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Abstract. We consider in this paper the problem of asymptotic behavior of so-
lutions for two viscoelastic wave equations with infinite memory. We show that the
stability of the system holds for a much larger class of kernels and get better decay rate
than the ones known in the literature. More precisely, we consider infinite memory
kernels g : R+ := [0,+∞[→ R∗+ :=]0,+∞[ satisfying g′(t) ≤ −ξ(t)G(g(t)), ∀t ∈ R+ ,
where ξ : R+ → R∗+ and G : R+ → R+ are given functions. Under this very general
assumption on the behavior of g at infinity and for each viscoelastic wave equation,
we provide a relation between the decay rate of the solutions and the growth of g at
infinity, which improves the decay rates obtained in [15, 16, 17, 19, 40]. Moreover, we
drop the boundedness assumptions on the history data considered in [15,16,17,40].
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1 Introduction

In this paper, we consider the following two viscoelastic problems:
utt(x, t)−∆u(x, t) +

∫ +∞

0

g(s)∆u(x, t− s)ds = 0 in Ω × R∗+,

u(x, t) = 0 on ∂Ω × R∗+,
u(x,−t) = u0(x, t), ut(x, 0) = u1(x) in Ω × R+

(1.1)

�
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352 A. Guesmia

and
utt(x, t)−∆u(x, t)−

∫ +∞

0

g(s)u(x, t− s)ds = 0 in Ω × R∗+,

u(x, t) = 0 on ∂Ω × R∗+,
u(x,−t) = u0(x, t), ut(x, 0) = u1(x) in Ω × R+,

(1.2)

where u denotes the transverse displacement of waves, ∆ is the Laplacian op-
erator with respect to the space variable x, ut and utt denote, respectively, the
first and second derivatives with respect to the time variable t, g : R+ → R∗+ is a
given function representing the infinite memory kernel and satisfying some hy-
potheses, Ω is a bounded domain of RN , N ∈ N∗ := {1, 2, . . .}, with a smooth
boundary ∂Ω, and u0 and u1 are fixed history and initial data in a suitable
Hilbert space.

1.1 Finite memory

The problems related to viscoelasticity (see [8]) have attracted a great deal of
attention during the last four decades and many results of existence and long-
time behavior have been established. Many advances in the studies of well
posedness and stability were made since the works of Dafermos [10,11].

Hrusa [24] considered a one-dimensional nonlinear viscoelastic wave equa-
tion and proved several global existence results for large data and an exponen-
tial decay result for strong solutions when the kernel is of the form g(s) = e−s.
In [12], Dassios and Zafiropoulos considered a viscoelastic problem in R3 and
proved a polynomial decay result for exponentially decaying kernels. After that,
Rivera [38] considered equations for linear isotropic homogeneous viscoelastic
solids of integral type which occupy bounded domains or the whole space RN .
In the bounded-domain case and for exponentially decaying kernels and regular
solutions, he showed that the sum of the first and the second energy decays
exponentially. Whereas, the decay is polynomial when the body occupies the
whole space RN , even if the kernel is of an exponential decay.

For quasilinear problems, Cavalcanti et al. [4] studied, in a bounded domain,
the following equation:

|ut|ρutt −∆u−∆utt +

∫ t

0

g(t− s)∆u(s)ds− γ∆ut = 0 in Ω × R∗+, (1.3)

for ρ > 0. A global existence result for γ ≥ 0, as well as an exponential decay
result for γ > 0, have been established. This latter result was then extended
to a situation, where γ = 0, by Messaoudi and Tatar [31, 32], and exponential
and polynomial decay results have been established in the absence, as well
as in the presence, of a source term. In all the above mentioned works, the
rates of decay of kernels were either of exponential or polynomial type. In [6],
Cavalcanti et al. considered a semilinear viscoelastic wave equation with local
frictional damping, where the kernel g satisfies, for two positive constants ξ1
and ξ2,

−ξ1g(t) ≤ g′(t) ≤ −ξ2g(t), ∀t ∈ R+. (1.4)
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They established an exponential decay result under some restrictions on the
control zone. Berrimi and Messaoudi [3] established the result of [6] under
weaker conditions on both damping and kernel, for a problem where a source
term is competing with the damping term. Cavalcanti and Oquendo [7] con-
sidered, in Ω × R∗+, the following problem:

utt − k0∆u+

∫ t

0

div[a(x)g(t− s)∆u(s)]ds+ b(x)h(ut) + f(u) = 0 (1.5)

and established, for a(x) + b(x) ≥ ρ > 0, an exponential stability result for
g decaying exponentially and h linear, and a polynomial stability result for g
decaying polynomially and h nonlinear. Li et al. [27] treated (1.5) with b(x) = 0
and f(u) = −|u|γu, γ > 0. They showed the global existence and uniqueness
of global solution of problem (1.5) and established uniform decay rate of the
energy under suitable conditions on the initial data and g. For more general
decaying kernels than the one defined by (1.4), Messaoudi [28,29] considered

utt −∆u+

∫ t

0

g(t− s)∆u(s)ds = b|u|q−2u in Ω × R∗+, (1.6)

for q ≥ 2, b ∈ {0, 1} and g satisfying, for a nonincreasing function ξ : R+ → R+,

g′(t) ≤ −ξ(t)g(t), ∀t ∈ R+. (1.7)

He established a more general decay result, from which the usual exponen-
tial and polynomial decay rates are only special cases. Said-Houari et al. [39]
studied the well-posedness and stability of coupled two semilinear viscoelastic
wave equations, where the kernels satisfy (1.7). They established the same
stability estimate as in [28, 29]. Using the same assumption (1.7), a similar
stability estimate was proved in [20] for a viscoelastic wave equation with
Balakrishnan-Taylor damping and time-varying delay. Very recently, Mes-
saoudi and Al-Khulaifi [30] considered (1.3) with γ = 0, where the kernel
satisfies, for 1 ≤ p < 3

2 ,

g′(t) ≤ −ξ(t)gp(t), ∀t ∈ R+ (1.8)

and established a more general decay result, which leads to the optimal decay
rate of solutions when g converges to zero at ifinity faster than s−2. Optimality
means that the solution converges to zero as fast as g. Mustafa and Messaoudi
[34] considered (1.6) with b = 0 and kernels satisfying

g′(t) ≤ −G(g(t)), ∀t ∈ R+ (1.9)

for some positive convex function G : R+ → R+. They used some properties
of convex functions together with the generalized Young inequality and estab-
lished a general decay result depending on g and G. The assumption (1.9) was
also considered in [22] for an abstract viscoelastic wave equation, where the
obtained decay rate depends on the solution of an ODE. The results of [34]
were generalized in [33] to kernels satisfying

g′(t) ≤ −ξ(t)G(g(t)), ∀t ∈ R+ (1.10)

Math. Model. Anal., 25(3):351–373, 2020.



354 A. Guesmia

by getting a more general decay result depending on g, ξ and G. This general
decay result extendeds the range of the polynomial decay rate optimality from
p ∈ [1, 32 ) to p ∈ [1, 2) in (1.8), which allows kernels having a decay at infinity
of the form g(s) = s−q, for q > 1. The arguments of [33] were recently used
in [23] to prove the stability of the following abstract equation:

utt −Au−
∫ t

0

g(t− s)Aαu(s)ds = 0, ∀t ∈ R∗+,

where α ∈]0, 1[ and A is a given operator satisfying some hypotheses. For
the case of memories acting on the boundary of domain, we refer the readers
to [5, 14] and the references therein.

1.2 Infinite memory

Giorgi et al. [13] considered the following semilinear hyperbolic equation with
infinite memory in a bounded domain Ω ⊂ R3:

utt −K(0)∆u−
∫ +∞

0

K ′(s)∆u(t− s)ds+ g(u) = f in Ω × R∗+ (1.11)

under the condition K ′ ≤ 0 and proved the existence of global attractors for
the solutions. Conti and Pata [9] added a linear frictional damping to (1.11)
and assumed that the kernel is a convex decreasing smooth function. They
proved the existence of a regular global attractor. Pata [35] discussed the decay
properties of the semigroup generated by the following abstract equation:

utt + αAu(t) + βut(t)−
∫ +∞

0

µ(s)Au(t− s)ds = 0, ∀t ∈ R∗+, (1.12)

where A is a strictly positive self-adjoint linear operator, α > 0, β ≥ 0 and
µ is a decreasing function satisfying specific conditions. Subsequently, they
established necessary as well as the sufficient conditions for the exponential
stability. In [1], Appleby et al. studied (1.12) with α = 1 and β = 0 and
established an exponential decay result for strong solutions in a Hilbert space.
In [15], Guesmia considered the abstract equation

utt +Au−
∫ +∞

0

g(s)Bu(t− s)ds = 0, ∀t ∈ R∗+ (1.13)

in a Hilbert space H, where A and B are positive self-adjoint linear opera-
tors such that A ∼ B or A is stronger than B (in some sense). Under the
boundedness conditions on the first initial data{

sups∈R+
||B 1

2u0(s)||H < +∞, if A ∼ B,
sups∈R+

||A 1
2B

1
2u0(s)||H < +∞, if A is stronger than B

(1.14)

and for the larger class of kernels satisfying∫ +∞

0

g(s)

G−1(−g′(s))
ds+ sup

s∈R+

g(s)

G−1(−g′(s))
< +∞, (1.15)
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where G : R+ → R+ is an increasing strictly convex function, he proved two
general decay results corresponding to the cases A ∼ B and A is stronger than
B. Using this approach, Guesmia and Messaoudi [18] later looked into

utt−∆u+

∫ t

0

g1(t−s)div(a1(x)∇u(s))ds+

∫ +∞

0

g2(s)div(a2(x)∇u(t−s))ds = 0

under the first condition in (1.14) (with B = −∆) and suitable conditions on
a1 and a2 and for a wide class of kernels g1 and g2 satisfying (1.7) and (1.15),
respectively. They established a general decay result including, in particular,
the usual cases of exponential and polynomial decay. The decay rate of solu-
tions obtained in [15] and [18] is weaker than the one of g at infinity when g
does not converge exponentially to zero. The authors of [17] considered (1.13)
with A = B and under (1.7) and the first condition in (1.14). They proved a
general decay result of the solution depending only on g and ξ by adopting,
for infinite memory, the method introduced in [28] with some modifications
imposed by the nature of their problem. In the particular cases where g con-
verges to zero at infinity faster than any polynomial, the obtained decay rate of
solutions in [17] is equal to the one of g; and so it improves the one presented
in [15]. A similar stability result was proved in [21] for an abstract thermoelas-
tic system by considering (1.7) and applying the arguments of [17]. Recently,
Youkana [40] considered (1.13) in which g and u0 satisfy (1.8) and (1.14). He
obtained a better decay rate than the one of [15] and [17] when g has a decay
at infinity of the form s−q, for q > 2.

In [16], the problem of indirect stability of two coupled abstract equations
with one infinite memory was considered. More precisely, the author of [16]
studiedutt(t) +Au(t)−

∫ +∞

0

g(s)Bu(t− s)ds+ B̃v(t) = 0, ∀t ∈ R∗+,

vtt(t) + Ãv(t) + B̃u(t) = 0, ∀t ∈ R∗+,
(1.16)

in a Hilbert space H, where A, Ã, B and B̃ are positive self-adjoint linear
operators such that A ∼ B or A is stronger than B, and g satisfies (1.15).
Under the following weaker condition on u0 than (1.14):

sup
t∈R+

∫ +∞

t

g(s)

G−1(−g′(s))
||A

j
2B

1
2u0(s− t)||2Hds < +∞, (1.17)

where j = 0 if A ∼ B, and j = 1 if A is stronger than B, it was proved a
general decay estimte depending also on the smoothness of initial data. For
classical solutions, the estimate of [16] coincides with the one of [15] when A
is stronger than B. The stability of the same system (1.16) was the subject of
the paper [26], where the authors proved that the decay rate 1

t of the energy
is guaranteed by the following weak condition on the decreasingness behavior
of g:

|{s ∈ R+ : g(s) > 0 and g′(s) = 0}| = 0, (1.18)

(here | · | means the Lebesgue measure). The same result of [26] was proved
in [25] for (1.16) with a finite memory (instead of the infinite one) and an ad-
ditional semilinear term f(u) on the first equation. More precisely, the authors

Math. Model. Anal., 25(3):351–373, 2020.
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of [25] considered (1.18) and obtained the decay rate 1
t of energy for the coupled

system as well as for the corresponding first single equation.

Without assuming any boundedness condition on u0 and for g satisfying

g(t− s) ≥ ξ(t)
∫ +∞

t

g(τ − s)dτ, ∀t ∈ R+, ∀s ∈ [0, t], (1.19)

the authors of [19] proved the well posedness and stability of (1.13) with a
distributed delay; that is

utt+Au−
∫ +∞

0

g(s)Bu(t−s)ds+

∫ +∞

0

f(s)ut(t−s)ds = 0, t ∈ R∗+, (1.20)

where A ∼ B and f : R+ → R is dominated by g (in some sense). The stability
results of [19] lead to the same decay rate of [17] when g converges to zero at
infinity faster than t−2. However, when the decay rate of g is at most of the
form t−2, no stability result is obtained in [19].

In the present work, we study the asymptotic behavior of solutions of (1.1)
and (1.2) as particular models of (1.13) corresponding to the cases, respectively,
A ∼ B and A is stronger than B. Under the general assumption (1.10) instead
of (1.15), (1.7), (1.19) and (1.8) considered in [15, 17, 19, 40], respectively, we
prove two general decay estimates of solutions, which improve the decay rates
obtained in [15,16,17,19,40] in case when g has at most a polynomial decay at
infinity (see examples in Section 4 ). Moreover, our class of admissible initial
data is larger than the one considered in [15, 16, 17, 40] because we do not
assume any boundedness condition on u0.

The rest of this paper is organized as follows. In Section 2, we present some
assumptions and material needed for our work and give the well posedness
results of our two systems. Some technical lemmas are presented and proved
in Section 3. Finally, we state and prove our main decay results and provide
some examples in Section 4.

2 Assumptions and well posedness

In this section, we present some materials needed for the proof of our results
and state the well-posedness results of (1.1) and (1.2). We use the standard
Lebesgue space L2(Ω) and Sobolev space H1

0 (Ω) with their usual scalar prod-
ucts that generate the norms || · ||2 and ||∇ · ||2, respectively. We assume the
following hypotheses:

(A1) g : R+ → R∗+ is a C1(R+) nonincreasing function satisfying, for some
β0 > 0,

−β0g(s) ≤ g′(s), ∀s ∈ R+ and

{
1− g0 := ` > 0 in case (1.1),

1− c0g0 := ` > 0 in case (1.2),
(2.1)

where g0 :=

∫ +∞

0

g(s)ds and c0 is the smallest constant satisfying (Poincaré’s

inequality)

||v||22 ≤ c0||∇v||
2
2, ∀v ∈ H1

0 (Ω). (2.2)
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(A2) There exists a function G : R+ → R+ in C1(R+) ∩ C2(R∗+) which is
increasing and strictly convex, with

G(0) = G′(0) = 0, lim
s→+∞

G′(s) = +∞,

s 7→ sG′(s) and s 7→ s(G′)−1(s) are convex on R+, and there exists a nonin-
creasing function ξ : R+ → R∗+ in C1(R+) such that∫ +∞

0

ξ(s)ds = +∞, g′(s) ≤ −ξ(s)G(g(s)), ∀s ∈ R+.

Remark 1. As a simple example of functions g satisfying (A1) and (A2), we
can take

g(s) = a(1 + s)−q,

for q > 1, 0 < a < q − 1 in case (1.1), and 0 < a < q−1
c0

in case (1.2), with

β0 = q, ξ(s) = qa−
1
q and G(s) = s

q+1
q .

Now, we state the existence results to (1.1) and (1.2); the proof is given
in [15]. Systems (1.1) and (1.2) can be formulated as the following abstract
linear first order system:{

U ′(t) = AU(t), ∀t ∈ R∗+,
U(0) = U0,

(2.3)

where U0 = (u0(·, 0), u1, η0(·, s))T ∈ H, H = H1
0 (Ω) × L2(Ω) × Lig , U =

(u, u′, η)T , i = 1 for (1.1), i = 0 for (1.2),{
η(x, t, s) = u(x, t)− u(x, t− s), ∀(x, t, s) ∈ Ω × R+ × R+,

η0(x, s) = u0(x, 0)− u0(x, s), ∀(x, s) ∈ Ω × R+,

(ηt is the relative history of u, and it was introduced first in [11]), Lig is the
weighted space with respect to the measure g(s)ds defined by

Lig =
{
z : R+ → Hi

0(Ω),

∫ +∞

0

g(s)‖∇iz(s)‖2ds < +∞
}
,

where we note H0
0 (Ω) = L2(Ω), ∇0 = Id, ∇1 = ∇, Id is the identity operator

and A is the linear operator given by

A(v, w, z)T =
(
w, (1− g0)∆v +

∫ +∞

0

g(s)∆z(s)ds,−zs + w
)T

in case (1.1), where zs = ∂z
∂s ,

A(v, w, z)T =
(
w,∆v + g0v −

∫ +∞

0

g(s)z(s)ds,−zs + w
)T

Math. Model. Anal., 25(3):351–373, 2020.
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in case (1.2), and

D(A) =
{

(v, w, z)T ∈ H, A(v, w, z)T ∈ H, z(0) = 0
}
.

Under the assumption (A1), the space H is a Hilbert space, D(A) ⊂ H with
dense embedding, and A is the infinitesimal generator of a linear contraction
C0-semigroup on H (see [15]). Therefore, from the classical semigroup theory
(see [36]), we get the following well-posedness results for (2.3) (see [15] with
(A,B) = (−∆,−∆) for (1.1), and (A,B) = (−∆, Id) for (1.2)):

Theorem 1. [15] Assume that (A1) is satisfied. Then, for any U0 ∈ H, (2.3)
has a unique weak solution U ∈ C(R+,H). Moreover, if U0 ∈ D(A), then the
solution of (2.3) is classical; that is U ∈ C1(R+,H) ∩ C(R+, D(A)).

Consequently, by assuming that (A1) is satisfied, the above theorem implies
that, for any (u0(·, 0), u1) ∈ H1

0 (Ω)×L2(Ω) such that η0 ∈ Lig, (1.1) and (1.2)
have a unique global (weak) solution u ∈ C(R+, H

1
0 (Ω)) ∩ C1(R+, L

2(Ω)).
Moreover, if (u0(·, 0), u1) ∈ (H2(Ω)∩H1

0 (Ω))×H1
0 (Ω) such that η0,

∂η0
∂s ∈ L

i
g,

then the solution u satisfies (classical solution)

u ∈ C(R+, H
2(Ω) ∩H1

0 (Ω)) ∩ C1(R+, H
1
0 (Ω)) ∩ C2(R+, L

2(Ω)).

Now, we consider the assumptions (A1) and (A2) and take initial data
(u0, u1) such that

(u0(·, 0), u1, η0) ∈ H1
0 (Ω)× L2(Ω)× L1

g (2.4)

for (1.1), and{
(u0(·, 0), u1, η0) ∈ H1

0 (Ω)× L2(Ω)× L0
g,

(∇u0(·, 0),∇u1,∇η0) ∈ (H1
0 (Ω))N × (L2(Ω))N × (L0

g)
N

(2.5)

for (1.2). We introduce the ”modified” energy associated to (1.1) and (1.2)

E(t) =
1

2
||ut||22 +

1

2
||∇u||22 −

g0
2
||f ||22 +

1

2
(gof)(t),

where f = ∇u for (1.1), f = u for (1.2) and we use the notation

(gof)(t) =

∫ +∞

0

g(s)||f(t)− f(t− s)||22ds.

Also, following the idea of [37], we introduce the second ”modified” energy
associated to (1.2)

E∗(t) =
1

2
||∇ut||22 +

1

2
||∆u||22 −

g0
2
||∇u||22 +

1

2
(go∇u)(t).

Direct differentiation (multiplying (1.1)1 by ut, multiplying (1.2)1, first, by
ut and, second, by ∆ut, integrating by parts and using boundary conditions;
see [37]) leads to

E′(t) =
1

2
(g′of)(t) ≤ 0 (2.6)
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and

E′∗(t) =
1

2
(g′o∇u)(t) ≤ 0. (2.7)

On the other hand, using (2.1) and (2.2), we get

`

2

(
||ut||22+||∇u||22+(gof)(t)

)
≤ E(t) ≤ 1

2

(
||ut||22+||∇u||22 + (gof)(t)

)
(2.8)

and

`

2

(
||∇ut||22+||∆u||22+(go∇u)(t)

)
≤ E∗(t) ≤

1

2

(
||∇ut||22+||∆u||22+(go∇u)(t)

)
.

3 Preliminaries lemmas

In this section, we assume that (A1), (A2), (2.4) and (2.5) are satisfied, and
we establish several lemmas needed for the proof of our stability results, which
will be presented and proved in Section 4. These lemmas allow us to deal with
the finite and infinite parts of the infinite memory. For the finite part, we apply
the approach developped in [30] and [33] for the stability of wave equations with
finite memory.

Lemma 1. There exists a positive constant M0 such that, for any t ∈ R+,∫ +∞

t

g(s)||∇u(t)−∇u(t−s)||22ds ≤M0

∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||22

)
ds. (3.1)

Proof. Using (2.6) and the left inequality in (2.8), we obtain, for any t ∈ R+,∫ +∞

t

g(s)||∇u(t)−∇u(t− s)||22ds

≤ 2||∇u(t)||22
∫ +∞

t

g(s)ds+ 2

∫ +∞

t

g(s)||∇u(t− s)||22ds

≤ 2 sup
s≥0
||∇u(s)||22

∫ +∞

0

g(t+ s)ds+ 2

∫ +∞

0

g(t+ s)||∇u(−s)||22ds

≤ 4

`
sup
s≥0

E(s)

∫ +∞

0

g(t+ s)ds+ 2

∫ +∞

0

g(t+ s)||∇u0(s)||22ds

≤ 4

`
E(0)

∫ +∞

0

g(t+ s)ds+ 2

∫ +∞

0

g(t+ s)||∇u0(s)||22ds,

which gives (3.1) with M0 = max
{

4
`E(0), 2

}
. ut

Lemma 2. Let

ψ1(t) =

∫
Ω

uutdx and ψ2(t) = −
∫
Ω

ut

∫ +∞

0

g(s)(u(t)− u(t− s))dsdx.

Then there exist positive constants N, N1, N2, a1, a2 such that the functional

L = N(E + (1− δ0)E∗) +N1ψ1 +N2ψ2,
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where δ0 = 1 for (1.1), and δ0 = 0 for (1.2), satisfies

a1E ≤ L ≤ a2E for (1.1), L ≥ a1E for (1.2) (3.2)

L′(t) ≤ −4(1− `)||∇u||22 − ||ut||
2
2 +

τ0
4

(go∇u)(t), ∀t ∈ R+, (3.3)

where τ0 = 1 for (1.1), and τ0 = c0 for (1.2).

Proof. This lemma can be obtained by a direct application of the arguments of
[33] used for (1.1) with finite memory. For (1.2), we need only to use Poincaré’s
inequality (2.2) to estimate (gou)(t) by c0(go∇u)(t). ut

Lemma 3. Let

ψ3(t) =

∫ t

0

ψ4(t− s)||∇u(s)||22ds and ψ4(t) =

∫ +∞

t

g(s)ds.

Then, for any t ∈ R+,

ψ′3(t) ≤ −1

2

∫ t

0

g(s)||∇u(t)−∇u(t− s)||22ds+
3

τ0
(1− `)||∇u(t)||22. (3.4)

Proof. The proof of this lemma is also a direct application of the arguments
of [33]. Indeed, we have ψ′4 = −g, ψ4(0) = g0 and∫ t

0

g(t− s)ds =

∫ t

0

g(s)ds = g0 − ψ4(t)

(g0 is defined in hypothesis (A1)), then

ψ′3(t) = ψ4(0)||∇u(t)||22 +

∫ t

0

ψ′4(t− s)||∇u(s)||22ds = g0||∇u(t)||22

−
∫ t

0

g(t− s)||∇u(s)||22ds = ψ4(t)||∇u(t)||22 −
∫ t

0

g(t− s)||∇u(t)

−∇u(s)||22ds+ 2

∫ t

0

g(t− s)〈∇u(t),∇u(t)−∇u(s)〉ds,

where 〈, 〉 denotes the standard scalar product in (L2(Ω))n. Using Young’s and
Hölder’s inequalities for the last term of the above equality, we get

2

∫ t

0

g(t− s)〈∇u(t),∇u(t)−∇u(s)〉ds ≤ 2(1− `)
τ0

||∇u(t)||22

+
τ0
∫ t
0
g(s)ds

2(1− `)

∫ t

0

g(t− s)||∇u(t)−∇u(s)||22ds,

where ` and τ0 are defined in (2.1) and Lemma 2, respectively. Because

ψ4(t) ≤ ψ4(0) = g0 =
1− `
τ0

and
τ0
∫ t
0
g(s)ds

2(1− `)
≤ τ0g0

2(1− `)
=

1

2
,

then by combining the above three inequalities, we get (3.4). ut
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Lemma 4. There exits a positive constant b̃ such that the energy functional
satisfies ∫ t

0

E(s)ds < b̃(h̃(t) + 1), ∀t ∈ R+, (3.5)

where

h̃(t) =

∫ t

0

∫ +∞

0

g(s+ τ)
(
1 + ||∇u0(τ)||22

)
dτds, t ∈ R+. (3.6)

Proof. Let F = L+ τ0ψ3, then using (3.3) and (3.4), we obtain

F ′(t) ≤− (1− `)||∇u||22 − ||ut||22 −
τ0
4

(go∇u)(t) (3.7)

+
τ0
2

∫ +∞

t

g(s)||∇u(t)−∇u(t− s)||22ds, ∀t ∈ R+.

Using (2.2) (for (gou)(t)) in case (1.2), the right inequality in (2.8) and (3.7),
we see that there exists a positive constant b = 2 min

{
1− l, 1, 14

}
satisfying

F ′(t) ≤ −bE(t) +
τ0
2

∫ +∞

t

g(s)||∇u(t)−∇u(t− s)||22ds, ∀t ∈ R+.

Therefore, using (3.1) and noting that F ≥ 0 (since ψ3 ≥ 0 and L ≥ 0 thanks
to (3.2)),

b

∫ t

0

E(s)ds ≤ F (0)− F (t) +
τ0M0

2
h̃(t) ≤ F (0) +

τ0M0

2
h̃(t), ∀t ∈ R+.

Hence (3.5) is proved with b̃ = 1
b max

{
F (0), τ0M0

2

}
. ut

Lemma 5. There exists 0 < ε0 < 1 such that, for any t ∈ R+,∫ t

0

g(s)||∇u(t)−∇u(t− s)||22ds ≤
h̃(t) + 1

ε0
G−1

(
ε0I(t)

ξ(t)(h̃(t) + 1)

)
, (3.8)

where

I(t) = −
∫ t

0

g′(s)||∇u(t)−∇u(t− s)||22ds.

Proof. Using (2.6), the left inequality in (2.8) and (3.5), we obtain∫ t

0

||∇u(t)−∇u(t− s)||22ds ≤ 2

∫ t

0

(
||∇u(t)||22 + ||∇u(t− s)||22

)
ds

≤ 4

`

∫ t

0

(E(t) + E(t− s))ds ≤ 8

`

∫ t

0

E(s)ds ≤ 8b̃

`
(h̃(t) + 1), ∀t ∈ R+.

Then, for 0 < ε0 < min
{

1, `/8b̃
}

, we get

q0(t) :=
ε0

h̃(t) + 1
< 1 and q0(t)

∫ t

0

||∇u(t)−∇u(t− s)||22ds < 1, ∀t ∈ R+.

So, the proof of (3.8) is the one given in [33]. ut
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Remark 2. Using (2.6) and (2.7), we notice that

I ≤ −2 (δ0E
′ + (1− δ0)E′∗) , (3.9)

where δ0 = 1 for (1.1), and δ0 = 0 for (1.2).

4 Stability results

Before presenting our stability results, we put

G0(t) = tG′(t), G1(t) =

∫ 1

t

1

G0(s)
ds, G2(t) = t(G′)−1(t), (4.1)

h(t) =

∫ +∞

0

g(t+ s)
(

1 + ||∇u0(s)||22
)
ds. (4.2)

On the other hand, for fixed positive constants c1 and c2, we introduce the
class of functions α : R+ → R∗+ satisfying

α ∈ C1(R+), α ≤ 1, α′ ≤ 0, (4.3)

c2G
∗
2

(
c2h(t)

h̃(t) + 1

)
≤ c1

(
G0

(
γ(t)

α(t)

)
− G0(γ(t))

α(t)

)
, ∀t ∈ R+, (4.4)

where

γ(t) = G−11

(
c1

∫ t

0

ξ(s)ds

)
, t ∈ R+, (4.5)

h̃ is defined in (3.6); that is h̃(t) =
∫ t
0
h(s)ds, and G∗2(t) = sups∈R+

{ts−G2(s)},
t ∈ R+ is the convex conjugate of G2 in the sense of Young (see [2]). Thanks
to (A2), G∗2 is given by

G∗2(t) = t(G′2)−1(t)−G2

[
(G′2)−1(t)

]
, t ∈ R+. (4.6)

According to (A2), G0 is convex increasing on R+ and defines a bijection from
R+ to R+, G1 is decreasing and defines a bijection from ]0, 1] to R+, G2 is
convex and increasing on R+, γ is of class C1 on R+, and G∗2 is convex and
increasing on R+. Moreover, h is a C1(R+) because, in both cases (1.1) and
(1.2), we have η0 ∈ L1

g; so, for any t ∈ R+,∫ +∞

0

g(t+s)
(

1 + ||∇u0(s)||22
)
ds ≤ g0 +

∫ +∞

0

g(t+ s)||∇u0(0)−∇η0(s)||22ds

≤ g0
(

1 + 2||∇u0(0)||22
)

+ 2

∫ +∞

0

g(s)||∇η0(s)||22ds := M1, ∀t ∈ R+

(since η0 ∈ L1
g thanks to (2.4) and (2.5)) and, using the left assumption in

(2.1),

|h′(t)| = −
∫ +∞

0

g′(t+ s)
(

1 + ||∇u0(s)||22
)
ds

≤ β0
∫ +∞

0

g(t+ s)
(

1 + ||∇u0(s)||22
)
ds = β0h(t) ≤ β0M1, ∀t ∈ R+.

Finally, we remark that h̃ is of class C1 and increasing on R+.
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Theorem 2. Assume that (A1), (A2), (2.4) and (2.5) are satisfied. Then
there exist positive constants c1, c2 and c3 such that, for any α satisfying (4.3)
and (4.4), the solution of (1.1) satisfies

E(t) ≤ c3
(
h̃(t) + 1

)
γ(t)/α(t), ∀t ∈ R+, (4.7)

and the solution of (1.2) satisfies, for any t ∈ R∗+,

E(t) ≤ c1
(
h̃(t) + 1

)
G−10

(c1 (1 +
∫ t
0
ξ(s)G∗2

(
c1h(s)

h̃(s)+1

)
ds
)

∫ t
0
ξ(s)ds

)
. (4.8)

Proof. To simplify the computations, we note by c and ĉ two generic positive
constants which may change from line to line. Without lose of generality,
we assume that E(0) > 0 (otherwise, E ≡ 0 because E is nonnegative and
nonincreasing). For the proof of (4.7) and (4.8), combining (3.3) and the right
inequality in (2.8), and using (2.2) for (gou)(t) in case (1.2), we obtain

L′(t) ≤ −cE(t) + ĉ

∫ t

0

g(s)||∇u(t)−∇u(t− s)||22ds

+ ĉ

∫ +∞

t

g(s)||∇u(t)−∇u(t− s)||22ds, ∀t ∈ R+.

(4.9)

Recalling (3.1) and the definition of h in (4.2), we get

L′(t) ≤ −cE(t) + ĉ

∫ t

0

g(s)||∇u(t)−∇u(t− s)||22ds+ ĉh(t), ∀t ∈ R+. (4.10)

Combining (4.10) and (3.8), we get

L′(t) ≤ −cE(t) +
ĉ
(
h̃(t) + 1

)
ε0

G−1

 ε0I(t)

ξ(t)
(
h̃(t) + 1

)
+ ĉh(t), ∀t ∈ R+.

The functional F defined, for fixed ε > 0, by

F = G′
(
εE/

(
E(0)

(
h̃+ 1

)))
L (4.11)

satisfies, for any t ∈ R+ (noting that G′′ ≥ 0, h̃′ ≥ 0 and E′ ≤ 0 since (2.6)),

F ′(t) =
ε

E(0)

(
E(t)

h̃(t)+1

)′
G′′
(

εE(t)

E(0)
(
h̃(t)+1

))L(t)+G′
(

εE(t)

E(0)
(
h̃(t)+1

))

× L′(t) ≤ −cE(t)G′
(

εE(t)

E(0)
(
h̃(t) + 1

))+ ĉh(t)G′
(

εE(t)

E(0)
(
h̃(t) + 1

)) (4.12)

+
ĉ
(
h̃(t) + 1

)
ε0

G′

 εE(t)

E(0)
(
h̃(t) + 1

)
G−1

 ε0I(t)

ξ(t)
(
h̃(t) + 1

)
 .
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Let G∗ be the convex conjugate of G in the sense of Young (see [2]), then

G∗(s) = s(G′)−1(s)−G
[
(G′)−1(s)

]
≤ s(G′)−1(s), ∀s ∈ R+

and G∗ satisfies the following generalized Young inequality:

AB ≤ G(A) +G∗(B), ∀A, B ∈ R+. (4.13)

So, with A = G−1
(

ε0I(t)

ξ(t)(h̃(t)+1)

)
and B = G′

(
εE(t)

E(0)(h̃(t)+1)

)
and using (4.12)–

(4.13), we arrive at, for any t ∈ R+,

F ′(t) ≤ −cE(t)G′

 εE(t)

E(0)
(
h̃(t) + 1

)
+ ĉ

I(t)

ξ(t)
+ ĉh(t)G′

 εE(t)

E(0)
(
h̃(t) + 1

)


+
ĉ
(
h̃(t)+1

)
ε0

G∗

G′
 εE(t)

E(0)
(
h̃(t)+1

)
≤− cE(t)G′

 εE(t)

E(0)
(
h̃(t)+1

)


+
ĉ

ε0

εE(t)

E(0)
G′

 εE(t)

E(0)
(
h̃(t) + 1

)
+ ĉ

I(t)

ξ(t)
+ ĉh(t)G′

 εE(t)

E(0)
(
h̃(t) + 1

)
 .

By choosing 0 < ε < cε0E(0)
ĉ , multiplying the above inequality by ξ(t) and

recalling the definition of G0 in (4.1) and (3.9), we obtain, for any t ∈ R+,

ξ(t)F ′(t) ≤− cξ(t)
(
h̃(t) + 1

)
G0

 εE(t)

E(0)
(
h̃(t) + 1

)
 (4.14)

− ĉ(δ0E′(t) + (1− δ0)E′∗(t)) + ĉξ(t)h(t)G′

 εE(t)

E(0)
(
h̃(t) + 1

)
 .

Let F1 = ξF + ĉ(δ0E + (1 − δ0)E∗). From (3.2) and (4.11), and noting that

0 ≤ G′
(

εE(t)

E(0)(h̃(t)+1)

)
≤ G′(ε) and 0 ≤ ξ(t) ≤ ξ(0), we deduce that

F1 ∼ E for (1.1), and F1 ≥ ĉE∗ ≥ cE for (1.2), (4.15)

and because ξ is nonincreasing, (4.14) implies that, for any t ∈ R+,

F ′1(t) ≤ −cξ(t)
(
h̃(t) + 1

)
G0

(
εE(t)/

(
E(0)(h̃(t) + 1)

))
(4.16)

+ ĉξ(t)h(t)G′
(
εE(t)

(
E(0)(h̃(t) + 1)

))
.

Let d > 0. Using the definition of G0 and G2 in (4.1) and the general Young

inequality (4.13) for the last term in (4.16) with A = G′
(

εE(t)

E(0)(h̃(t)+1)

)
,
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B = ĉh(t)/d(h̃(t) + 1) and G2 instead of G (G2 is convex thanks to (A2)), we
have, for any t ∈ R+,

ĉh(t)G′
(

εE(t)

E(0)
(
h̃(t)+1

))=d
(
h̃(t)+1

)( ĉh(t)

d
(
h̃(t)+1

))G′( εE(t)

E(0)
(
h̃(t)+1

))

≤ d
(
h̃(t) + 1

)G2

G′
 εE(t)

E(0)
(
h̃(t) + 1

)
+G∗2

 ĉh(t)

d
(
h̃(t) + 1

)


≤ d
(
h̃(t)+1

) εE(t)

E(0)
(
h̃(t)+1

)G′
 εE(t)

E(0)
(
h̃(t)+1

)
+G∗2

 ĉh(t)

d
(
h̃(t)+1

)


≤ d
(
h̃(t)+1

)G0

 εE(t)

E(0)
(
h̃(t)+1

)
+G∗2

 ĉh(t)

d
(
h̃(t)+1

)
 . (4.17)

Combining (4.16) and (4.17) and choosing d small enough, we arrive at, for
any t ∈ R+,

F ′1(t) ≤ ξ(t)
(
h̃(t) + 1

)−cG0

 εE(t)

E(0)
(
h̃(t) + 1

)
+ ĉG∗2

(
ĉh(t)

h̃(t) + 1

) .
(4.18)

Now, we distiguish the cases (1.1) and (1.2).

Case (1.1). Taking into account the first property in (4.15), we have, for
some d0 > 0,

G0

(
εE(t)

E(0)
(
h̃(t) + 1

)) ≥ G0

(
d0F1(t)

h̃(t) + 1

)
, ∀t ∈ R+.

Then, puting F2 = d0
h̃+1
F1, we see that (4.18) implies, for positive constants c1

and c2,

F ′2(t) ≤ −c1ξ(t)G0(F2(t)) + c2ξ(t)G
∗
2

(
c2h(t)

h̃(t) + 1

)
, ∀t ∈ R+, (4.19)

since d0/(h̃+ 1) is nonincreasing. The first property in (4.15) implies that there
exists b0 > 0 such that F2 ≥ b0/(h̃+ 1)E. Let t ∈ R+ and α satisfying (4.3)
and (4.4). If b0/(h̃(t) + 1)E(t) ≤ 2γ(t)/α(t), then

E(t) ≤ 2

b0

(
h̃(t) + 1

) γ(t)

α(t)
.

If b0
h̃(t)+1

E(t) > 2 γ(t)α(t) , then b0
h̃(s)+1

E(s) > 2 γ(t)α(t) , for any 0 ≤ s ≤ t, since E
h̃+1

is

nonincreasing. Therefore F2(s) > 2 γ(t)α(t) , for any 0 ≤ s ≤ t. Using the fact that

G0 is convex, G0(0) = 0 (assumption (A2)) and 0 < α ≤ 1, we have, for any
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0 ≤ s ≤ t and 0 < ε1 ≤ 1,

G0 (ε1α(s)F2(s)− ε1γ(s)) ≤ ε1α(s)G0 (F2(s)− γ(s)/α(s))

≤ ε1α(s)F2(s)G′
(
F2(s)− γ(s)

α(s)

)
− ε1α(s)

γ(s)

α(s)
G′
(
F2(s)− γ(s)

α(s)

)
≤ ε1α(s)F2(s)G′ (F2(s))− ε1α(s)

γ(s)

α(s)
G′
(
γ(s)

α(s)

)
,

thus, we put F3 = ε1αF2 − ε1γ with 0 < ε1 ≤ 1 such that F3(0) ≤ 1, we get

G0 (F3(s)) ≤ ε1α(s)G0 (F2(s))− ε1α(s)G0 (γ(s)/α(s)) , ∀0 ≤ s ≤ t. (4.20)

Because α′ ≤ 0 (from (4.3)), we deduce from (4.19) and (4.20) that

F ′3(s) ≤ −c1ξ(s)G0(F3(s)) + ψ(s), ∀0 ≤ s ≤ t, (4.21)

where

ψ(s) = ε1ξ(s)α(s)

(
c2G

∗
2

(
c2h(s)

h̃(s) + 1

)
− c1G0

(
γ(s)

α(s)

))
− ε1γ′(s).

From the definition of G1 and γ in (4.1) and (4.5), we have

G1(γ(s)) = c1

∫ s

0

ξ(τ)dτ =⇒ γ′(s) = −c1ξ(s)G0(γ(s)), ∀0 ≤ s ≤ t,

which leads to ψ ≤ 0 according to (4.4). Then we get from (4.21) that

(G1(F3(s)))
′ ≥ c1ξ(s), ∀0 ≤ s ≤ t. (4.22)

By integrating (4.22) over [0, t], we get

G1(F3(t)) ≥ c1
∫ t

0

ξ(s)ds+G1(F3(0)).

But G1 is decreasing, F3(0) ≤ 1 and G1(1) = 0, then

F3(t) ≤ G−11

(
c1

∫ t

0

ξ(s)ds

)
= γ(t).

Therefore, by definition of F3 and F2, we get

F2(t) ≤ ε1 + 1

ε1

γ(t)

α(t)
and F1(t) ≤ ε1 + 1

ε1d0

(
h̃(t) + 1

) γ(t)

α(t)
.

But F1 ∼ E implies that E ≤ b1F1, for some b1 > 0, then

E(t) ≤ (ε1 + 1)b1
ε1d0

(
h̃(t) + 1

) γ(t)

α(t)
.

Finally, we deduce that (4.7) holds, for any t∈R+, with c3= max
{

2
b0
, (ε1+1)b1

ε1d0

}
.
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Case (1.2). Because 1
h̃+1

is nonicreasing and F1 is nonegative, then (4.18)

leads to

cξ(s)G0

 εE(s)

E(0)
(
h̃(s)+1

)
 ≤ −( F1(s)

h̃(s)+1

)′
+ĉξ(s)G∗2

(
ĉh(s)

h̃(s)+1

)
, ∀s∈R+.

So, noting that G0

(
εE

E(0)(h̃+1)

)
is nonincreasing and integrating the above

inequality over [0, t], we get

cG0

 εE(t)

E(0)
(
h̃(t) + 1

)
∫ t

0

ξ(s)ds ≤ c
∫ t

0

ξ(s)G0

 εE(s)

E(0)
(
h̃(s) + 1

)
 ds

≤ F1(0)− F1(t)

h̃(t) + 1
+ ĉ

∫ t

0

ξ(s)G∗2

(
ĉh(s)

h̃(s) + 1

)
ds

≤ F1(0) + ĉ

∫ t

0

ξ(s)G∗2

(
ĉh(s)

h̃(s) + 1

)
ds, ∀t ∈ R+,

which leads to (4.8) with c1 = max
{
E(0)
ε , F1(0)

c , ĉc , ĉ
}

. The proof of Theorem

2 is now completed. ut

Remark 3. 1. From (4.4), we see that

γ(t)

α(t)
≥ G−10

(
c2
c1
G∗2

(
c2h(t)

h̃(t) + 1

))
, ∀t ∈ R+.

Consequently, the decay rate at infinity of E given by (4.7) can not be better
than the one of the function

t 7→ c3

(
h̃(t) + 1

)
G−10

(
c2
c1
G∗2

(
c2h(t)

h̃(t) + 1

))
.

2. The class of functions α satisfying (4.3) and (4.4) is not empty; it contains
at least the function α = dγ, with 0 < d ≤ 1 small enough. Indeed, (4.3) is sat-
isfied (since (4.1) and (4.5)). On the other hand, we have h

h̃+1
is nonincreasing,

0 < γ ≤ 1, and G′ and G∗2 are increasing, then (4.4) is satisfied if

c2G
∗
2(c2h(0)) ≤ c1

d

(
G′
(

1

d

)
−G′(1)

)
,

which holds, for 0 < d ≤ 1 small enough, since limt→+∞G′(t) = +∞. But
with the choice α = dγ, (4.7) does not lead to any stability estimate. The idea
is to choose α satisfying (4.3) and (4.4) such that (4.7) gives the best possible
decay rate for E. On the other hand, the decay rate given by (4.8) depends on
the one of s 7→ ||∇u0(s)||2. See the two examples below.
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Example 1. Let us consider the following class of g and u0:

g(s) = a(s+ 1)−q and m1(s+ 1)r ≤ 1 + ||∇u0(s)||22 ≤ m0(s+ 1)r, (4.23)

where m0, m1 > 0, q > 1, 0 < a < q − 1 for (1.1), 0 < a < q−1
c0

for (1.2)

(then (A1) is satisfied, for any β0 ≥ q) and 0 ≤ r < q − 1 (so η0 ∈ L1
g). The

assumption (A2) holds with ξ(s) = qa
−1
q and G(s) = s

q+1
q . Then, there exist

positive constants di (i = 0, . . . , 4) depending only on a, q and c1 such that
(using (4.6))

G0(s) = d0s
q+1
q , G1(s) = d1

(
s

−1
q − 1

)
, G2(s) = d2s

q+1, G∗2(s) = d3s
q+1
q

and γ(s) = (d4s+ 1)−q. On the other hand, we have

d5(t+ 1)−(q−r−1) ≤ h(t) ≤ d6(t+ 1)−(q−r−1), ∀t ∈ R+, (4.24)

h̃(t) + 1 ≥ d7


ln (t+ 1) + 1 if q − r = 2,

1 if q − r > 2,

(t+ 1)−q+r+2 if 1 < q − r < 2,

∀t ∈ R+ (4.25)

and

h̃(t) + 1 ≤ d8


ln (t+ 1) + 1 if q − r = 2,

1 if q − r > 2,

(t+ 1)−q+r+2 if 1 < q − r < 2,

∀t ∈ R+, (4.26)

for some constant d5, d6, d7, d8 > 0 (depending only on a, q, m0, m1 and r).
Condition (4.4) is satisfied if

(t+ 1)qh(t)

h̃(t) + 1
α(t) ≤ d9

(
1− (α(t))

1
q

) q
q+1

, ∀t ∈ R+, (4.27)

where d9 > 0 depending only on a, q, c1 and c2. Choosing α(t) = λ(t + 1)−p

with 0 < λ ≤ 1, p = r + 1 if q − r ≥ 2, and p = q − 1 if 1 < q − r < 2, so
(4.3) is valid. Moreover, using (4.24) and (4.25), we see that (4.27) is satisfied
if 0 < λ ≤ 1 is small enough, and then (4.4) is satisfied. Hence (4.7) and (4.26)
imply that, for any t ∈ R+,

E(t) ≤

{
c3 (ln (t+ 1) + 1) (t+ 1)−1 if q − r = 2,

c3(t+ 1)−(q−r−1) if q − r > 2 or 1 < q − r < 2.
(4.28)

The estimate (4.28) leads to

lim
t→+∞

E(t) = 0 (4.29)

even if s 7→ ||∇u0(s)||2 is not bounded (that is 0 < r < q − 1 in (4.23)). The
estimate (4.28) extends and improves the decay rate (t+ 1)−p̃ (for some 0 < p̃
small enough) obtained in [19] for q > 2.
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If, for example, s 7→ ||∇u0(s)||2 is bounded; that is r = 0 in (4.23) (as it
was assumed in [15,17,40]), then (4.28) holds with r = 0, which gives a better
decay rate than the ones (t+ 1)−p̃ (for any 0 < p̃ < q−1

2 ), (t+ 1)−p̃ (for some

0 < p̃ small enough) and (t+ 1)−
q2−q−1

q obtained in [15,17,40], respectively.

Using (4.24) and (4.25), we see that∫ +∞

0

ξ(s)G∗2

(
c1h(s)

h̃(s) + 1

)
ds < +∞,

then (4.8) and (4.26) imply that the solution of (1.2) satisfies

E(t) ≤


c1 (ln (t+ 1) + 1) t−

q
q+1 if q − r = 2,

c1t
− q

q+1 if q − r > 2,

c1t
−( q

q+1+q−r−2) if 1 < q − r < 2,

, ∀t ∈ R∗+. (4.30)

If q− r ≥ 2 or 1
2

(
r +

√
r2 + 4(r + 2)

)
< q < r+ 2, the estimate (4.30) in case

q >
√

2 implies (4.29) even if s 7→ ||∇u0(s)||2 is not bounded.

If s 7→ ||∇u0(s)||2 is bounded (r = 0 in (4.23)) as it was assumed in [15,17,
40], we get (4.30) with r = 0. In this case, we get a better decay rate than the
one (t+ 1)−p̃ (for any 0 < p̃ < q−1

q+1 ) obtained in [15].

Example 2.

Let us consider the second example of the following class of g and u0:

g(s) = a(s+ 2)−1(ln (s+ 2))−q, (4.31)

m1(ln (s+ 2))r ≤ 1 + ||∇u0(s)||22 ≤ m0(ln (s+ 2))r, ∀s ∈ R+, (4.32)

where m0, m1 > 0, q > 1, 0 < a < (q − 1)(ln 2)q−1 in case (1.1), 0 < a <
q−1
c0

(ln 2)q−1 in case (1.2) (so (A1) holds, for any β0 ≥ 1
2

(
1 + q

ln 2

)
) and

0 ≤ r < q − 1 (then η0 ∈ L1
g). The assumption (A2) holds with ξ(s) = d0 and

G(s) = s2, where d0 > 0 depends only on a and q. Then, for d1 > 0 (depending
only on d0 and c1),

G0(s) = 2s2, G2(s) = G∗2(s) =
1

2
s2, G1(s) =

1

2

(
1

s
− 1

)
and γ(s) = (d1s+ 1)−1. Similarily to the first example, (4.32) implies that, for
some d2, d3, d4, d5 > 0 (depending only on a, q, m0, m1 and r) and for any
t ∈ R+,

d2(ln (t+ 2))−(q−r−1) ≤ h(t) ≤ d3(ln (t+ 2))−(q−r−1), (4.33)

d4(ln (t+2))−(q−r−1)(t+1) ≤ h̃(t)+1 ≤ d5(ln (t+2))−(q−r−1)(t+1). (4.34)

Using (4.33) and (4.34), we see that condition (4.4) is satisfied if

α(t) ≤ d6 (1− α(t))
1
2 , ∀t ∈ R+, (4.35)
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where d6 > 0 (depending only on a, q, r, m0, m1, c1 and c2). By choosing
α(t) = λ with 0 < λ ≤ 1 small enough, we get (4.3) and (4.35). Then we
deduce from (4.7) and (4.34) that the solution of (1.1) satisfies

E(t) ≤ c3(ln (t+ 2))−(q−r−1), ∀t ∈ R+, (4.36)

which imply (4.29) even if s 7→ ||∇u0(s)||2 is not bounded (0 < r < q − 1 in
(4.32)). However, (4.8) does not give in case (4.31) any decay estimate for the
solution of (1.2).

If s 7→ ||∇u0(s)||2 is bounded (r = 0 in (4.32)) as it was assumed in [15,17],
then the decay rate given in (4.36) with r = 0 is better than the one (ln (t+2))−p̃

(for some 0 < p̃ small enough) obtained in [17], and it is little better than the
one (ln (t+ 2))−p̃ (for any 0 < p̃ < q − 1) given in [15].

Applications

1. Our systems (1.1) and (1.2) are particular problems that fall in the
framework of the abstract system (1.13) (considered in [15]) in a Hilbert
space H with a norm denoted by ‖ · ‖, where A : D(A) → H and
B : D(B) → H are self-adjoint linear positive definite operators with
domains D(A) ⊂ D(B) ⊂ H such that the embeddings are dense and
compact, and there exist a0, a1 > 0 satisfying

a1‖v‖2 ≤ ‖B
1
2 v‖2 ≤ a0‖A

1
2 v‖2, ∀v ∈ D(A

1
2 ), (4.37)

0 < g0 < 1/a0. (4.38)

Systems (1.1) and (1.2) are included, respectively, in the following two
distinguished cases considered in [15]:

∃a2 > 0 : ‖A 1
2 v‖2 ≤ a2‖B

1
2 v‖2, ∀v ∈ D(A

1
2 ), (4.39)

∃a2 > 0 : ‖A 1
2 v‖2 ≤ a2‖A

1
2B

1
2 v‖2, ∀v ∈ D(A

1
2B

1
2 ). (4.40)

System (1.1) corresponds to the case (4.39) with H = L2(Ω), A = B =

−∆, D(A
1
2 ) = D(B

1
2 ) = H1

0 (Ω) and D(A) = D(B) = H2(Ω) ∩H1
0 (Ω).

And system (1.2) corresponds to the case (4.40) with H = L2(Ω), A =

−∆, B = Id, D(A
1
2 ) = H1

0 (Ω), D(A) = H2(Ω) ∩ H1
0 (Ω) and D(B) =

D(B
1
2 ) = L2(Ω). Our stability results can be extended to the abstract

system (1.13) under assumptions [(A1), (A2), (4.37), (4.38) (instead of
the second condition in (2.1))] and [(4.39) or (4.40)], so the estimates
(4.7) and (4.8) hold in cases (4.39) and (4.40), respectively, where ∇ in

(4.2) is replaced by A
1
2 and A

1
2B

1
2 in cases (4.39) and (4.40), respectively.

So we improve the results of [15] by droping the boundedness condition
(1.14) on u0 and obtaining a better decay rate.

2. The aprroach presented in this paper can be also applied to (1.16) and
(1.20) in order to improve the decay rate of solutions obtained in [16,19],
and drop the boundedness condition (1.17) on u0.
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[37] J.E. Muñoz Revira and M. Grazia Naso. Asymptotic stability of semi-
groups associated with linear weak dissipative systems with memory.
Journal of Mathematical Analysis and Applications, 326(1):691–707, 2007.
https://doi.org/10.1016/j.jmaa.2006.03.022.
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