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The effect of the heat conduction of types I and III on the decay rate of the Bresse system via the longitudinal displacement

Introduction

We study in this paper the asymptotic behavior at infinity of the solutions of two coupled systems related to the Bresse model with two different types of dissipation given by heat conduction and working only on the longitudinal displacement. The first system is the Bresse system with thermoelasticity of type I

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ρ 1 ϕ tt -k (ϕ x + ψ + l w)
xlk 0 (w xlϕ) = 0i n (0, 1) × (0, ∞) , ρ 2 ψ ttbψ xx + k (ϕ x + ψ + l w) = 0i n (0, 1) × (0, ∞) , ρ 1 w ttk 0 (w xlϕ) x + lk (ϕ x + ψ + l w) + δθ x = 0i n (0, 1) × (0, ∞) , ρ 3 θ tβθ xx + δw xt = 0i n (0, 1) × (0, ∞) [START_REF] Afilal | On the uniform stability for a linear thermoelastic Bresse system with second sound[END_REF] along with the initial data

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
ϕ (x, 0) = ϕ 0 (x) ,ϕ t (x, 0) = ϕ 1 (x) in (0, 1) , ψ (x, 0) = ψ 0 (x) ,ψ t (x, 0) = ψ 1 (x) in (0, 1) , w (x, 0) = w 0 (x) ,w t (x, 0) = w 1 (x) in (0, 1) , θ (x, 0) = θ 0 (x) in (0, 1)

(

and the mixed homogeneous Dirichlet-Neumann boundary conditions

ϕ (0, t) = ψ x (0, t) = w x (0, t) = θ (0, t) = 0i n (0, ∞) , ϕ x (1, t) = ψ (1, t) = w (1, t) = θ x (1, t) = 0i n (0, ∞) . (3) 
The second system is the Bresse system with thermoelasticity of type III

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ρ 1 ϕ tt -k (ϕ x + ψ + l w)
xlk 0 (w xlϕ) = 0i n (0, 1) × (0, ∞) , ρ 2 ψ ttbψ xx + k (ϕ x + ψ + l w) = 0i n (0, 1) × (0, ∞) , ρ 1 w ttk 0 (w xlϕ) x + lk (ϕ x + ψ + l w) + δθ xt = 0i n (0, 1) × (0, ∞) ,

ρ 3 θ tt -βθ xx -γθ xxt + δw xt = 0i n (0, 1) × (0, ∞) (4) 
along with (2) and (3),and θ t (x, 0) = θ 1 (x) in (0, 1) ,

where ρ 1 ,ρ 2 ,ρ 3 , b, k, k 0 ,δ,β,γ and l are positive constants, w, ϕ and ψ represent, respectively, the longitudinal, vertical and shear angle displacements, and θ denotes the temperature.

Several well-posedness and stability results for Bresse systems [START_REF] Bresse | Cours de Mécanique Appliquée[END_REF] have been obtained during the last few years, where the stability depends on the nature and position of the controls and some relations between the coefficients. Let us mention here some known results concerning the thermoelastic Bresse systems. For more details in what concerns mathematical modeling of the thermoelastic problems, we refer the readers to the works [START_REF] Chandrasekharaiah | Hyberpolic thermoelasticity: a review of recent literature[END_REF][START_REF] Green | A re-examination of the basic postulates of thermomechanics[END_REF][START_REF] Green | On undamped heat waves in an elastic solid[END_REF][START_REF] Lagnese | Modelling of dynamic networks of thin thermoelastic beams[END_REF][START_REF] Lagnese | Modelling analysis and control of dynamic elastic multi-link structures[END_REF].

The authors of [START_REF] Liu | Energy decay rate of the thermoelastic Bresse system[END_REF] considered the following system:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ρ 1 ϕ tt -k (ϕ x + ψ + l w)
xlk 0 (w xlϕ) + lδθ = 0, ρ 2 ψ ttbψ xx + k (ϕ x + ψ + l w) + δq x = 0, ρ 1 w ttk 0 (w xlϕ) x + lk (ϕ x + ψ + l w) + δθ x = 0, ρ 3 θ tθ xx + β (w xlϕ) t = 0, ρ 3 q tq xx + βψ xt = 0 [START_REF] Green | A re-examination of the basic postulates of thermomechanics[END_REF] and proved the exponential stability if

k -k 0 = ρ 1 b -ρ 2 k = 0, (7) 
and the polynomial stability in general. In [START_REF] Fatori | Rates of decay to weak thermoelastic Bresse system[END_REF], the authors proved that

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ρ 1 ϕ tt -k (ϕ x + ψ + l w)
xlk 0 (w xlϕ) = 0, ρ 2 ψ ttbψ xx + k (ϕ x + ψ + l w) + δθ x = 0, ρ 1 w ttk 0 (w xlϕ) x + lk (ϕ x + ψ + l w) = 0,

ρ 3 θ t -θ xx + (βψ t ) x = 0 (8) 
is exponentially stable if and only if [START_REF] Green | On undamped heat waves in an elastic solid[END_REF] holds, and it is polynomially stable in general. The results of [START_REF] Fatori | Rates of decay to weak thermoelastic Bresse system[END_REF]were generalized in [START_REF] Najdi | Weakly locally thermal stabilization of Bresse systems[END_REF] to the case where δ and β are functions of x and vanish on some part of the domain. The authors of [START_REF] Keddi | Exponential and polynomial decay in a thermoelastic-Bresse system with second sound[END_REF] proved that the following thermoelastic Bresse system

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ρ 1 ϕ tt -k (ϕ x + ψ + l w) x -lk 0 (w x -lϕ) = 0, ρ 2 ψ tt -bψ xx + k (ϕ x + ψ + l w) + δθ x = 0, ρ 1 w tt -k 0 (w x -lϕ) x + lk (ϕ x + ψ + l w) = 0, ρ 3 θ t + q x + δψ xt = 0, τ q t + βq + θ x = 0 (9) 
is exponentially stable if

k -k 0 = ρ 1 k - ρ 2 b 1 - τ kρ 3 ρ 1 - τδ 2 b = 0a n dl is small, it is not exponentially stable if k = k 0 or ρ 1 k - ρ 2 b 1 - τ kρ 3 ρ 1 = τδ 2 b ,
and it is polynomially stable in general. The author of [START_REF] Dell'oro | Asymptotic stability of thermoelastic systems of Bresse type[END_REF] studied the stability of

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ρ 1 ϕ tt -k (ϕ x + ψ + l w)
xlk 0 (w xlϕ) = 0i n (0, 1) × (0, ∞) , ρ 2 ψ ttbψ xx + k (ϕ x + ψ + l w) + δθ x = 0i n (0, 1) × (0, ∞) , ρ 1 w ttk 0 (w xlϕ) x + lk (ϕ x + ψ + l w) = 0i n (0, 1) × (0, ∞) ,

ρ 3 θ t -β ∞ 0 g(s)θ xx (t -s) ds + δψ xt = 0i n (0, 1) × (0, ∞) ,
where g : R + → R + is a given function satisfying some hypotheses. He provided a necessary and sufficient condition for exponential stability in terms of the structural parameters of the problem. For particular choices of g, the results of [START_REF] Dell'oro | Asymptotic stability of thermoelastic systems of Bresse type[END_REF] cover the cases of Fourier, Cattaneo and Coleman-Gurtin heat conduction.

For all the above stability results, at least the shear angle displacement ψ was damped via the heat conduction. The authors of [START_REF] Afilal | On the uniform stability for a linear thermoelastic Bresse system with second sound[END_REF] considered the Cattaneo heat conduction working only on the longitudinal displacement

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ρ 1 ϕ tt -k (ϕ x + ψ + l w) x -lk 0 (w x -lϕ) = 0, ρ 2 ψ tt -bψ xx + k (ϕ x + ψ + l w) = 0, ρ 1 w tt -k 0 (w x -lϕ) x + lk (ϕ x + ψ + l w) + δθ x = 0, ρ 3 θ t + q x + δw xt = 0, τ q t + βq + θ x = 0 ( 10 
)
and proved that the exponential stability is equivalent to

kρ 2 -bρ 1 = (k -k 0 ) ρ 3 - ρ 1 τ k -δ 2 = 0 (11) 
and

l 2 = k 0 ρ 2 + bρ 1 k 0 ρ 2 π 2 + mπ 2 + kρ 1 ρ 2 (k + k 0 ) , ∀m ∈ Z. (12) 
Moreover, the polynomial stability of [START_REF] Lagnese | Modelling of dynamic networks of thin thermoelastic beams[END_REF] in general was also proved in [START_REF] Afilal | On the uniform stability for a linear thermoelastic Bresse system with second sound[END_REF]. Similar stability results were proved in [START_REF] Afilal | On the uniform stability for a linear thermoelastic Bresse system with second sound[END_REF]whenδθ x is replaced by δw t , the last two equations in [START_REF] Lagnese | Modelling of dynamic networks of thin thermoelastic beams[END_REF] are neglected and (11) is replaced by [START_REF] Green | On undamped heat waves in an elastic solid[END_REF].

Our objective in this paper is to complete the results of [START_REF] Afilal | On the uniform stability for a linear thermoelastic Bresse system with second sound[END_REF] by considering the heat conduction of types I and III. We prove that, when l does not belong to two sequences of real numbers (conditions (15)a n d( 24) below), the exponential stability of the two systems is equivalent to [START_REF] Green | On undamped heat waves in an elastic solid[END_REF]. Moreover, we show that the polynomial stability holds in general with two decay rates corresponding to the two cases,

ρ 1 b -ρ 2 k = 0a n dρ 1 b -ρ 2 k = 0.
The proof of the well-posedness is based on the semigroup theory. However, the stability results are proved using the energy method combined with the frequency domain approach.

The paper is organized as follows. In Sect. 2, we give an idea on the proof of the well-posedness of ( 1)-( 3) and ( 2)-( 5). In Sects. 3 and 4, we prove, respectively, our exponential and polynomial stability results.

The semigroup setting

In this section, we give a brief idea on the proof of the well-posedness of ( 1)-( 3)and( 2)-( 5). We consider the energy space

H = ∼ H × L 2 (0, 1) in case (1), H 1 * (0, 1) × L 2 (0, 1) in case (4),
where

∼ H = H 1 * (0, 1) × L 2 (0, 1) × ∼ H 1 * (0, 1) × L 2 (0, 1) × ∼ H 1 * (0, 1) × L 2 (0, 1) , H 1 * (0, 1) = f ∈ H 1 (0, 1) : f (0) = 0 and ∼ H 1 * (0, 1) = f ∈ H 1 (0, 1) : f (1) = 0 .
The space H is equipped with the inner product

1 , 2 H = k (ϕ 1x + ψ 1 + l w 1 ) , (ϕ 2x + ψ 2 + l w 2 ) L 2 (0,1) + b ψ 1x ,ψ 2x L 2 (0,1) +k 0 (w 1x -lϕ 1 ) , (w 2x -lϕ 2 ) L 2 (0,1) + ρ 1 φ1 , φ2 L 2 (0,1) + ρ 2 ψ1 , ψ2 L 2 (0,1) +ρ 1 w1 , w2 L 2 (0,1) + ⎧ ⎨ ⎩ ρ 3 θ 1 ,θ 2 L 2 (0,1) in case (1), β θ 1x ,θ 2x L 2 (0,1) + ρ 3 θ1 , θ2 L 2 (0,1)
in case (4),

where (for j = 1, 2) j = (ϕ j , φ j ,ψ j , ψ j ,w j , w j ,θ j ) T in case (1), (ϕ j , φ j ,ψ j , ψ j ,w j , w j ,θ j , θ j ) T in case (4).

We consider also 

= ⎧ ⎪ ⎨ ⎪ ⎩ ϕ, φ, ψ, ψ, w, w, θ T in case (1), ϕ, φ, ψ, ψ, w, w, θ, θ T in case (4) (13 
= (ϕ 0 ,ϕ 1 ,ψ 0 ,ψ 1 ,w 0 ,w 1 ,θ 0 ) T in case (1), (ϕ 0 ,ϕ 1 ,ψ 0 ,ψ 1 ,w 0 ,w 1 ,θ 0 ,θ 1 ) T in case (4),
where φ = ϕ t , ψ = ψ t , w = w t and θ = θ t .

Systems (1)-( 3)and( 2)-( 5) can be written as a first-order system given by

t = A in (0, ∞) , (t = 0) = 0 , (14) 
where A is a linear operator defined by

A = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ φ k ρ 1 (ϕ x + ψ + l w) x + lk 0 ρ 1 (w x -lϕ) ψ b ρ 2 ψ xx - k ρ 2 (ϕ x + ψ + l w) w k 0 ρ 1 (w x -lϕ) x - lk ρ 1 (ϕ x + ψ + l w) - δ ρ 1 θ x β ρ 3 θ xx - δ ρ 3 wx ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
in case (1),and

A = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ φ k ρ 1 (ϕ x + ψ + l w) x + lk 0 ρ 1 (w x -lϕ) ψ b ρ 2 ψ xx - k ρ 2 (ϕ x + ψ + l w) w k 0 ρ 1 (w x -lϕ) x - lk ρ 1 (ϕ x + ψ + l w) - δ ρ 1 θx θ 1 ρ 3 βθ + γ θ xx - δ ρ 3 wx ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠
in case (4). The domain of A is defined by

D (A) = ⎧ ⎨ ⎩ ∈ H | ϕ, θ ∈ H 2 Theorem 2.1 Assume that l / ∈ π 2 + πN. ( 15 
)
Then, for any m ∈ N and 0 ∈ D(A m ),system(14) admits a unique solution

∈∩ m j=0 C m-j R + ; D A j . ( 16 
)
Proof First, from the definition of H 1 * (0, 1) and

∼ H 1 * (0, 1),weseethat,if (ϕ, ψ, w) ∈ H 1 * (0, 1) × ∼ H 1 * (0, 1) × ∼ H 1 * (0, 1)
satisfies

k (ϕ x + ψ + l w) 2 L 2 (0,1) + b ψ x 2 L 2 (0,1) + k 0 (w x -lϕ) 2 L 2 (0,1) = 0, then ψ = 0,ϕ =-c sin (lx) and w = c cos (lx),
where c is a constant such that

c = 0o rl ∈ π 2 + πN.
Then condition [START_REF] Najdi | Weakly locally thermal stabilization of Bresse systems[END_REF] implies that ϕ = ψ = w = 0, and thus, H is a Hilbert space.

Second, we prove that A is dissipative. Indeed, using the definition of A and •, • H , and integrating by parts, we get

A , H = ⎧ ⎪ ⎨ ⎪ ⎩ -β θ x 2 L 2 (0,1) in case (1), -γ θx 2 L 2 (0,1)
in case (4).

(17)

Hence, A is dissipative in H.

Third, we show that, for any F ∈ H, there exists Z ∈ D (A) satisfying

AZ = F, ( 18 
)
that is 0 ∈ ρ(A).LetF = ( f 1 ,..., f j ) T and Z = (z 1 ,...,z j ) T ,where j = 7 in case (1),and j = 8 in case (4). The first, third and fifth equations in (18) are equivalent to

z 2 = f 1 , z 4 = f 3 and z 6 = f 5 , (19) 
and the seventh equation in case (4) becomes

z 8 = f 7 . (20) 
So, because F ∈ H, z 2 , z 4 , z 6 and z 8 have the required regularity in D (A). Then, the last equation in (18) is reduced to

z 7xx = δ β f 5x + ρ 3 β f 7 ( 21 
)
in case (1),and

(βz 7 + γ f 7 ) xx = δ f 5x + ρ 3 f 8 ( 22 
)
in case [START_REF] Dell'oro | Asymptotic stability of thermoelastic systems of Bresse type[END_REF]. By a direct integration, we see that each equation in 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ k (z 1x + z 3 + lz 5 ) x + lk 0 (z 5x -lz 1 ) = ρ 1 f 2 , bz 3xx -k (z 1x + z 3 + lz 5 ) = ρ 2 f 4 , k 0 (z 5x -lz 1 ) x -lk (z 1x + z 3 + lz 5 ) = f , (23) 
where

f = δz 7x + ρ 1 f 6 in case (1), δ f 7x + ρ 1 f 6 in case (4).
To prove that (23) admits a solution (z 1 , z 3 , z 5 ) satisfying the required regularity and Neumann boundary condition in D (A), we consider the variational formulation of (23) and use the Lax-Milgram theorem and classical elliptic regularity arguments. So, this proves that (18) has a unique solution Z ∈ D (A).B yt h e resolvent identity, we have λI -A is surjective, for any λ>0(see [START_REF] Liu | Semigroups Associated with Dissipative Systems[END_REF]). Consequently, the Lumer-Phillips theorem implies that A is the infinitesimal generator of a linear C 0 semigroup of contractions on H. Finally, Theorem 2.1 holds (see [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Differential Equations[END_REF]) ⊓ ⊔

Exponential stability

Our objective in this section is to show the following exponential stability result:

Theorem 3.1 We assume that (15) holds. Then the semigroup associated with [START_REF] Liu | Semigroups Associated with Dissipative Systems[END_REF] is exponentially stable if and only if

l 2 = ρ 2 k 0 + ρ 1 b ρ 2 k 0 π 2 + mπ 2 + ρ 1 k ρ 2 (k + k 0 ) , ∀m ∈ Z (24) and k -k 0 = ρ 1 b -ρ 2 k = 0. ( 25 
)
The proof is based on the following theorem: Let λ ∈ R * .W eprovethatiλ is not an eigenvalue of A by proving that the unique solution ∈ D (A) of the equation

A = i λ (28) 
is = 0. Let be given by [START_REF] Liu | Energy decay rate of the thermoelastic Bresse system[END_REF].TheEq.(28) means that in case (1),and

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ φ = iλϕ, ψ = iλψ, w = iλw, k ρ 1 (ϕ x + ψ + l w) x + lk 0 ρ 1 (w x -lϕ) = iλ φ, b ρ 2 ψ xx - k ρ 2 (ϕ x + ψ + l w) = iλ ψ, k 0 ρ 1 (w x -lϕ) x - lk ρ 1 (ϕ x + ψ + l w) - δ ρ 1 θ x = iλ w, β ρ 3 θ xx - δ ρ 3 wx = iλθ
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ φ = iλϕ, ψ = iλψ, w = iλw, θ = iλθ, k ρ 1 (ϕ x + ψ + l w) x + lk 0 ρ 1 (w x -lϕ) = iλ φ, b ρ 2 ψ xx - k ρ 2 (ϕ x + ψ + l w) = iλ ψ, k 0 ρ 1 (w x -lϕ) x - lk ρ 1 (ϕ x + ψ + l w) - δ ρ 1 θx = iλ w, 1 ρ 3 βθ + γ θ xx - δ ρ 3 wx = iλ θ (30)
in case [START_REF] Dell'oro | Asymptotic stability of thermoelastic systems of Bresse type[END_REF]. Using ( 17)and( 28), we find

0 = Re iλ 2 H = Re iλ , H = Re A , H = ⎧ ⎪ ⎨ ⎪ ⎩ -β θ x 2 L 2 (0,1) in case (1), -γ θx 2 L 2 (0,1)
in case (4).

Then

θ x = 0 in case (1), θx = 0 in case (4). (31) 
But θ, θ ∈ H 1 * (0, 1) (since ∈ D (A)), then, using the Poincaré's inequality, (31) and the fourth equation in (30), we deduce that

θ = 0 in case (1), θ = θ = 0 in case (4). (32) 
Therefore, from (32) and the third and last equations in (29)and(30), we find

w x =w x = 0. ( 33 
)
As w, w ∈ ∼ H 1 * (0, 1) and according to Poincaré's inequality, we have

w =w = 0. (34) 
Using ( 32)and(34), we see that (29)and(30) are reduced to

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ φ = iλϕ, ψ = iλψ, l 2 k 0 -ρ 1 λ 2 ϕ -k (ϕ x + ψ) x = 0, -ρ 2 λ 2 ψ -bψ xx + k (ϕ x + ψ) = 0, ϕ x + ψ =- k 0 k ϕ x . (35) 
Now, we follow the proof given in [START_REF] Afilal | On the uniform stability for a linear thermoelastic Bresse system with second sound[END_REF]. By deriving the fifth equation in (35) and combining the third one, we see that

ϕ xx + αϕ = 0, ( 36 
)
where α = l 2 k 0 -ρ 1 λ 2 k 0
. We distinguish three cases.

Case 1 λ 2 = l 2 k 0 ρ 1 .Then ϕ(x) = c 1 x + c 2 ,
for c 1 , c 2 ∈ C. Using the boundary conditions

ϕ (0) = ϕ x (1) = 0, (37) 
we find

ϕ = 0, (38) 
which implies that, using the first two equations and the last one in (35),

∼ ϕ = 0 (39)
and

ψ = ∼ ψ = 0. ( 40 
)
Consequently, we get

= 0. ( 41 
) Case 2 λ 2 > l 2 k 0 ρ 1 .Then ϕ(x) = c 1 e √ -αx + c 2 e - √ -αx .
Using again the boundary conditions (37), we find (38), and similarly to case 1, we arrive at (41).

Case 3 λ 2 < l 2 k 0 ρ 1 .Then ϕ(x) = c 1 cos √ αx + c 2 sin √ αx .
Using the boundary conditions (37), we deduce that c 1 = 0, and

c 2 = 0o r∃ m ∈ Z : α = π 2 + mπ 2 . ( 42 
)
If c 2 = 0, then (38) holds, and as before, we find (41).

If c 2 = 0, then, by (42), we have

∃ m ∈ Z : l 2 k 0 -ρ 1 λ 2 k 0 = π 2 + mπ 2 . ( 43 
)
Therefore, the fifth equation in ( 35) is equivalent to

ψ(x) =-c 2 1 + k 0 k √ α cos √ αx , (44) 
and then the third and fourth equations in (35) are reduced to

λ 2 = k 0 kk 0 + bl 2 (k + k 0 ) (k + k 0 )(k 0 ρ 2 + bρ 1 ) . (45) 
We see that ( 43)and(45) lead to

∃ m ∈ Z : l 2 = ρ 2 k 0 + ρ 1 b ρ 2 k 0 π 2 + mπ 2 + ρ 1 k ρ 2 (k + k 0 )
; that is (24) does not hold. So, if (24) holds, we get a contradiction, and hence, c 2 = 0 and, as before, we find (41). If (24) does not hold, then, for λ ∈ R satisfying ( 45), the function 

(x) = c 2 sin √ αx , iλ sin √ αx , -1 + k 0 k √ α cos √ αx , -iλ 1 + k 0 k √ α cos √ αx , 0, 0, 0, 0

Condition (25) implies (27)

We assume that (25) holds and prove (27). Let us proceed by contradiction. So, we assume that (27)isfalse, then there exist sequences

( n ) n ⊂ D (A) and (λ n ) n ⊂ R satisfying n H = 1, ∀ n ∈ N, (46) 
lim n→∞ |λ n | =∞ (47) 
and

lim n→∞ (i λ n I -A) n H = 0. ( 48 
)

Case of system (1)

The limit (48) implies the following ones:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ iλ n ϕ n - ∼ ϕ n -→ 0i n H 1 * (0, 1) , iλ n ρ 1 ∼ ϕ n -k (ϕ nx + ψ n + lw n ) x -lk 0 (w nx -lϕ n ) -→ 0i n L 2 (0, 1) , iλ n ψ n - ∼ ψ n -→ 0i n ∼ H 1 * (0, 1) , iλ n ρ 2 ∼ ψ n -bψ nxx + k (ϕ nx + ψ n + lw n ) -→ 0i n L 2 (0, 1) , iλ n w n - ∼ w n -→ 0i n ∼ H 1 * (0, 1) , iλ n ρ 1 ∼ w n -k 0 (w nx -lϕ n ) x + lk (ϕ nx + ψ n + lw n ) + δθ nx -→ 0i n L 2 (0, 1) , iλ n ρ 3 θ n -βθ nxx + δ ∼ w nx -→ 0i n L 2 (0, 1) . ( 49 
)
We will arrive to a contradiction with (46) by proving that

lim n→∞ n H = 0. ( 50 
)
Some of the calculations below are used in [START_REF] Afilal | On the uniform stability for a linear thermoelastic Bresse system with second sound[END_REF].

Estimate on θ n Taking the inner product of (i λ n I -A) n with n in H and using [START_REF] Pruss | On the spectrum of C 0 semigroups[END_REF], we get

Re (i λ n I -A) n , n H = β θ nx 2 L 2 (0,1) . (51) 
Using ( 46)and(48), we deduce that

θ nx -→ 0i n L 2 (0, 1) . ( 52 
)
Because θ n (0) = 0, then we get from (52)that

θ n -→ 0i n L 2 (0, 1) . ( 53 
)
Estimates on ϕ n , ψ n and w n Multiplying (49) 1 ,(49) 3 and (49) 5 by 1 λ n , and using ( 46)and(47), we find

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ϕ n -→ 0i n L 2 (0, 1) , ψ n -→ 0i n L 2 (0, 1) , w n -→ 0i n L 2 (0, 1) . ( 54 
)
Estimate on 1 λ n w nxx Applying the triangle inequality, we have

w nxx λ n L 2 (0,1) ≤ 1 k 0 |λ n | iλ n ρ 1 ∼ w n -k 0 (w nx -lϕ n ) x + lk (ϕ nx + ψ n + lw n ) + δθ nx L 2 (0,1) + 1 k 0 iρ 1 ∼ w n + lk 0 λ n ϕ nx + lk λ n (ϕ nx + ψ n + lw n ) + δ θ nx λ n L 2 (0,1) .
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Author Proof Then, by ( 46), (47), (49) 6 and (52), we deduce that

1 λ n w nxx n is bounded in L 2 (0, 1) . ( 55 
)
Estimates on w nx , 1

λ n ∼ w nx and 1 λ n ∼
w n Taking the inner product of (49) 7 with iw nx λ n in L 2 (0, 1), integrating by parts and using the boundary conditions, we get

ρ 3 θ n ,w nx L 2 (0,1) + β θ nx , iw nxx λ n L 2 (0,1) -δ iλ n w nx - ∼ w nx , iw nx λ n L 2 (0,1) +δ w nx 2 L 2 (0,1) -→ 0.
Using ( 46), ( 47), (49) 5 ,(52), ( 53)and(55), we deduce that

w nx -→ 0i n L 2 (0, 1) , (56) 
and from (49) 5 ,wehave

1 λ n ∼ w nx -→ 0i n L 2 (0, 1) . (57) 
As ∼ w n (1) = 0 and using (57), we obtain

1 λ n ∼ w n -→ 0i n L 2 (0, 1) . (58) 
Estimates on ∼ w n and λ n w n Taking the inner product of (49) [START_REF] Green | A re-examination of the basic postulates of thermomechanics[END_REF] with i ∼ w n λ n in L 2 (0, 1), integrating by parts and using the boundary conditions, we see that

ρ 1 ∼ w n 2 L 2 (0,1) + k 0 (w nx -lϕ n ) , i ∼ w nx λ n L 2 (0,1) +lk (ϕ nx + ψ n + lw n ) , i ∼ w n λ n L 2 (0,1) + δ θ nx λ n , i ∼ w n L 2 (0,1) -→ 0.
Using (46), (47), ( 52), ( 57)and(58), we obtain

∼ w n -→ 0i n L 2 (0, 1) , (59) 
and with (49) 5 ,wefind

λ n w n -→ 0i n L 2 (0, 1) . ( 60 
)
Estimates on ϕ nx , ∼ ϕ n and λ n ϕ n First, taking the inner product of (

ϕ nx + ψ n + lw n ) with iλ n ∼ w n in L 2 (0, 1)
, integrating by parts and using the boundary conditions, we have

(ϕ nx + ψ n + lw n ) , iλ n ∼ w n L 2 (0,1) =-iλ n ϕ nx , ∼ w n L 2 (0,1) -iλ n ψ n , ∼ w n L 2 (0,1) -l iλ n w n , ∼ w n L 2 (0,1) = iλ n ϕ n - ∼ ϕ n , ∼ w nx L 2 (0,1) + ∼ ϕ n , ∼ w nx L 2 (0,1) -iλ n ψ n - ∼ ψ n , ∼ w n L 2 (0,1) - ∼ ψ n , ∼ w n L 2 (0,1) -l iλ n w n - ∼ w n , ∼ w n L 2 (0,1) -l ∼ w n 2 L 2 (0,1) =-iλ n ϕ nx - ∼ ϕ nx , ∼ w n L 2 (0,1) + ∼ ϕ n , ∼ w nx L 2 (0,1) -iλ n ψ n - ∼ ψ n , ∼ w n L 2 (0,1) - ∼ ψ n , ∼ w n L 2 (0,1) -l iλ n w n - ∼ w n , ∼ w n L 2 (0,1) -l ∼ w n 2 L 2 (0,1)
Then, using (46), (49) 1 ,(49) 3 ,(49) 5 and (59), we deduce that

(ϕ nx + ψ n + lw n ) , iλ n ∼ w n L 2 (0,1) - ∼ ϕ n , ∼ w nx L 2 (0,1) -→ 0. (61)
Second, taking the inner product of

∼ ϕ n with ∼ w nx in L 2 (0, 1), we arrive at ∼ ϕ n , ∼ w nx L 2 (0,1) = ∼ ϕ n , ∼ w nx -l ∼ ϕ n L 2 (0,1) + l ∼ ϕ n 2 L 2 (0,1) =- ∼ ϕ n , iλ n w nx - ∼ w nx L 2 (0,1) + ∼ ϕ n , l iλ n ϕ n - ∼ ϕ n L 2 (0,1) + ∼ ϕ n , iλ n (w nx -lϕ n ) L 2 (0,1) + l ∼ ϕ n 2 L 2 (0,1)
, then, by ( 46), (49) 1 and (49) 5 ,wehave

λ n ∼ ϕ n , i (w nx -lϕ n ) L 2 (0,1) - ∼ ϕ n , ∼ w nx L 2 (0,1) + l ∼ ϕ n 2 L 2 (0,1) -→ 0. ( 62 
)
Third, taking the inner product of (49) 2 with (w nxlϕ n ) in L 2 (0, 1), integrating by parts and using the boundary conditions, we find

iλ n ρ 1 ∼ ϕ n , (w nx -lϕ n ) L 2 (0,1) + k (ϕ nx + ψ n + lw n ) , (w nx -lϕ n ) x L 2 (0,1) -lk 0 (w nx -lϕ n ) 2 L 2 (0,1) -→ 0,
which implies that

λ n ρ 1 i ∼ ϕ n , (w nx -lϕ n ) L 2 (0,1) - k k 0 (ϕ nx + ψ n + lw n ) , iλ n ρ 1 ∼ w n -k 0 (w nx -lϕ n ) x + lk (ϕ nx + ψ n + lw n ) + δθ nx L 2 (0,1) + kρ 1 k 0 (ϕ nx + ψ n + lw n ) , iλ n ∼ w n L 2 (0,1) + lk 2 k 0 (ϕ nx + ψ n + lw n ) 2 L 2 (0,1) + δk k 0 (ϕ nx + ψ n + lw n ) ,θ nx L 2 (0,1) -lk 0 (w nx -lϕ n ) 2 L 2 (0,1) -→ 0.
Using (46), (49) 6 ,(52), ( 54)and(56) , we see that

-λ n ρ 1 ∼ ϕ n , i (w nx -lϕ n ) L 2 (0,1) + kρ 1 k 0 (ϕ nx + ψ n + lw n ) , iλ n ∼ w n L 2 (0,1) + lk 2 k 0 (ϕ nx + ψ n + lw n ) 2 L 2 (0,1) -→ 0. ( 63 
)
Then, multiplying (61)by -kρ 1 k 0 and (62)byρ 1 , and adding the obtained limits and (63), we obtain

k k 0 -1 ρ 1 ∼ ϕ n , ∼ w nx L 2 (0,1) + lk 2 k 0 (ϕ nx + ψ n + lw n ) 2 L 2 (0,1) + ρ 1 l ∼ ϕ n 2 L 2 (0,1) -→ 0. ( 64 
)
So, because k = k 0 (according to (25)), we get from (54)and(64)that

ϕ nx -→ 0i n L 2 (0, 1) (65) 
and

∼ ϕ n -→ 0i n L 2 (0, 1) . ( 66 
)
Moreover, (49) 1 and (66)give

λ n ϕ n -→ 0i n L 2 (0, 1) . ( 67 
)
Estimates on ∼ ψ n and λ n ψ n First, taking the inner product of (49) 4 with (ϕ nx + ψ n + lw n ) in L 2 (0, 1), integrating by parts and using the boundary conditions, we get

iλ n ρ 2 ∼ ψ n ,ϕ nx L 2 (0,1) + iλ n ρ 2 ∼ ψ n ,ψ n L 2 (0,1) + l iλ n ρ 2 ∼ ψ n ,w n L 2 (0,1) +b ψ nx , (ϕ nx + ψ n + lw n ) x L 2 (0,1) + k (ϕ nx + ψ n + lw n ) 2 L 2 (0,1) -→ 0, then -λ n ρ 2 ∼ ψ n , iϕ nx L 2 (0,1) -ρ 2 ∼ ψ n , iλ n ψ n - ∼ ψ n L 2 (0,1) -ρ 2 ∼ ψ n 2 L 2 (0,1) -lρ 2 ∼ ψ n , iλ n w n - ∼ w n L 2 (0,1) -lρ 2 ∼ ψ n , ∼ w n L 2 (0,1) - b k ψ nx , iλ n ρ 1 ∼ ϕ n -k (ϕ nx + ψ n + lw n ) x -lk 0 (w nx -lϕ n ) L 2 (0,1) + b k ψ nx , iλ n ρ 1 ∼ ϕ n L 2 (0,1) - lk 0 b k ψ nx , (w nx -lϕ n ) L 2 (0,1) + k ϕ nx + ψ n + lw n 2 L 2 (0,1) -→ 0, using (46) 
, (49) 2 ,(49) 3 ,(49) 5 ,(54), ( 56), ( 59)and( 65), we get

-λ n ρ 2 ∼ ψ n , iϕ nx L 2 (0,1) -ρ 2 ∼ ψ n 2 L 2 (0,1) + bρ 1 k λ n ψ nx , i ∼ ϕ n L 2 (0,1) -→ 0. (68) 
Second, using the equality

λ n ψ nx , i ∼ ϕ n L 2 (0,1) =-iλ n ψ nx - ∼ ψ nx , ∼ ϕ n L 2 (0,1) - ∼ ψ nx , ∼ ϕ n L 2 (0,1)
, integrating by parts and using the boundary conditions, we obtain

λ n ψ nx , i ∼ ϕ n L 2 (0,1) =-iλ n ψ nx - ∼ ψ nx , ∼ ϕ n L 2 (0,1) + ∼ ψ n , ∼ ϕ nx L 2 (0,1) =-iλ n ψ nx - ∼ ψ nx , ∼ ϕ n L 2 (0,1) - ∼ ψ n , iλ n ϕ nx - ∼ ϕ nx L 2 (0,1) + ∼ ψ n , iλ n ϕ nx L 2 (0,1)
.

Therefore, from (46), (49) 1 and (49) 3 , we see that

λ n ψ nx , i ∼ ϕ n L 2 (0,1) -λ n ∼ ψ n , iϕ nx L 2 (0,1) -→ 0, (69) 
so, multiplying (69)by-ρ 2 and inserting the obtained limit into (68), we obtain

λ n k (bρ 1 -kρ 2 ) ψ nx , i ∼ ϕ n L 2 (0,1) -ρ 2 ∼ ψ n 2 L 2 (0,1) -→ 0. ( 70 
)
Now, we use the fact that bρ 1kρ 2 = 0 (condition (25)), we get from (70)that

∼ ψ n -→ 0i n L 2 (0, 1) , (71) 
and by (49) 3 and (71), we deduce that

λ n ψ n -→ 0i n L 2 (0, 1) . ( 72 
)
Estimate on ψ nx and conclusion Taking the inner product of (49) 4 with ψ n in L 2 (0, 1), integrating by parts and using the boundary conditions, we get

-ρ 2 ∼ ψ n , iλ n ψ n L 2 (0,1) + b ψ nx 2 L 2 (0,1) + k (ϕ nx + ψ n + lw n ) ,ψ n L 2 (0,1) -→ 0,
and using (46), ( 54)and(72), we obtain

ψ nx -→ 0i n L 2 (0, 1) . (73) 
A combination of (53), ( 54), ( 56), ( 59), ( 65), (66), ( 71)and(73) leads to (50), which is a contradiction with (46). Hence, in case ( 1), ( 25) implies (27).

Case of system (4)

In case (4), the limit (48) implies the following ones:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ iλ n ϕ n - ∼ ϕ n -→ 0i nH 1 * (0, 1) , iλ n ρ 1 ∼ ϕ n -k (ϕ nx + ψ n + lw n ) x -lk 0 (w nx -lϕ n ) -→ 0i n L 2 (0, 1) , iλ n ψ n - ∼ ψ n -→ 0i n ∼ H 1 * (0, 1) , iλ n ρ 2 ∼ ψ n -bψ nxx + k (ϕ nx + ψ n + lw n ) -→ 0i n L 2 (0, 1) , iλ n w n - ∼ w n -→ 0i n ∼ H 1 * (0, 1) , iλ n ρ 1 ∼ w n -k 0 (w nx -lϕ n ) x + lk (ϕ nx + ψ n + lw n ) + δ ∼ θ nx -→ 0i n L 2 (0, 1) , iλ n θ n - ∼ θ n -→ 0i n H 1 * (0, 1) , iλ n ρ 3 ∼ θ n -βθ n + γ ∼ θ n xx + δ ∼ w nx -→ 0i n L 2 (0, 1) . (74) 
Estimates on λ n θ n , λ n θ nx , ∼ θ n and ∼ θ nx Taking the inner product of (i λ n I -A) n with n in H and using [START_REF] Pruss | On the spectrum of C 0 semigroups[END_REF], we find

Re (i λ n I -A) n , n H = γ ∼ θ nx 2 L 2 (0,1) . (75) 
Using ( 46)and(48), we deduce that

∼ θ nx -→ 0i n L 2 (0, 1) . (76) 
Because ∼ θ n (0) = 0 and according to Poincaré's inequality, then we get from (76)that

∼ θ n -→ 0i n L 2 (0, 1) . ( 77 
)
The above two limits combined with (74) 7 give

λ n θ nx -→ 0i n L 2 (0, 1) (78) 
and

λ n θ n -→ 0i n L 2 (0, 1) . ( 79 
)
Estimates on ϕ n , ψ n and w n Multiplying (74) 1 ,(74) 3 and (74) 5 by 1 λ n , and using ( 46)and(47), we find (54). 64)and(70), so (25) leads to (65), (66), ( 71)and(73). Consequently, (50) holds, which is a contradiction with (46). Hence, also in case ( 4), ( 25) implies (27).

Estimate on

Condition (27) implies (25)

We prove this implication by contradiction. So, we assume that (25) does not hold and prove that (27) is not satisfied; that is we prove that there exists a sequence

(λ n ) n ⊂ R such that lim n→∞ (iλ n I -A) -1 L(H) =∞,
which is equivalent to prove that there exists a sequence (F n ) n ⊂ H satisfying

F n H ≤ 1, ∀n ∈ N (80) and lim n→∞ (iλ n I -A) -1 F n H =∞. (81) 
For this purpose, let

n = (iλ n I -A) -1 F n , ∀n ∈ N.
Then we have to prove that (80) holds such that lim and

F n = ( f 1n ,..., f 7n ) T in case (1),
Then, from the second equality in (82), we have the following systems:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ iλ n ϕ n -φ n = f 1n , iρ 1 λ n φn -k (ϕ nx + ψ n + l w n ) x -lk 0 (w nx -lϕ n ) = ρ 1 f 2n , iλ n ψ n -ψn = f 3n , iρ 2 λ n ψn -bψ nxx + k (ϕ nx + ψ n + l w n ) = ρ 2 f 4n , iλ n w n -w n = f 5n , iρ 1 λ n wn -k 0 (w nx -lϕ n ) x + lk (ϕ nx + ψ n + l w n ) + δθ nx = ρ 1 f 6n , iρ 3 λ n θ n -βθ nxx + δ wnx = ρ 3 f 7n (83)
in case (1), and

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ iλ n ϕ n -φ n = f 1n , iρ 1 λ n φn -k (ϕ nx + ψ n + l w n ) x -lk 0 (w nx -lϕ n ) = ρ 1 f 2n , iλ n ψ n -ψn = f 3n , iρ 2 λ n ψn -bψ nxx + k (ϕ nx + ψ n + l w n ) = ρ 2 f 4n , iλ n w n -w n = f 5n , iρ 1 λ n wn -k 0 (w nx -lϕ n ) x + lk (ϕ nx + ψ n + l w n ) + δ θnx = ρ 1 f 6n , iλ n θ n -θn = f 7n , iρ 3 λ n θn -βθ n + γ θn xx + δ wnx = ρ 3 f 8n (84)
in case (4). Choosing

f 4n (x) = c cos(Nx), f 1n = f 2n = f 3n = f 5n = f 6n (x) = f 7n = f 8n = 0, (85) 
where N = (2n+1)π 2 and c is a constant satisfying 0 < |c|≤ 1 √ ρ 2 ,so

F n 2 H = ρ 2 f 4n 2 L 2 (0,1) = ρ 2 |c| 2 1 0 cos 2 (Nx) dx ≤ 1.
On the other hand, the systems (83)and(84) become, respectively,

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ φn = iλ n ϕ n , ψn = iλ n ψ n , wn = iλ n w n , -ρ 1 λ 2 n ϕ n -k (ϕ nx + ψ n + l w n ) x -lk 0 (w nx -lϕ n ) = 0, -ρ 2 λ 2 n ψ n -bψ nxx + k (ϕ nx + ψ n + l w n ) = ρ 2 f 4n , -ρ 1 λ 2 n w n -k 0 (w nx -lϕ n ) x + lk (ϕ nx + ψ n + l w n ) + δθ nx = 0, iρ 3 λ n θ n -βθ nxx + iδλ n w nx = 0 (86) and ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ φn = iλ n ϕ n , ψn = iλ n ψ n , wn = iλ n w n , θn = iλ n θ n , -ρ 1 λ 2 n ϕ n -k (ϕ nx + ψ n + l w n ) x -lk 0 (w nx -lϕ n ) = 0, -ρ 2 λ 2 n ψ n -bψ nxx + k (ϕ nx + ψ n + l w n ) = ρ 2 f 4n , -ρ 1 λ 2 n w n -k 0 (w nx -lϕ n ) x + lk (ϕ nx + ψ n + l w n ) + iδλ n θ nx = 0, -iρ 3 λ 2 n θ n -(βθ n + iγλ n θ n ) xx + iδλ n w nx = 0. ( 87 
)
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Author Proof Let us consider the choices

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ϕ n (x) = α 1 sin (Nx) ,ψ n (x) = α 2 cos (Nx) ,w n (x) = α 3 cos (Nx) , θ n (x) = α 4 sin (Nx) , φn (x) = iλ n α 1 sin (Nx) , ψn (x) = iλ n α 2 cos (Nx) , wn (x) = iλ n α 3 cos (Nx) , θn (x) = iλ n α 4 sin (Nx) ,
where α 1 ,...,α 4 are constants depending on N (will be fixed later). Then the last equation in (86)andthe last one in (87) are equivalent to α 4 = µ n N α 3 ,where

µ n = ⎧ ⎨ ⎩ iδλ n β N 2 +iρ 3 λ n in case (86), iδλ n iγλ n N 2 +β N 2 -iρ 3 λ 2 n in case (87).
(88) Therefore, ( 86)and( 87) are satisfied if and only if

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ kN 2 + l 2 k 0 -ρ 1 λ 2 n α 1 + kNα 2 + l (k + k 0 ) N α 3 = 0, bN 2 + k -ρ 2 λ 2 n α 2 + kNα 1 + lkα 3 = ρ 2 c, (k 0 + δ n µ n ) N 2 + l 2 k -ρ 1 λ 2 n α 3 + l (k + k 0 ) N α 1 + lkα 2 = 0, ( 89 
)
where

δ n = δ in case (86), iδλ n in case (87).
Because ( 25) is assumed to be not satisfied, then

ρ 1 b -ρ 2 k = 0o r[ρ 1 b -ρ 2 k = 0a n dk -k 0 = 0],
so we distinguish these two cases.

Case 1 ρ 1 b -ρ 2 k = 0. Let choose λ n = b ρ 2 N 2 + kk 0 ρ 2 (k + k 0 ) ,then lim n→∞ δ n µ n = 0a n dN 2 δ n µ n ∼ ⎧ ⎨ ⎩ iδ 2 β λ n in case (86), iδ 2 γ λ n in case (87). ( 90 
)
On the other hand, (89) becomes

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ k - ρ 1 b ρ 2 N 2 + l 2 k 0 - ρ 1 kk 0 ρ 2 (k + k 0 ) α 1 + kNα 2 + l (k + k 0 ) N α 3 = 0, k 2 k + k 0 α 2 + kNα 1 + lkα 3 = ρ 2 c, k 0 - ρ 1 b ρ 2 + δ n µ n N 2 + l 2 k - ρ 1 kk 0 ρ 2 (k + k 0 ) α 3 + l (k + k 0 ) N α 1 + lkα 2 = 0. ( 91 
)
From (91) 2 we get

α 1 = ρ 2 c -lkα 3 - k 2 k + k 0 α 2 kN . ( 92 
)
By substituting (92)into(91) 3 andinto(91) 1 , we obtain, respectively, 

α 3 = ρ 2 lc(k + k 0 ) k ρ 1 b ρ 2 -k 0 -δ n µ n N 2 + l 2 k 0 + ρ 1 kk 0 ρ 2 (k + k 0 ) (93)
α 2 = (ρ 2 c -lkα 3 ) k - ρ 1 b ρ 2 + lk(k + k 0 )α 3 N 2 + (ρ 2 c -lkα 3 ) l 2 k 0 - ρ 1 kk 0 ρ 2 (k + k 0 ) k 2 k + k 0 - ρ 1 b ρ 2 + k 0 N 2 + l 2 k 0 - ρ 1 kk 0 ρ 2 (k + k 0 ) . ( 94 
)
According to (90), we see that (93) implies that

lim n→∞ α 3 = 0; therefore, lim n→∞ α 2 = c(k + k 0 )(ρ 1 b -ρ 2 k) k 2 ρ 1 b ρ 2 + k 0 = 0 since ρ 1 b -ρ 2 k = 0. Then lim n→∞ |α 2 |N =∞. ( 95 
)
Finally, using the norm of ψ nx in L 2 (0, 1), we obtain

n 2 H ≥ b ψ nx 2 L 2 (0,1) = b|α 2 | 2 N 2 1 0 sin 2 (Nx) dx ≥ b 2 |α 2 | 2 N 2 1 0 (1 -cos (2Nx)) dx = b 2 |α 2 | 2 N 2 -→ ∞ . ( 96 
) Case 2 ρ 1 b -ρ 2 k = 0andk -k 0 = 0. Let choose λ n = k ρ 1 N 2 + k √ ρ 1 ρ 2 N .Then(89) becomes ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ - ρ 1 k √ ρ 1 ρ 2 N + l 2 k 0 α 1 + kNα 2 + l (k + k 0 ) N α 3 = 0, - ρ 2 k √ ρ 1 ρ 2 N + k α 2 + kNα 1 + lkα 3 = ρ 2 c, (k 0 -k + δ n µ n ) N 2 - ρ 1 k √ ρ 1 ρ 2 N + l 2 k α 3 + l (k + k 0 ) N α 1 + lkα 2 = 0. ( 97 
)
From (97) 1 we get, for N >

l 2 k 0 √ ρ 1 ρ 2 ρ 1 k , α 1 = kNα 2 + l(k + k 0 )N α 3 ρ 1 k √ ρ 1 ρ 2 N -l 2 k 0 . ( 98 
)
By substituting (98)into(97

) 3 ,wefind,forN > l 2 k 0 √ ρ 1 ρ 2 ρ 1 k , α 3 = lk (k + k 0 ) N 2 + ρ 1 k √ ρ 1 ρ 2 N -l 2 k 0 α 2 - ρ 1 k √ ρ 1 ρ 2 N + l 2 k 0 (k 0 -k + δ n µ n ) N 2 - ρ 1 k √ ρ 1 ρ 2 N + l 2 k -l 2 (k + k 0 ) 2 N 2 . ( 99 
)
By substituting ( 98)and( 99)into(97) 2 , we obtain, for N >

l 2 k 0 √ ρ 1 ρ 2 ρ 1 k , α 2 = a 1 a 2 , (100) 
where

a 1 =-ρ 2 c ρ 1 k √ ρ 1 ρ 2 N -l 2 k 0 2 (k 0 -k + δ n µ n ) N 2 - ρ 1 k √ ρ 1 ρ 2 N + l 2 k +ρ 2 cl 2 (k + k 0 ) 2 - ρ 1 k √ ρ 1 ρ 2 N + l 2 k 0 N 2 and a 2 = l 2 k 2 (k + k 0 ) N 2 + ρ 1 k √ ρ 1 ρ 2 N -l 2 k 0 2 + l 2 (k + k 0 ) 2 l 2 kk 0 - ρ 1 k 2 + l 2 kk 0 ρ 2 √ ρ 1 ρ 2 N N 2 + l 2 kk 0 - ρ 1 k 2 + l 2 kk 0 ρ 2 √ ρ 1 ρ 2 N ρ 1 k √ ρ 1 ρ 2 N -l 2 k 0 (k 0 -k + δ n µ n ) N 2 - ρ 1 k √ ρ 1 ρ 2 N + l 2 k .
We see that ( 90)and(100) imply that

lim n→∞ |α 2 |= ⎧ ⎨ ⎩ cρ 1 ρ 2 (k-k 0 ) k[ρ 2 l 2 (k+3k 0 )+ρ 1 (k-k 0 )] if ρ 2 l 2 (k + 3k 0 ) + ρ 1 (k -k 0 ) = 0, ∞ if ρ 2 l 2 (k + 3k 0 ) + ρ 1 (k -k 0 ) = 0. (101) 
Because kk 0 = 0, then (95) holds. Consequently, (96) remains valid.

Finally, the equivalence between ( 27)and( 25) is established, and consequently, the proof of Theorem 3.1 is completed. ⊓ ⊔

Polynomial stability

In this section, we prove the following polynomial stability independently from (25):

Theorem 4.1 Assume that (15) and (24) hold. Then, for any m ∈ N * , there exists a constant c m > 0 such that, for any 0 ∈ D (A m ) and t > 0,

e tA 0 H ≤ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ c m 0 D(A m ) ln t t m 4 ln ti f ρ 1 b -ρ 2 k = 0, c m 0 D(A m ) ln t t m 10 ln ti f ρ 1 b -ρ 2 k = 0. ( 102 
)
The key of the proof of Theorem 4.1 is the following known theorem: Theorem 4.2 [START_REF] Liu | Characterization of polymomial decay rate for the solution of linear evolution equation[END_REF] If a bounded C 0 semigroup e tA on a Hilbert space H generated by an operator A satisfies (26) and, for some j ∈ N * ,

sup |λ|≥1 1 λ j (iλI -A) -1 L(H) < ∞. (103) 
Then, for any m ∈ N * , there exists a positive constant c m such that

e tA z 0 H ≤ c m z 0 D(A m ) ln t t m j ln t, ∀z 0 ∈ D A m , ∀t > 0. ( 104 
)
Proof In Sect. 3,weha v epro v edthat(24) implies (26). Then we only need to show (103), where j = 4i f To get a contradiction with (46), we use similar arguments to the ones used in Sect. 3.2.Let

ρ 1 b -ρ 2 k = 0,
n = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ϕ n , ∼ ϕ n ,ψ n , ∼ ψ n ,w n , ∼ w n ,θ n T in case (1) ϕ n , ∼ ϕ n ,ψ n , ∼ ψ n ,w n , ∼ w n ,θ n , ∼ θ n T in case (4).
4.1 Case of system (1) with ρ 1 bρ 2 k = 0

The limit (105) with j = 4 implies that

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ λ 4 n iλ n ϕ n - ∼ ϕ n → 0i n H 1 * (0, 1) , λ 4 n iρ 1 λ n ∼ ϕ n -k (ϕ nx + ψ n + lw n ) x -lk 0 (w nx -lϕ n ) → 0i n L 2 (0, 1) , λ 4 n iλ n ψ n - ∼ ψ n → 0i n ∼ H 1 * (0, 1) , λ 4 n iρ 2 λ n ∼ ψ n -bψ nxx + k (ϕ nx + ψ n + lw n ) → 0i n L 2 (0, 1) , λ 4 n iλ n w n - ∼ w n → 0i n ∼ H 1 * (0, 1) , λ 4 n iρ 1 λ n ∼ w n -k 0 (w nx -lϕ n ) x + lk (ϕ nx + ψ n + lw n ) + δθ nx → 0i n L 2 (0, 1) , λ 4 n iρ 3 λ n θ n -βθ nxx + δ ∼ w nx → 0i n L 2 (0, 1) . (106) 
Estimates on θ nx and θ n Taking the inner product of λ 4 n (i λ n I -A) n with n in H and using [START_REF] Pruss | On the spectrum of C 0 semigroups[END_REF],

we get Re λ 4 n (i λ n I -A) n , n H = Re iλ 5 n n 2 L 2 (0,1) + βλ 4 n θ nx 2 L 2 (0,1) = βλ 4 n θ nx 2 L 2 (0,1) .
So ( 46)and(105) imply that

λ 2 n θ nx -→ 0i n L 2 (0, 1) . (107) 
Because θ n in H 1 * (0, 1) and thanks to Poincaré's inequality, we deduce that

λ 2 n θ n -→ 0i n L 2 (0, 1) . (108) 
Estimates on ϕ n , ψ n and w n Multiplying (106) 1 ,(106) 3 and (106) 5 by 1 λ 5 n , and using (46)and(47), we obtain (54).

Estimate on 1

λ n w nxx Multiplying (106) 6 by 1 λ 5 n and using (46), ( 47)and(107), we conclude (55).

Estimates on λ n w nx , λ n w n , ∼ w nx and ∼ w n Taking the inner product of (106) 7 with i λ 3 n w nx in L 2 (0, 1) and using ( 46)and(47), we get

ρ 3 λ 2 n θ n ,w nx L 2 (0,1) -β λ n θ nxx , iw nx L 2 (0,1) -δ λ n iλ n w nx - ∼ w nx , iw nx L 2 (0,1) + δλ 2 n w nx 2 L 2 (0,1) -→ 0,
then, integrating by parts and using the boundary conditions, we deduce that

ρ 3 λ 2 n θ n ,w nx L 2 (0,1) + β λ 2 n θ nx , i λ n w nxx L 2 (0,1) -δ λ n iλ n w nx - ∼ w nx , iw nx L 2 (0,1) + δλ 2 n w nx 2 L 2 (0,1) -→ 0. ( 109 
)
Combining ( 46), ( 47), ( 55), (106) 5 ,(107)and(108), we get

λ n w nx -→ 0i n L 2 (0, 1) . (110) 
Moreover, again by multiplying (106) 5 by 

+ k 0 λ n (w nx -lϕ n ) , i ∼ w nx L 2 (0,1) +lk λ n (ϕ nx + ψ n + lw n ) , i ∼ w n L 2 (0,1) + δ λ n θ nx , i ∼ w n L 2 (0,1) → 0. ( 113 
)
So, using (59), ( 60), ( 107), ( 110), ( 111)and( 112), we deduce that

λ n ∼ w n -→ 0i n L 2 (0, 1) , (114) 
and by multiplying (106) 5 by 1 λ 3 n and using (47), we find 

λ 2 n w n -→ 0i nL 2 (0, 1) . (115) 
+ lk (ψ n + lw n ) + δθ nx ,ϕ nx L 2 (0,1) +l(k + k 0 ) ϕ nx 2 L 2 (0,1) + k 0 λ n w nx , 1 λ n ϕ nxx L 2 (0,1) → 0. ( 117 
)
Then, using (54), ( 107), ( 110), ( 114)and(116), we deduce that

ϕ nx → 0in L 2 (0, 1) . ( 118 
)
Estimates on λ n ϕ n and ∼ ϕ n Taking the inner product of (106) 2 with 1 λ 4 n ϕ n in L 2 (0, 1),u s i n g( 46)a n d (47), integrating by parts and using the boundary conditions, we obtain

-ρ 1 ∼ ϕ n , iλ n ϕ n - ∼ ϕ n L 2 (0,1) -ρ 1 ∼ ϕ n 2 L 2 (0,1)
+k (ϕ nx + ψ n + lw n ) ,ϕ nx L 2 (0,1)lk 0 (w nxlϕ n ) ,ϕ n L 2 (0,1) → 0, then, using (54), (106) 1 and (118), we find

∼ ϕ n → 0i n L 2 (0, 1) . (119) 
Moreover, multiplying (106) 1 by 1 λ 4 n and using (47)and(119), we get

λ n ϕ n → 0i n L 2 (0, 1) . ( 120 
)
Estimates on ψ nx and ∼ ψ n and conclusion First, taking the inner product of (106) 4 with 1 λ 4 n ψ n in L 2 (0, 1), using ( 46)and(47), integrating by parts and using the boundary conditions, we obtain

-ρ 2 ∼ ψ n , iλ n ψ n - ∼ ψ n L 2 (0,1) -ρ 2 ∼ ψ n 2 L 2 (0,1) +b ψ nx 2 L 2 (0,1) + k (ϕ nx + ψ n + lw n ) ,ψ n L 2 (0,1) → 0,
then, using ( 54)and(106) 3 ,wefind

b ψ nx 2 L 2 (0,1) -ρ 2 ∼ ψ n 2 L 2 (0,1) → 0. ( 121 
)
Second, taking the inner product of (106) 2 with 1 λ 4 n ψ nx , integrating by parts and using the boundary conditions, ( 46)and(47), we obtain

-k ψ nx 2 L 2 (0,1) + k ϕ nx ,ψ nxx L 2 (0,1) + iρ 1 λ n ∼ ϕ n ,ψ nx L 2 (0,1) -l(k + k 0 ) w nx ,ψ nx L 2 (0,1) -l 2 k 0 ϕ nx ,ψ n L 2 (0,1) → 0i n L 2 (0, 1) .
Exploiting ( 110)and( 118), we get

-k ψ nx 2 L 2 (0,1) + k ϕ nx ,ψ nxx L 2 (0,1) + iρ 1 λ n ∼ ϕ n ,ψ nx L 2 (0,1) → 0i n L 2 (0, 1) . ( 122 
)
Third, taking the inner product of k bλ 4 n ϕ nx with (106) 4 , integrating by parts and using the boundary conditions, (46)and(47), we obtain

-k ϕ nx ,ψ nxx L 2 (0,1) - iρ 2 kλ n b ∼ ϕ n ,ψ nx L 2 (0,1) + k 2 b ϕ nx , (ϕ nx + ψ n + lw n ) L 2 (0,1) + kρ 2 b ϕ n , iλ n iλ n ψ nx - ∼ ψ nx L 2 (0,1) - ikρ 2 b λ n iλ n ϕ n - ∼ ϕ n ,ψ nx L 2 (0,1)
→ 0i n L 2 (0, 1) , so, from (106) 1 ,(106) 3 and (118), we find

-k ϕ nx ,ψ nxx L 2 (0,1) - iρ 2 kλ n b ∼ ϕ n ,ψ nx L 2 (0,1) → 0i n L 2 (0, 1) . ( 123 
)
By adding (122)and(123) and using the equality ρ 1 bρ 2 k = 0, we see that

ψ nx → 0i n L 2 (0, 1) . ( 124 
)
Therefore, from (121), we get

∼ ψ n → 0i n L 2 (0, 1) . ( 125 
)
Finally, the limits (54), ( 59), ( 108), ( 110), ( 118), ( 119), ( 124)and( 125)imply(50), which is a contradiction with (46). Consequently, (103) with j = 4 holds.

4.2 Case of system (1) with ρ 1 bρ 2 k = 0

The limit (105) with j = 10 implies (106) with λ 10 n instead of λ 4 n ;thatis ).

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ λ 10 n iλ n ϕ n - ∼ ϕ n → 0i n H 1 * (0, 1) , λ 10 n iρ 1 λ n ∼ ϕ n -k (ϕ nx + ψ n + lw n ) x -lk 0 (w nx -lϕ n ) → 0i n L 2 (0, 1) , λ 10 n iλ n ψ n - ∼ ψ n → 0i n ∼ H 1 * (0, 1) , λ 10 n iρ 2 λ n ∼ ψ n -bψ nxx + k (ϕ nx + ψ n + lw n ) → 0i n L 2 (0, 1) , λ 10 n iλ n w n - ∼ w n → 0i n ∼ H 1 * (0, 1) , λ 10 n iρ 1 λ n ∼ w n -k 0 (w nx -lϕ n ) x + lk (ϕ nx + ψ n + lw n ) + δθ nx → 0i n L 2 (0, 1) , λ 10 n iρ 3 λ n θ n -βθ nxx + δ ∼ w nx → 0i n L 2 (0, 1) . (126) 
Moreover, the same computations as in Sect. 4.1 (case ρ 1 bρ 2 k = 0) give (instead of (107), ( 108), ( 110), ( 111), ( 59)and(60)) 

λ 5 n θ nx ,λ 5 n θ n , |λ n | 5 2 w nx , |λ n | 3 2 ∼ w nx , |λ n | 3 2 ∼ w n , |λ n | 5 2 w n -→ 0i n L 2 (0, 1) (127) 
-ρ 1 ∼ w n ,λ n iλ n ϕ nx - ∼ ϕ nx L 2 (0,1) + ρ 1 λ n ∼ w nx , ∼ ϕ n L 2 (0,1) +k 0 λ 2 n w nx , ϕ nxx λ n L 2 (0,1) + l (k + k 0 ) λ n ϕ nx 2 L 2 (0,1) +lk λ n (ψ n + lw n ) ,ϕ nx L 2 (0,1) + δ λ n θ nx ,ϕ nx L 2 (0,1) -→ 0,
hence, using (126) 1 ,(112), ( 116), ( 118)and(127), we obtain

|λ n | 1 2 ϕ nx -→ 0i n L 2 (0, 1) . (129) 
Therefore, according to Poincaré's inequality, (129) leads to

|λ n | 1 2 ϕ n -→ 0i n L 2 (0, 1) . ( 130 
)
On the other hand, taking the inner product of (126) 2 with ϕ n λ 9 n in L 2 (0, 1), integrating by parts and using (46), (47) and the boundary conditions, we get

-ρ 1 λ n ∼ ϕ n , iλ n ϕ n - ∼ ϕ n L 2 (0,1) -ρ 1 λ n this implies -ρ 1 ∼ ϕ n ,λ n iλ n ϕ n - ∼ ϕ n L 2 (0,1) -ρ 1 λ n ∼ ϕ n 2 L 2 (0,1) + kλ n ϕ nx 2 L 2 (0,1)
+k (λ n ψ n + lλ n w n ) ,ϕ nx L 2 (0,1)lk 0 (λ n w nxlλ n ϕ n ) ,ϕ n L 2 (0,1) -→ 0, so, using (126) 1 ,(112), ( 127)and(129), we deduce that

|λ n | 1 2 ∼ ϕ n -→ 0i n L 2 (0, 1) , (131) 
and from (126) 1 , we obtain that

|λ n | 3 2 ϕ n -→ 0i n L 2 (0, 1) . ( 132 
)
Estimates on λ n ϕ nx and λ n ∼ ϕ n Multiplying (126) 2 by 1

|λ n | 10+ 1 2
and using (47), we get

iρ 1 λ n |λ n | 1 2 ∼ ϕ n -k ϕ nxx |λ n | 1 2 -k ψ nx |λ n | 1 2 -l (k + k 0 ) w nx |λ n | 1 2 + l 2 k 0 ϕ n |λ n | 1 2
-→ 0i n L 2 (0, 1) , then, using ( 46)and( 131), we deduce that

ϕ nxx |λ n | 1 2 -→ 0i n L 2 (0, 1) . (133) 
On the other hand, by integrating by parts and using the boundary conditions, we see that

λ n w nxx , iλ n ϕ nx L 2 (0,1) = λ 2 n iw nx ,ϕ nxx L 2 (0,1) = λ n iλ n w nx - ∼ w nx ,ϕ nxx L 2 (0,1) + λ n ∼ w nx ,ϕ nxx L 2 (0,1) = λ 2 n iλ n w nx - ∼ w nx , ϕ nxx λ n L 2 (0,1) + λ n |λ n | 1 2 ∼ w nx , ϕ nxx |λ n | 1 2
L 2 (0,1) , then, using (47), (126) 5 ,(127)and(133), we obtain

λ n w nxx , iλ n ϕ nx L 2 (0,1) -→ 0. (134) 
Furthermore, integrating by parts and using the boundary conditions, we have Taking the inner product of (126) 2 with ∼ ϕ n λ 9 n in L 2 (0, 1) and using ( 46)and(47s), we get

λ n (ϕ nx + ψ n + lw n ) x , ∼ ϕ n L 2 (0,1) =-λ n (ϕ nx + ψ n + lw n ) , ∼ ϕ nx L 2 (0,1) =- 1 lk λ 2 n iλ n ρ 1 ∼ w n -k 0 (w nx -lϕ n ) x + lk (ϕ nx + ψ n + lw n ) + δθ nx , ∼ ϕ nx λ n L 2 (0,1) - 1 lk iλ n ρ 1 ∼ w n + δθ nx ,λ n iλ n ϕ nx - ∼ ϕ nx L 2 (0,1)
ρ 1 i λ n ∼ ϕ n 2 L 2 (0,1)
kλ n (ϕ nx + ψ n + lw n ) x , ∼ ϕ n L 2 (0,1) lk 0 (λ n w nxlλ n ϕ n ) , ∼ ϕ n L 2 (0,1) -→ 0, then, using (135), we obtain

ρ 1 i λ n ∼ ϕ n 2 L 2 (0,1)
+ ik 0 λ n ϕ nx 2 L 2 (0,1)lk 0 (λ n w nxlλ n ϕ n ) , ∼ ϕ n L 2 (0,1) -→ 0, and from (127), ( 131)and(132), we deduce that

λ n ∼ ϕ n -→ 0i n L 2 (0, 1) (136) 
and

λ n ϕ nx -→ 0i nL 2 (0, 1) . ( 137 
)
Estimates on ψ nx and ∼ ψ n and conclusion Taking the inner product of (126) 2 with ψ nx λ 10 n in L 2 (0, 1) and using ( 46)and(47), we get

ρ 1 iλ n ∼ ϕ n ,ψ nx L 2 (0,1)
k ϕ nxx ,ψ nx L 2 (0,1)k ψ nx 2 L 2 (0,1)

-l(k + k 0 ) w nx ,ψ nx L 2 (0,1) + l 2 k 0 ϕ n ,ψ nx L 2 (0,1) → 0, then, integrating by parts and using the boundary conditions, we obtain -l(k + k 0 ) w nx ,ψ nx L 2 (0,1) + l 2 k 0 ϕ n ,ψ nx L 2 (0,1) → 0, so, using (54), ( 116), (127), ( 136)and(137), we deduce that ψ nx -→ 0i n L 2 (0, 1) .

Taking the inner product of (126) 4 with ψ n λ 10 The limit (105) with j = 4 implies that 4.4 Case of system (4) with ρ 1 bρ 2 k = 0

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ λ 4 n iλ n ϕ n - ∼ ϕ n → 0i n H 1 * (0,
The limit (105) with j = 10 implies (140) with λ 10 n instead of λ 4 n . Similar calculations as in the case of system

(1) with ρ 1 bρ 2 k = 0 (Sect. 4.2) give the desired result. We omit the details.

Hence, the proof of our Theorem 4.1 is completed. ⊓ ⊔
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  and j = 10 if ρ 1 bρ 2 k = 0. Let us establish (103) by contradiction. Assume that (103)is false, then there exist sequences ( n ) n ⊂ D (A) and (λ n ) n ⊂ R satisfying (46), (47)and lim n→∞ λ j n (iλ n I -A) n H = 0. (105)

+ k 0 λ 2 n k i ϕ nx 2 L 2 0 k i λ n ϕ nx 2 L 2

 02222 lk (w nxlϕ n ) x ,λ n iλ n ϕ nxθ nx , iϕ nx L 2 (0,1) -k 0 λ n lk w nxx , iλ n ϕ nx L 2 (0,1) -k 0 (0,1) ,then, using (126) 1 ,(126) 6 ,(127), (128), (132)and(134), we findλ n (ϕ nx + ψ n + lw n ) x , ∼ ϕ n L 2 (0,1) + k (0,1) -→ 0.(135)

ρ 1 iλ n ∼ ϕ n ,ψ nx L 2 (0, 1 )+ k λ n ϕ nx , ψ nxx λ n L 2 (0, 1 ) -k ψ nx 2 L 2

 212122 (0,[START_REF] Afilal | On the uniform stability for a linear thermoelastic Bresse system with second sound[END_REF] 

n in L 2 2 ∼ 2 L 2 (0, 1 )+ b ψ nx 2 L 2 (0, 1 )

 22221221 (0, 1), integrating by parts and using (46), (47)a n dt h e boundary conditions, we get-ρ ψ n , iλ n ψ n -+ k (ϕ nx + ψ n + lw n ) ,ψ n L 2 (0,1) -→ 0,hence, using (54), (126) 3 and (138), we get∼ ψ n -→ 0i nL 2 (0, 1) . (139)A combination of the limits (54), (118), (127), (136), (138)and(139) leads to (50), which is a contradiction with (46). Consequently, (103) with j = 10 holds.4.3 Case of system (4) with ρ 1 bρ 2 k = 0
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  * (0, 1) and thanks to Poincaré's inequality, we have also (59)and(60). ) n and (λ n ψ n ) n are bounded in L 2 (0, 1) .

					1 n λ 4	,wefind
					∼ w nx → 0i n L 2 (0, 1) ,	(111)
	and, as w n ,			
	Estimates on λ 2 n w n and λ n	∼ w n Multiplying (106) 1 and (106) 3 by	1 n λ 4	, and using (46)and(47), we have
			(λ n ϕ n (112)
	Taking the inner product of (106) 6 with boundary conditions, we get	i λ 3 n	∼ w n in L 2 (0, 1), integrating by parts and using (46), (47)andthe
	ρ 1 λ n	∼ w n	2 L 2 (0,1)

∼ w n ∈ ∼ H 1

  1) , λ 4 n iρ 1 λ n ∼ ϕ nk (ϕ nx + ψ n + lw n ) xlk 0 (w nxlϕ n ) → 0i n L 2 (0, 1) , bψ nxx + k (ϕ nx + ψ n + lw n ) → 0i n L 2 (0, 1) ,

	λ 4 n iλ n ψ n -	∼ ψ n → 0i n	∼ H 1 * (0, 1) ,
	λ 4 n iρ 2 λ n ψ n λ 4 ∼ n iλ n w n -	∼ w n → 0i n	∼ H 1 * (0, 1) ,
	λ 4 n iρ 1 λ n				
						n	n	2 L 2 (0,1) + γλ 4 n	∼ θ nx	2 L 2 (0,1)
						= γλ 4 n	∼ θ nx	L 2 (0,1) 2	.
	So (46)and(105) imply that		
				λ 2 n	∼ θ nx -→ 0i n L 2 (0, 1) .	(141)
	Because θ n in H 1 * (0, 1) and thanks to Poincaré's inequality, we deduce that
				λ 2 n	∼ θ n -→ 0i n L 2 (0, 1) .	(142)
	Multiplying (140) 7 by	1 n λ 2	and using (46), (47), (141)and(142), we have

∼ w nk 0 (w nxlϕ n ) x + lk (ϕ nx + ψ n + lw n ) + δ ∼ θ nx → 0i n L 2 (0, 1) , λ 4 n iλ n θ n -∼ θ n → 0i n ∼ H 1 * (0, 1) , λ 4 n iρ 3 λ n θ nβ θ n + γ ∼ θ n xx + δ ∼ w nx → 0i n L 2 (0, 1) .

(140

) Estimates on θ nx , θ n , ∼ θ nx and ∼ θ n and conclusion Taking the inner product of λ 4 n (i λ n I -A) n with n in H and using (17), we get Re λ 4 n (i λ n I -A) n , n H = Re iλ 5

( f 1n ,..., f 8n ) T in case (4).
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