obtained from BM. Introducing the viscous shear term, the BM considers more correctly the resistance encountered by the fluid flowing toward the porous elastic bearing and thus predicts more realistic characteristics.

Introduction to ARCH models

The class of Autoregressive conditional heteroscedasticity of order p, denoted as ARCH(p), and introduced firstly by Engle, is a class of non linear models that plays an important role in financial econometrics and has sometimes proved useful in modelling the residuals for time series models. We consider in this Note the model

X t = e t * σ t and σ 2 t = A 0 + p i=1 A i * X 2 t-i ∀t ∈ Z.
where the coefficients A 0 , ...., A p are discrete random variables taking a finite number of values such that, almost surely(a.s) A 0 > 0 and A i ≥ 0 for 1 ≤ i ≤ p, and where (e t ) t∈Z is an i.i.d. sequence such that E(e t )=E(e 3 t )=0. We assume that A 0 , ...., A p are mutually independent and independent of e t for all t, and X t is independent of e s for all s > t .

The ARCH with random coefficients(RARCH)

In this Note, we are only interested in causal solutions i.e, solutions such that Y t is -measurable, where :=σ(ξ s , s ≤ t). By setting Y t = X 2 t , ξ t = e 2 t we obtain

Y t = A 0 ξ t + p i=1 A i ξ t Y t-i
Let us define the matrix A t = A j ξ t δ i,1 + δ i,j+1 with 1 ≤ i, j ≤ p where δ i,j is the Kronecker symbol and the vector Y t :=(Y t , ..., Y t-p+1 ) T p * 1 and b t :=(ξ t A 0 , 0, ....., 0) Automobile insurance: Analysis of the impact of a rate change on the behavior of insureds at the time of subscription and termination Zakaria ROUAINE* 1 and Mounir JERRY 2 Ibn Tofail University, Kenitra, Morocco, (rouainezakaria@gmail.com) 1 , (jemounir@yahoo.fr) 2 .

Abstract. By taking out an insurance policy, people need to protect themselves against the consequences of external events (fires, accidents, etc.) towards one of their properties (car, housing, etc.) or their persons (civil liability). In return for this insurance, the insured pays an insurance premium at the beginning of the period. The insurer may be required to provide a benefit if a certain type of loss occurs during the period in question. In addition to these two economic agents, there is a third, impersonal component, which is the market. In this three-agent system, the insurer therefore faces the risk of having few or no insureds, if its prices are excessive or simply much higher than those of other insurers.

By choosing to work on automobile insurance market, which is becoming increasingly competitive, as precise premium pricing, is a major challenge for each insurer. In this economic context, the price sensitivity of policyholders seems to be decisive information for an insurance company in order to adjust its rates as effectively as possible.

Price sensitivity, which varies greatly from one policyholder to another, has an impact on the subscription and termination rates of a contract as on the profitability of the insurance portfolio. The objective of this work is to study the sensitivity of insured persons to changes in automobile insurance premiums. The aim is to model the impact of rate variations on the insured's behavior with regard to the subscription and termination deed.

ρ n sin nθ = αρ k sin kθ and ρ n cos nθ = αρ k cos kθ + (1α). So, if θ = lπ/n, where l is an integer, one has ρ n-k = α sin kθ/ sin nθ.

(3)

On the other hand, divide equation (2) by z n and take the imaginary part. When θ = lπ/(nk) such that l ∈ AE, we obtain that

ρ k = (1 -1/α) sin nθ/ sin (n -k) θ. (4) 
Finally, we have the following equation for the trajectories of roots of (2) :

ρ n-k sin nθρ n sin(nk)θ = sin kθ.

(

) 5 
There is one basic remark : as 1 < α < +∞ and ρ > 0, from (3) and (4), we are interested in those angles θ for which : sign (sin nθ) = sign (sin kθ) = sign (sin (nk) θ) .

(

) 6 
Definition 0.1 An angle θ which fulfills (6) will be called a (n, k)-feasible angle for the trinomial equation (2) with 1 < α < +∞.

Remark 0.1 Because the upper and lower half-planes are symmetrical, we restrict our study of the trinomial arcs to the upper halh-plane.

Theorem 0.1 For any trinomial curve K(p, k, r, n), the function ρ (θ) is monotonic on the interval of feasible angles.
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 1 Figure 1: Automotive Health Definition.
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 2 Figure 2: Health levels of Automotive Health.
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 1 Metabolic diagnostics via respiratory gas analysis, 2. Biofeedback Diagnostics and Therapy, 3. Identification and Prevention of Cancer (Early Detection of Cancer), 4. Gene material analysis (DNA diagnostics), 5. Cardiovascular diagnostics and vital data monitoring, 6. Diabetes (Tele-)Monitoring, 7. Etc.

Figure 3 :

 3 Figure 3: Disruptive Automotive Health Business Model.
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 21 Let ω k = (ω k 1 , . . . , ω k m ) and ω k = (ω k 1 , . . . , ω k m ) be two sequences in Ê m given or constructed during the execution of the algorithm, such that ω ≥ ω k i ≥ ω > 0 and ω k i /ω k i = ω > 0 for all i ∈ I and k ∈ AE.
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 1 Figure 1: The graph of Ef (red) and Ẽf (blue) for n = 8.
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 1 Figure 1: Experimental (blue) and simulated mass loss rate curves of oil palm kernels under air and under a temperature ramp of 5 • C/min.
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 1 Figure 1: Triangular meshing.
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 2 Figure 2: Finite difference schemes for second order operator differential equations.
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 3 Figure 3: Finite difference schemes for fourth order operator differential equations.
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 2 d(T x, T y) ≤ kd(x, y), ∀x ∈ A, ∀y ∈ B, where k ∈ [0, 1).

Figure 1 :

 1 Figure 1: Variation of dimensionless load capacity W * for different values of l * with profile Parameter α at aspect ratio of the bearing β = 1.5 and M = 2.

Figure 2 :

 2 Figure 2:Variation of friction coefficient C f for different values of M with profile Parameter α at aspect ratio of the bearing β = 1.5 and l * = 0.1.

  ∀i ∈ N} Γ and Λ are two degrees of uncertainty defined to control the number of travel times and service times uncertain. They vary respectively between 0 and | N | + | V |, and 0 and | N |. Thus, when Γ = 0 and Λ = 0 the robust case coincides with the case deterministic and when Γ =| N | + | V | and Λ =| N | is the worst case where all travel times and service times are supposedly uncertain and simultaneously reach their worst values.

Figure 1 :

 1 Figure 1: unconfined aquifer

Figure 1 :

 1 Figure 1: Couple stress effect on dimensionless load capacity W at ϕ = 2.10 -4 and C 0 = 0, 01.

Figure 2 :

 2 Figure 2: Couple stress effect on friction factor f f at ϕ = 2.10 -4 and C 0 = 0, 01.

  

  

  

  a nonanticipative and second-order stationary solution to the ARCH(p) model does not exist.

	p	
	If	α
	i=1	

i < 1, the process ( t ) is second-order stationary. More precisely, ( t ) is a weak white noise.

Table 1 :

 1 Mean, MSE of estimated parameters

			QMLKF	OLS	QMLE
		true mean	MSE	mean	MSE	mean	MSE
	n=100 ω	1	1.0357 0.0412 1.3153 0.2901 1.0519 0.0425
	α 1 0.5 0.4722 0.0348 0.3160 0.0612 0.4275 0.0368
	α 2 0.5 0.4418 0.0769 0.2705 0.0929 0.4180 0.0738
	n=150 ω	1	1.0238 0.0297 1.2556 0.1898 1.0445 0.0345
	α 1 0.5 0.5012 0.0278 0.3436 0.0459 0.4693 0.0279
	α 2 0.5 0.4418 0.0769 0.2705 0.0929 0.4180 0.0738

Table 2 :

 2 Mean, MSE of estimated parameters

			QMLKF	OLS	QMLE
		true mean	MSE	mean	MSE	mean	MSE
	n=100 ω	1	1.1481 0.0943 1.7329 1.3733 1.1805 0.1135
	α 1 0.7 0.6007 0.0636 0.3841 0.1292 0.5800 0.0584
	α 2 0.7 0.6007 0.0636 0.3841 0.1292 0.5800 0.0584
	α 3 0.7 0.6007 0.0636 0.3841 0.1292 0.5800 0.0584
	n=150 ω	1	1.1481 0.0943 1.7329 1.3733 1.1805 0.1135
	α 1 0.7 0.6007 0.0636 0.3841 0.1292 0.5800 0.0584
	α 2 0.7 0.6007 0.0636 0.3841 0.1292 0.5800 0.0584
	α 3 0.7 0.6007 0.0636 0.3841 0.1292 0.5800 0.0584

  k) and all y ∈ Y , where s(y k ) is any subgradient of F k ω (., λ k ) at y k .

Below we give examples of functions ψ ω (. , λ k ) which satisfy the conditions (C1)-(C3).

Example 3.1 As a first example, we can choose for all ∈ AE,

Table 2 .

 2 ∞,I = max x∈I |.|) and the corresponding numerical convergence order (abbr. N CO) for the test function f .

	n 128 256 512 1024 Theoretical value	Qf -f ∞,I 3.81383 × 10 -11 2.39141 × 10 -12 3.99531 2.61851 × 10 -10 3.99269 N CO P -f ∞,I N CO -4.16846 × 10 -09 -1.49706 × 10 -13 3.99765 1.64071 × 10 -11 3.99635 9.36427 × 10 -15 3.99883 1.02674 × 10 -12 3.99817 -04 -04
	n 128 256 512 1024 Theoretical value	Q f -f ∞,I 2.03468 × 10 -08 2.55124 × 10 -09 2.99553 3.27700 × 10 -07 2.99270 N CO P -f ∞,I N CO -2.60837 × 10 -06 -3.19399 × 10 -10 2.99777 4.10663 × 10 -08 2.99635 3.99558 × 10 -11 2.99888 5.13979 × 10 -09 2.99817 -03 -03

1: The maximum error and the N CO for approximating f using Q and P

Table 2 .

 2 

	n 128	Q f -f ∞,I 5.47259 × 10 -06	N CO -	P -f ∞,I 8.15871 × 10 -04	N CO -
	Theoretical value	-	02	-	02

2: The maximum error and the N CO for approximating f using Q and P 256 1.37197 × 10 -06 1.99598 2.05002 × 10 -04 1.99270 512 3.43471 × 10 -07 1.99799 5.13804 × 10 -05 1.99635 1024 8.59276 × 10 -08 1.99899 1.28614 × 10 -05 1.99817

Table 2 .

 2 

3:

The maximum error and the N CO for approximating f using Q and P

  a graphical comparaison of the approximation errors associated with Q and Q for the test function.

	n 128 256 512 1024 Theoretical value	max 0≤j≤n | Ẽf (x j )| N CO 1.23917 × 10 -13 -3.88865 × 10 -15 4.99397 3.09232 × 10 -14 4.00028 Ẽf ∞,I N CO 4.94867 × 10 -13 -1.21775 × 10 -16 4.99698 1.90458 × 10 -15 4.02115 3.80945 × 10 -18 4.99849 1.20486 × 10 -16 3.98253 -05 -04
	Table 2.4: The maximum error and the N CO for approximating f using	Q
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Abstract. This paper deals with the uniqueness of a higher dimension mixed non local problem for a Boussinesq equation non linear. By applying mathematical modeling to various phenomena of physics, biology and ecology there often arise problems with non-classical boundary conditions, which connect the values of the unknown function on the boundary and inside of the given domain. Some times the physical phenomena are modeled by non classical boundary value problems which involve a boundary condition as an integral condition over the spatial domain of a function of the desired solution. The nonlocal boundary condition arises mainly when the data on the boundary cannot be measured directly, but their average values are known. In the very recent years, nonlocal problems, particularly those with integral constraints have received great attention. The physical signi.cance of nonlocal conditions such as a mean, total mass, moments, etc, has served as a fundamental cause for the considerably increasing interest to this kind of boundary value problems. Nonlocal problems are generally encountered in chemical engineering, heat transmission, plasma physics, heat transmission, thermoelsticity and underground water flow. In this paper, we are concerned with the following nonlocal mixed boundary value problem for the n-dimensional Boussinesq non linear equation in a cylinder Q T

  2 . If (H 2 ) holds, then X 3 is locally asymptotically stable for all τ ∈ [0, τ ] . If (H 2 ) holds then X 2 is unstable for all τ ∈ [0, τ ].

	Theorem 3.3 Proposition 3.2 For τ ∈ [0, τ ], we have x * 2 < ξ < 1.
	Theorem 3.4

Table 1 :

 1 Expressions of C 1 , C 2 and C 3 coefficients.

Table : Robust approach using different criteria

 : 

	JANO'12		
	Instance	Worst Case criterion	MNSQW Criterion
	R11010 100 100 1000	51678.87	49993.85
	R21010 100 100 1000	51103.23	39385.14
	C11010 100 100 1000	55321.77	48583.41
	C21010 100 100 1000	25024.33	18431.39
	RC11010 100 100 1000	49296.55	46791.10
	RC21010 100 100 1000	38015.61	29107.63
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  T p * 1 . Then Y t = A t Y t-1 + b t and Y t = C Y twhere C := (1, 0, ...., 0) T . Let • be the matrix norm inducted by any vectorial norm on R p and log + x = max (log x, 0). It can be shown that if E(log+ A 0 ) < ∞, then γ L := lim sup E 1 n log n i=0 A t-ialways exists (may be infinite), and furthermore, γ L ≤ γ op where γ op = E log p j=1 A j .

JANO'

ABDERRAHIM AZOUANI ET AL.

The quasi-likelihood procedure (QMLE) in the nonstationary case has recently been studied by Francq and Zakoïan (2011).

It would be very interesting to see if our estimate algorithm based on Kalman filtering also continue to hold irrespective of the stationarity of the underlying process. The answer to this question is beyond the scope of the present paper.

XEW 2.0-A Big Data Analytics tool for Competitive Intelligence

Amine EL HADDADI* 1 and Anass EL HADDADI 2 IRIT, University of Toulouse, France, (amine.elhaddadi@gmail.com) 1 . DSCI Team, National School of Applied Sciences, Al-Hoceima, Morocco, (anass.elhaddadi@gmail.ccom) 2 .

Abstract. In the information era, people's lives are deeply impacted by IT due to the exposure of social networks, emails, RSS feeds, chats, white papers, web pages, etc. Such data are considered very valuable for companies since they will help them in improving their strategies,Analyzing their customers' trends or their competitors' marketing interventions is a simple and obvious example. Also, with the advent of the era of Big Data, organizations can obtain information about the dynamic environment of the markets by analyzing consumer's reactions, preferences, opinions and rating on various social media and other networking platforms. Thus, the companies should be equipped with the consciousness of competitive intelligence (CI), and grasp the key points of CI, with setting up an efficient and simple competitive intelligence system adapted to support Big Data. The objective of this paper is to introduce a new architectural model of Big Data collecting, analyzing and using, named XEW 2.0. This system operates according to four principal steps, where each of which has a dedicated service :

(i) XEW sourcing service (XEW-SS), allows searching, collecting, and processing the data from different sources;

(ii) XEW data warehousing services (XEW-DWS) : This brings a unified view of the target corpus and then, creates a data warehouse accessible from the analytic and visualization services;

(iii) XEW Big Data Analytics service (XEW-BDAS) : allows for making multidimensional analysis by adapting data mining algorithms to Big Data;

(iv) XEW Big Data Visualization service (XEW-BDVS) : allows visualizing Big Data in the form of innovative design and graphs representing, for instance, social networks, semantic networks, strategic alliances networks. Department of Applied Mathematics, University of Granada, Spain, (dbarrera@ugr.es) 1 . University Mohammed I, URAC05, FSO, Oujda, Morocco, (elmokhtari.fadila@gmail.com) 2 , (sbibih@yahoo.fr) 3 .

Keywords

Abstract.

In this paper, we propose a simple and efficient method for solving the following Love's integral equation

where d > 0 is a very small parameter. We apply the product integration method based on discrete spline quadratic quasi-interpolation, by considering a new unknown function v(x) = u(x) -1 2 , using the property that the solution u(x) of Love's integral equation satisfies u(x) → 1 2 for x ∈ (-1, 1), when the parameter d → 0 + . Numerical results are presented to illustrate the efficiency of the proposed method. Abstract. The understanding of the causes of jumps (or discontinuities) of chemical composition observed in volcanic series from the same province is a major concern in geochemistry and petrology. These are jumps between the mafic rocks and felsic rocks with the absence or scarcity of rocks of intermediate composition, in both ocean and continental series. Some authors explain these compositional jumps [1] thanks to the intervention of various geological phenomena which follow in time.

In our previous works [2], we have explained these phenomena quantitively by using a mathematical approach considering basic phenomena of melting / solidification, relative migration and chemical equilibrium between solid and liquid. We've proposed a numerical modelling of the crystallization of a closed magma chamber. The physical and mathematical model distinguishes three main classes of processes occurring simultaneously:

• heat transfer and solidification,

• relative migration between the solid and the liquid magma,

• chemical reactions between the two (solid and liquid) phases.

Few coupled mathematical models that deal with the same problem (for major chemical elements) exist [3,4]. However, these models only deal with partial aspects of the three process classes mentioned above, and generally can not take in account all the phenomena, so much the variety of these is great.

Writing the partial differential equations with dimensionless numbers makes two independent dimensionless parameters appear, they express the respective ratios of the solidification velocity on the transport velocity, and the kinetics of chemical exchange on the transport velocity. The model is written for one chemical component. It is splitted into two submodels, the crystallization/sedimentation model and the reactive transport model.

In our present study, the first submodel is expressed by an hyperbolic partial differential equation and is solved by three-point finite volume numerical schemes and the Newton-Raphson method for the non linearity. The second is solved using non-centered schemes, considering the directions of the movements of solids and liquids. An interface problem appears at the sedimentation front rising from the bottom of the reservoir, it is solved by correcting flows in the relevant meshes. The computing program is written in Fortran 90, it is then validated by theoretical methods such as the method of characteristic curves. Journées d'Analyse Numérique et Optimisation Al-Hoceima (Morocco), October 18-20, 2018.

Existence and multiplicity of solutions for a p(x)-biharmonic problem

Fouzia MORADI* 1 , Abdel Rachid EL AMROUSS 2 and Mimoun MOUSSAOUI 3 ENSA of Al Hoceima, Abdelmalek Essaadi University, Tetouan, Morocco, (f.moradi@hotmail.com ) 1 . Faculty of sciences, Mohamed first University, Oujda, Morocco, (elamrouss@hotmail.com) 2 .
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Abstract.

In this paper, we study the following problem

where Ω is a bounded domain in R N with smooth boundary ∂Ω, N ≥ 1, ∆ 2 p(x) u :=∆ |∆u| p(x)-2 ∆u , is the p(x)-biharmonic operator, α and β are two positives reals numbers, p is a continuous function on Ω with inf x∈Ω p(x) > 1 and f : Ω × R → R is a Caratheodory function. We establish the existence of at least one solution of the problem with Navier boundary conditions. Especially, using the three critical point Theorem, an existence of at least three solutions is obtained for the problem with Neumann boundary conditions.

Presentation:

In this presentation, we study the following problem

Where Ω is a bounded domain in R N with smooth boundary ∂Ω, N ≥ 1, ∆ 2 p(x) u : = ∆ |∆u| p(x)-2 ∆u , is the p(x)-biharmonic operator, α and β are two positives reals numbers, p is a continuous function on Ω with inf x∈Ω p(x) > 1 and f : Ω × R → R is a Caratheodory function.

The p(x)-biharmonique problem with Navier boundary conditions:

Consider the following problem with Navier boundary conditions

where

The operator ∆ 2 p(x) u :=∆(|∆u| p(x)-2 ∆u), with p(x) > 1 is called the p(x)-biharmonic which is a natural generalization of the p-biharmonic (where p > 1 is a constant). When p(x) is not constant, the p(x)-biharmonic possesses more complicated nonlinearity that the p-biharmonic, say, it is inhomogeneous.

Let put the following assumptions of the function f .

x).

(H2) There exist M > 0, θ > p + such that for all |s| ≥ M and x ∈ Ω, 0 < F (x, s) and F (x, s) ≤ s θ f (x, s).

(H3) f (x, s) = o(|s| p + -1 ) as s → 0 and uniformly for x ∈ Ω, with α -> p + .

We can state the following result.

Theorem 2.1 If f satisfies (H1)-(H3), then, for all λ ≤ 0, problem (4) has at least a nontrivial solution.

Next, we obtain an infinite many pairs of solutions.

Theorem 2.2 Suppose that f satisfies the conditions (H1)-(H2) and the following condition

Then, problem (4) has infinite many weak solutions.

The p(x)-biharmonique problem with Neumann boundary conditions :

Consider the following problem with Neumann boundary conditions

We proves the existence of at least three weak solutions of the above problem, under the following assumptions

for all x ∈ Ω.

(f3) There exist a constant c < 0 and a positive odd constant δ such that

for x ∈ Ω uniformly.

Theorem 2.3 Suppose that f satisfies the conditions (f1,f2,f3), p -> γ + and p(x) > N 2 . Then, there exist an open interval Λ ⊂ ]0, +∞[ and a positive real number q, such that for each β ∈ Λ, the problem (4) has at least three solutions in X whose norms are less than q.

Theorem 2.4 Suppose that f satisfies the conditions (f1) and

(f4) There exists an odd constant ω > p + -1 such that lim inf

, then there exist an open interval Λ ⊂ ]0, +∞[ and a positive real number q, such that for each β ∈ Λ, the problem (4) has at least three solutions in X whose norms are less than q.
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Multiplicity results for Dirichlet problem involving the p(x)-biharmonic operator via the Nehari manifold approach.
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Abstract. In this work, we will study the multiplicity of positive solutions for the following elliptic equation

where Ω ⊂ Ê N (N ≥ 3) is a bounded domain with smooth boundary ∂Ω, N ≥ 2, , p, q, h are continuous functions on Ω such that 1 < q(x) < p(x) < h(x) < p (x), ∀x ∈ Ω , λ > 0 and a, b ∈ C(Ω) are non-negative weight functions with compact support in Ω.

The main result of this work establishes the multiplicity of positive solutions for the p(x)-biharmonic problems with non-negative weight functions and prove that an elleptic equation has at least two positive solutions by using the Nahari manifold and some variational technique.
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Grid adaption promotion of finite volume solutions to the shallow water equations with shock capturing schemes

Hind TALBI* 1 , Najim SALHI 2 and Imad ELMAHI 3 LME, Faculty of Sciences, Mohamed first University, Oujda, Morocco, (h.talbi@ump.ac.ma) 1 , (najim.salhi@yahoo.fr) 2 . ENSA of Oujda, Mohamed first University, Oujda, Morocco, (i.elmahi@ump.ac.ma) 3 .

Abstract. In this work,The classical shallow-water equations, the Saint-Venant system, are widely used to model water flow in rivers, lakes, reservoirs, coastal areas. As their solutions are typically nonsmooth and even discontinuous, finite-volume schemes are among the most popular tools. In this paper, we promote a finite volume method, on an unstructured grid, with shock capturing capabilities by an automatic algorithm to adapt grids near higher gradient. In this paper implementation of the FVM including the Riemann solvers, slope limiters and methods used for achieving second order accuracy are described explicitly. The performance of the numerical method has been investigated by applying it on a problem of dam break that incorporating a rapidly chock wave. Finally, results, discussion, conclusions and recommendations for further work are presented. 
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Implementing a family of trinomial arcs

Ouahiba BOUSSOUFI* 1 , Kaoutar LAMRINI UAHABI 2 and Mohamed ATOUNTI 3 FPN de Nador, Université Mohamed premier, Oujda, Morocco, (ouahibabsf@gmail.com) 1 , (lamrinika@yahoo.fr) 2 , (atounti@hotmail.fr) 3 .

Abstract. The main purpose of this work is to simulate the results of the curves K(p, k, r, n) with a JAVA program. It will be shown that these curves constitute fractals. This work is devoted to a first simulation of the trajectories of the roots of the trinomial equation using a program which will give the appearance of these roots which are discussed in the theory by several researchers and mathematicians.

Keywords: Fractal, trinomial curve, JAVA program , trinomial equation.

In [2], Fell studied the trinomial equation

where z = ρe iθ is a complex variable, n and k are two integers such that 1 ≤ k ≤ n -1 and λ is a real number. She established especially a large description of the trajectories of roots of the trinomial equation (1), which are the trinomial arcs. These arcs can be expressed in polar coordinates (ρ, θ) by a function ρ (θ) and are continuous curves corresponding to a number λ which is restricted whether to [0, 1], or to [1, +∞[, or also to ]-∞, 0]. The problem of monotonicity of the function ρ (θ) for the different families of trinomial curves was pointed out in [2]. In this work, we are interested in one of these families of arcs. We consider the equivalent trinomial equation

where α is a real number. We restrict our attention to a family of trinomial curves K (p, k, r, n) solutions of equation (2) with 1 < α < +∞ and n, k, p and r are four integers verifying some conditions. In [3], the problem of monotonicity of the function ρ (θ) for this category of arcs K (p, k, r, n) was solved. It was shown that ρ(θ) is a decreasing function.

The two trinomial equations (1) and (2) are equivalent. In order to pass from (2) to (1), we set α = 1 -1/λ. Indeed, substituting into equation (1) the expression given for z n by equation (2) yields [1λ (1α)] z k -1 = 0. It follows that λ (1α) = 1 or z k = 1. As z is a complex number, we deduce that α = 1 -1/λ. This equality implies that the case 1 < α < +∞ of equation (2) corresponds to the case -∞ < λ < 0 of equation (1). In our work, we study the trinomial equation (2) with 1 < α < +∞. Putting z = ρe iθ in this equation and separating real and imaginary parts, we find